1
|
Umezawa A, Fukuda A, Horikawa R, Uchida H, Enosawa S, Oishi Y, Nakamura N, Sasaki K, Yanagi Y, Shimizu S, Nakao T, Kodama T, Sakamoto S, Hayakawa I, Akiyama S, Saku N, Miyata S, Ite K, Javaregowda PK, Toyoda M, Nonaka H, Nakamura K, Ito Y, Fukuhara Y, Miyazaki O, Nosaka S, Nakabayashi K, Haga C, Yoshioka T, Masuda A, Ohkura T, Yamazaki-Inoue M, Machida M, Abutani-Sakamoto R, Miyajima S, Akutsu H, Matsubara Y, Igarashi T, Kasahara M. First-in-human clinical study of an embryonic stem cell product for urea cycle disorders. Stem Cell Res Ther 2025; 16:120. [PMID: 40050977 PMCID: PMC11887382 DOI: 10.1186/s13287-025-04162-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/21/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND This study assesses the safety and efficacy of hepatocyte-like cell (HLC) infusion therapy derived from human embryonic stem cells as bridging therapy for neonatal-onset urea cycle disorders (UCD). The research includes both preclinical and clinical evaluations to determine the feasibility of HLC infusion as a therapeutic option for safer pediatric liver transplantation. METHODS Preclinical studies were conducted to validate the safety, biodistribution, and ammonia metabolism capabilities of HLCs using SCID mice models of UCD and extensive animal studies. In the clinical trial, five neonates with UCD received HLC infusions, intending to maintain metabolic stability and exceed a target weight of over 6 kg, which is considered necessary for safer liver transplantation. RESULTS Preclinical studies demonstrated that HLCs successfully engrafted in the liver without adverse migration or tumor formation and effectively elongated survival. Clinically, all five neonates exceeded the target weight of 6 kg while maintaining metabolic stability and successfully bridging to transplantation. Post-transplantation follow-up revealed stable growth, metabolic control, and no neurological complications. CONCLUSIONS The combined preclinical and clinical findings support HLC infusion as a viable bridge therapy for neonates with UCD, providing metabolic support to achieve safer weight thresholds for transplantation. While promising, careful monitoring remains essential, particularly for potential complications such as thrombus formation. TRIAL REGISTRATION jRCT, jRCT1090220412. Registered on 27 February 2019, https://jrct.niph.go.jp/en-latest-detail/jRCT1090220412 (originally registered in JMACCT (JMA-IIA00412)).
Collapse
Affiliation(s)
- Akihiro Umezawa
- National Center for Child Health and Development Research Institute, Setagaya, Japan.
- Department of Advanced Pediatric Medicine (National Center for Child Health and Development), Tohoku University School of Medicine, Sendai, Japan.
| | - Akinari Fukuda
- National Center for Child Health and Development, Setagaya, Japan
| | - Reiko Horikawa
- National Center for Child Health and Development, Setagaya, Japan
| | - Hajime Uchida
- National Center for Child Health and Development, Setagaya, Japan
| | - Shin Enosawa
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Yoshie Oishi
- National Center for Child Health and Development, Setagaya, Japan
| | - Naoko Nakamura
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Kengo Sasaki
- National Center for Child Health and Development, Setagaya, Japan
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusuke Yanagi
- National Center for Child Health and Development, Setagaya, Japan
| | - Seiichi Shimizu
- National Center for Child Health and Development, Setagaya, Japan
| | - Toshimasa Nakao
- National Center for Child Health and Development, Setagaya, Japan
| | - Tasuku Kodama
- National Center for Child Health and Development, Setagaya, Japan
| | - Seisuke Sakamoto
- National Center for Child Health and Development, Setagaya, Japan
| | - Itaru Hayakawa
- National Center for Child Health and Development, Setagaya, Japan
| | - Saeko Akiyama
- National Center for Child Health and Development Research Institute, Setagaya, Japan
- Department of Advanced Pediatric Medicine (National Center for Child Health and Development), Tohoku University School of Medicine, Sendai, Japan
| | - Noriaki Saku
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Shoko Miyata
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Kenta Ite
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Palaksha Kanive Javaregowda
- National Center for Child Health and Development Research Institute, Setagaya, Japan
- SDM Research Institute for Biomedical Sciences, A Constituent Unit of Shri Dharmasthala Manjunatheshwara University, Dharwad, India
| | - Masashi Toyoda
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Hidenori Nonaka
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Kazuaki Nakamura
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Yoshikazu Ito
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | | | - Osamu Miyazaki
- National Center for Child Health and Development, Setagaya, Japan
| | - Shunsuke Nosaka
- National Center for Child Health and Development, Setagaya, Japan
| | - Kazuhiko Nakabayashi
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Chizuko Haga
- National Center for Child Health and Development, Setagaya, Japan
| | - Takako Yoshioka
- National Center for Child Health and Development, Setagaya, Japan
| | - Akira Masuda
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Takashi Ohkura
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Mayu Yamazaki-Inoue
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Masakazu Machida
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Rie Abutani-Sakamoto
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Shoko Miyajima
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Hidenori Akutsu
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Yoichi Matsubara
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Takashi Igarashi
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Mureo Kasahara
- National Center for Child Health and Development, Setagaya, Japan.
| |
Collapse
|
2
|
Zahmatkesh E, Khoshdel Rad N, Hossein-Khannazer N, Mohamadnejad M, Gramignoli R, Najimi M, Malekzadeh R, Hassan M, Vosough M. Cell and cell-derivative-based therapy for liver diseases: current approaches and future promises. Expert Rev Gastroenterol Hepatol 2023; 17:237-249. [PMID: 36692130 DOI: 10.1080/17474124.2023.2172398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION According to the recent updates from World Health Organization, liver diseases are the 12th most common cause of mortality. Currently, orthotopic liver transplantation (OLT) is the most effective and the only treatment for end-stage liver diseases. Owing to several shortcomings like finite numbers of healthy organ donors, lifelong immunosuppression, and complexity of the procedure, cell and cell-derivatives therapies have emerged as a potential therapeutic alternative for liver diseases. Various cell types and therapies have been proposed and their therapeutic effects evaluated in preclinical or clinical studies, including hepatocytes, hepatocyte-like cells (HLCs) derived from stem cells, human liver stem cells (HLSCs), combination therapies with various types of cells, organoids, and implantable cell-biomaterial constructs with synthetic and natural polymers or even decellularized extracellular matrix (ECM). AREAS COVERED In this review, we highlighted the current status of cell and cell-derivative-based therapies for liver diseases. Furthermore, we discussed future prospects of using HLCs, liver organoids, and their combination therapies. EXPERT OPINION Promising application of stem cell-based techniques including iPSC technology has been integrated into novel techniques such as gene editing, directed differentiation, and organoid technology. iPSCs offer promising prospects to represent novel therapeutic strategies and modeling liver diseases.
Collapse
Affiliation(s)
- Ensieh Zahmatkesh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar Khoshdel Rad
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohamadnejad
- Cell-Based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Roberto Gramignoli
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Reza Malekzadeh
- Digestive Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
3
|
Lee JH, Park HJ, Kim YA, Lee DH, Noh JK, Jung JG, Yoon HH, Lee SK, Lee S. Establishment of a Serum-Free Hepatocyte Cryopreservation Process for the Development of an "Off-the-Shelf" Bioartificial Liver System. Bioengineering (Basel) 2022; 9:738. [PMID: 36550944 PMCID: PMC9774268 DOI: 10.3390/bioengineering9120738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
To use hepatocytes immediately when necessary for hepatocyte transplantation and bioartificial liver (BAL) systems, a serum-free cryopreservation protocol ensuring the high survival of hepatocytes and maintenance of their functions should be developed. We established a serum-free protocol for the cryopreservation of primary hepatocytes, hepatocyte spheroids, and hepatocyte spheroid beads in liquid nitrogen. The serum-free cryopreservation solutions showed a significantly higher performance in maintaining enhanced viability and ammonia removal, urea secretion, and the albumin synthesis of hepatocyte spheroids and spheroid beads. The serum-free thawing medium, containing human serum albumin (HSA) and N-acetylcysteine (NAC), was compared with a fetal bovine serum-containing thawing medium for the development of a serum-free thawing medium. Our results show that hepatocyte spheroids and spheroid beads thawed using a serum-free thawing medium containing HSA and NAC exhibited increased hepatocyte viability, ammonia removal, urea secretion, and albumin synthesis compared to those thawed using the serum-containing medium. Finally, we evaluated the liver functions of the cryopreserved BAL system-applied serum-free cryopreservation process compared to the fresh BAL system. The ammonia removal efficiency of the cryopreserved hepatocyte spheroids BAL was lower than or similar to that of the fresh BAL system. Additionally, the urea concentrations in the media of all three BAL systems were not significantly different during BAL system operation. This cryopreserved spheroid-based BAL system using a serum-free process will be a good candidate for the treatment of patients.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Hey-Jung Park
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Young-A Kim
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Doo-Hoon Lee
- Research Institute, HLB Cell Co., Ltd., Hwaseong 18469, Republic of Korea
| | - Jeong-Kwon Noh
- Research Institute, HLB Cell Co., Ltd., Hwaseong 18469, Republic of Korea
| | - Jong-Gab Jung
- Research Institute, HLB Cell Co., Ltd., Hwaseong 18469, Republic of Korea
| | - Hee-Hoon Yoon
- Research Institute, HLB Cell Co., Ltd., Hwaseong 18469, Republic of Korea
| | - Suk-Koo Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Sanghoon Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| |
Collapse
|
4
|
Beyzaei Z, Shamsaeefar A, Kazemi K, Nikeghbalian S, Bahador A, Dehghani M, Malekhosseini SA, Geramizadeh B. Liver transplantation in glycogen storage disease: a single-center experience. Orphanet J Rare Dis 2022; 17:127. [PMID: 35313948 PMCID: PMC8935097 DOI: 10.1186/s13023-022-02284-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/13/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Glycogen storage diseases (GSDs) are inherited glycogen metabolic disorders which have various subtypes. GSDs of type I, III, IV, VI, and IX show liver involvement and are considered as hepatic types of GSDs. Thus, liver transplantation (LT) has been proposed as a final therapy for these types of GSD. LT corrects the primary hepatic enzyme defect; however, the long-term outcomes of LT in these patients have not been extensively evaluated so far. There are few reports in the English literature about the outcome of GSD patients after LT. There has been no report from Iran. The present retrospective study aimed to evaluate the long-term outcomes of eight patients with GSD types I, III, and IV who underwent LT in the affiliated hospitals of Shiraz University of Medical Sciences, from March 2013 to June 2021. During this period, there were no patients with GSD VI and IX identified in this center. RESULTS The median time of diagnosis of the GSDs and at transplant was 1 year and 11 years, respectively. All eight transplanted patients were alive at the time of follow-up in this study. None of them required a re-transplant. All of the patients showed normalized liver enzymes after LT with no sign of hypoglycemia. CONCLUSIONS LT is an achievable treatment for end-stage hepatic involvement of GSDs with a cure for metabolic deficiency. Our experience in these eight patients shows a favorable outcome with no mortality and no major complication.
