1
|
Hara M, Ishii K, Hattori M, Kohno T. EphA4 Induces the Phosphorylation of an Intracellular Adaptor Protein Dab1 via Src Family Kinases. Biol Pharm Bull 2024; 47:1314-1320. [PMID: 39019611 DOI: 10.1248/bpb.b24-00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Dab1 is an intracellular adaptor protein essential for brain formation during development. Tyrosine phosphorylation in Dab1 plays important roles in neuronal migration, dendrite development, and synapse formation by affecting several downstream pathways. Reelin is the best-known extracellular protein that induces Dab1 phosphorylation. However, whether other upstream molecule(s) contribute to Dab1 phosphorylation remains largely unknown. Here, we found that EphA4, a member of the Eph family of receptor-type tyrosine kinases, induced Dab1 phosphorylation when co-expressed in cultured cells. Tyrosine residues phosphorylated by EphA4 were the same as those phosphorylated by Reelin in neurons. The autophosphorylation of EphA4 was necessary for Dab1 phosphorylation. We also found that EphA4-induced Dab1 phosphorylation was mediated by the activation of the Src family tyrosine kinases. Interestingly, Dab1 phosphorylation was not observed when EphA4 was activated by ephrin-A5 in cultured cortical neurons, suggesting that Dab1 is localized in a different compartment in them. EphA4-induced Dab1 phosphorylation may occur under limited and/or pathological conditions in the brain.
Collapse
Affiliation(s)
- Mitsuki Hara
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Keisuke Ishii
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
2
|
Thompson D, Odufuwa AE, Brissette CA, Watt JA. Transcriptome and methylome of the supraoptic nucleus provides insights into the age-dependent loss of neuronal plasticity. Front Aging Neurosci 2023; 15:1223273. [PMID: 37711995 PMCID: PMC10498476 DOI: 10.3389/fnagi.2023.1223273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023] Open
Abstract
The age-dependent loss of neuronal plasticity is a well-known phenomenon that is poorly understood. The loss of this capacity for axonal regeneration is emphasized following traumatic brain injury, which is a major cause of disability and death among adults in the US. We have previously shown the intrinsic capacity of magnocellular neurons within the supraoptic nucleus to undergo axonal regeneration following unilateral axotomization in an age-dependent manner. The aim of this research was to determine the age-dependent molecular mechanisms that may underlie this phenomenon. As such, we characterized the transcriptome and DNA methylome of the supraoptic nucleus in uninjured 35-day old rats and 125-day old rats. Our data indicates the downregulation of a large number of axonogenesis related transcripts in 125-day old rats compared to 35-day old rats. Specifically, several semaphorin and ephrin genes were downregulated, as well as growth factors including FGF's, insulin-like growth factors (IGFs), and brain-derived neurotrophic factor (BDNF). Differential methylation analysis indicates enrichment of biological processes involved in axonogenesis and axon guidance. Conversely, we observed a robust and specific upregulation of MHCI related transcripts. This may involve the activator protein 1 (AP-1) transcription factor complex as motif analysis of differentially methylated regions indicate enrichment of AP-1 binding sites in hypomethylated regions. Together, our data suggests a loss of pro-regenerative capabilities with age which would prevent axonal growth and appropriate innervation following injury.
Collapse
Affiliation(s)
| | | | | | - John A. Watt
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
3
|
Rani A, Jakhmola S, Karnati S, Parmar HS, Chandra Jha H. Potential entry receptors for human γ-herpesvirus into epithelial cells: A plausible therapeutic target for viral infections. Tumour Virus Res 2021; 12:200227. [PMID: 34800753 PMCID: PMC8628264 DOI: 10.1016/j.tvr.2021.200227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/28/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Herpesviruses are ubiquitous viruses, specifically the Epstein Barr virus (EBV). EBV and Kaposi's sarcoma-associated herpesvirus (KSHV) establish their latency for a long period in B-cells and their reactivation instigates dreadful diseases from cancer to neurological modalities. The envelope glycoprotein of these viruses makes an attachment with several host receptors. For instance; glycoprotein 350/220, gp42, gHgL and gB of EBV establish an attachment with CD21, HLA-DR, Ephs, and other receptor molecules to hijack the B- and epithelial cell machinery. Ephs are reported recently as potent receptors for EBV entry into epithelial cells. Eph receptors play a role in the maintenance and control of various cellular processes including morphology, adhesion, proliferation, survival and differentiation. Alterations in the structure and expression of Eph and ephrin (Eph ligands) molecules is entangled with various pathologies including tumours and neurological complications. Along with Eph, integrins, NRP, NMHC are also key players in viral infections as they are possibly involved in viral transmission, replication and persistence. Contrarily, KSHV gH is known to interact with EphA2 and -A4 molecules, whereas in the case of EBV only EphA2 receptors are being reported to date. The ELEFN region of KSHV gH was involved in the interaction with EphA2, however, the interacting region of EBV gH is elusive. Further, the gHgL of KSHV and EBV form a complex with the EphA2 ligand-binding domain (LBD). Primarily by using gL both KSHV and EBV gHgL bind to the peripheral regions of LBD. In addition to γ-herpesviruses, several other viruses like Nipah virus, Cedar virus, Hepatitis C virus and Rhesus macaque rhadinovirus (RRV) also access the host cells via Eph receptors. Therefore, we summarise the possible roles of Eph and ephrins in virus-mediated infection and these molecules could serve as potential therapeutic targets. Crucial understanding of human γ-herpesviruses entry mechanism. Eph receptors relate to changed biomolecular profile upon EBV infection. EBV association with neurological disorders. Eph receptors could be an elegant drug for human γ-herpesviruses.
Collapse
Affiliation(s)
- Annu Rani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Shweta Jakhmola
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Srikanth Karnati
- Department of Medical Cell Biology, Julius Maximilians University, Wuerzburg, Germany
| | - Hamendra Singh Parmar
- School of Biotechnology, Devi Ahilya University, Takshashila Campus, Khandwa Road, Indore, 452001, MP, India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India.
| |
Collapse
|
4
|
Tatomir A, Beltrand A, Nguyen V, Courneya JP, Boodhoo D, Cudrici C, Muresanu DF, Rus V, Badea TC, Rus H. RGC-32 Acts as a Hub to Regulate the Transcriptomic Changes Associated With Astrocyte Development and Reactive Astrocytosis. Front Immunol 2021; 12:705308. [PMID: 34394104 PMCID: PMC8358671 DOI: 10.3389/fimmu.2021.705308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/16/2021] [Indexed: 01/14/2023] Open
Abstract
Response Gene to Complement 32 (RGC-32) is an important mediator of the TGF-β signaling pathway, and an increasing amount of evidence implicates this protein in regulating astrocyte biology. We showed recently that spinal cord astrocytes in mice lacking RGC-32 display an immature phenotype reminiscent of progenitors and radial glia, with an overall elongated morphology, increased proliferative capacity, and increased expression of progenitor markers when compared to their wild-type (WT) counterparts that make them incapable of undergoing reactive changes during the acute phase of experimental autoimmune encephalomyelitis (EAE). Here, in order to decipher the molecular networks underlying RGC-32's ability to regulate astrocytic maturation and reactivity, we performed next-generation sequencing of RNA from WT and RGC-32 knockout (KO) neonatal mouse brain astrocytes, either unstimulated or stimulated with the pleiotropic cytokine TGF-β. Pathway enrichment analysis showed that RGC-32 is critical for the TGF-β-induced up-regulation of transcripts encoding proteins involved in brain development and tissue remodeling, such as axonal guidance molecules, transcription factors, extracellular matrix (ECM)-related proteins, and proteoglycans. Our next-generation sequencing of RNA analysis also demonstrated that a lack of RGC-32 results in a significant induction of WD repeat and FYVE domain-containing protein 1 (Wdfy1) and stanniocalcin-1 (Stc1). Immunohistochemical analysis of spinal cords isolated from normal adult mice and mice with EAE at the peak of disease showed that RGC-32 is necessary for the in vivo expression of ephrin receptor type A7 in reactive astrocytes, and that the lack of RGC-32 results in a higher number of homeodomain-only protein homeobox (HOPX)+ and CD133+ radial glia cells. Collectively, these findings suggest that RGC-32 plays a major role in modulating the transcriptomic changes in astrocytes that ultimately lead to molecular programs involved in astrocytic differentiation and reactive changes during neuroinflammation.
Collapse
Affiliation(s)
- Alexandru Tatomir
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Austin Beltrand
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Vinh Nguyen
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Jean-Paul Courneya
- Health Sciences and Human Services Library, University of Maryland, Baltimore, MD, United States
| | - Dallas Boodhoo
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Cornelia Cudrici
- Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Dafin F. Muresanu
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Violeta Rus
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Tudor C. Badea
- Retinal Circuit Development and Genetics Unit, N-NRL, National Eye Institute, Bethesda, MD, United States
- Research and Development Institute, Faculty of Medicine, Transylvania University of Brasov, Brasov, Romania
| | - Horea Rus
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
- Research Service, Veterans Administration Maryland Health Care System, Baltimore, MD, United States
| |
Collapse
|
5
|
Zhu RL, Fang Y, Yu HH, Chen DF, Yang L, Cho KS. Absence of ephrin-A2/A3 increases retinal regenerative potential for Müller cells in Rhodopsin knockout mice. Neural Regen Res 2021; 16:1317-1322. [PMID: 33318411 PMCID: PMC8284269 DOI: 10.4103/1673-5374.301034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/11/2020] [Accepted: 09/28/2020] [Indexed: 11/25/2022] Open
Abstract
Müller cells (MC) are considered dormant retinal progenitor cells in mammals. Previous studies demonstrated ephrin-As act as negative regulators of neural progenitor cells in the retina and brain. It remains unclear whether the lack of ephrin-A2/A3 is sufficient to promote the neurogenic potential of MC. Here we investigated whether the MC is the primary retinal cell type expressing ephrin-A2/A3 and their role on the neurogenic potential of Müller cells. In this study, we showed that ephrin-A2/A3 and their receptor EphA4 were expressed in retina and especially enriched in MC. The level of ephrinAs/EphA4 expression increased as the retina matured that is correlated with the reduced proliferative and progenitor cell potential of MC. Next, we investigated the proliferation in primary MC cultures isolated from wild-type and A2-/- A3-/- mice by 5-ethynyl-2'-deoxyuridine (EdU) incorporation. We detected a significant increase of EdU+ cells in MC derived from A2-/- A3-/- mice. Next, we investigated the role of ephrin-A2/A3 in mice undergoing photoreceptor degeneration such as Rhodopsin knockout (Rho-/-) mice. To further evaluate the role of ephrin-A2/A3 in MC proliferation in vivo, EdU was injected intraperitoneally to adult wild-type, A2-/- A3-/- , Rho-/- and Rho-/- A2-/- A3-/- mice and the numbers of EdU+ cells distributed among different layers of the retina. EphrinAs/EphA4 expression was upregulated in the retina of Rho-/- mice compared to the wild-type mice. In addition, cultured MC derived from ephrin-A2-/- A3-/- mice also expressed higher levels of progenitor cell markers and exhibited higher proliferation potential than those from wild-type mice. Interestingly, we detected a significant increase of EdU+ cells in the retinas of adult ephrin-A2-/- A3-/- mice mainly in the inner nuclear layer; and these EdU+ cells were co-localized with MC marker, cellular retinaldehyde-binding protein, suggesting some proliferating cells are from MC. In Rhodopsin knockout mice (Rho-/- A2-/- A3-/- mice), a significantly greater amount of EdU+ cells were located in the ciliary body, retina and RPE than that of Rho-/- mice. Comparing between 6 and 12 weeks old Rho-/- A2-/- A3-/- mice, we recorded more EdU+ cells in the outer nuclear layer in the 12-week-old mice undergoing severe retinal degeneration. Taken together, Ephrin-A2/A3 are negative regulators of the proliferative and neurogenic potentials of MC. Absence of ephrin-A2/A3 promotes the migration of proliferating cells into the outer nuclear layer and may lead to retinal cell regeneration. All experimental procedures were approved by the Animal Care and Use Committee at Schepens Eye Research Institute, USA (approval No. S-353-0715) on October 24, 2012.
