1
|
Castro MC, Villagarcía HG, Di Sarli Gutiérrez L, Arbeláez LG, Schinella G, Massa ML, Francini F. Akt Signaling and Nitric Oxide Synthase as Possible Mediators of the Protective Effect of N-acetyl-L-cysteine in Prediabetes Induced by Sucrose. Int J Mol Sci 2024; 25:1215. [PMID: 38279215 PMCID: PMC10817010 DOI: 10.3390/ijms25021215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 01/28/2024] Open
Abstract
The aim of this work was to evaluate possible mechanisms involved in the protective effect of N-acetyl-L-cysteine (NAC) on hepatic endocrine-metabolic, oxidative stress, and inflammatory changes in prediabetic rats. For that, normal male Wistar rats (60 days old) were fed for 21 days with 10% sucrose in their drinking water and 5 days of NAC administration (50 mg/kg, i.p.) and thereafter, we determined: serum glucose, insulin, transaminases, uric acid, and triglyceride levels; hepatic fructokinase and glucokinase activities, glycogen content, lipogenic gene expression; enzymatic and non-enzymatic oxidative stress, insulin signaling pathway, and inflammatory markers. Results showed that alterations evinced in sucrose-fed rats (hypertriglyceridemia, hyperinsulinemia, and high liver fructokinase activity together with increased liver lipogenic gene expression and oxidative stress and inflammatory markers) were prevented by NAC administration. P-endothelial nitric oxide synthase (P-eNOS)/eNOS and pAKT/AKT ratios, decreased by sucrose ingestion, were restored after NAC treatment. In conclusion, the results suggest that NAC administration improves glucose homeostasis, oxidative stress, and inflammation in prediabetic rats probably mediated by modulation of the AKT/NOS pathway. Administration of NAC may be an effective complementary strategy to alleviate or prevent oxidative stress and inflammatory responses observed in type 2 diabetes at early stages of its development (prediabetes).
Collapse
Affiliation(s)
- María Cecilia Castro
- CENEXA—Centro de Endocrinología Experimental y Aplicada (UNLP—CONICET CCT La Plata, FCM, CEAS CICPBA), Calle 60 y 120, La Plata 1900, Argentina; (M.C.C.); (H.G.V.); (L.D.S.G.); (M.L.M.)
| | - Hernán Gonzalo Villagarcía
- CENEXA—Centro de Endocrinología Experimental y Aplicada (UNLP—CONICET CCT La Plata, FCM, CEAS CICPBA), Calle 60 y 120, La Plata 1900, Argentina; (M.C.C.); (H.G.V.); (L.D.S.G.); (M.L.M.)
| | - Luciana Di Sarli Gutiérrez
- CENEXA—Centro de Endocrinología Experimental y Aplicada (UNLP—CONICET CCT La Plata, FCM, CEAS CICPBA), Calle 60 y 120, La Plata 1900, Argentina; (M.C.C.); (H.G.V.); (L.D.S.G.); (M.L.M.)
| | - Luisa González Arbeláez
- CIC—Centro de Investigaciones Cardiovasculares (UNLP—CONICET CCT La Plata, FCM), Calle 60 y 120, La Plata 1900, Argentina;
| | - Guillermo Schinella
- Facultad de Ciencias Médicas, UNLP, Calle 60 y 120, La Plata 1900, Argentina;
- Instituto de Ciencias de la Salud, UNAJ-CICPBA (Av. Calchaquí 6200), Florencia Varela 1888, Argentina
| | - María Laura Massa
- CENEXA—Centro de Endocrinología Experimental y Aplicada (UNLP—CONICET CCT La Plata, FCM, CEAS CICPBA), Calle 60 y 120, La Plata 1900, Argentina; (M.C.C.); (H.G.V.); (L.D.S.G.); (M.L.M.)
| | - Flavio Francini
- CENEXA—Centro de Endocrinología Experimental y Aplicada (UNLP—CONICET CCT La Plata, FCM, CEAS CICPBA), Calle 60 y 120, La Plata 1900, Argentina; (M.C.C.); (H.G.V.); (L.D.S.G.); (M.L.M.)