Collapse
Affiliation(s)
- Zahra Beyzaei
- Shiraz Transplant Research Center (STRC), Shiraz University of Medical Sciences, Khalili St., Research Tower, Seventh Floor, Shiraz, Iran
| | - Alireza Shamsaeefar
- Department of Hepatobiliary Surgery, Abu-Ali-Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kurosh Kazemi
- Department of Hepatobiliary Surgery, Abu-Ali-Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saman Nikeghbalian
- Department of Hepatobiliary Surgery, Abu-Ali-Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Bahador
- Department of Hepatobiliary Surgery, Abu-Ali-Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Dehghani
- Department of Hepatobiliary Surgery, Abu-Ali-Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed-Ali Malekhosseini
- Department of Hepatobiliary Surgery, Abu-Ali-Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bita Geramizadeh
- Shiraz Transplant Research Center (STRC), Shiraz University of Medical Sciences, Khalili St., Research Tower, Seventh Floor, Shiraz, Iran.
- Department of Pathology, Medical School of Shiraz University, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Anand H, Nulty J, Dhawan A. Cell therapy in congenital inherited hepatic disorders. Best Pract Res Clin Gastroenterol 2021; 56-57:101772. [PMID: 35331403 DOI: 10.1016/j.bpg.2021.101772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 01/31/2023]
Abstract
Congenital inherited hepatic disorders (CIHDs) are a set of diverse and heterogeneous group of genetic disorders leading to a defect in an enzyme or transporter. Most of these disorders are currently treated by liver transplantation as standard of care. Improved surgical techniques and post-operative care has led to a wider availability and success of liver transplantation program worldwide. However liver transplantation has its own limitations due to invasive surgery and lifelong use of immunosuppressive agents. Our experience from auxiliary liver transplantation (where right or the left lobe of the patient liver is replaced with a healthy liver donor) demonstrated successful treatment of the underlying defect of noncirrhotic metabolic disorder suggesting that whole liver replacement may not be necessary to achieve a change in phenotype. Large number of animal studies in human models of CIHD have shown success of hepatocyte transplantation leading to its human use. This review addresses the current state of human hepatocyte transplantation in the management of CIHDs with bottlenecks to its wider application and future perspectives.
Collapse
Affiliation(s)
- Hanish Anand
- King's College Hospital NHS Trust: King's College Hospital NHS Foundation Trust, United Kingdom; DhawanLab, Paediatric Liver GI and Nutrition Center and MowatLabs, Institute of Liver Studies, King's College London, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, London, UK
| | - Jessica Nulty
- King's College Hospital NHS Trust: King's College Hospital NHS Foundation Trust, United Kingdom; DhawanLab, Paediatric Liver GI and Nutrition Center and MowatLabs, Institute of Liver Studies, King's College London, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, London, UK
| | - Anil Dhawan
- King's College Hospital NHS Trust: King's College Hospital NHS Foundation Trust, United Kingdom; DhawanLab, Paediatric Liver GI and Nutrition Center and MowatLabs, Institute of Liver Studies, King's College London, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, London, UK.
| |
Collapse
|
6
|
Vimalesvaran S, Dhawan A. Liver transplantation for pediatric inherited metabolic liver diseases. World J Hepatol 2021; 13:1351-1366. [PMID: 34786171 PMCID: PMC8568579 DOI: 10.4254/wjh.v13.i10.1351] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/23/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Liver transplantation (LT) remains the gold standard treatment for end stage liver disease in the pediatric population. For liver based metabolic disorders (LBMDs), the decision for LT is predicated on a different set of paradigms. With improved outcomes post-transplantation, LT is no longer merely life saving, but has the potential to also significantly improve quality of life. This review summarizes the clinical presentation, medical treatment and indications for LT for some of the common LBMDs. We also provide a practical update on the dilemmas and controversies surrounding the indications for transplantation, surgical considerations and prognosis and long terms outcomes for pediatric LT in LBMDs. Important progress has been made in understanding these diseases in recent years and with that we outline some of the new therapies that have emerged.
Collapse
Affiliation(s)
- Sunitha Vimalesvaran
- Paediatric Liver GI and Nutrition Center, King's College Hospital, London SE5 9RS, United Kingdom
| | - Anil Dhawan
- Paediatric Liver GI and Nutrition Center, King's College Hospital, London SE5 9RS, United Kingdom
| |
Collapse
|
7
|
Pareja E, Gómez-Lechón MJ, Tolosa L. Induced pluripotent stem cells for the treatment of liver diseases: challenges and perspectives from a clinical viewpoint. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:566. [PMID: 32775367 PMCID: PMC7347783 DOI: 10.21037/atm.2020.02.164] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The only curative treatment for severe end-stage liver disease (ESLD) is liver transplantation (LT) but it is limited by the shortage of organ donors. The increase of the incidence of liver disease has led to develop new therapeutic approaches such as liver cell transplantation. Current challenges that limit a wider application of this therapy include a limited cell source and the poor engraftment in the host liver of cryopreserved hepatocytes after thawing. Induced pluripotent stem cells (iPSCs) that can be differentiated into hepatocyte-like cells (HLCs) are being widely explored as an alternative to human hepatocytes because of their unlimited proliferation capacity and their potential ability to avoid the immune system. Their large-scale production could provide a new tool to produce enough HLCs for treating patients with metabolic diseases, acute liver failure (ALF), those with ESLD or patients not considered for organ transplantation. In this review we discuss current challenges for generating differentiated cells compatible with human application as well as in-depth safety evaluation. This analysis highlights the uncertainties and deficiencies that should be addressed before their clinical use but also points out the potential benefits that will produce a great impact in the field of hepatology.
Collapse
Affiliation(s)
- Eugenia Pareja
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Unidad Hepatobiliopancreáctica, Hospital Universitario Doctor Peset, Valencia, Spain
| | - M José Gómez-Lechón
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,CIBERehd, ISCIII, Madrid, Spain
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
8
|
Nguyen MP, Jain V, Iansante V, Mitry RR, Filippi C, Dhawan A. Clinical application of hepatocyte transplantation: current status, applicability, limitations, and future outlook. Expert Rev Gastroenterol Hepatol 2020; 14:185-196. [PMID: 32098516 DOI: 10.1080/17474124.2020.1733975] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Hepatocyte transplantation (HT) is a promising alternative to liver transplantation for the treatment of liver-based metabolic diseases and acute liver failure (ALF). However, shortage of good-quality liver tissues, early cell loss post-infusion, reduced cell engraftment and function restricts clinical application.Areas covered: A comprehensive literature search was performed to cover pre-clinical and clinical HT studies. The review discusses the latest developments to address HT limitations: cell sources from marginal/suboptimal donors to neonatal livers, differentiating pluripotent stem cells into hepatocyte-like cells, in vitro expansion, prevention of immune response to transplanted cells by encapsulation or using innate immunity-inhibiting agents, and enhancing engraftment through partial hepatectomy or irradiation.Expert opinion: To date, published data are highly encouraging specially the alginate-encapsulated hepatocyte treatment of children with ALF. Hepatocyte functions can be further improved through co-culturing with mesenchymal stromal cells. Moreover, ex-vivo genetic correction will enable the use of autologous cells in future personalized medicine.
Collapse
Affiliation(s)
- Minh Phuong Nguyen
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Vandana Jain
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Valeria Iansante
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Ragai R Mitry
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Celine Filippi
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Anil Dhawan
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| |
Collapse
|
9
|
Cernigliaro V, Peluso R, Zedda B, Silengo L, Tolosano E, Pellicano R, Altruda F, Fagoonee S. Evolving Cell-Based and Cell-Free Clinical Strategies for Treating Severe Human Liver Diseases. Cells 2020; 9:386. [PMID: 32046114 PMCID: PMC7072646 DOI: 10.3390/cells9020386] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/21/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
Liver diseases represent a major global health issue, and currently, liver transplantation is the only viable alternative to reduce mortality rates in patients with end-stage liver diseases. However, scarcity of donor organs and risk of recidivism requiring a re-transplantation remain major obstacles. Hence, much hope has turned towards cell-based therapy. Hepatocyte-like cells obtained from embryonic stem cells or adult stem cells bearing multipotent or pluripotent characteristics, as well as cell-based systems, such as organoids, bio-artificial liver devices, bioscaffolds and organ printing are indeed promising. New approaches based on extracellular vesicles are also being investigated as cell substitutes. Extracellular vesicles, through the transfer of bioactive molecules, can modulate liver regeneration and restore hepatic function. This review provides an update on the current state-of-art cell-based and cell-free strategies as alternatives to liver transplantation for patients with end-stage liver diseases.
Collapse
Affiliation(s)
- Viviana Cernigliaro
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (V.C.); (R.P.); (B.Z.)
- Maria Pia Hospital, 10126 Turin, Italy
| | - Rossella Peluso
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (V.C.); (R.P.); (B.Z.)
- Maria Pia Hospital, 10126 Turin, Italy
| | - Beatrice Zedda
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (V.C.); (R.P.); (B.Z.)
- Maria Pia Hospital, 10126 Turin, Italy
| | - Lorenzo Silengo
- Molecular Biotechnology Center, Departmet of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (L.S.); (E.T.)
| | - Emanuela Tolosano
- Molecular Biotechnology Center, Departmet of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (L.S.); (E.T.)
| | | | - Fiorella Altruda
- Molecular Biotechnology Center, Departmet of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (L.S.); (E.T.)
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council, Molecular Biotechnology Center, Via Nizza 52, 10126 Turin, Italy
| |
Collapse
|
10
|
Shimizu S, Sakamoto S, Horikawa R, Fukuda A, Uchida H, Takeda M, Yanagi Y, Irie R, Yoshioka T, Kasahara M. Longterm Outcomes of Living Donor Liver Transplantation for Glycogen Storage Disease Type 1b. Liver Transpl 2020; 26:57-67. [PMID: 31587472 DOI: 10.1002/lt.25649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023]
Abstract
Glycogen storage disease (GSD) type 1b (Online Mendelian Inheritance in Man [OMIM] 232220) is an autosomal recessive inborn error of carbohydrate metabolism caused by defects in glucose-6-phosphate translocase. GSD1b patients have severe hypoglycemia with several clinical manifestations of hepatomegaly, obesity, a doll-like face, and neutropenia. Liver transplantation (LT) has been indicated for severe glucose intolerance, poor metabolic control (PMC), and poor growth (PG). We retrospectively reviewed 11 children with GSD1b who underwent living donor liver transplantation (LDLT) at the National Center for Child Health and Development in Tokyo, Japan. Between November 2005 and December 2018, 495 children underwent LDLT with an overall 10-year patient and graft survival of 90.6% and 88.9%, respectively. Of these, LT was indicated for 11 patients with GSD1b. All patients are doing well with the stabilization of glucose intolerance and decreased hospitalization for infectious complications. Demand for granulocyte colony-stimulating factor significantly decreased. However, although LT stabilized the blood glucose level, the platelet function was not improved. The posttransplant developmental quotient (DQ) remained similar to the pretransplant DQ without deterioration. LDLT is a feasible procedure for GSD1b patients with regard to the longterm prognosis. LT should be considered for patients with severe glucose intolerance to protect the cognitive function against hypoglycemic encephalopathy and to ameliorate PMC and PG.