Collapse
Affiliation(s)
- Rui-Lin Zhu
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Yuan Fang
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong-Hua Yu
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Dong F. Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Liu Yang
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Kin-Sang Cho
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
de Boer A, Storm A, Gomez-Soler M, Smolders S, Rué L, Poppe L, B Pasquale E, Robberecht W, Lemmens R. Environmental enrichment during the chronic phase after experimental stroke promotes functional recovery without synergistic effects of EphA4 targeted therapy. Hum Mol Genet 2021; 29:605-617. [PMID: 31814004 PMCID: PMC7068116 DOI: 10.1093/hmg/ddz288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/14/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022] Open
Abstract
Worldwide, stroke is the main cause of long-term adult disability. After the initial insult, most patients undergo a subacute period with intense plasticity and rapid functional improvements. This period is followed by a chronic phase where recovery reaches a plateau that is only partially modifiable by rehabilitation. After experimental stroke, various subacute rehabilitation paradigms improve recovery. However, in order to reach the best possible outcome, a combination of plasticity-promoting strategies and rehabilitation might be necessary. EphA4 is a negative axonal guidance regulator during development. After experimental stroke, reduced EphA4 levels improve functional outcome with similar beneficial effects upon the inhibition of EphA4 downstream targets. In this study, we assessed the effectiveness of a basic enriched environment in the chronic phase after photothrombotic stroke in mice as well as the therapeutic potential of EphA4 targeted therapy followed by rehabilitation. Our findings show that environmental enrichment in the chronic phase improves functional outcome up to 2 months post-stroke. Although EphA4 levels increase after experimental stroke, subacute EphA4 inhibition followed by environmental enrichment does not further increase recovery. In conclusion, we show that environmental enrichment during the chronic phase of stroke improves functional outcome in mice with no synergistic effects of the used EphA4 targeted therapy.
Collapse
Affiliation(s)
- Antina de Boer
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven 3000, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven 3000, Belgium
| | - Annet Storm
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven 3000, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven 3000, Belgium
| | - Maricel Gomez-Soler
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Silke Smolders
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven 3000, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven 3000, Belgium
| | - Laura Rué
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven 3000, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven 3000, Belgium
| | - Lindsay Poppe
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven 3000, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven 3000, Belgium
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Wim Robberecht
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven 3000, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven 3000, Belgium
| | - Robin Lemmens
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven 3000, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven 3000, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven 3000, Belgium
| |
Collapse
|
7
|
Tsujioka H, Yamashita T. Neural circuit repair after central nervous system injury. Int Immunol 2020; 33:301-309. [PMID: 33270108 DOI: 10.1093/intimm/dxaa077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022] Open
Abstract
Central nervous system injury often causes lifelong impairment of neural function, because the regenerative ability of axons is limited, making a sharp contrast to the successful regeneration that is seen in the peripheral nervous system. Nevertheless, partial functional recovery is observed, because axonal branches of damaged or undamaged neurons sprout and form novel relaying circuits. Using a lot of animal models such as the spinal cord injury model or the optic nerve injury model, previous studies have identified many factors that promote or inhibit axonal regeneration or sprouting. Molecules in the myelin such as myelin-associated glycoprotein, Nogo-A or oligodendrocyte-myelin glycoprotein, or molecules found in the glial scar such as chondroitin sulfate proteoglycans, activate Ras homolog A (RhoA) signaling, which leads to the collapse of the growth cone and inhibit axonal regeneration. By contrast, axonal regeneration programs can be activated by many molecules such as regeneration-associated transcription factors, cyclic AMP, neurotrophic factors, growth factors, mechanistic target of rapamycin or immune-related molecules. Axonal sprouting and axonal regeneration largely share these mechanisms. For functional recovery, appropriate pruning or suppressing of aberrant sprouting are also important. In contrast to adults, neonates show much higher sprouting ability. Specific cell types, various mouse strains and different species show higher regenerative ability. Studies focusing on these models also identified a lot of molecules that affect the regenerative ability. A deeper understanding of the mechanisms of neural circuit repair will lead to the development of better therapeutic approaches for central nervous system injury.
Collapse
Affiliation(s)
- Hiroshi Tsujioka
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,WPI Immunology Frontier Research Center, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,WPI Immunology Frontier Research Center, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Graduate School of Frontier Bioscience, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Xu LJ, Gao F, Cheng S, Zhou ZX, Li F, Miao Y, Niu WR, Yuan F, Sun XH, Wang Z. Activated ephrinA3/EphA4 forward signaling induces retinal ganglion cell apoptosis in experimental glaucoma. Neuropharmacology 2020; 178:108228. [PMID: 32745487 DOI: 10.1016/j.neuropharm.2020.108228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/16/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022]
Abstract
Previous studies have demonstrated that EphA4 participates in neuronal injury, and there is a strong interaction between ephrinA3 and EphA4. In this study, we showed that in a rat chronic ocular hypertension (COH) experimental glaucoma model, expression of EphA4 and ephrinA3 proteins was increased in retinal cells, including retinal ganglion cells (RGCs) and Müller cells, which may result in ephrinA3/EphA4 forward signaling activation on RGCs, as evidenced by increased p-EphA4/EphA4 ratio. Intravitreal injection of ephrinA3-Fc, an activator of EphA4, mimicked the effect of COH on p-EphA4/EphA4 and induced an increase in TUNEL-positive signals in normal retinas, which was accompanied by dendritic spine retraction and thinner dendrites in RGCs. Furthermore, Intravitreal injection of ephrinA3-Fc increased the levels of phosphorylated src and GluA2 (p-src and p-GluA2). Co-immunoprecipitation assay demonstrated interactions between EphA4, p-src and GluA2. Intravitreal injection of ephrinA3-Fc reduced the expression of GluA2 proteins on the surface of normal retinal cells, which was prevented by intravitreal injection of PP2, an inhibitor of src-family tyrosine kinases. Pre-injection of PP2 or the Ca2+-permeable GluA2-lacking AMPA receptor inhibitor Naspm significantly and partially reduced the number of TUNEL-positive RGCs in the ephrinA3-Fc-injected and COH retinas. Our results suggest that activated ephrinA3/EphA4 forward signaling promoted GluA2 endocytosis, then resulted in dendritic spine retraction of RGCs, thus contributing to RGC apoptosis in COH rats. Attenuation of the strength of ephrinA/EphA signaling in an appropriate manner may be an effective way for preventing the loss of RGCs in glaucoma.
Collapse
Affiliation(s)
- Lin-Jie Xu
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Feng Gao
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, Shanghai Key Laboratory of Visual Impairment and Restoration, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200031, China
| | - Shuo Cheng
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhi-Xin Zhou
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fang Li
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yanying Miao
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei-Ran Niu
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fei Yuan
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xing-Huai Sun
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, Shanghai Key Laboratory of Visual Impairment and Restoration, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200031, China.
| | - Zhongfeng Wang
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Griffin JM, Bradke F. Therapeutic repair for spinal cord injury: combinatory approaches to address a multifaceted problem. EMBO Mol Med 2020; 12:e11505. [PMID: 32090481 PMCID: PMC7059014 DOI: 10.15252/emmm.201911505] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/07/2020] [Accepted: 01/31/2020] [Indexed: 12/21/2022] Open
Abstract
The recent years saw the advent of promising preclinical strategies that combat the devastating effects of a spinal cord injury (SCI) that are progressing towards clinical trials. However, individually, these treatments produce only modest levels of recovery in animal models of SCI that could hamper their implementation into therapeutic strategies in spinal cord injured humans. Combinational strategies have demonstrated greater beneficial outcomes than their individual components alone by addressing multiple aspects of SCI pathology. Clinical trial designs in the future will eventually also need to align with this notion. The scenario will become increasingly complex as this happens and conversations between basic researchers and clinicians are required to ensure accurate study designs and functional readouts.
Collapse
Affiliation(s)
- Jarred M Griffin
- Laboratory for Axonal Growth and Regeneration, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Frank Bradke
- Laboratory for Axonal Growth and Regeneration, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
10
|
Medori M, Spelzini G, Scicolone G. Molecular complexity of visual mapping: a challenge for regenerating therapy. Neural Regen Res 2020; 15:382-389. [PMID: 31571645 PMCID: PMC6921353 DOI: 10.4103/1673-5374.266044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Investigating the cellular and molecular mechanisms involved in the development of topographically ordered connections in the central nervous system constitutes an important issue in neurobiology because these connections are the base of the central nervous system normal function. The dominant model to study the development of topographic maps is the projection from the retinal ganglion cells to the optic tectum/colliculus. The expression pattern of Eph/ephrin system in opposing gradients both in the retina and the tectum, labels the local addresses on the target and gives specific sensitivities to growth cones according to their topographic origin in the retina. The rigid precision of normal retinotopic mapping has prompted the chemoaffinity hypothesis, positing axonal targeting to be based on fixed biochemical affinities between fibers and targets. However, several lines of evidence have shown that the mapping can adjust to experimentally modified targets with flexibility, demonstrating the robustness of the guidance process. Here we discuss the complex ways the Ephs and ephrins interact allowing to understand how the retinotectal mapping is a precise but also a flexible process.