| |
Collapse
|
2
|
Khatri R, Petry SF, Linn T. Intrapancreatic MSC transplantation facilitates pancreatic islet regeneration. Stem Cell Res Ther 2021; 12:121. [PMID: 33579357 PMCID: PMC7881671 DOI: 10.1186/s13287-021-02173-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background Type 1 diabetes mellitus (T1D) is characterized by the autoimmune destruction of the pancreatic β cells. The transplantation of mesenchymal stromal/stem cells (MSC) was reported to rescue the damaged pancreatic niche. However, there is an ongoing discussion on whether direct physical contact between MSC and pancreatic islets results in a superior outcome as opposed to indirect effects of soluble factors released from the MSC entrapped in the lung microvasculature after systemic administration. Hence, MSC were studied in direct contact (DC) and indirect contact (IDC) with murine pancreatic β cell line MIN6-cells damaged by nitrosourea derivative streptozotocin (STZ) in vitro. Further, the protective and antidiabetic outcome of MSC transplantation was evaluated through the intrapancreatic route (IPR) and intravenous route (IVR) in STZ-induced diabetic NMRI nude mice. Methods MSC were investigated in culture with STZ-damaged MIN6-cells, either under direct contact (DC) or separated through a semi-permeable membrane (IDC). Moreover, multiple low doses of STZ were administered to NMRI nude mice for the induction of hyperglycemia. 0.5 × 106 adipose-derived mesenchymal stem cells (ADMSC) were transferred through direct injection into the pancreas (IPR) or the tail vein (IVR), respectively. Bromodeoxyuridine (BrdU) was injected for the detection of proliferating islet cells in vivo, and real-time polymerase chain reaction (RT-PCR) was employed for the measurement of the expression of growth factor and immunomodulatory genes in the murine pancreas and human MSC. Phosphorylation of AKT and ERK was analyzed with Western blotting. Results The administration of MSC through IPR ameliorated hyperglycemia in contrast to IVR, STZ, and non-diabetic control in a 30-day window. IPR resulted in a higher number of replicating islet cells, number of islets, islet area, growth factor (EGF), and balancing of the Th1/Th2 response in vivo. Physical contact also provided a superior protection to MIN6-cells from STZ through the AKT and ERK pathway in vitro in comparison with IDC. Conclusion Our study suggests that the physical contact between MSC and pancreatic islet cells is required to fully unfold their protective potential. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02173-4.
Collapse
Affiliation(s)
- Rahul Khatri
- Clinical Research Unit, Centre of Internal Medicine, Faculty of Medicine, Justus Liebig University Giessen, Friedrichstrasse. 20/ Aulweg 123, 35392, Giessen, Germany
| | - Sebastian Friedrich Petry
- Clinical Research Unit, Centre of Internal Medicine, Faculty of Medicine, Justus Liebig University Giessen, Friedrichstrasse. 20/ Aulweg 123, 35392, Giessen, Germany
| | - Thomas Linn
- Clinical Research Unit, Centre of Internal Medicine, Faculty of Medicine, Justus Liebig University Giessen, Friedrichstrasse. 20/ Aulweg 123, 35392, Giessen, Germany.
| |
Collapse
|
3
|
Kumar SA, Delgado M, Mendez VE, Joddar B. Applications of stem cells and bioprinting for potential treatment of diabetes. World J Stem Cells 2019; 11:13-32. [PMID: 30705712 PMCID: PMC6354103 DOI: 10.4252/wjsc.v11.i1.13] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/26/2018] [Accepted: 01/05/2019] [Indexed: 02/06/2023] Open
Abstract
Currently, there does not exist a strategy that can reduce diabetes and scientists are working towards a cure and innovative approaches by employing stem cell-based therapies. On the other hand, bioprinting technology is a novel therapeutic approach that aims to replace the diseased or lost β-cells, insulin-secreting cells in the pancreas, which can potentially regenerate damaged organs such as the pancreas. Stem cells have the ability to differentiate into various cell lines including insulin-producing cells. However, there are still barriers that hamper the successful differentiation of stem cells into β-cells. In this review, we focus on the potential applications of stem cell research and bioprinting that may be targeted towards replacing the β-cells in the pancreas and may offer approaches towards treatment of diabetes. This review emphasizes on the applicability of employing both stem cells and other cells in 3D bioprinting to generate substitutes for diseased β-cells and recover lost pancreatic functions. The article then proceeds to discuss the overall research done in the field of stem cell-based bioprinting and provides future directions for improving the same for potential applications in diabetic research.