Collapse
Affiliation(s)
- Seiichi Shimizu
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Seisuke Sakamoto
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Reiko Horikawa
- Department of Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo, Japan
| | - Akinari Fukuda
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Hajime Uchida
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Masahiro Takeda
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yusuke Yanagi
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Rie Irie
- Department of Pathology, National Center for Child Health and Development, Tokyo, Japan
| | - Takako Yoshioka
- Department of Pathology, National Center for Child Health and Development, Tokyo, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
11
|
Zhang Y, Sun H, Wan N. Mutation analysis of SLC37A4 in a patient with glycogen storage disease-type Ib. J Int Med Res 2019; 47:5996-6003. [PMID: 31617422 PMCID: PMC7045669 DOI: 10.1177/0300060519867819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Objective The aim of the study was to investigate the relationship between SLC37A4 gene mutation and clinical phenotype in a patient with glycogen storage disease-type I. Methods The clinical data of one patient with glycogen storage disease-type I accumulation syndrome and the results of SLC37A4 gene testing were analyzed. DNA from peripheral blood was used to analyze the SLC37A4 mutations of the patient and his parents. Results The patient carried a compound heterozygous mutation of SLC37A4, his mother was heterozygous for the c.572C > T (p.P191L) mutation, and his father was heterozygous for the c.359C > T (p.P120L) mutation. Conclusion The patient had two gene mutations: c.359C > T (p.P120L), which is closely related to glycogen storage disease-type I, and c.572C > T (p.P191L), which is a known mutation in the disease.
Collapse
Affiliation(s)
- Yamei Zhang
- Department of Pediatrics, Beijing Jishuitan Hospital, Beijing, China
| | - Huihui Sun
- Department of Pediatrics, Beijing Jishuitan Hospital, Beijing, China
| | - Naijun Wan
- Department of Pediatrics, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
12
|
Iansante V, Chandrashekran A, Dhawan A. Cell-based liver therapies: past, present and future. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0229. [PMID: 29786563 DOI: 10.1098/rstb.2017.0229] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2017] [Indexed: 12/16/2022] Open
Abstract
Liver transplantation represents the standard treatment for people with an end-stage liver disease and some liver-based metabolic disorders; however, shortage of liver donor tissues limits its availability. Furthermore, whole liver replacement eliminates the possibility of using native liver as a possible target for future gene therapy in case of liver-based metabolic defects. Cell therapy has emerged as a potential alternative, as cells can provide the hepatic functions and engraft in the liver parenchyma. Various options have been proposed, including human or other species hepatocytes, hepatocyte-like cells derived from stem cells or more futuristic alternatives, such as combination therapies with different cell types, organoids and cell-biomaterial combinations. In this review, we aim to give an overview of the cell therapies developed so far, highlighting preclinical and/or clinical achievements as well as the limitations that need to be overcome to make them fully effective and safe for clinical applications.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
- Valeria Iansante
- Dhawan Lab, Paediatric Liver GI and Nutrition Center and MowatLabs, Institute of Liver Studies, King's College London at King's College Hospital, London SE5 9PJ, UK
| | - Anil Chandrashekran
- Dhawan Lab, Paediatric Liver GI and Nutrition Center and MowatLabs, Institute of Liver Studies, King's College London at King's College Hospital, London SE5 9PJ, UK
| | - Anil Dhawan
- Dhawan Lab, Paediatric Liver GI and Nutrition Center and MowatLabs, Institute of Liver Studies, King's College London at King's College Hospital, London SE5 9PJ, UK
| |
Collapse
|
13
|
Domino Hepatocyte Transplantation: A Therapeutic Alternative for the Treatment of Acute Liver Failure. Can J Gastroenterol Hepatol 2018; 2018:2593745. [PMID: 30065914 PMCID: PMC6051327 DOI: 10.1155/2018/2593745] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND AIMS Acute liver failure (ALF) is a severe syndrome with an elevated mortality rate, ranging from 40 to 80 %. Currently, liver transplantation is the only definitive treatment for these patients and new therapies aiming to treat ALF include artificial organs implant and stem cells therapy, for example. However, a major limitation of liver donors exists. Living donor liver transplantation (LDLT), split liver transplantation (SLT), and domino liver transplantation (DLT) are some of the available alternatives to treat ALF patients, but these do not reduce the number of patients on waiting lists. Herein, we discuss domino hepatocyte transplantation (DHT) using livers that would not meet transplantation criteria. METHODS We conducted a literature search on PubMed/Medline using acute liver failure, liver transplantation, hepatocyte transplantation, and domino liver transplantation as key words. RESULTS New sources of biochemically functional hepatocytes and therapeutic treatments, in parallel to organ transplantation, may improve liver injury recovery and decrease mortality rates. Moreover, the literature reports hepatocyte transplantation as a therapeutic alternative for organ shortage. However, a major challenge remains for a wide clinical application of hepatocytes therapy, i.e., the availability of sufficient amounts of cells for transplantation. Ideally, hepatocytes isolated from livers rejected for transplantation may be a promising alternative for this problem. CONCLUSION Our review suggests that DHT may be an excellent strategy to increase cell supplies for hepatocyte transplantation.
Collapse
|
14
|
Iansante V, Mitry RR, Filippi C, Fitzpatrick E, Dhawan A. Human hepatocyte transplantation for liver disease: current status and future perspectives. Pediatr Res 2018; 83:232-240. [PMID: 29149103 DOI: 10.1038/pr.2017.284] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/02/2017] [Indexed: 12/16/2022]
Abstract
Liver transplantation is the accepted treatment for patients with acute liver failure and liver-based metabolic disorders. However, donor organ shortage and lifelong need for immunosuppression are the main limitations to liver transplantation. In addition, loss of the native liver as a target organ for future gene therapy for metabolic disorders limits the futuristic treatment options, resulting in the need for alternative therapeutic strategies. A potential alternative to liver transplantation is allogeneic hepatocyte transplantation. Over the last two decades, hepatocyte transplantation has made the transition from bench to bedside. Standardized techniques have been established for isolation, culture, and cryopreservation of human hepatocytes. Clinical hepatocyte transplantation safety and short-term efficacy have been proven; however, some major hurdles-mainly concerning shortage of donor organs, low cell engraftment, and lack of a long-lasting effect-need to be overcome to widen its clinical applications. Current research is aimed at addressing these problems, with the ultimate goal of increasing hepatocyte transplantation efficacy in clinical applications.
Collapse
Affiliation(s)
- V Iansante
- DhawanLab, Paediatric Liver GI and Nutrition Center and MowatLabs, Institute of Liver Studies, King's College London, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, London, UK
| | - R R Mitry
- DhawanLab, Paediatric Liver GI and Nutrition Center and MowatLabs, Institute of Liver Studies, King's College London, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, London, UK
| | - C Filippi
- DhawanLab, Paediatric Liver GI and Nutrition Center and MowatLabs, Institute of Liver Studies, King's College London, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, London, UK
| | - E Fitzpatrick
- DhawanLab, Paediatric Liver GI and Nutrition Center and MowatLabs, Institute of Liver Studies, King's College London, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, London, UK
| | - A Dhawan
- DhawanLab, Paediatric Liver GI and Nutrition Center and MowatLabs, Institute of Liver Studies, King's College London, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, London, UK
| |
Collapse
|
15
|
Heath RD, Ertem F, Romana BS, Ibdah JA, Tahan V. Hepatocyte transplantation: Consider infusion before incision. World J Transplant 2017; 7:317-323. [PMID: 29312860 PMCID: PMC5743868 DOI: 10.5500/wjt.v7.i6.317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/27/2017] [Accepted: 12/05/2017] [Indexed: 02/05/2023] Open
Abstract
Human hepatocyte transplantation is undergoing study as a bridge, or even alternative, to orthotopic liver transplantation (OLT). This technique has undergone multiple developments over the past thirty years in terms of mode of delivery, source and preparation of cell cultures, monitoring of graft function, and use of immunosuppression. Further refinements and improvements in these techniques will likely allow improved graft survival and function, granting patients higher yield from this technique and potentially significantly delaying need for OLT.
Collapse
Affiliation(s)
- Ryan D Heath
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, United States
| | - Furkan Ertem
- Department of Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, United States
| | - Bhupinder S Romana
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, United States
| | - Jamal A Ibdah
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, United States
| | - Veysel Tahan
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, United States
| |
Collapse
|
16
|
Abstract
Orthotopic liver transplantation remains the only proven cure for end-stage liver failure. Despite significant advances in the field, the clinical demand for donor organs far outweighs the supply. Hepatocyte transplantation has been proposed as an alternative approach to whole liver transplant in select diseases. Several international centers have reported experimental trials of human hepatocyte transplantation in acute liver failure and liver-based metabolic disorders. This chapter provides an introduction to hepatocyte transplantation from both a technical and clinical perspective. We will also focus on the special needs of pediatric patients, since historically the majority of clinical hepatocyte transplants have involved infants and children.
Collapse
|
17
|
Alternative Cell Sources to Adult Hepatocytes for Hepatic Cell Therapy. Methods Mol Biol 2016; 1506:17-42. [PMID: 27830543 DOI: 10.1007/978-1-4939-6506-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Adult hepatocyte transplantation is limited by scarce availability of suitable donor liver tissue for hepatocyte isolation. New cell-based therapies are being developed to supplement whole-organ liver transplantation, to reduce the waiting-list mortality rate, and to obtain more sustained and significant metabolic correction. Fetal livers and unsuitable neonatal livers for organ transplantation have been proposed as potential useful sources of hepatic cells for cell therapy. However, the major challenge is to use alternative cell sources for transplantation that can be derived from reproducible methods. Different types of stem cells with hepatic differentiation potential are eligible for generating large numbers of functional hepatocytes for liver cell therapy to treat degenerative disorders, inborn hepatic metabolic diseases, and organ failure. Clinical trials are designed to fully establish the safety profile of such therapies and to define target patient groups and standardized protocols.