Collapse
Affiliation(s)
- Mara Medori
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN); Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gonzalo Spelzini
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN); Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriel Scicolone
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN); Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
11
|
Peripheral loss of EphA4 ameliorates TBI-induced neuroinflammation and tissue damage. J Neuroinflammation 2019; 16:210. [PMID: 31711546 PMCID: PMC6844068 DOI: 10.1186/s12974-019-1605-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/26/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The continuum of pro- and anti-inflammatory response elicited by traumatic brain injury (TBI) is suggested to play a key role in the outcome of TBI; however, the underlying mechanisms remain ill -defined. METHODS Here, we demonstrate that using bone marrow chimeric mice and systemic inhibition of EphA4 receptor shifts the pro-inflammatory milieu to pro-resolving following acute TBI. RESULTS EphA4 expression is increased in the injured cortex as early as 2 h post-TBI and on CX3CR1gfp-positive cells in the peri-lesion. Systemic inhibition or genetic deletion of EphA4 significantly reduced cortical lesion volume and shifted the inflammatory profile of peripheral-derived immune cells to pro-resolving in the damaged cortex. These findings were consistent with in vitro studies showing EphA4 inhibition or deletion altered the inflammatory state of LPS-stimulated monocyte/macrophages towards anti-inflammatory. Phosphoarray analysis revealed that EphA4 may regulate pro-inflammatory gene expression by suppressing the mTOR, Akt, and NF-κB pathways. Our human metadata analysis further demonstrates increased EPHA4 and pro-inflammatory gene expression, which correlates with reduced AKT concurrent with increased brain injury severity in patients. CONCLUSIONS Overall, these findings implicate EphA4 as a novel mediator of cortical tissue damage and neuroinflammation following TBI.
Collapse
|
12
|
Reducing EphA4 before disease onset does not affect survival in a mouse model of Amyotrophic Lateral Sclerosis. Sci Rep 2019; 9:14112. [PMID: 31575928 PMCID: PMC6773754 DOI: 10.1038/s41598-019-50615-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects motor neurons resulting in severe neurological symptoms. Previous findings of our lab suggested that the axonal guidance tyrosine-kinase receptor EphA4 is an ALS disease-modifying gene. Reduction of EphA4 from developmental stages onwards rescued a motor neuron phenotype in zebrafish, and heterozygous deletion before birth in the SOD1G93A mouse model of ALS resulted in improved survival. Here, we aimed to gain more insights in the cell-specific role of decreasing EphA4 expression in addition to timing and amount of EphA4 reduction. To evaluate the therapeutic potential of lowering EphA4 later in life, we ubiquitously reduced EphA4 levels to 50% in SOD1G93A mice at 60 days of age, which did not modify disease parameters. Even further lowering EphA4 levels ubiquitously or in neurons, did not improve disease onset or survival. These findings suggest that lowering EphA4 as target in ALS may suffer from a complex therapeutic time window. In addition, the complexity of the Eph-ephrin signalling system may also possibly limit the therapeutic potential of such an approach in ALS. We suggest here that a specific EphA4 knockdown in adulthood may have a limited therapeutic potential for ALS.
Collapse
|
13
|
Ceci M, Mariano V, Romano N. Zebrafish as a translational regeneration model to study the activation of neural stem cells and role of their environment. Rev Neurosci 2019; 30:45-66. [PMID: 30067512 DOI: 10.1515/revneuro-2018-0020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023]
Abstract
The review is an overview of the current knowledge of neuronal regeneration properties in mammals and fish. The ability to regenerate the damaged parts of the nervous tissue has been demonstrated in all vertebrates. Notably, fish and amphibians have the highest capacity for neurogenesis, whereas reptiles and birds are able to only regenerate specific regions of the brain, while mammals have reduced capacity for neurogenesis. Zebrafish (Danio rerio) is a promising model of study because lesions in the brain or complete cross-section of the spinal cord are followed by an effective neuro-regeneration that successfully restores the motor function. In the brain and the spinal cord of zebrafish, stem cell activity is always able to re-activate the molecular programs required for central nervous system regeneration. In mammals, traumatic brain injuries are followed by reduced neurogenesis and poor axonal regeneration, often insufficient to functionally restore the nervous tissue, while spinal injuries are not repaired at all. The environment that surrounds the stem cell niche constituted by connective tissue and stimulating factors, including pro-inflammation molecules, seems to be a determinant in triggering stem cell proliferation and/or the trans-differentiation of connective elements (mainly fibroblasts). Investigating and comparing the neuronal regeneration in zebrafish and mammals may lead to a better understanding of the mechanisms behind neurogenesis, and the failure of the regenerative response in mammals, first of all, the role of inflammation, considered the main inhibitor of the neuronal regeneration.
Collapse
Affiliation(s)
- Marcello Ceci
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell'Università, I-01100 Viterbo, Italy
| | - Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Nicla Romano
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell'Università, I-01100 Viterbo, Italy
| |
Collapse
|
14
|
Teng S, Palmieri A, Maita I, Zheng C, Das G, Park J, Zhou R, Alder J, Thakker-Varia S. Inhibition of EphA/Ephrin-A signaling using genetic and pharmacologic approaches improves recovery following traumatic brain injury in mice. Brain Inj 2019; 33:1385-1401. [DOI: 10.1080/02699052.2019.1641622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shavonne Teng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Alicia Palmieri
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Isabella Maita
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Cynthia Zheng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Gitanjali Das
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Juyeon Park
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Renping Zhou
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Janet Alder
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Smita Thakker-Varia
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
15
|
Pajer K, Bellák T, Redl H, Nógrádi A. Neuroectodermal Stem Cells Grafted into the Injured Spinal Cord Induce Both Axonal Regeneration and Morphological Restoration via Multiple Mechanisms. J Neurotrauma 2019; 36:2977-2990. [PMID: 31111776 PMCID: PMC6791485 DOI: 10.1089/neu.2018.6332] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spinal cord contusion injury leads to severe loss of gray and white matter and subsequent deficit of motor and sensory functions below the lesion. In this study, we investigated whether application of murine clonal embryonic neuroectodermal stem cells can prevent the spinal cord secondary damage and induce functional recovery. Stem cells (NE-GFP-4C cell line) were grafted intraspinally or intravenously immediately or one week after thoracic spinal cord contusion injury. Control animals received cell culture medium or fibrin intraspinally one week after injury. Functional tests (Basso, Beattie, Bresnahan, CatWalk®) and detailed morphological analysis were performed to evaluate the effects of grafted cells. Stem cells applied either locally or intravenously induced significantly improved functional recovery compared with their controls. Morphologically, stem cell grafting prevented the formation of secondary injury and promoted sparing of the gray and white matters. The transplanted cells integrated into the host tissue and differentiated into neurons, astrocytes, and oligodendrocytes. In intraspinally grafted animals, the corticospinal tract axons regenerated along the ventral border of the cavity and have grown several millimeters, even beyond the caudal end of the lesion. The extent of regeneration and functional improvement was inversely related to the amounts of chondroitin sulphate and ephrin-B2 molecules around the cavity and to the microglial and astrocytic reactions in the injured segment early after injury. The grafts produced glial cell derived neurotrophic factor, macrophage inflammatory protein-1a, interleukin (IL)-6 and IL-10 in a paracrine fashion for at least one week. Treating the grafted cords with neutralizing antibodies against these four factors through the use of osmotic pumps nearly completely abolished the effect of the graft. The non-significant functional improvement after function blocking is likely because the stem cell derivatives settled in the injured cord. These data suggest that grafted neuroectodermal stem cells are able to prevent the secondary spinal cord damage and induce significant regeneration via multiple mechanisms.
Collapse
Affiliation(s)
- Krisztián Pajer
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Tamás Bellák
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Antal Nógrádi
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| |
Collapse
|
16
|
Cheng Q, Graves MD, Pallas SL. Dynamic Alterations of Retinal EphA5 Expression in Retinocollicular Map Plasticity. Dev Neurobiol 2019; 79:252-267. [PMID: 30916472 PMCID: PMC6506164 DOI: 10.1002/dneu.22675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/14/2019] [Accepted: 02/28/2019] [Indexed: 11/10/2022]
Abstract
The topographically ordered retinocollicular projection is an excellent system for studying the mechanism of axon guidance. Gradients of EphA receptors in the retina and ephrin-As in the superior colliculus (SC) pattern the anteroposterior axis of the retinocollicular map, but whether they are involved in map plasticity after injury is unknown. Partial damage to the caudal SC at birth creates a compressed, complete retinotopic map in the remaining SC without affecting visual response properties. Previously, we found that the gradient of ephrin-A expression in compressed maps is steeper than normal, suggesting an instructive role in compression. Here we measured EphA5 mRNA and protein levels after caudal SC damage in order to test the hypothesis that changes in retinal EphA5 expression occur that are complementary to the changes in collicular ephrin-A expression. We find that the nasotemporal gradient of EphA5 receptor expression steepens in the retina and overall expression levels change dynamically, especially in temporal retina, supporting the hypothesis. This change in receptor expression occurs after the change in ephrin-A ligand expression. We propose that changes in the retinal EphA5 gradient guide recovery of the retinocollicular projection from early injury. This could occur directly through the change in EphA5 expression instructing retino-SC map compression, or through ephrin-A ligand signaling instructing a change in EphA5 receptor expression that in turn signals the retinocollicular map to compress. Understanding what molecular signals direct compensation for injury is essential to developing rehabilitative strategies and maximizing the potential for recovery.
Collapse
Affiliation(s)
- Qi Cheng
- Neuroscience Institute Georgia State University, Atlanta, GA, USA
| | - Mark D. Graves
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Sarah L. Pallas
- Neuroscience Institute Georgia State University, Atlanta, GA, USA
- Department of Biology, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
17
|
|
18
|
Yang JS, Wei HX, Chen PP, Wu G. Roles of Eph/ephrin bidirectional signaling in central nervous system injury and recovery. Exp Ther Med 2018; 15:2219-2227. [PMID: 29456630 PMCID: PMC5795627 DOI: 10.3892/etm.2018.5702] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022] Open
Abstract
Multiple cellular components are involved in the complex pathological process following central nervous system (CNS) injury, including neurons, glial cells and endothelial cells. Previous studies and neurotherapeutic clinical trials have assessed the molecular mechanisms that underlie neuronal cell death following CNS injury. However, this approach has largely failed to reduce CNS damage or improve the functional recovery of patients. Erythropoietin-producing human hepatocellular (Eph) receptors and ephrin ligands have attracted considerable attention since their discovery, due to their extensive distribution and unique bidirectional signaling between astrocytes and neurons. Previous studies have investigated the roles of Eph/ephrin bidirectional signaling in the developing central nervous system. It was determined that Eph/ephrin bidirectional signaling is expressed in various CNS regions and cell types, and that it serves diverse roles in the adult CNS. In the present review, the roles of Eph/ephrin bidirectional signaling in CNS injuries are assessed.