Collapse
|
18
|
Lee CA, Dhawan A, Smith RA, Mitry RR, Fitzpatrick E. Instant Blood-Mediated Inflammatory Reaction in Hepatocyte Transplantation: Current Status and Future Perspectives. Cell Transplant 2016; 25:1227-36. [PMID: 26996786 DOI: 10.3727/096368916x691286] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hepatocyte transplantation (HT) is emerging as a promising alternative to orthotopic liver transplantation (OLT) in patients with certain liver-based metabolic disease and acute liver failure. Hepatocytes are generally infused into the portal venous system, from which they migrate into the liver cell plates of the native organ. One of the major hurdles to the sustained success of this therapy is early cell loss, with up to 70% of hepatocytes lost immediately following infusion. This is largely thought to be due to the instant blood-mediated inflammatory reaction (IBMIR), resulting in the activation of complement and coagulation pathways. Transplanted hepatocytes produce and release tissue factor (TF), which activates the coagulation pathway, leading to the formation of thrombin and fibrin clots. Thrombin can further activate a number of complement proteins, leading to the activation of the membrane attack complex (MAC) and subsequent hepatocyte cell death. Inflammatory cells including granulocytes, monocytes, Kupffer cells, and natural killer (NK) cells have been shown to cluster around transplanted hepatocytes, leading to their rapid clearance shortly after transplantation. Current research aims to improve cell engraftment and prevent early cell loss. This has been proven successful in vitro using pharmacological interventions such as melagatran, low-molecular-weight dextran sulphate, and N-acetylcysteine (NAC). Effective inhibition of IBMIR would significantly improve hepatocyte engraftment, proliferation, and function, providing successful treatment for patients with liver-based metabolic diseases.
Collapse
Affiliation(s)
- Charlotte A Lee
- Institute of Liver Studies, King's College London, School of Life Sciences and Medicine, King's College Hospital, London, UK
| | | | | | | | | |
Collapse
|
19
|
Cantz T, Sharma AD, Ott M. Concise review: cell therapies for hereditary metabolic liver diseases-concepts, clinical results, and future developments. Stem Cells 2016; 33:1055-62. [PMID: 25524146 DOI: 10.1002/stem.1920] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/23/2014] [Accepted: 11/07/2014] [Indexed: 12/11/2022]
Abstract
The concept of cell-based therapies for inherited metabolic liver diseases has been introduced for now more than 40 years in animal experiments, but controlled clinical data in humans are still not available. In the era of dynamic developments in stem cell science, the "right" cell for transplantation is considered as an important key for successful treatment. Do we aim to transplant mature hepatocytes or do we consider the liver as a stem/progenitor-driven organ and replenish the diseased liver with genetically normal stem/progenitor cells? Although conflicting results from cell tracing and transplantation experiments have recently emerged about the existence and role of stem/progenitor cells in the liver, their overall contribution to parenchymal cell homeostasis and tissue repair is limited. Accordingly, engraftment and repopulation efficacies of extrahepatic and liver-derived stem/progenitor cell types are considered to be lower compared to mature hepatocytes. On the basis of these results, we will discuss the current clinical cell transplantation programs for inherited metabolic liver diseases and future developments in liver cell therapy.
Collapse
Affiliation(s)
- Tobias Cantz
- Translational Hepatology and Stem Cell Biology, Cluster of Excellence REBIRTH, Hannover, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | | |
Collapse
|
20
|
Diagnosis and management of glycogen storage disease type I: a practice guideline of the American College of Medical Genetics and Genomics. Genet Med 2015; 16:e1. [PMID: 25356975 DOI: 10.1038/gim.2014.128] [Citation(s) in RCA: 293] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Glycogen storage disease type I (GSD I) is a rare disease of variable clinical severity that primarily affects the liver and kidney. It is caused by deficient activity of the glucose 6-phosphatase enzyme (GSD Ia) or a deficiency in the microsomal transport proteins for glucose 6-phosphate (GSD Ib), resulting in excessive accumulation of glycogen and fat in the liver, kidney, and intestinal mucosa. Patients with GSD I have a wide spectrum of clinical manifestations, including hepatomegaly, hypoglycemia, lactic acidemia, hyperlipidemia, hyperuricemia, and growth retardation. Individuals with GSD type Ia typically have symptoms related to hypoglycemia in infancy when the interval between feedings is extended to 3–4 hours. Other manifestations of the disease vary in age of onset, rate of disease progression, and severity. In addition, patients with type Ib have neutropenia, impaired neutrophil function, and inflammatory bowel disease. This guideline for the management of GSD I was developed as an educational resource for health-care providers to facilitate prompt, accurate diagnosis and appropriate management of patients. METHODS A national group of experts in various aspects of GSD I met to review the evidence base from the scientific literature and provided their expert opinions. Consensus was developed in each area of diagnosis, treatment, and management. RESULTS This management guideline specifically addresses evaluation and diagnosis across multiple organ systems (hepatic, kidney, gastrointestinal/nutrition, hematologic, cardiovascular, reproductive) involved in GSD I. Conditions to consider in the differential diagnosis stemming from presenting features and diagnostic algorithms are discussed. Aspects of diagnostic evaluation and nutritional and medical management, including care coordination, genetic counseling, hepatic and renal transplantation, and prenatal diagnosis, are also addressed. CONCLUSION A guideline that facilitates accurate diagnosis and optimal management of patients with GSD I was developed. This guideline helps health-care providers recognize patients with all forms of GSD I, expedite diagnosis, and minimize adverse sequelae from delayed diagnosis and inappropriate management. It also helps to identify gaps in scientific knowledge that exist today and suggests future studies.
Collapse
|
21
|
Zhou H, Liu H, Ezzelarab M, Schmelzer E, Wang Y, Gerlach J, Gridelli B, Cooper DKC. Experimental hepatocyte xenotransplantation--a comprehensive review of the literature. Xenotransplantation 2015; 22:239-48. [PMID: 25950141 PMCID: PMC4519403 DOI: 10.1111/xen.12170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/18/2015] [Indexed: 12/11/2022]
Abstract
Hepatocyte transplantation (Tx) is a potential therapy for certain diseases of the liver, including hepatic failure. However, there is a limited supply of human livers as a source of cells and, after isolation, human hepatocytes can be difficult to expand in culture, limiting the number available for Tx. Hepatocytes from other species, for example, the pig, have therefore emerged as a potential alternative source. We searched the literature through the end of 2014 to assess the current status of experimental research into hepatocyte xenoTx. The literature search identified 51 reports of in vivo cross-species Tx of hepatocytes in a variety of experimental models. Most studies investigated the Tx of human (n = 23) or pig (n = 19) hepatocytes. No studies explored hepatocytes from genetically engineered pigs. The spleen was the most common site of Tx (n = 23), followed by the liver (through the portal vein [n = 6]) and peritoneal cavity (n = 19). In 47 studies (92%), there was evidence of hepatocyte engraftment and function across a species barrier. The data provided by this literature search strengthen the hypothesis that xenoTx of hepatocytes is feasible and potentially successful as a clinical therapy for certain liver diseases, including hepatic failure. By excluding vascular structures, hepatocytes isolated from genetically engineered pig livers may address some of the immunological problems of xenoTx.
Collapse
Affiliation(s)
- Huidong Zhou
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Heng(1)yang, Hunan, China
| | - Hong Liu
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of General Surgery, First Hospital of Shanxi Medical University, ShanXi, China
| | - Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eva Schmelzer
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Wang
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Heng(1)yang, Hunan, China
| | - Jörg Gerlach
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruno Gridelli
- Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| | - David K. C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Tolosa L, López S, Pareja E, Donato MT, Myara A, Nguyen TH, Castell JV, Gómez-Lechón MJ. Human neonatal hepatocyte transplantation induces long-term rescue of unconjugated hyperbilirubinemia in the Gunn rat. Liver Transpl 2015; 21:801-11. [PMID: 25821167 DOI: 10.1002/lt.24121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 03/06/2015] [Accepted: 03/14/2015] [Indexed: 12/12/2022]
Abstract
Crigler-Najjar type 1 disease is a rare inherited metabolic disease characterized by high levels of unconjugated bilirubin due to the complete absence of hepatic uridine diphosphoglucuronate-glucuronosyltransferase activity. Hepatocyte transplantation (HT) has been proposed as an alternative treatment for Crigler-Najjar syndrome, but it is still limited by the quality and the low engraftment and repopulation ability of the cells used. Because of their attachment capability and expression of adhesion molecules as well as the higher proportion of hepatic progenitor cells, neonatal hepatocytes may have an advantage over adult cells. Adult or neonatal hepatocytes were transplanted into Gunn rats, a model for Crigler-Najjar disease. Engraftment and repopulation were studied and compared by immunofluorescence (IF). Additionally, the serum bilirubin levels, the presence of bilirubin conjugates in rat serum, and the expression of uridine diphosphate glucuronosyltransferase 1 family polypeptide A1 (UGT1A1) in rat liver samples were also analyzed. Here we show that neonatal HT results in long-term correction in Gunn rats. In comparison with adult cells, neonatal cells showed better engraftment and repopulation capability 3 days and 6 months after transplantation, respectively. Bilirubinemia decreased in the transplanted animals during the whole experimental follow-up (6 months). Bilirubin conjugates were also present in the serum of the transplanted animals. Western blots and IF confirmed the presence and expression of UGT1A1 in the liver. This work is the first to demonstrate the advantage of using neonatal hepatocytes for the treatment of Crigler-Najjar in vivo.
Collapse
Affiliation(s)
- Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Silvia López
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Eugenia Pareja
- Unidad de Cirugía Hepatobiliopancreática y Transplante Hepático, Hospital La Fe, Valencia, Spain
| | - María Teresa Donato
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Fondo de Investigaciones Sanitarias, Barcelona, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Anne Myara
- Service de Biologie, Groupe Hospitalier Saint Joseph, Paris, France
| | - Tuan Huy Nguyen
- INSERM Unités Mixtes de Recherche en Santé 1064, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | - José Vicente Castell
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Fondo de Investigaciones Sanitarias, Barcelona, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - María José Gómez-Lechón
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Fondo de Investigaciones Sanitarias, Barcelona, Spain
| |
Collapse
|
23
|
Ho CM, Chen YH, Chien CS, Ho YT, Ho SL, Hu RH, Chen HL, Lee PH. Transplantation speed offers early hepatocyte engraftment in acute liver injured rats: A translational study with clinical implications. Liver Transpl 2015; 21:652-61. [PMID: 25821041 DOI: 10.1002/lt.24106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/31/2014] [Accepted: 02/08/2015] [Indexed: 01/10/2023]
Abstract
The impact of the rate of intraportal hepatocyte transplantation on early engraftment and repopulation is unclear. The aim of this study was to address this and to improve the engraftment and repopulation efficiencies of hepatocyte transplantation for the treatment of a rat model of acute liver failure in a clinically useful way without preconditioning. Acute hepatic injury was induced into Sprague-Dawley rats with D-galactosamine. Hepatocytes were infused intraportally over a period of 30, 70, or 100 seconds to study early engraftment (2 days) and repopulation (7 days). Three groups had significant differences in hepatocyte engraftment (P = 0.018) and repopulation efficiencies (P = 0.037), and an infusion over a period of 70 seconds produced superior outcomes. After the 70-second infusion, the transplanted cells immediately transmigrated the sinusoidal endothelial layer and rarely accumulated in the portal venules, with liver function improving significantly. The mean first peak pressures, without significant differences, were 14.8 ± 6.5, 17.7 ± 3.7, and 13.6 ± 3.0 mm Hg in the 30-, 70-, and 100-second groups, respectively. Differential hepatocyte transfusion rates contributed to accelerated early engraftment and repopulation in rats with acute liver injury. These proof-of-concept findings are of clinical significance because they are easy to translate into practice.