Collapse
Affiliation(s)
- Jin-Shan Yang
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Hui-Xing Wei
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Ping-Ping Chen
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Gang Wu
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| |
Collapse
|
19
|
Wan Y, Yang JS, Xu LC, Huang XJ, Wang W, Xie MJ. Roles of Eph/ephrin bidirectional signaling during injury and recovery of the central nervous system. Neural Regen Res 2018; 13:1313-1321. [PMID: 30106032 PMCID: PMC6108204 DOI: 10.4103/1673-5374.235217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple cellular components, including neuronal, glial and endothelial cells, are involved in the sophisticated pathological processes following central nervous system injury. The pathological process cannot reduce damage or improve functional recovery by merely targeting the molecular mechanisms of neuronal cell death after central nerve system injuries. Eph receptors and ephrin ligands have drawn wide attention since the discovery of their extensive distribution and unique bidirectional signaling between astrocytes and neurons. The roles of Eph/ephrin bidirectional signaling in the developmental processes have been reported in previous research. Recent observations suggest that Eph/ephrin bidirectional signaling continues to be expressed in most regions and cell types in the adult central nervous system, playing diverse roles. The Eph/ephrin complex mediates neurogenesis and angiogenesis, promotes glial scar formation, regulates endocrine levels, inhibits myelin formation and aggravates inflammation and nerve pain caused by injury. The interaction between Eph and ephrin is also considered to be the key to angiogenesis. This review focuses on the roles of Eph/ephrin bidirectional signaling in the repair of central nervous system injuries.
Collapse
Affiliation(s)
- Yue Wan
- Department of Neurology, The Third People's Hospital of Hubei Province, Wuhan, Hubei Province, China
| | - Jin-Shan Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province; Department of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Li-Cai Xu
- Department of Neurological Rehabilitation Center, The Third People's Hospital of Hubei Province, Wuhan, Hubei Province, China
| | - Xiao-Jiang Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Min-Jie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
20
|
Theis T, Yoo M, Park CS, Chen J, Kügler S, Gibbs KM, Schachner M. Lentiviral Delivery of miR-133b Improves Functional Recovery After Spinal Cord Injury in Mice. Mol Neurobiol 2017; 54:4659-4671. [PMID: 27412702 DOI: 10.1007/s12035-016-0007-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/05/2016] [Indexed: 02/05/2023]
Abstract
Based on the observation that microRNA (miRNA) 133b enhances regeneration after spinal cord injury in the adult zebrafish, we investigated whether this miRNA would be beneficial in a mammalian system in vitro and in vivo. We found that infection of cultured neurons with miR-133b promotes neurite outgrowth in vitro on an inhibitory substrate consisting of mixed chondroitin sulfate proteoglycans, when compared to infection with green fluorescent protein (GFP) for control. In vivo, viral infection of the injured adult mouse spinal cord at the time of injury at and in the vicinity of the lesion site enhanced expression of miR-133b. Measurements of locomotor recovery by Basso Mouse Scale (BMS) showed improvement of recovery starting at 4 weeks after injury and virus injection. This improvement was associated with downregulation of the expression levels of Ras homolog gene family member A (RhoA), chondroitin sulfate proteoglycans, and microglia/macrophage marker in the spinal cord as assayed 6 weeks after injury. Potential inhibitory molecules carrying consensus sequences for binding of miR-133b were identified in silico and verified in a reporter assay in vitro showing reductions in expression of RhoA, xylosyltransferase 1 (Xylt1), ephrin receptor A7 (Epha7), and purinergic receptor P2X ligand-gated ion channel 4 (P2RX4). These results encourage targeting miR-133 for therapy.
Collapse
Affiliation(s)
- Thomas Theis
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08554, USA
| | - Myung Yoo
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08554, USA
| | - Christopher S Park
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08554, USA
| | - Jian Chen
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08554, USA
| | - Sebastian Kügler
- Department of Neurology, Center Nanoscale Microscopy and Physiology of the Brain, University Medicine, Göttingen, Germany
| | - Kurt M Gibbs
- Morehead State University, Morehead, KY, 40351, USA
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08554, USA.
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China.
| |
Collapse
|
21
|
Sagen J, Whittemore SR. Emerging Strategies in Neural Transplantation and Repair: A Special Issue Based on the Eighth Annual Conference. Cell Transplant 2017; 11:181-183. [PMID: 28858599 DOI: 10.3727/096020198389906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jacqueline Sagen
- Miami Project to Cure Paralysis University of Miami School of Medicine The Lois Pope LIFE Center 1095 NW 14th Terrace (R-48) Miami, FL 33101
| | - Scott R Whittemore
- Department of Neurological Surgery University of Louisville SOM 210 E Gray St Ste 1102 Louisville, KY 40202
| |
Collapse
|
22
|
Sanberg PR, Greene-Zavertnik C, Davis CD. Article Commentary: Cell Transplantation: The Regenerative Medicine Journal. A Biennial Analysis of Publications. Cell Transplant 2017; 12:815-825. [DOI: 10.3727/000000003771000165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612
| | - Cathryn Greene-Zavertnik
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612
| | - Cyndy D. Davis
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612
| |
Collapse
|
23
|
Chen X, Yang H, Zhou X, Zhang L, Lu X. MiR-93 Targeting EphA4 Promotes Neurite Outgrowth from Spinal Cord Neurons. J Mol Neurosci 2016; 58:517-24. [PMID: 26798048 DOI: 10.1007/s12031-015-0709-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 12/28/2015] [Indexed: 11/26/2022]
Abstract
The failure of neurite outgrowth in the adult mammalian spinal cord injury is thought to be attributed to the intrinsic growth ability of mature neurons. Ephrin/Eph system is a major growth regulator of many axonal guidance processes. EphA4 is expressed specifically in traumatic central nervous system (CNS) and dynamically regulate target gene expression, suggesting that it may be associated with neural regeneration. Here, we found an alteration in temporal expression of miR-93 following a contusive spinal cord injury (SCI) in adult rats. The messenger RNA (mRNA) expression level of miR-93 was upregulated and the protein expression levels of EphA4, p-Ephexin, and active RhoA were all decreased in traumatic spinal cord relative to those with an intact spinal cord. Infection of cultured spinal cord neurons (SCNs) with miR-93 mimic led to neuronal growth promotion and decreased levels of EphA4, p-Ephexin, and active RhoA protein expression. Dual-luciferase reporter assay confirmed that miR-93 bound to the three prime untranslated region (3' UTR) of EphA4 and inhibited the expression of EphA4 mRNA. These findings provide evidence that miR-93 inhibits EphA4 expression, decreased EphA4 expression could promote neurite outgrowth in SCNs due to reduced levels of p-Ephexin and active RhoA.
Collapse
Affiliation(s)
- Xiaogang Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Department of Orthopedic Surgery, Huai'an NO.2 People's Hospital, Affiliated Huai'an Hospital of Xuzhou Medical College, Huai'an, 223002, Jiangsu Province, China
| | - Huilin Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Xiaoqing Zhou
- Department of Orthopedic Surgery, Huai'an NO.2 People's Hospital, Affiliated Huai'an Hospital of Xuzhou Medical College, Huai'an, 223002, Jiangsu Province, China
| | - Lin Zhang
- Department of Orthopedic Surgery, Huai'an NO.2 People's Hospital, Affiliated Huai'an Hospital of Xuzhou Medical College, Huai'an, 223002, Jiangsu Province, China
| | - Xiaoqing Lu
- Department of Orthopedic Surgery, Huai'an NO.2 People's Hospital, Affiliated Huai'an Hospital of Xuzhou Medical College, Huai'an, 223002, Jiangsu Province, China
| |
Collapse
|
24
|
Tsenkina Y, Ricard J, Runko E, Quiala- Acosta MM, Mier J, Liebl DJ. EphB3 receptors function as dependence receptors to mediate oligodendrocyte cell death following contusive spinal cord injury. Cell Death Dis 2015; 6:e1922. [PMID: 26469970 PMCID: PMC4632292 DOI: 10.1038/cddis.2015.262] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/12/2015] [Accepted: 08/15/2015] [Indexed: 11/29/2022]
Abstract
We demonstrate that EphB3 receptors mediate oligodendrocyte (OL) cell death in the injured spinal cord through dependence receptor mechanism. OLs in the adult spinal cord express EphB3 as well as other members of the Eph receptor family. Spinal cord injury (SCI) is associated with tissue damage, cellular loss and disturbances in EphB3-ephrinB3 protein balance acutely (days) after the initial impact creating an environment for a dependence receptor-mediated cell death to occur. Genetic ablation of EphB3 promotes OL survival associated with increased expression of myelin basic protein and improved locomotor function in mice after SCI. Moreover, administration of its ephrinB3 ligand to the spinal cord after injury also promotes OL survival. Our in vivo findings are supported by in vitro studies showing that ephrinB3 administration promotes the survival of both oligodendroglial progenitor cells and mature OLs cultured under pro-apoptotic conditions. In conclusion, the present study demonstrates a novel dependence receptor role of EphB3 in OL cell death after SCI, and supports further development of ephrinB3-based therapies to promote recovery.
Collapse
Affiliation(s)
- Y Tsenkina
- The Miami Project to Cure Paralysis, The Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
| | - J Ricard
- The Miami Project to Cure Paralysis, The Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - E Runko
- The Miami Project to Cure Paralysis, The Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
| | - M M Quiala- Acosta
- The Miami Project to Cure Paralysis, The Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
| | - J Mier
- The Miami Project to Cure Paralysis, The Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
| | - D J Liebl
- The Miami Project to Cure Paralysis, The Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
| |
Collapse
|
25
|
Theus MH, Ricard J, Glass SJ, Travieso LG, Liebl DJ. EphrinB3 blocks EphB3 dependence receptor functions to prevent cell death following traumatic brain injury. Cell Death Dis 2014; 5:e1207. [PMID: 24810043 PMCID: PMC4047907 DOI: 10.1038/cddis.2014.165] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/28/2014] [Accepted: 03/17/2014] [Indexed: 01/22/2023]
Abstract
Eph receptor tyrosine kinases and their membrane-bound ligands, ephrins, have a variety of roles in the developing and adult central nervous system that require direct cell-cell interactions; including regulating axon path finding, cell proliferation, migration and synaptic plasticity. Recently, we identified a novel pro-survival role for ephrins in the adult subventricular zone, where ephrinB3 blocks Eph-mediated cell death during adult neurogenesis. Here, we examined whether EphB3 mediates cell death in the adult forebrain following traumatic brain injury and whether ephrinB3 infusion could limit this effect. We show that EphB3 co-labels with microtubule-associated protein 2-positive neurons in the adult cortex and is closely associated with ephrinB3 ligand, which is reduced following controlled cortical impact (CCI) injury. In the complete absence of EphB3 (EphB3(-/-)), we observed reduced terminal deoxynucleotidyl transferase-dUTP nick end labeling (TUNEL), and functional improvements in motor deficits after CCI injury as compared with wild-type and ephrinB3(-/-) mice. We also demonstrated that EphB3 exhibits dependence receptor characteristics as it is cleaved by caspases and induces cell death, which is not observed in the presence of ephrinB3. Following trauma, infusion of pre-clustered ephrinB3-Fc molecules (eB3-Fc) into the contralateral ventricle reduced cortical infarct volume and TUNEL staining in the cortex, dentate gyrus and CA3 hippocampus of wild-type and ephrinB3(-/-) mice, but not EphB3(-/-) mice. Similarly, application of eB3-Fc improved motor functions after CCI injury. We conclude that EphB3 mediates cell death in the adult cortex through a novel dependence receptor-mediated cell death mechanism in the injured adult cortex and is attenuated following ephrinB3 stimulation.