Collapse
Affiliation(s)
- Cheng-Maw Ho
- Department of Surgery; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
New Tools in Experimental Cellular Therapy for the Treatment of Liver Diseases. CURRENT TRANSPLANTATION REPORTS 2015; 2:202-210. [PMID: 26317066 DOI: 10.1007/s40472-015-0059-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The current standard of care for end stage liver disease is orthotopic liver transplantation (OLT). Through improvement in surgical techniques, immunosuppression, and general medical care, liver transplantation has become an effective treatment over the course of the last half-century. Unfortunately, due to the limited availability of donor organs, there is a finite limit to the number of patients who will benefit from this therapy. This review will discuss current research in experimental cellular therapies for acute, chronic, and metabolic liver failure that may be appropriate when liver transplantation is not an immediate option.
Collapse
|
25
|
Sufiandi S, Obara H, Enosawa S, Hsu HC, Matsuno N, Mizunuma H. Improvement of Infusion Process in Cell Transplantation: Effect of Shear Stress on Hepatocyte Viability Under Horizontal and Vertical Syringe Orientation. CELL MEDICINE 2015; 7:59-66. [PMID: 26858894 PMCID: PMC4733837 DOI: 10.3727/215517914x685150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Improving cell viability and function are important for enhancing the clinical results of cell transplantation. The relationship between cell viability and shear stress remains unexplained, and sedimentation effects during the infusion process are important to the hepatocyte transplantation process. In the present study, the relationship between cell viability and shear stress in the presence of sedimentation effect was investigated using a microchannel simulating the cell transplantation process under several shear stress conditions. Horizontal and vertical syringe orientations were employed to investigate the sedimentation effect. The vertical syringe orientation resulted in lower viability loss than the horizontal orientation. In summary, removing a sedimentation effect is important to improving cell viability by preventing high shear stress.
Collapse
Affiliation(s)
- Sandi Sufiandi
- *Department of Mechanical Engineering, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Hiromichi Obara
- *Department of Mechanical Engineering, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
- †Clinical Research Center, National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Shin Enosawa
- †Clinical Research Center, National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Huai-Che Hsu
- †Clinical Research Center, National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Naoto Matsuno
- *Department of Mechanical Engineering, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
- †Clinical Research Center, National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Hiroshi Mizunuma
- *Department of Mechanical Engineering, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| |
Collapse
|
26
|
Gramignoli R, Vosough M, Kannisto K, Srinivasan RC, Strom SC. Clinical hepatocyte transplantation: practical limits and possible solutions. Eur Surg Res 2015; 54:162-177. [PMID: 25633583 DOI: 10.1159/000369552] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/04/2014] [Indexed: 01/05/2025]
Abstract
Since the first human hepatocyte transplants (HTx) in 1992, clinical studies have clearly established proof of principle for this therapy as a treatment for patients with acquired or inherited liver disease. Although major accomplishments have been made, there are still some specific limitations to this technology, which, if overcome, could greatly enhance the efficacy and implementation of this therapy. Here, we describe what in our view are the most significant obstacles to the clinical application of HTx and review the solutions currently proposed. The obstacles of significance include the limited number and quality of liver tissues as a cell source, the lack of clinical grade reagents, quality control evaluation of hepatocytes prior to transplantation, hypothermic storage of cells prior to transplantation, preconditioning treatments to enhance engraftment and proliferation of donor cells, tracking or monitoring cells after transplantation, and the optimal immunosuppression protocols for transplant recipients.
Collapse
Affiliation(s)
- Roberto Gramignoli
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
27
|
Hansel MC, Gramignoli R, Skvorak KJ, Dorko K, Marongiu F, Blake W, Davila J, Strom SC. The history and use of human hepatocytes for the treatment of liver diseases: the first 100 patients. CURRENT PROTOCOLS IN TOXICOLOGY 2014; 62:14.12.1-23. [PMID: 25378242 PMCID: PMC4343212 DOI: 10.1002/0471140856.tx1412s62] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Orthotopic liver transplantation remains the only curative treatment for many end-stage liver diseases, yet the number of patients receiving liver transplants remains limited by the number of organs available for transplant. There is a need for alternative therapies for liver diseases. The transplantation of isolated hepatocytes (liver cells) has been used as an experimental therapy for liver disease in a limited number of cases. Recently, the 100th case of hepatocyte transplantation was reported. This review discusses the history of the hepatocyte transplant field, the major discoveries that supported and enabled the first hepatocyte transplants, and reviews the cases and outcomes of the first 100 clinical transplants. Some of the problems that limit the application or efficacy of hepatocyte transplantation are discussed, as are possible solutions to these problems. In conclusion, hepatocyte transplants have proven effective particularly in cases of metabolic liver disease where reversal or amelioration of the characteristic symptoms of the disease is easily quantified. However, no patients have been completely corrected of a metabolic liver disease for a significant amount of time by hepatocyte transplantation alone. It is likely that future developments in new sources of cells for transplantation will be required before this cellular therapy can be fully implemented and available for large numbers of patients.
Collapse
Affiliation(s)
- Marc C Hansel
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Logan GJ, de Alencastro G, Alexander IE, Yeoh GC. Exploiting the unique regenerative capacity of the liver to underpin cell and gene therapy strategies for genetic and acquired liver disease. Int J Biochem Cell Biol 2014; 56:141-52. [PMID: 25449261 DOI: 10.1016/j.biocel.2014.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/15/2014] [Accepted: 10/21/2014] [Indexed: 02/06/2023]
Abstract
The number of genetic or acquired diseases of the liver treatable by organ transplantation is ever-increasing as transplantation techniques improve placing additional demands on an already limited organ supply. While cell and gene therapies are distinctly different modalities, they offer a synergistic alternative to organ transplant due to distinct architectural and physiological properties of the liver. The hepatic blood supply and fenestrated endothelial system affords relatively facile accessibility for cell and/or gene delivery. More importantly, however, the remarkable capacity of hepatocytes to proliferate and repopulate the liver creates opportunities for new treatments based on emerging technologies. This review will summarise current understanding of liver regeneration, describe clinical and experimental cell and gene therapeutic modalities and discuss critical challenges to translate these new technologies to wider clinical utility. This article is part of a Directed Issue entitled: "Regenerative Medicine: the challenge of translation".
Collapse
Affiliation(s)
- Grant J Logan
- Gene Therapy Research Unit of The Children's Medical Research Institute and The Children's Hospital at Westmead, Australia
| | - Gustavo de Alencastro
- Gene Therapy Research Unit of The Children's Medical Research Institute and The Children's Hospital at Westmead, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit of The Children's Medical Research Institute and The Children's Hospital at Westmead, Australia; University of Sydney Discipline of Paediatrics and Child Health, Westmead, NSW 2145, Australia
| | - George C Yeoh
- The Centre for Medical Research, Harry Perkins Institute of Medical Research, Crawley, WA 6009, Australia.
| |
Collapse
|
29
|
Mazariegos G, Shneider B, Burton B, Fox IJ, Hadzic N, Kishnani P, Morton DH, McIntire S, Sokol RJ, Summar M, White D, Chavanon V, Vockley J. Liver transplantation for pediatric metabolic disease. Mol Genet Metab 2014; 111:418-27. [PMID: 24495602 DOI: 10.1016/j.ymgme.2014.01.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/12/2014] [Accepted: 01/12/2014] [Indexed: 12/22/2022]
Abstract
Liver transplantation (LTx) was initially developed as a therapy for liver diseases known to be associated with a high risk of near-term mortality but is based upon a different set of paradigms for inborn metabolic diseases. As overall outcomes for the procedure have improved, LTx has evolved into an attractive approach for a growing number of metabolic diseases in a variety of clinical situations. No longer simply life-saving, the procedure can lead to a better quality of life even if not all symptoms of the primary disorder are eliminated. Juggling the risk-benefit ratio thus has become more complicated as the list of potential disorders amenable to treatment with LTx has increased. This review summarizes presentations from a recent conference on metabolic liver transplantation held at the Children's Hospital of Pittsburgh of UPMC on the role of liver or hepatocyte transplantation in the treatment of metabolic liver disease.
Collapse
Affiliation(s)
- George Mazariegos
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMC, Faculty Pavilion, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; University of Pittsburgh School of Medicine/UPMC Department of Surgery, Thomas E. Starzl Transplantation Institute, E1540 Biomedical Science Tower (BST), 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| | - Benjamin Shneider
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Pittsburgh of UPMC, Rangos Research Center, 4401 Penn Avenue, 7th Floor, Pittsburgh, PA 15224, USA.
| | - Barbara Burton
- Department of Pediatrics, Northwestern University Feinberg School of Medicine/Ann & Robert H. Lurie Children's Hospital of Chicago, Box MC 59, 225 E Chicago Avenue, Chicago, IL 60611, USA.
| | - Ira J Fox
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMC, Faculty Pavilion, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; University of Pittsburgh School of Medicine/UPMC Department of Surgery, Thomas E. Starzl Transplantation Institute, E1540 Biomedical Science Tower (BST), 200 Lothrop Street, Pittsburgh, PA 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Nedim Hadzic
- King's College Hospital, Paediatric Liver Center, London, UK.
| | - Priya Kishnani
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, DUMC 103856, 595 Lasalle Street, GSRB 1, 4th Floor, Room 4010, Durham, NC 27710, USA.
| | - D Holmes Morton
- Franklin and Marshall College, Clinic for Special Children, 535 Bunker Hill Road, Strasburg, PA 17579, USA.
| | - Sara McIntire
- Department of Pediatrics, Paul C. Gaffney Diagnostic Referral Service, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Suite Floor 3, Pittsburgh, PA 15224, USA.
| | - Ronald J Sokol
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Section of Gastroenterology, Hepatology and Nutrition, 13123 E. 16th Avenue, B290, Aurora, CO 80045-7106, USA.
| | - Marshall Summar
- Division of Genetics and Metabolism, George Washington University, Children's National Medical Center, Center for Genetic Medicine Research (CGMR), 111 Michigan Avenue, NW, Washington, DC 20010-2970, USA.
| | - Desiree White
- Department of Psychology, Washington University, Psychology Building, Room 221, Campus Box 1125, St. Louis, MO 63130-4899, USA.
| | - Vincent Chavanon
- Division of Plastic and Reconstructive Surgery, Mount Sinai Hospital, 5 East 98th Street, 15th Floor, New York, NY 10029, USA.
| | - Jerry Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA, USA; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA; Division of Medical Genetics, Children's Hospital of Pittsburgh of UPMC, Rangos Research Center, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| |
Collapse
|
30
|
Vogel KR, Kennedy AA, Whitehouse LA, Gibson KM. Therapeutic hepatocyte transplant for inherited metabolic disorders: functional considerations, recent outcomes and future prospects. J Inherit Metab Dis 2014; 37:165-76. [PMID: 24085555 PMCID: PMC3975709 DOI: 10.1007/s10545-013-9656-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 12/18/2022]
Abstract
The applications, outcomes and future strategies of hepatocyte transplantation (HTx) as a corrective intervention for inherited metabolic disease (IMD) are described. An overview of HTx in IMDs, as well as preclinical evaluations in rodent and other mammalian models, is summarized. Current treatments for IMDs are highlighted, along with short- and long-term outcomes and the potential for HTx to supplement or supplant these treatments. Finally, the advantages and disadvantages of HTx are presented, highlighted by long-term challenges with interorgan engraftment and expansion of transplanted cells, in addition to the future prospects of stem cell transplants. At present, the utility of HTx is represented by the potential to bridge patients with life-threatening liver disease to organ transplantation, especially as an adjuvant intervention where severe organ shortages continue to pose challenges.
Collapse
Affiliation(s)
- Kara R Vogel
- Section of Clinical Pharmacology, College of Pharmacy, Washington State University, SAC 525M, P.O. Box 1495, Spokane, WA, 99210-1495, USA
| | | | | | | |
Collapse
|
31
|
Gramignoli R, Dorko K, Tahan V, Skvorak KJ, Ellis E, Jorns C, Ericzon BG, Fox IJ, Strom SC. Hypothermic storage of human hepatocytes for transplantation. Cell Transplant 2014; 23:1143-1151. [PMID: 23768881 DOI: 10.3727/096368913x668627] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Transplantation of human hepatocytes is gaining recognition as a bridge or an alternative to orthotopic liver transplantation for patients with acute liver failure and genetic defects. Since most patients require multiple cell infusions over an extended period of time, we investigated hepatic functions in cells maintained in University of Wisconsin solution at 4°C up to 72 h. Eleven different assessments of hepatic viability and function were investigated both pre- and posthypothermic storage, including plating efficiency, caspase-3/7 activity, ammonia metabolism, and drug-metabolizing capacity of isolated hepatocytes. Long-term function, basal, and induced cytochrome P450 activities were measured after exposure to prototypical inducing agents. Cells from 47 different human liver specimens were analyzed. Viability significantly decreased in cells cold stored in UW solution, while apoptosis level and plating efficiency were not significantly different from fresh cells. Luminescent and fluorescent methods assessed phases I and II activities both pre- and post-24-72 h of cold preservation. A robust induction (up to 200-fold) of phase I enzymes was observed in cultured cells. Phase II and ammonia metabolism remained stable during hypothermic storage, although the inductive effect of culture on each metabolic activity was eventually lost. Using techniques that characterize 11 measurements of hepatic viability and function from plating efficiency, to ammonia metabolism, to phases I and II drug metabolism, it was determined that while viability decreased, the remaining viable cells in cold-stored suspensions retained critical hepatic functions for up to 48 h at levels not significantly different from those observed in freshly isolated cells.
Collapse
Affiliation(s)
- Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chou JY, Sik Jun H, Mansfield BC. The SLC37 family of phosphate-linked sugar phosphate antiporters. Mol Aspects Med 2013; 34:601-11. [PMID: 23506893 DOI: 10.1016/j.mam.2012.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 03/08/2012] [Indexed: 12/28/2022]
Abstract
The SLC37 family consists of four sugar-phosphate exchangers, A1, A2, A3, and A4, which are anchored in the endoplasmic reticulum (ER) membrane. The best characterized family member is SLC37A4, better known as the glucose-6-phosphate (G6P) transporter (G6PT). SLC37A1, SLC37A2, and G6PT function as phosphate (Pi)-linked G6P antiporters catalyzing G6P:Pi and Pi:Pi exchanges. The activity of SLC37A3 is unknown. G6PT translocates G6P from the cytoplasm into the lumen of the ER where it couples with either glucose-6-phosphatase-α (G6Pase-α) or G6Pase-β to hydrolyze intraluminal G6P to glucose and Pi. The functional coupling of G6PT with G6Pase-α maintains interprandial glucose homeostasis and the functional coupling of G6PT with G6Pase-β maintains neutrophil energy homeostasis and functionality. A deficiency in G6PT causes glycogen storage disease type Ib, an autosomal recessive disorder characterized by impaired glucose homeostasis, neutropenia, and neutrophil dysfunction. Neither SLC37A1 nor SLC37A2 can functionally couple with G6Pase-α or G6Pase-β, and there are no known disease associations for them or SLC37A3. Since only G6PT matches the characteristics of the physiological ER G6P transporter involved in blood glucose homeostasis and neutrophil energy metabolism, the biological roles for the other SLC37 proteins remain to be determined.
Collapse
Affiliation(s)
- Janice Y Chou
- Section on Cellular Differentiation, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
33
|
Ribes-Koninckx C, Ibars EP, Calzado Agrasot MÁ, Bonora-Centelles A, Miquel BP, Vila Carbó JJ, Aliaga ED, Pallardó JM, Gómez-Lechón MJ, Castell JV. Clinical outcome of hepatocyte transplantation in four pediatric patients with inherited metabolic diseases. Cell Transplant 2013; 21:2267-82. [PMID: 23231960 DOI: 10.3727/096368912x637505] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hepatocyte transplantation (HT) has become an effective therapy for patients with metabolic inborn errors. We report the clinical outcome of four children with metabolic inborn errors that underwent HT, describing the cell infusion protocol and the metabolic outcome of transplanted patients. Cryopreserved hepatocytes were used as this allows scheduling of treatments. Functional competence (viability, cell attachment, major cytochrome P450 and UDP-glucuronosyltransferase 1A1 activities, and urea synthesis) and microbiological safety of cell batches were assessed prior to clinical use. Four pediatric patients with liver metabolic diseases [ornithine transcarbamylase (OTC) deficiency, Crigler-Najjar (CNI) syndrome, glycogen storage disease Ia (GSD-Ia), and tyrosinemia type I (TYR-I)] underwent HT. Indication for HT was based on severity of disease, deterioration of quality of life, and benefits for the patients, with the ultimate goal to improve their clinical status whenever liver transplantation (LT) was not indicated or to bridge LT. Cells were infused into the portal vein while monitoring portal flow. The protocol included antibiotic prophylaxis and immunosuppressant therapy. After HT, analytical data on the disease were obtained. The OTC-deficient patient showed a sustained decrease in plasma ammonia levels and increased urea production after HT. Further cell infusions could not be administered given a fatal nosocomial fungus sepsis 2 weeks after the last HT. The CNI and GSD-Ia patients improved their clinical status after HT. They displayed reduced serum bilirubin levels (by ca. 50%) and absence of hypoglycaemic episodes, respectively. In both cases, the HT contributed to stabilize their clinical status as LT was not indicated. In the infant with TYR-I, HT stabilized temporarily the biochemical parameters, resulting in the amelioration of his clinical status while diagnosis of the disease was unequivocally confirmed by full gene sequencing. In this patient, HT served as a bridge therapy to LT.
Collapse
Affiliation(s)
- Carmen Ribes-Koninckx
- Paediatric Gastroenterology and Hepatology Unit, University La Fe Hospital, Valencia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gramignoli R, Tahan V, Dorko K, Skvorak KJ, Hansel MC, Zhao W, Venkataramanan R, Ellis EC, Jorns C, Ericzon BG, Rosenborg S, Kuiper R, Soltys KA, Mazariegos GV, Fox IJ, Wilson EM, Grompe M, Strom SC. New potential cell source for hepatocyte transplantation: discarded livers from metabolic disease liver transplants. Stem Cell Res 2013; 11:563-573. [PMID: 23644508 PMCID: PMC4262521 DOI: 10.1016/j.scr.2013.03.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 03/16/2013] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Domino liver transplantation is a method used to increase the number of liver grafts available for orthotopic liver transplantation (OLT). Reports indicate that livers from patients with metabolic liver disease can be safely transplanted into select recipients if the donor's defect and the recipient's metabolic needs are carefully considered. The liver of patients with many types of metabolic liver disease is morphologically and biochemically normal, except for the mutation that characterizes that disease. Other biochemical functions normally performed by the liver are present and presumably "normal" in these hepatocytes. Hepatocytes were isolated from the liver of 35 organ donors and 35 liver tissues taken at OLT from patients with liver disease were analyzed for 9 different measures of viability and function. The data indicate that cells isolated from some diseased livers performed as well or better than those isolated from organ donors with respect to viability, cell yield, plating efficiency and in assays of liver function, including drug metabolism, conjugation reactions and ammonia metabolism. Cells from metabolic diseased livers rapidly and efficiently repopulated a mouse liver upon transplantation. CONCLUSIONS As with domino liver transplantation, domino cell transplantation deserves consideration as method to extend the pool of available organs and cells for transplantation.
Collapse
Affiliation(s)
- Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, SWEDEN
| | - Veysel Tahan
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Kenneth Dorko
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | | | - Marc C. Hansel
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Wenchen Zhao
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | | | - Ewa C.S. Ellis
- Division of Transplantation Surgery, Karolinska University Hospital, Stockholm, SWEDEN
| | - Carl Jorns
- Division of Transplantation Surgery, Karolinska University Hospital, Stockholm, SWEDEN
| | - Bo-Goran Ericzon
- Division of Transplantation Surgery, Karolinska University Hospital, Stockholm, SWEDEN
| | - Staffan Rosenborg
- Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska University Hospital
| | - Raoul Kuiper
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, SWEDEN
| | - Kyle A. Soltys
- Pediatric Transplant Surgery, Children’s Hospital, Pittsburgh, PA
| | | | - Ira J. Fox
- Pediatric Transplant Surgery, Children’s Hospital, Pittsburgh, PA
| | | | - Markus Grompe
- Oregon Stem Cell Center, Department of Medical Genetics, Oregon Health and Science University, Portland, OR
| | - Stephen C. Strom
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, SWEDEN
| |
Collapse
|
35
|
Raschzok N, Morgül MH, Stelter L, Sauer IM. Noninvasive monitoring of liver cell transplantation. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/iim.13.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Wan Z, Zhang XG, Liu ZW, Lv Y. Therapeutic liver repopulation for metabolic liver diseases: Advances from bench to bedside. Hepatol Res 2013; 43:122-130. [PMID: 22971121 DOI: 10.1111/j.1872-034x.2012.01081.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 12/14/2022]
Abstract
Metabolic liver diseases are characterized by inherited defects in hepatic enzymes or other proteins with metabolic functions. Therapeutic liver repopulation (TLR), an approach of massive liver replacement by transplanted normal hepatocytes, could be used to provide the missing metabolic function elegantly. However, partial and transient correction of the underlying metabolic defects due to very few integrated donor cell mass remains the major obstacle for the effective and widespread use of this approach. Little engraftment and proliferation insufficiency lead to the poor outcome. This article reviews the advances in the mechanisms of initial engraftment and selective proliferation and suggests some effective treatment strategies, from pharmacological preconditioning to stem cell transplantation, to optimize liver repopulation with liver cell transplantation. Enhancing cell viability and plating efficiency, increasing sinusoidal spaces, regulation of sinusoidal endothelial cell barrier and controlling inflammatory reaction may promote initial cell engraftment. Liver-directed irradiation, reversible portal vein embolization and fetal liver stem/progenitor cell transplantation induce preferential proliferation of donor cells substantially without severe side-effects. Furthermore, it seems better to use combined approaches to achieve a high level of liver repopulation for the management of metabolic liver diseases.