Collapse
Affiliation(s)
- M H Theus
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, 215 Duck Pond Drive, Blacksburg, VA 24061, USA
| | - J Ricard
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, R-48, Miami, FL 33136, USA
| | - S J Glass
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, R-48, Miami, FL 33136, USA
| | - L G Travieso
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, R-48, Miami, FL 33136, USA
| | - D J Liebl
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, R-48, Miami, FL 33136, USA
| |
Collapse
|
26
|
Warren PM, Alilain WJ. The challenges of respiratory motor system recovery following cervical spinal cord injury. PROGRESS IN BRAIN RESEARCH 2014; 212:173-220. [DOI: 10.1016/b978-0-444-63488-7.00010-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
Ren Z, Chen X, Yang J, Kress BT, Tong J, Liu H, Takano T, Zhao Y, Nedergaard M. Improved axonal regeneration after spinal cord injury in mice with conditional deletion of ephrin B2 under the GFAP promoter. Neuroscience 2013; 241:89-99. [PMID: 23518227 DOI: 10.1016/j.neuroscience.2013.03.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/03/2013] [Accepted: 03/12/2013] [Indexed: 12/13/2022]
Abstract
Spinal cord injury (SCI) initiates a cascade of processes that ultimately form a nonpermissive environment for axonal regeneration. Emerging evidence suggests that regenerative failure may be due in part to inhibitory factors expressed by reactive spinal cord glial cells and meningeal fibroblasts, such as the Eph receptor protein-tyrosine kinases and their corresponding ligands (ephrins). Here we sought to assess the role of ephrin B2, an inhibitory axonal guidance molecule, as an inhibitor of the recovery process following SCI. To determine the extent of ephrin B2 involvement in axonal regenerative failure, a SCI model was performed on a conditional ephrin B2 knockout mouse strain (ephrin B2(-/-)), in which the ephrin B2 gene was deleted under the GFAP promoter . The expression of ephrin B2 was significantly decreased in astrocytes of injured and uninjured ephrin B2(-/-) mice compared to wild-type mice. Notably, in the ephrin B2(-/-) mice, the deletion of ephrin B2 reduced astrogliosis, and accelerated motor function recovery after SCI. Anterograde axonal tracing on a hemisection model of SCI further showed that ephrin B2(-/-) mice exhibited increased regeneration of injured corticospinal axons and a reduced glial scar, when compared to littermate controls exposed to similar injury. These results were confirmed by an in vitro neurite outgrowth assay and ephrin B2 functional blockage, which showed that ephrin B2 expressed on astrocytes inhibited axonal growth. Combined these findings suggest that ephrin B2 ligands expressed by reactive astrocytes impede the recovery process following SCI.
Collapse
Affiliation(s)
- Z Ren
- Department of Neurosurgery, University of Rochester, Rochester, NY 14642, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hånell A, Clausen F, Djupsjö A, Vallstedt A, Patra K, Israelsson C, Larhammar M, Björk M, Paixão S, Kullander K, Marklund N. Functional and Histological Outcome after Focal Traumatic Brain Injury Is Not Improved in Conditional EphA4 Knockout Mice. J Neurotrauma 2012; 29:2660-71. [DOI: 10.1089/neu.2012.2376] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Anders Hånell
- Section for Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Fredrik Clausen
- Section for Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Anders Djupsjö
- Section for Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Anna Vallstedt
- Section for Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Kalicharan Patra
- Section for Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Charlotte Israelsson
- Section for Developmental Neuroscience, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Martin Larhammar
- Section for Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Maria Björk
- Section for Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Sónia Paixão
- Department of Molecular Neurobiology, Max-Planck Institute of Neurobiology, Martinsried, Germany
| | - Klas Kullander
- Section for Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Niklas Marklund
- Section for Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
29
|
The expression changes of EphA3 receptor during synaptic plasticity in mouse hippocampus through activation of nicotinic acetylcholine receptor. Neuroreport 2012; 23:746-51. [PMID: 22811059 DOI: 10.1097/wnr.0b013e3283565144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have reported that systemic application of nicotinic agonists results in expression of a long-term potentiation-like facilitation, a model of synaptic plasticity, in the mouse hippocampus in vivo. Eph receptors and their ephrin ligands, are thought to participate in synaptic plasticity. The present study was conducted to clarify the involvement of EphA3 receptor in synaptic plasticity by investigating the time-dependent change of the expression levels of EphA3 receptor during long-term potentiation-like facilitation in the mouse hippocampus. EphA3 receptor mRNA and protein expression was found in adult mouse hippocampus. EphA3 receptor was localized in neuronal cells but not astrocytes or microglia of hippocampus. After intraperitoneal application of nicotine (3 mg/kg), the protein expression of EphA3 receptor in hippocampus increased during 2-24-h period, significantly increasing during 2-12-h period, and finally returned to the basal level in 72 h, although the mRNA expression of EphA3 receptor was not changed for 24 h. This enhanced expression of EphA3 receptor protein at 4 h was inhibited by pretreatment of mecamylamine (0.5 mg/kg, intraperitoneally), a nonselective nicotinic acetylcholine receptor antagonist. Our findings demonstrated that EphA3 receptor localized only in neuronal cells of the hippocampus was enhanced without transcriptional regulation during synaptic plasticity through activation of the nicotinic acetylcholine receptor. These results suggest that the enhancement of EphA3 receptor after synaptic plasticity may contribute to long-lasting synaptic plasticity through positive, feedforward mechanisms.
Collapse
|
30
|
Expression and Activation of EphA4 in the Human Brain After Traumatic Injury. J Neuropathol Exp Neurol 2012; 71:242-50. [DOI: 10.1097/nen.0b013e3182496149] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
31
|
Chew DJ, Fawcett JW, Andrews MR. The challenges of long-distance axon regeneration in the injured CNS. PROGRESS IN BRAIN RESEARCH 2012. [PMID: 23186719 DOI: 10.1016/b978-0-444-59544-7.00013-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Injury to the central nervous system (CNS) that results in long-tract axonal damage typically leads to permanent functional deficits in areas innervated at, and below, the level of the lesion. The initial ischemia, inflammation, and neurodegeneration are followed by a progressive generation of scar tissue, dieback of transected axons, and demyelination, creating an area inhibitory to regrowth and recovery. Two ways to combat this inhibition is to therapeutically target the extrinsic and intrinsic properties of the axon-scar environment. Scar tissue within and surrounding the lesion site can be broken down using an enzyme known as chondroitinase. Negative regulators of adult neuronal growth, such as Nogo, can be neutralized with antibodies. Both therapies greatly improve functional recovery in animal models. Alternatively, modifying the intrinsic growth properties of CNS neurons through gene therapy or pharmacotherapy has also shown promising axonal regeneration after injury. Despite these promising therapies, the main challenge of long-distance axon regeneration still remains; achieving a level of functional and organized connectivity below the level of the lesion that mimics the intact CNS.
Collapse
Affiliation(s)
- Daniel J Chew
- Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | | | | |
Collapse
|
32
|
Figueroa JD, Cordero K, Baldeosingh K, Torrado AI, Walker RL, Miranda JD, Leon MD. Docosahexaenoic acid pretreatment confers protection and functional improvements after acute spinal cord injury in adult rats. J Neurotrauma 2011; 29:551-66. [PMID: 21970623 DOI: 10.1089/neu.2011.2141] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Currently, few interventions have been shown to successfully limit the progression of secondary damage events associated with the acute phase of spinal cord injury (SCI). Docosahexaenoic acid (DHA, C22:6 n-3) is neuroprotective when administered following SCI, but its potential as a pretreatment modality has not been addressed. This study used a novel DHA pretreatment experimental paradigm that targets acute cellular and molecular events during the first week after SCI in rats. We found that DHA pretreatment reduced functional deficits during the acute phase of injury, as shown by significant improvements in Basso-Beattie-Bresnahan (BBB) locomotor scores, and the detection of transcranial magnetic motor evoked potentials (tcMMEPs) compared to vehicle-pretreated animals. We demonstrated that, at 7 days post-injury, DHA pretreatment significantly increased the percentage of white matter sparing, and resulted in axonal preservation, compared to the vehicle injections. We found a significant increase in the survival of NG2+, APC+, and NeuN+ cells in the ventrolateral funiculus (VLF), dorsal corticospinal tract (dCST), and ventral horns, respectively. Interestingly, these DHA protective effects were observed despite the lack of inhibition of inflammatory markers for monocytes/macrophages and astrocytes, ED1/OX42 and GFAP, respectively. DHA pretreatment induced levels of Akt and cyclic AMP responsive element binding protein (CREB) mRNA and protein. This study shows for the first time that DHA pretreatment ameliorates functional deficits, and increases tissue sparing and precursor cell survival. Further, our data suggest that DHA-mediated activation of pro-survival/anti-apoptotic pathways may be independent of its anti-inflammatory effects.
Collapse
Affiliation(s)
- Johnny D Figueroa
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University, Loma Linda, California, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Rosas OR, Figueroa JD, Torrado AI, Rivera M, Santiago JM, Konig-Toro F, Miranda JD. Expression and activation of ephexin is altered after spinal cord injury. Dev Neurobiol 2011; 71:595-607. [PMID: 20949525 DOI: 10.1002/dneu.20848] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Failure of axon regeneration after traumatic spinal cord injury (SCI) is attributable in part to the presence of inhibitory molecular interactions. Recent evidence demonstrates that activation of Eph signaling pathways leads to modulation of growth cone dynamics and repulsion through the activation of ephexin, a novel guanine nucleotide exchange factor (GEF). However, little is known about the expression and modulation of Eph molecular targets in the injured spinal cord. In this study, we determined the expression profile of ephexin after a moderate spinal cord contusion at thoracic level (T10) in young adult rats. Western-blot studies showed increased protein expression in injured rats at 4 and 7 days postinjury (DPI) when compared with control animals. The protein levels returned to normal at 14 DPI and remained steady until 28 DPI. However, immunoprecipitation studies of the phosphorylated ephexin demonstrated that this protein is activated by day 2 until 14 DPI. Expression of ephexin was noticeable in neurons, axons, microglia/macrophages, and reactive astrocytes, and co-localized with EphA3, A4, and A7. These results demonstrate the presence of ephexin in the adult spinal cord and its activation after SCI. Therefore, we show, for the first time, the spatiotemporal pattern of ephexin expression and activation after contusive SCI. Collectively, our data support our previous findings on the putative nonpermissive roles of Eph receptors after SCI and the possible involvement of ephexin in the intracellular cascade of events.