Collapse
Affiliation(s)
- Zhen Wan
- Hepatobiliary Surgery; Institute of Advanced Surgical Techniques and Tissue Engineering Research, Xi'an Jiaotong University, Xi'an, China
| | | | | | | |
Collapse
|
37
|
Lee JH, Jung DH, Lee DH, Park JK, Lee SK. Slow cooling rate with a shock cooling program can effectively cryopreserve pig hepatocytes. Transplant Proc 2012; 44:1002-4. [PMID: 22564609 DOI: 10.1016/j.transproceed.2012.01.105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hepatocyte transplantation is a potential alternative to whole organ liver transplantation. To realize this procedure, a hepatocyte bank system capable of supplying large numbers of hepatocytes must be established. The aim of this study was to develop a cryopreservation protocol using controlled rate freezers (CRF) for the application of a bioartificial system of porcine hepatocytes. Hepatocytes were harvested from 3- to 4-week-old male pigs weighing 11-14 kg. Liver cell preparations were prepared and the spheroid hepatocytes were cryopreserved using University of Wisconsin (UW) solution in controlled freezing. After thawing, viability, plating efficiency, urea synthesis, and ammonia removal were measured to assess the effects of freezing methods. Freezing methods had effects on the viability and specific functions of hepatocytes after thawing. About 80% of the cell viability could be obtained with an optimal computer programming method (-1°C slow cooling rate with shock cooling, using UW solution with 15% dimethyl sulfoxide [DMSO]). The cryopreservation method for hepatocytes was significantly improved by using the above cryopreservation conditions. However, research on application to large-scale cryopreservation is needed for practical use.
Collapse
Affiliation(s)
- J-H Lee
- Samsung Biomedical Research Institute, Seoul, Korea
| | | | | | | | | |
Collapse
|
38
|
Lee JH, Park HJ, Kim YA, Lee DH, Noh JK, Kwon CHD, Jung SM, Lee SK. The phenotypic characteristic of liver-derived stem cells from adult human deceased donor liver. Transplant Proc 2012; 44:1110-2. [PMID: 22564638 DOI: 10.1016/j.transproceed.2012.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Liver transplantation is the only effective treatment for end-stage liver disease. Because of the limited donor availability, attention has been focused on the possibility to restore liver mass and function through cell transplantation. Stem cells are a promising source for liver repopulation after cell transplantation, but whether or not the adult liver contains hepatic stem cells is highly controversial. Several studies have suggested the presence of stem cells in the adult normal human liver. However, a population with stem cell properties has not yet been isolated. The purpose of this study was to identify and characterize progenitor cells in normal adult human liver. We isolated and expanded human liver stem cells (HLSCs) from a donated liver not suitable for liver transplantation or characterizing them by fluorescence-activated cell sorter, polymerase chain reaction, and immunofluorescence assay. HLSCs expressed the mesenchymal stem cell markers CD29, CD73, CD44, CD90, CD105, and CD166 but not the hematopoietic stem cell markers CD34, CD45, and CD117. HLSCs were also positive for vimentin and nestin, a stem cell marker. The absence of staining for cytokeratin-19, CD117, and CD34 indicated that HLSCs were not oval stem cells. In addition, HLSCs expressed CD26, and in a small percentage of cells, cytokeratin-8 and cytokeratin-18, indicating a partial commitment to hepatic cells. We concluded that HLSCs expressed several mesenchymal but not hematopoietic stem cell markers as well as CD26 and CK18, indicating a partial commitment to hepatic cells.
Collapse
Affiliation(s)
- J-H Lee
- Samsung Biomedical Research Institute, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Jorns C, Ellis EC, Nowak G, Fischler B, Nemeth A, Strom SC, Ericzon BG. Hepatocyte transplantation for inherited metabolic diseases of the liver. J Intern Med 2012; 272:201-23. [PMID: 22789058 DOI: 10.1111/j.1365-2796.2012.02574.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inherited metabolic diseases of the liver are characterized by deficiency of a hepatic enzyme or protein often resulting in life-threatening disease. The remaining liver function is usually normal. For most patients, treatment consists of supportive therapy, and the only curative option is liver transplantation. Hepatocyte transplantation is a promising therapy for patients with inherited metabolic liver diseases, which offers a less invasive and fully reversible approach. Procedure-related complications are rare. Here, we review the experience of hepatocyte transplantation for metabolic liver diseases and discuss the major obstacles that need to be overcome to establish hepatocyte transplantation as a reliable treatment option in the clinic.
Collapse
Affiliation(s)
- C Jorns
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
40
|
Enosawa S, Yuan W, Douzen M, Nakazawa A, Omasa T, Fukuda A, Sakamoto S, Shigeta T, Kasahara M. Consideration of a Safe Protocol for Hepatocyte Transplantation Using Infantile Pigs. CELL MEDICINE 2012; 3:13-18. [PMID: 28058176 DOI: 10.3727/215517912x639469] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hepatocyte transplantation is hoped to be an alternative treatment to certain cases of liver transplantation. The most promising indication is for congenital metabolic diseases, especially in infants. To establish a safe protocol for hepatocyte transplantation into infants, we examined physiological changes during treatment using infantile pigs. Recipient pigs (domestic, crossbred with Large-Yorkshire, Landrace, and Duroc; 2.5 kg; 7-14 days old) were anesthetized with isoflurane; a midline incision of minimum length provided access to the superior mesenteric vein. A double lumen catheter was inserted through the vein to within 1 cm of the hepatic portal region. Physiological parameters such as heart rate, systemic blood pressure, and portal pressure were monitored. Cryopreserved porcine hepatocytes isolated from the same strain were suspended in physiological saline and transfused through the catheter. In experiments requiring tracing, cells were stained with fluorescent dye prior to transfusion. Recipient pigs were kept for 1 day and sacrificed for histological liver examination. After preliminary experiments, the optimized number and concentration for hepatocyte transplantation were determined to be 1 × 108 cells/kg and 1 × 107 cells/ml. The cell suspension was transfused at a rate of 0.67 ml/min. No marked anomaly of physiological parameters was observed, whereas light tachycardia occurred in preliminary trials when the transfusion rate was faster than our standard protocol. All five pigs transfused with the established method recovered from anesthesia and survived with good vital signs. Histology revealed that the transfused hepatocytes were integrated in the hepatic tissue.
Collapse
Affiliation(s)
- Shin Enosawa
- Clinical Research Center, National Center for Child Health and Development , Tokyo , Japan
| | - Wenji Yuan
- Clinical Research Center, National Center for Child Health and Development , Tokyo , Japan
| | - Masaharu Douzen
- Clinical Research Center, National Center for Child Health and Development , Tokyo , Japan
| | - Atsuko Nakazawa
- † Department of Pathology, National Center for Child Health and Development , Tokyo , Japan
| | - Takeshi Omasa
- ‡ Institute of Technology and Science, The University of Tokushima , Tokushima , Japan
| | - Akinari Fukuda
- § Division of Transplantation, National Center for Child Health and Development , Tokyo , Japan
| | - Seisuke Sakamoto
- § Division of Transplantation, National Center for Child Health and Development , Tokyo , Japan
| | - Takanobu Shigeta
- § Division of Transplantation, National Center for Child Health and Development , Tokyo , Japan
| | - Mureo Kasahara
- § Division of Transplantation, National Center for Child Health and Development , Tokyo , Japan
| |
Collapse
|
41
|
Lee JH, Park HJ, Kim YA, Lee DH, Noh JK, Kwon C, Jung SM, Lee SK. Differentiation and Major Histocompatibility Complex Antigen Expression in Human Liver–Derived Stem Cells. Transplant Proc 2012; 44:1113-5. [DOI: 10.1016/j.transproceed.2012.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
42
|
Lee JH, Jung DH, Lee DH, Park JK, Lee SK. Effect of Spheroid Aggregation on Susceptibility of Primary Pig Hepatocytes to Cryopreservation. Transplant Proc 2012; 44:1015-7. [DOI: 10.1016/j.transproceed.2012.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Enosawa S, Yamazaki T, Kohsaka H, Tokiwa T. Repopulation of Human Origin Hepatocyte Progenitor-Like Cell Line, THLE-5b, in the SCID Mouse Liver under p21-Mediated Cell Growth-Arresting Conditions. Cell Transplant 2012; 21:447-52. [DOI: 10.3727/096368911x605358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The in vivo repopulation of hepatocytes depends on donor cell growth potential and recipient conditioning. We herein demonstrate the successful cell transplantation of a human hepatocyte cell line, THLE-5b, into the SCID mouse liver by means of a rather mild conditioning using a 55% hepatectomy and p21 transfection. Adult human liver-derived cells, THLE-5b, are SV40 T antigen-immortalized epithelial cells. A phenotypic examination of THLE-5b showed they expressed hepatic stem cell markers such as EpCAM, OCT3/4, and Thy-1, thus indicating the immature nature of the cells. A three-dimensional aggregate culture of THLE-5b showed a higher expression level of liver-specific genes such as albumin, α1-antitrypsin, and CYP3A4, thus suggesting that THLE-5b possess the capability to differentiate into hepatocytes. In a cell transplantation experiment, the cell cycle regulator p21 was transfected with adenoviral vector into the SCID mouse liver. On the next day, 8 × 105 cells of GFP-transfected THLE-5b were injected intrasplenically, together with the intraperitoneal administration of anti-asialo GM1 antibodies. The following day, a partial hepatectomy was performed. The GFP-THLE-5b cells were observed to have migrated and become integrated into the liver parenchyma 14 days after transplantation. The present protocol is thus considered to be a novel experimental model to elucidate the mechanism of hepatocyte repopulation and to develop efficient stem cell therapy in the liver.
Collapse
Affiliation(s)
- Shin Enosawa
- Division for Advanced Medical Services, National Center for Child Health and Development, Tokyo, Japan
| | - Taisuke Yamazaki
- Department of Liver Cell Biology, Kohno Clinical Medicine Research Institute, Tokyo, Japan
| | - Hitoshi Kohsaka
- Department of Medicine and Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayoshi Tokiwa
- Department of Liver Cell Biology, Kohno Clinical Medicine Research Institute, Tokyo, Japan
| |
Collapse
|
44
|
Allameh A, Kazemnejad S. Safety evaluation of stem cells used for clinical cell therapy in chronic liver diseases; with emphasize on biochemical markers. Clin Biochem 2012; 45:385-96. [PMID: 22306885 DOI: 10.1016/j.clinbiochem.2012.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 01/16/2012] [Accepted: 01/18/2012] [Indexed: 12/11/2022]
Abstract
There are several issues to be considered to reduce the risk of rejection and minimize side effects associated with liver cell transplantation in chronic liver diseases. The source and the condition of stem cell proliferation and differentiation ex vivo and the transplantation protocols are important safety considerations for cell based therapy. The biochemical and molecular markers are important tools for safety evaluation of different processes of cell expansion and transplantation. Studies show that hepatocytes differentiated from adult and embryonic stem cells exhibit biochemical and metabolic properties resembling mature hepatocytes. Therefore these assays can help to assess the biological and metabolic performance of hepatocytes and progenitor stem cells. The assays also help in testing the contribution of transplanted hepatocytes in improving the repair and function of damaged liver in the recipient. Here we review the biochemical and metabolic markers, which are implicated in evaluation of safety issues of stem cells used for therapeutic purposes in chronic liver diseases and regeneration of damaged liver. We also highlight application of biochemical tests for assessment of liver cell transplantation.