Collapse
Affiliation(s)
- Odrick R Rosas
- Department of Physiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico 00936
| | | | | | | | | | | | | |
Collapse
|
34
|
Arocho LC, Figueroa JD, Torrado AI, Santiago JM, Vera AE, Miranda JD. Expression profile and role of EphrinA1 ligand after spinal cord injury. Cell Mol Neurobiol 2011; 31:1057-69. [PMID: 21603973 PMCID: PMC3216482 DOI: 10.1007/s10571-011-9705-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 04/30/2011] [Indexed: 10/18/2022]
Abstract
Spinal cord injury (SCI) triggers the re-expression of inhibitory molecules present in early stages of development, contributing to prevention of axonal regeneration. Upregulation of EphA receptor tyrosine kinases after injury suggest their involvement in the nervous system's response to damage. However, the expression profile of their ephrinA ligands after SCI is unclear. In this study, we determined the expression of ephrinA ligands after contusive SCI. Adult Sprague-Dawley female rats were injured using the MASCIS impactor device at the T10 vertebrae, and levels of ephrinA mRNA and protein determined at different time points. Identification of the cell phenotype expressing the ephrin ligand and colocalization with Eph receptors was performed with immunohistochemistry and confocal microscopy. Behavioral studies were made, after blocking ephrinA1 expression with antisense (AS) oligonucleotides, to assess hindlimb locomotor activity. Real-time PCR demonstrated basal mRNA levels of ephrin (A1, A2, A3, and A5) in the adult spinal cord. Interestingly, ephrinA1 was the only ligand whose mRNA levels were significantly altered after SCI. Although ephrinA1 mRNA levels increased after 2 weeks and remain elevated, we did not observe this pattern at the protein level as revealed by western blot analysis. Immunohistochemical studies showed ephrinA1 expression in reactive astrocytes, axons, and neurons and also their colocalization with EphA4 and A7 receptors. Behavioral studies revealed worsening of locomotor activity when ephrinA1 expression was reduced. This study suggests that ephrinA1 ligands play a role in the pathophysiology of SCI.
Collapse
Affiliation(s)
- Luz C. Arocho
- Physiology Department, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, PR 00936-5067 USA
| | - Johnny D. Figueroa
- Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - Aranza I. Torrado
- Physiology Department, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, PR 00936-5067 USA
| | - José M. Santiago
- Physiology Department, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, PR 00936-5067 USA
| | - Ariel E. Vera
- Physiology Department, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, PR 00936-5067 USA
| | - Jorge D. Miranda
- Physiology Department, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, PR 00936-5067 USA
| |
Collapse
|
35
|
EphA4 blockers promote axonal regeneration and functional recovery following spinal cord injury in mice. PLoS One 2011; 6:e24636. [PMID: 21931787 PMCID: PMC3172248 DOI: 10.1371/journal.pone.0024636] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 08/16/2011] [Indexed: 01/08/2023] Open
Abstract
Upregulation and activation of developmental axon guidance molecules, such as semaphorins and members of the Eph receptor tyrosine kinase family and their ligands, the ephrins, play a role in the inhibition of axonal regeneration following injury to the central nervous system. Previously we have demonstrated in a knockout model that axonal regeneration following spinal cord injury is promoted in the absence of the axon guidance protein EphA4. Antagonism of EphA4 was therefore proposed as a potential therapy to promote recovery from spinal cord injury. To further assess this potential, two soluble recombinant blockers of EphA4, unclustered ephrin-A5-Fc and EphA4-Fc, were examined for their ability to promote axonal regeneration and to improve functional outcome following spinal cord hemisection in wildtype mice. A 2-week administration of either of these blockers following spinal cord injury was sufficient to promote substantial axonal regeneration and functional recovery by 5 weeks following injury. Both inhibitors produced a moderate reduction in astrocytic gliosis, indicating that much of the effect of the blockers may be due to promotion of axon growth. These studies provide definitive evidence that soluble inhibitors of EphA4 function offer considerable therapeutic potential for the treatment of spinal cord injury and may have broader potential for the treatment of other central nervous system injuries.
Collapse
|
36
|
Noberini R, De SK, Zhang Z, Wu B, Raveendra-Panickar D, Chen V, Vazquez J, Qin H, Song J, Cosford NDP, Pellecchia M, Pasquale EB. A disalicylic acid-furanyl derivative inhibits ephrin binding to a subset of Eph receptors. Chem Biol Drug Des 2011; 78:667-78. [PMID: 21791013 DOI: 10.1111/j.1747-0285.2011.01199.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Eph receptor tyrosine kinases and ephrin ligands control many physiological and pathological processes, and molecules interfering with their interaction are useful probes to elucidate their complex biological functions. Moreover, targeting Eph receptors might enable new strategies to inhibit cancer progression and pathological angiogenesis as well as promote nerve regeneration. Because our previous work suggested the importance of the salicylic acid group in antagonistic small molecules targeting Eph receptors, we screened a series of salicylic acid derivatives to identify novel Eph receptor antagonists. This identified a disalicylic acid-furanyl derivative that inhibits ephrin-A5 binding to EphA4 with an IC(50) of 3 μm in ELISAs. This compound, which appears to bind to the ephrin-binding pocket of EphA4, also targets several other Eph receptors. Furthermore, it inhibits EphA2 and EphA4 tyrosine phosphorylation in cells stimulated with ephrin while not affecting phosphorylation of EphB2, which is not a target receptor. In endothelial cells, the disalicylic acid-furanyl derivative inhibits EphA2 phosphorylation in response to TNFα and capillary-like tube formation on Matrigel, two effects that depend on EphA2 interaction with endogenous ephrin-A1. These findings suggest that salicylic acid derivatives could be used as starting points to design new small molecule antagonists of Eph receptors.
Collapse
Affiliation(s)
- Roberta Noberini
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Parmentier-Batteur S, Finger EN, Krishnan R, Rajapakse HA, Sanders JM, Kandpal G, Zhu H, Moore KP, Regan CP, Sharma S, Hess JF, Williams TM, Reynolds IJ, Vacca JP, Mark RJ, Nantermet PG. Attenuation of scratch-induced reactive astrogliosis by novel EphA4 kinase inhibitors. J Neurochem 2011; 118:1016-31. [PMID: 21736568 DOI: 10.1111/j.1471-4159.2011.07375.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The EphA4 receptor and its ephrin ligands are involved in astrocytic gliosis following CNS injury. Therefore, a strategy aimed at the blockade of EphA4 signaling could have broad therapeutic interest in brain disorders. We have identified novel small molecule inhibitors of EphA4 kinase in specific enzymatic and cell-based assays. In addition, we have demonstrated in two in vitro models of scratch injury that EphA4 receptor kinase is activated through phosphorylation and is involved in the repopulation of the wound after the scratch. A potent EphA4 kinase inhibitor significantly inhibited wound closure and reduced the accumulation of the reactive astrocytes inside the scratch. We have also shown that after the transient focal cerebral ischemia in rats, a large glial scar is formed by the accumulation of astrocytes and chondroitin sulfate proteoglycan surrounding the infarcted tissue at 7 days and 14 days of reperfusion. EphA4 protein expression is highly up-regulated in the same areas at these time points, supporting its potential role in the glial scar formation and maintenance. Taken together, these results suggest that EphA4 kinase inhibitors might interfere with the astrogliosis reaction and thereby lead to improved neurological outcome after ischemic injury.
Collapse
|
38
|
Blockade of P2 nucleotide receptors after spinal cord injury reduced the gliotic response and spared tissue. J Mol Neurosci 2011; 46:167-76. [PMID: 21647706 DOI: 10.1007/s12031-011-9567-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 05/23/2011] [Indexed: 12/22/2022]
Abstract
Spinal cord injury (SCI) triggers a sequel of events commonly associated with cell death and dysfunction of glias and neurons surrounding the lesion. Although astrogliosis and glial scar formation have been involved in both damage and repair processes after SCI, their role remains controversial. Our goal was to investigate the effects of the P2 receptors antagonists, PPADS and suramin, in the establishment of the reactive gliosis and the formation of the glial scar. Molecular biology, immunohistochemistry, spared tissue, and locomotor behavioral studies were used to evaluate astrogliosis, in adult female Sprague-Dawley rats treated with P2 antagonists after moderate injury with the NYU impactor device. Semi-quantitative RT-PCR confirmed the presence of P2Y(1,) P2Y(2,) P2Y(4,) P2Y(6,) P2Y(12), and P2X(2) receptors in the adult spinal cord. Immunohistochemistry studies confirmed a significant decrease in GFAP-labeled cells at the injury epicenter as well as a decrease in spared tissue after treatment with the antagonists. Functional open field testing revealed no significant locomotor score differences between treated and control animals. Our work is consistent with studies suggesting that astrogliosis is an important event after SCI that limits tissue damage and lesion spreading.
Collapse
|
39
|
Goldshmit Y, Bourne J. Upregulation of EphA4 on astrocytes potentially mediates astrocytic gliosis after cortical lesion in the marmoset monkey. J Neurotrauma 2011; 27:1321-32. [PMID: 20486805 DOI: 10.1089/neu.2010.1294] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Glial scar formation occurs in response to brain injury in mammalian models and inhibits axonal growth. Identification of molecules that may mediate reactivity of astrocytes has become a leading therapeutic goal in the field of neurotrauma. In adult rodent brain and spinal cord, many of the Eph receptors and their ephrin ligands have been demonstrated to be upregulated on reactive astrocytes at the injury site; however, little is known about the expression of these molecules in nonhuman primate injury models. This study examines the role of the tyrosine kinase EphA4 receptor, which predominantly binds most ephrin ligands, after injury in marmoset monkey brain. Following lesioning of the primary visual cortex (V1) in the adult marmoset, EphA4 is strongly upregulated on reactive astrocytes around the lesion site, which secrete extracellular matrix molecules such as chondroitin sulfate proteoglycans, which are known for their inhibitory effect on axonal growth and regeneration. This astrocyte reactivity was also associated with neuronal death in the area adjacent to the lesion site. EphA4 activation induced by clustered ephrin A5-Fc-mediated astrocyte proliferation and glial fibrillary acidic protein expression in vitro, as demonstrated by closure of scratched wound and MTT assays, occurs via two potential signaling pathways, the mitogen-activated protein kinase and Rho pathways. These results in a nonhuman primate model highlight the importance of developing pharmacotherapeutic approaches to block these molecules following brain injury.
Collapse
Affiliation(s)
- Yona Goldshmit
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia.
| | | |
Collapse
|
40
|
Kothapalli CR, van Veen E, de Valence S, Chung S, Zervantonakis IK, Gertler FB, Kamm RD. A high-throughput microfluidic assay to study neurite response to growth factor gradients. LAB ON A CHIP 2011; 11:497-507. [PMID: 21107471 DOI: 10.1039/c0lc00240b] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Studying neurite guidance by diffusible or substrate bound gradients is challenging with current techniques. In this study, we present the design, fabrication and utility of a microfluidic device to study neurite guidance under chemogradients. Experimental and computational studies demonstrated the establishment of a steep gradient of guidance cue within 30 min and stable for up to 48 h. The gradient was found to be insensitive to external perturbations such as media change and movement of device. The effects of netrin-1 (0.1-10 µg mL(-1)) and brain pulp (0.1 µL mL(-1)) were evaluated for their chemoattractive potential on neurite turning, while slit-2 (62.5 or 250 ng mL(-1)) was studied for its chemorepellant properties. Hippocampal or dorsal root ganglion (DRG) neurons were seeded into a micro-channel and packed onto the surface of a 3D collagen gel. Neurites grew into the matrix in three dimensions, and a gradient of guidance cue was created orthogonal to the direction of neurite growth to impact guidance. The average turning angle of each neurite was measured and averaged across multiple devices cultured under similar conditions to quantify the effect of guidance cue gradient. Significant positive turning towards gradient was measured in the presence of brain pulp and netrin-1 (1 µg mL(-1)), relative to control cultures which received no external guidance cue (p < 0.001). Netrin-1 released from transfected fibroblasts had the most positive turning effect of all the chemoattractive cues tested (p < 0.001). Slit-2 exhibited strong chemorepellant characteristics on both hippocampal and DRG neurite guidance at 250 ng mL(-1) concentration. Slit-2 also showed similar behavior on DRG neuron invasion into 3D collagen gel (p < 0.01 relative to control cultures). Taken together, the results suggest the utility of this microfluidic device to generate stable chemogradients for studying neurobiology, cell migration and proliferation, matrix remodeling and co-cultures with other cell lines, with potential applications in cancer biology, tissue engineering and regenerative medicine.
Collapse
|
41
|
Rodríguez-Zayas AE, Torrado AI, Miranda JD. P2Y2 receptor expression is altered in rats after spinal cord injury. Int J Dev Neurosci 2010; 28:413-21. [PMID: 20619335 PMCID: PMC3225399 DOI: 10.1016/j.ijdevneu.2010.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 06/22/2010] [Accepted: 07/01/2010] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury increases inhibitory factors that may restrict neurite outgrowth after trauma. The expression of repulsive molecules in reactive astrocytes and the formation of the glial scar at the injury site produce the non-permissive environment for axonal regeneration. However, the mechanism that triggers this astrogliotic response is unknown. The release of nucleotides has been linked to this hypertrophic state. Our goal is to investigate the temporal profile of P2Y(2) nucleotide receptor after spinal cord injury in adult female Sprague-Dawley rats. Molecular biology, immunofluorescence studies, and Western Blots were used to evaluate the temporal profile (2, 4, 7, 14, and 28 days post-injury) of this receptor in rats injured at the T-10 level using the NYU impactor device. Real time RT-PCR showed a significant increase of P2Y(2) mRNA after 2 days post-injury that continues throughout 28 days post-injury. Double labeling studies localized P2Y(2) immunoreactivity in neuronal cell bodies, axons, macrophages, oligodendrocytes and reactive astrocytes. Immunofluorescence studies also demonstrated a low level of P2Y(2) receptor in sham samples, which increased after injury in glial fibrillary acidic protein positive cells. Western Blot performed with contused spinal cord protein samples revealed an upregulation in the P2Y(2) 42 kDa protein band expression after 4 days post-injury that continues until 28 days post-injury. However, a downregulation of the 62 kDa receptor protein band after 2 days post-injury that continues up to 28 days post-injury was observed. Therefore, the spatio-temporal pattern of P2Y(2) gene expression after spinal cord injury suggests a role in the pathophysiology response generated after trauma.
Collapse
Affiliation(s)
- Ana E. Rodríguez-Zayas
- Department of Physiology, University of Puerto Rico, Medical Science Campus, San Juan, PR 00936-5067, Puerto Rico
| | - Aranza I. Torrado
- Department of Physiology, University of Puerto Rico, Medical Science Campus, San Juan, PR 00936-5067, Puerto Rico
| | - Jorge D. Miranda
- Department of Physiology, University of Puerto Rico, Medical Science Campus, San Juan, PR 00936-5067, Puerto Rico
| |
Collapse
|
42
|
Herrmann JE, Shah RR, Chan AF, Zheng B. EphA4 deficient mice maintain astroglial-fibrotic scar formation after spinal cord injury. Exp Neurol 2010; 223:582-98. [PMID: 20170651 PMCID: PMC2864333 DOI: 10.1016/j.expneurol.2010.02.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 02/04/2010] [Accepted: 02/09/2010] [Indexed: 11/21/2022]
Abstract
One important aspect of recovery and repair after spinal cord injury (SCI) lies in the complex cellular interactions at the injury site that leads to the formation of a lesion scar. EphA4, a promiscuous member of the EphA family of repulsive axon guidance receptors, is expressed by multiple cell types in the injured spinal cord, including astrocytes and neurons. We hypothesized that EphA4 contributes to aspects of cell-cell interactions at the injury site after SCI, thus modulating the formation of the astroglial-fibrotic scar. To test this hypothesis, we studied tissue responses to a thoracic dorsal hemisection SCI in an EphA4 mutant mouse line. We found that EphA4 expression, as assessed by beta-galactosidase reporter gene activity, is associated primarily with astrocytes in the spinal cord, neurons in the cerebral cortex and, to a lesser extent, spinal neurons, before and after SCI. However, we did not observe any overt reduction of glial fibrillary acidic protein (GFAP) expression in the injured area of EphA4 mutants in comparison with controls following SCI. Furthermore, there was no evident disruption of the fibrotic scar, and the boundary between reactive astrocytes and meningeal fibroblasts appeared unaltered in the mutants, as were lesion size, neuronal survival and inflammation marker expression. Thus, genetic deletion of EphA4 does not significantly alter the astroglial response or the formation of the astroglial-fibrotic scar following a dorsal hemisection SCI in mice. In contrast to what has been proposed, these data do not support a major role for EphA4 in reactive astrogliosis following SCI.
Collapse
Affiliation(s)
- Julia E. Herrmann
- Department of Neurosciences, University of California San Diego, School of Medicine, 9500 Gilman Drive, MC 0691, La Jolla, California 92093, USA
| | - Ravi R. Shah
- Department of Neurosciences, University of California San Diego, School of Medicine, 9500 Gilman Drive, MC 0691, La Jolla, California 92093, USA
| | - Andrea F. Chan
- Department of Neurosciences, University of California San Diego, School of Medicine, 9500 Gilman Drive, MC 0691, La Jolla, California 92093, USA
| | - Binhai Zheng
- Department of Neurosciences, University of California San Diego, School of Medicine, 9500 Gilman Drive, MC 0691, La Jolla, California 92093, USA
| |
Collapse
|
43
|
Dou F, Huang L, Yu P, Zhu H, Wang X, Zou J, Lu P, Xu XM. Temporospatial expression and cellular localization of oligodendrocyte myelin glycoprotein (OMgp) after traumatic spinal cord injury in adult rats. J Neurotrauma 2010; 26:2299-311. [PMID: 19580419 DOI: 10.1089/neu.2009.0954] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Traumatic spinal cord injury (SCI) leads to permanent neurological deficits, which, in part, is due to the inability of mature axons to regenerate in the mammalian central nervous system (CNS). The oligodendrocyte myelin glycoprotein (OMgp) is one of the myelin-associated inhibitors of neurite outgrowth in the CNS. To date, limited information is available concerning its expression following SCI, possibly due to the lack of a reliable antibody against it. Here we report the generation of a highly specific OMgp polyclonal antibody from the rabbit. Using this antibody, we found that OMgp was almost exclusively expressed in the CNS. Following a moderately contusive SCI using a New York University impactor (10 g rod dropped from a height of 12.5 mm), both OMgp mRNA and protein levels were elevated at 1 and 7 days post-SCI, respectively, and peaked at 28 days compared to those of the sham-operated controls. Spatially, OMgp was expressed throughout the entire rostrocaudal extension of a 10 mm long spinal segment with the highest expression seen at the injury epicenter. OMgp was exclusively localized in neurons and oligodendrocytes in the normal and sham-operated controls with an increased expression found in these cells following SCI. OMgp was not expressed in astrocytes or microglia in all groups. Thus, our study has provided evidence for temporospatial expression and cellular localization of OMgp following SCI and suggested that this molecule may contribute to the overall inhibition of axonal regeneration.
Collapse
Affiliation(s)
- Fangfang Dou
- Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Extrinsic and intrinsic factors controlling axonal regeneration after spinal cord injury. Expert Rev Mol Med 2009; 11:e37. [PMID: 19968910 DOI: 10.1017/s1462399409001288] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Spinal cord injury is one of the most devastating conditions that affects the central nervous system. It can lead to permanent disability and there are around two million people affected worldwide. After injury, accumulation of myelin debris and formation of an inhibitory glial scar at the site of injury leads to a physical and chemical barrier that blocks axonal growth and regeneration. The mammalian central nervous system thus has a limited intrinsic ability to repair itself after injury. To improve axonal outgrowth and promote functional recovery, it is essential to identify the various intrinsic and extrinsic factors controlling regeneration and navigation of axons within the inhibitory environment of the central nervous system. Recent advances in spinal cord research have opened new avenues for the exploration of potential targets for repairing the cord and improving functional recovery after trauma. Here, we discuss some of the important key molecules that could be harnessed for repairing spinal cord injury.