Collapse
Affiliation(s)
- Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, PO Box 14115-111, Tehran, Islamic Republic of Iran.
| | | |
Collapse
|
45
|
Pareja E, Cortés M, Bonora A, Mir J. [New alternatives to liver transplantation: transplantation of hepatocytes]. Med Clin (Barc) 2011; 137:513-8. [PMID: 20416905 DOI: 10.1016/j.medcli.2010.02.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 01/26/2010] [Accepted: 02/09/2010] [Indexed: 11/17/2022]
Affiliation(s)
- Eugenia Pareja
- Unidad de Cirugía Hepatobiliopancreática y Trasplante Hepático, Hospital Universitario La Fe, Valencia, Spain.
| | | | | | | |
Collapse
|
46
|
Abstract
Hepatocyte transplantation (HTx) has been developed for use in liver-based metabolic disorders and in acute liver failure. Worldwide, there are around 80 patients that have been transplanted with hepatocytes. Almost all reported studies prove feasibility and safety of the procedure with short- to medium-term success. Availability of good quality hepatocytes (HCs) is the main limiting factor, and therefore alternative sources of cells such as stem cells are being investigated. Other limiting factors include cell engraftment, survival, and function of transplanted cells. It remains to be seen if progress in HTx research can overcome these hurdles leading to the wider use of the technique as an alternative to liver transplantation in the future.
Collapse
Key Words
- ALF, acute liver failure
- Acute liver failure
- ApoB, apolipoprotein B
- EGTA, ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetra-acetic acid
- FVII, factor VII deficiency
- GMP, good manufacturing practice
- HAS, human serum albumin
- HC, hepatocytes
- HTx, hepatocyte transplantation
- LDL, low density lipoprotein
- LTx, liver transplantation
- MRI, magnetic resonance imaging
- OTC, ornithine transcarbamylase
- hepatocyte transplantation
- liver disease
- stem cell transplantation
Collapse
|
47
|
Froissart R, Piraud M, Boudjemline AM, Vianey-Saban C, Petit F, Hubert-Buron A, Eberschweiler PT, Gajdos V, Labrune P. Glucose-6-phosphatase deficiency. Orphanet J Rare Dis 2011; 6:27. [PMID: 21599942 PMCID: PMC3118311 DOI: 10.1186/1750-1172-6-27] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 05/20/2011] [Indexed: 01/01/2023] Open
Abstract
Glucose-6-phosphatase deficiency (G6P deficiency), or glycogen storage disease type I (GSDI), is a group of inherited metabolic diseases, including types Ia and Ib, characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver. Prevalence is unknown and annual incidence is around 1/100,000 births. GSDIa is the more frequent type, representing about 80% of GSDI patients. The disease commonly manifests, between the ages of 3 to 4 months by symptoms of hypoglycemia (tremors, seizures, cyanosis, apnea). Patients have poor tolerance to fasting, marked hepatomegaly, growth retardation (small stature and delayed puberty), generally improved by an appropriate diet, osteopenia and sometimes osteoporosis, full-cheeked round face, enlarged kydneys and platelet dysfunctions leading to frequent epistaxis. In addition, in GSDIb, neutropenia and neutrophil dysfunction are responsible for tendency towards infections, relapsing aphtous gingivostomatitis, and inflammatory bowel disease. Late complications are hepatic (adenomas with rare but possible transformation into hepatocarcinoma) and renal (glomerular hyperfiltration leading to proteinuria and sometimes to renal insufficiency). GSDI is caused by a dysfunction in the G6P system, a key step in the regulation of glycemia. The deficit concerns the catalytic subunit G6P-alpha (type Ia) which is restricted to expression in the liver, kidney and intestine, or the ubiquitously expressed G6P transporter (type Ib). Mutations in the genes G6PC (17q21) and SLC37A4 (11q23) respectively cause GSDIa and Ib. Many mutations have been identified in both genes,. Transmission is autosomal recessive. Diagnosis is based on clinical presentation, on abnormal basal values and absence of hyperglycemic response to glucagon. It can be confirmed by demonstrating a deficient activity of a G6P system component in a liver biopsy. To date, the diagnosis is most commonly confirmed by G6PC (GSDIa) or SLC37A4 (GSDIb) gene analysis, and the indications of liver biopsy to measure G6P activity are getting rarer and rarer. Differential diagnoses include the other GSDs, in particular type III (see this term). However, in GSDIII, glycemia and lactacidemia are high after a meal and low after a fast period (often with a later occurrence than that of type I). Primary liver tumors and Pepper syndrome (hepatic metastases of neuroblastoma) may be evoked but are easily ruled out through clinical and ultrasound data. Antenatal diagnosis is possible through molecular analysis of amniocytes or chorionic villous cells. Pre-implantatory genetic diagnosis may also be discussed. Genetic counseling should be offered to patients and their families. The dietary treatment aims at avoiding hypoglycemia (frequent meals, nocturnal enteral feeding through a nasogastric tube, and later oral addition of uncooked starch) and acidosis (restricted fructose and galactose intake). Liver transplantation, performed on the basis of poor metabolic control and/or hepatocarcinoma, corrects hypoglycemia, but renal involvement may continue to progress and neutropenia is not always corrected in type Ib. Kidney transplantation can be performed in case of severe renal insufficiency. Combined liver-kidney grafts have been performed in a few cases. Prognosis is usually good: late hepatic and renal complications may occur, however, with adapted management, patients have almost normal life span. DISEASE NAME AND SYNONYMS: Glucose-6-phosphatase deficiency or G6P deficiency or glycogen storage disease type I or GSDI or type I glycogenosis or Von Gierke disease or Hepatorenal glycogenosis.
Collapse
Affiliation(s)
- Roseline Froissart
- Centre de Référence Maladies Héréditaires du Métabolisme Hépatique, Service de Pédiatrie, APHP, Clamart cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Harding CO, Gibson KM. Therapeutic liver repopulation for phenylketonuria. J Inherit Metab Dis 2010; 33:681-7. [PMID: 20495959 DOI: 10.1007/s10545-010-9099-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 03/24/2010] [Accepted: 03/31/2010] [Indexed: 01/22/2023]
Abstract
Problems with long-term dietary compliance in phenylketonuria (PKU) necessitate the development of alternative treatment approaches. Therapeutic liver repopulation with phenylalanine hydroxylase (PAH)-expressing cells following hepatocyte or haematopoietic stem cell transplantation has been investigated as a possible novel treatment approach for PKU. Successful therapeutic liver repopulation requires both a stimulus for liver regeneration at the time of cell transplantation and a selective growth advantage for the PAH+ donor cells. Unfortunately, wild-type PAH+ hepatocytes do not enjoy any growth advantage over PAH- cells. Successful correction of hyperphenylalaninemia following therapeutic liver repopulation has been accomplished only in an animal model that yields a selective advantage for the donor cells. Haematopoietic stem cell (HSC)-mediated therapeutic liver repopulation has not been reported in any hyperphenylalaninemic system, and the success of HSC-mediated liver repopulation for PKU may be limited by the slow kinetics of this approach. If therapeutic liver repopulation is to be employed successfully in humans with PKU, an effective method of providing a selective growth advantage for the donor cells must be developed. If this can be achieved, liver repopulation with 10-20% wild-type hepatocytes will likely completely normalize Phe clearance in individuals with PKU.
Collapse
Affiliation(s)
- Cary O Harding
- Department of Molecular and Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Mail code L103, Portland, OR 97239, USA.
| | | |
Collapse
|
49
|
Miyamoto Y, Teramoto N, Hayashi S, Enosawa S. An improvement in the attaching capability of cryopreserved human hepatocytes by a proteinaceous high molecule, sericin, in the serum-free solution. Cell Transplant 2010; 19:701-6. [PMID: 20525438 DOI: 10.3727/096368910x508799] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The methodology of cryopreservation of human hepatocytes remains unsatisfactory. Even when the viability of thawed cells is tolerable, the cells often lose the attaching capability to a culture dish, resulting in the cells' inability to survive. Previously, we described the effectiveness of maltose on the attachment of hepatocytes. This article demonstrates that a silk-derived high molecular protein, sericin, improves the cell-attaching capability in the serum-free freezing medium. When human hepatocytes [initial viability: 60.9 ± 3.1% (mean ± SD, n = 3)] were frozen with serum-free Dulbecco's modified Eagle medium (DMEM) containing 10% dimethyl sulfoxide (DMSO), the viability was 29.4 ± 3.2% and the cell-attaching capability 20.4 ± 4.1%. On the other hand, DMEM containing 10% DMSO and 1% sericin increased the values to 45.0 ± 0.8% and 26.2 ± 3.2%. Moreover, the addition of 0.1 mol/L maltose to the sericin-containing medium improved to 42.2 ± 3.2% and 51.1 ± 1.0%, as we demonstrated in a previous report. The present results indicated that sericin combined with maltose is a novel additive in the serum-free freezing medium for human hepatocytes.
Collapse
Affiliation(s)
- Yoshitaka Miyamoto
- Clinical Research Center, National Center for Child Health and Development, Tokyo, Japan.
| | | | | | | |
Collapse
|
50
|
Pareja E, Cortés M, Martínez A, Vila JJ, López R, Montalvá E, Calzado A, Mir J. [Hepatic cell transplantation: a new therapy in liver diseases]. Cir Esp 2010; 88:3-11. [PMID: 20510402 DOI: 10.1016/j.ciresp.2010.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 12/16/2009] [Accepted: 03/12/2010] [Indexed: 12/17/2022]
Abstract
Liver transplantation has been remarkably effective in the treatment in patients with end-stage liver disease. However, disparity between solid-organ supply and increased demand is the greatest limitation, resulting in longer waiting times and increase in mortality of transplant recipients. This situation creates the need to seek alternatives to orthotopic liver transplantation.Hepatocyte transplantation or liver cell transplantation has been proposed as the best method to support patients. The procedure consists of transplanting individual cells to a recipient organ in sufficient quantity to survive and restore the function. The capacity of hepatic regeneration is the biological basis of hepatocyte transplantation. This therapeutic option is an experimental procedure in some patients with inborn errors of metabolism, fulminant hepatic failure and acute and chronic liver failure, as a bridge to orthotopic liver transplantation. In the Hospital La Fe of Valencia, we performed the first hepatocyte transplantation in Spain creating a new research work on transplant program.
Collapse
Affiliation(s)
- Eugenia Pareja
- Unidad de Cirugía y Trasplante Hepático, Hospital Universitario La Fe, Valencia, España.
| | | | | | | | | | | | | | | |
Collapse
|