Collapse
|
45
|
Santiago JM, Rosas O, Torrado AI, González MM, Kalyan-Masih PO, Miranda JD. Molecular, anatomical, physiological, and behavioral studies of rats treated with buprenorphine after spinal cord injury. J Neurotrauma 2009; 26:1783-93. [PMID: 19653810 PMCID: PMC2864459 DOI: 10.1089/neu.2007.0502] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Acute pain is a common symptom experienced after spinal cord injury (SCI). The presence of this pain calls for treatment with analgesics, such as buprenorphine. However, there are concerns that the drug may exert other effects besides alleviation of pain. Among those reported are in vitro changes in gene expression, apoptosis, and necrosis. In this investigation, the effect of buprenorphine was assessed at the molecular, behavioral, electrophysiological, and histological levels after SCI. Rats were injured at the T10 thoracic level using the NYU impactor device. Half of the animals received buprenorphine (0.05 mg/kg) for 3 consecutive days immediately after SCI, and the other half were untreated. Microarray analysis (n = 5) was performed and analyzed using the Array Assist software. The genes under study were grouped in four categories according to function: regeneration, apoptosis, second messengers, and nociceptive related genes. Microarray analysis demonstrated no significant difference in gene expression between rats treated with buprenorphine and the control group at 2 and 4 days post-injury (DPI). Experiments performed to determine the effect of buprenorphine at the electrophysiological (tcMMEP), behavioral (BBB, grid walking and beam crossing), and histological (luxol staining) levels revealed no significant difference at 7 and 14 DPI in the return of nerve conduction, functional recovery, or white matter sparing between control and experimental groups (p > 0.05, n = 6). These results show that buprenorphine (0.05 mg/kg) can be used as part of the postoperative care to reduce pain after SCI without affecting behavioral, physiological, or anatomical parameters.
Collapse
MESH Headings
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/pharmacology
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Buprenorphine/adverse effects
- Buprenorphine/pharmacology
- Disease Models, Animal
- Evoked Potentials, Motor/drug effects
- Evoked Potentials, Motor/physiology
- Female
- Gait Disorders, Neurologic/chemically induced
- Gait Disorders, Neurologic/physiopathology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Locomotion/drug effects
- Locomotion/physiology
- Nerve Regeneration/drug effects
- Nerve Regeneration/genetics
- Nerve Tissue Proteins/genetics
- Neural Conduction/drug effects
- Neural Conduction/physiology
- Nociceptors/drug effects
- Nociceptors/metabolism
- Oligonucleotide Array Sequence Analysis
- Pain, Intractable/drug therapy
- Pain, Intractable/etiology
- Pain, Intractable/metabolism
- Rats
- Rats, Sprague-Dawley
- Recovery of Function/drug effects
- Recovery of Function/physiology
- Second Messenger Systems/drug effects
- Second Messenger Systems/genetics
- Spinal Cord Injuries/complications
- Spinal Cord Injuries/metabolism
- Spinal Cord Injuries/physiopathology
- Treatment Outcome
Collapse
Affiliation(s)
- José M Santiago
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | | | | | | | | | | |
Collapse
|
46
|
Cao Z, Gao Y, Deng K, Williams G, Doherty P, Walsh FS. Receptors for myelin inhibitors: Structures and therapeutic opportunities. Mol Cell Neurosci 2009; 43:1-14. [PMID: 19619659 DOI: 10.1016/j.mcn.2009.07.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 05/28/2009] [Accepted: 07/10/2009] [Indexed: 11/19/2022] Open
Abstract
Many studies have indicated that the inability of adult mammalian central nervous system (CNS) to regenerate after injury is partly due to the existence of growth-inhibitory molecules associated with CNS myelin. Studies over the years have led to the identification of multiple myelin-associated inhibitors, among which Nogo, myelin-associated glycoprotein (MAG) and oligodendrocyte-myelin glycoprotein (Omgp) represent potentially major contributors to CNS axon regeneration failure. Here we review in vitro and in vivo investigations into these inhibitory ligands and their functional mechanisms, focusing particularly on the neuronal receptors that mediate the inhibitory signals from these myelin molecules. A better understanding of the receptors for myelin-associated inhibitors could provide opportunities to decipher the mechanism of restriction in CNS regeneration, and lead to the development of potential therapeutic targets in neurodegenerative diseases and neurological injury. We will discuss the structures of the receptors and therapeutic opportunities that might arise based on this information.
Collapse
Affiliation(s)
- Zixuan Cao
- Neuroscience Discovery, Wyeth Research, Princeton, NJ 08543, USA
| | | | | | | | | | | |
Collapse
|
47
|
Mueller BK, Mueller R, Schoemaker H. Stimulating neuroregeneration as a therapeutic drug approach for traumatic brain injury. Br J Pharmacol 2009; 157:675-85. [PMID: 19422372 DOI: 10.1111/j.1476-5381.2009.00220.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Traumatic brain injury, a silent epidemic of modern societies, is a largely neglected area in drug development and no drug is currently available for the treatment of patients suffering from brain trauma. Despite this grim situation, much progress has been made over the last two decades in closely related medical indications, such as spinal cord injury, giving rise to a more optimistic approach to drug development in brain trauma. Fundamental insights have been gained with animal models of central nervous system (CNS) trauma and spinal cord injury. Neuroregenerative drug candidates have been identified and two of these have progressed to clinical development for spinal cord injury patients. If successful, these drug candidates may be used to treat brain trauma patients. Significant progress has also been made in understanding the fundamental molecular mechanism underlying irreversible axonal growth arrest in the injured CNS of higher mammals. From these studies, we have learned that the axonal retraction bulb, previously regarded as a marker for failure of regenerative growth, is not static but dynamic and, therefore, amenable to pharmacotherapeutic approaches. With the development of modified magnetic resonance imaging methods, fibre tracts can be visualised in the living human brain and such imaging methods will soon be used to evaluate the neuroregenerative potential of drug candidates. These significant advances are expected to fundamentally change the often hopeless situation of brain trauma patients and will be the first step towards overcoming the silent epidemic of brain injury.
Collapse
Affiliation(s)
- Bernhard K Mueller
- Neuroscience Research, Abbott GmbH and Company KG, Ludwigshafen, Germany.
| | | | | |
Collapse
|
48
|
Abstract
Cell contact-dependent signaling is a major regulatory mechanism in the organization of developing tissues and in the reorganization (post-injury responses) of specialized tissues in multicellular organisms. In this review we contribute to the further understanding of post-injury recovery processes in adult nervous tissue. We emphasize evidence that supports the involvement of cell contact-inhibition signaling in the cell proliferation, growth and differentiation that occurs during healing and neural reorganization after brain damage.
Collapse
|
49
|
Gianola S, de Castro F, Rossi F. Anosmin-1 stimulates outgrowth and branching of developing Purkinje axons. Neuroscience 2008; 158:570-84. [PMID: 19013504 DOI: 10.1016/j.neuroscience.2008.10.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 10/12/2008] [Accepted: 10/15/2008] [Indexed: 11/19/2022]
Abstract
During development, Purkinje axons elongate along precise trajectories and acquire stereotypic branching patterns to innervate targets in the deep nuclei and cerebellar cortex. These processes are accomplished through cell-intrinsic mechanisms, whose operation is regulated by environmental signaling cues. Here, we show that Anosmin-1, the protein defective in the X-linked form of Kallmann syndrome, is one among such cues. Anosmin-1, that stimulates axon elongation and branching in the olfactory system, is expressed by Purkinje cells and deep nuclear neurons of the rat cerebellum during the ontogenetic period when Purkinje axons acquire their mature pattern. These neurons also express the putative Anosmin-1 receptor, fibroblast growth factor receptor 1. Application of Anosmin-1 to dissociated cultures of embryonic (embryonic day 17, E17) or postnatal (postnatal day 0, P0) rat cerebellar cells enhances neuritic elongation and exerts a strong promoting action on the budding of collateral branches and on the extension of terminal arbors. Opposite effects are observed when neutralizing anti-Anosmin-1 antibodies are applied to the same cultures. Comparable results are obtained by administering the protein or the blocking antibodies to organotypic cultures of postnatal (P0) rat cerebellum. In P10 cerebellar slices, Anosmin-1 does not enhance the spontaneous regenerative capabilities of severed Purkinje axons, but promotes the terminal outgrowth of injured neurites into embryonic neocortical explants apposed to the axotomy site. Although Anosmin-1 is unable to change the overall intrinsic growth competence of Purkinje cells, it exerts a powerful stimulatory action on the budding and extension of collateral branches and terminal plexus, contributing to the patterning of Purkinje axons.
Collapse
Affiliation(s)
- S Gianola
- Department of Neuroscience and "Rita Levi Montalcini Centre for Brain Repair," Section of Physiology, National Institute of Neuroscience, University of Turin, Corso Raffaello, 30, I-10125 Turin, Italy
| | | | | |
Collapse
|
50
|
Cao JL, Ruan JP, Ling DY, Guan XH, Bao Q, Yuan Y, Zhang LC, Song XJ, Zeng YM. Activation of peripheral ephrinBs/EphBs signaling induces hyperalgesia through a MAPKs-mediated mechanism in mice. Pain 2008; 139:617-631. [PMID: 18706764 DOI: 10.1016/j.pain.2008.06.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Revised: 04/30/2008] [Accepted: 06/23/2008] [Indexed: 11/16/2022]
Abstract
EphBs receptors and ephrinBs ligands are present in the adult brain and peripheral tissue and play a critical role in modulating multiple aspects of physiology and pathophysiology. Ours and other studies have demonstrated that spinal ephrinBs/EphBs signaling was involved in the modulation of nociceptive information and central sensitization. However, the role of ephrinBs/EphBs signaling in peripheral sensitization is poorly understood. This study shows that intraplantar (i.pl.) injection of ephrinB1-Fc produces a dose- and time-dependent thermal and mechanical hyperalgesia and the increase of spinal Fos protein expression in mice, which can be partially prevented by pre-treatment with EphB1-Fc. EphrinB1-Fc-induced hyperalgesia is accompanied with the NMDA receptor-mediated increase of expression in peripheral and spinal phosphorylated mitogen-activated protein kinases (phospho-MAPKs) including p-p38, pERK and pJNK, and also is prevented or reversed by the inhibition of peripheral and spinal MAPKs. Furthermore, in formalin inflammation pain model, pre-inhibition of EphBs receptors by the injection of EphB1-Fc reduces pain behavior, which is accompanied by the decreased expression of peripheral p-p38, pERK and pJNK. These data provide evidence that ephrinBs may act as a prominent contributor to peripheral sensitization, and demonstrate that activation of peripheral ephrinBs/EphBs system induces hyperalgesia through a MAPKs-mediated mechanism.
Collapse
Affiliation(s)
- Jun-Li Cao
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical College, 99 Huaihai West Road, Xuzhou Jiangsu 221002, PR China Jiangsu Institute of Anesthesiology, Jiangsu Key Laboratory of Anesthesiology, 99 Huaihai West Road, Xuzhou 221002, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|