Collapse
Affiliation(s)
- Shweta Anil Kumar
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, United States
| | - Monica Delgado
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, United States
| | - Victor E Mendez
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, United States
| | - Binata Joddar
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, United States
- Border Biomedical Research Center, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, United States.
| |
Collapse
|
4
|
Abd Eldaim MA, Shaban Abd Elrasoul A, Abd Elaziz SA. An aqueous extract from Moringa oleifera leaves ameliorates hepatotoxicity in alloxan-induced diabetic rats. Biochem Cell Biol 2017; 95:524-530. [PMID: 28423281 DOI: 10.1139/bcb-2016-0256] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was carried out to evaluate the possible mechanisms through which an aqueous extract from MO leaves demonstrates hepatoprotective effects in alloxan-induced diabetic rats. Eighty albino rats were assigned to 4 groups. The control group was orally administered sterile saline. The second group was injected with alloxan (150 mg/kg body mass (b.m.)) by intraperitoneal injection (i.p.). The third group was given MO (250 mg/kg b.m.) orally, daily. The fourth group was injected with alloxan, as for the second group, and administrated an aqueous extract of MO leaves, as for the third group. Alloxan induced degenerative changes in hepatic and pancreatic tissues, increased hepatic lipid peroxidation, and increased gene expression of PC and caspase 3. However, it decreased the activities of hepatic SOD and CAT, and gene expression of GS. In contrast, the MO extract prevented changes to the histoarchitecture of hepatic and pancreatic tissues and normalized the reduced hepatic levels of glutathione, as well as the activities of SOD and CAT, and the gene expression of GS, while reducing blood glucose levels, hepatic lipid peroxidation, and the gene expression of PC and caspase 3. This study indicated that an aqueous extract of MO leaves can be a potent antioxidant and used as an hepatoprotective agent.
Collapse
Affiliation(s)
- Mabrouk Attia Abd Eldaim
- a Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Shebeen El-Kom, 32721, Menoufia, Egypt
| | - Ahmed Shaban Abd Elrasoul
- b Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, 32897, Egypt
| | - Samy Ahmed Abd Elaziz
- c Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Egypt
| |
Collapse
|
5
|
Li M, Ikehara S. Stem cell treatment for type 1 diabetes. Front Cell Dev Biol 2014; 2:9. [PMID: 25364717 PMCID: PMC4206977 DOI: 10.3389/fcell.2014.00009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/07/2014] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a common chronic disease in children, characterized by a loss of β cells, which results in defects in insulin secretion and hyperglycemia. Chronic hyperglycemia causes diabetic complications, including diabetic nephropathy, neuropathy, and retinopathy. Curative therapies mainly include diet and insulin administration. Although hyperglycemia can be improved by insulin administration, exogenous insulin injection cannot successfully mimic the insulin secretion from normal β cells, which keeps blood glucose levels within the normal range all the time. Islet and pancreas transplantation achieves better glucose control, but there is a lack of organ donors. Cell based therapies have also been attempted to treat T1DM. Stem cells such as embryonic stem cells, induced pluripotent stem cells and tissue stem cells (TSCs) such as bone marrow-, adipose tissue-, and cord blood-derived stem cells, have been shown to generate insulin-producing cells. In this review, we summarize the most-recently available information about T1DM and the use of TSCs to treat T1DM.
Collapse
Affiliation(s)
- Ming Li
- Department of Stem Cell Disorders, Kansai Medical University Hirakata City, Osaka, Japan
| | - Susumu Ikehara
- Department of Stem Cell Disorders, Kansai Medical University Hirakata City, Osaka, Japan
| |
Collapse
|
6
|
Xu H, Tsang KS, Chan JCN, Yuan P, Fan R, Kaneto H, Xu G. The combined expression of Pdx1 and MafA with either Ngn3 or NeuroD improves the differentiation efficiency of mouse embryonic stem cells into insulin-producing cells. Cell Transplant 2012; 22:147-58. [PMID: 22776709 DOI: 10.3727/096368912x653057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The use of pancreatic β-cells differentiated from embryonic stem (ES) cells or induced pluripotent stem (iPS) cells is a promising strategy in cell therapy. Pancreatic β-cell development is regulated by the sequential expression of a molecular network of transcription factors. In this experiment, we adopted a three-step differentiation protocol to differentiate mES (mouse ES) cells into insulin-secreting cells and overexpressed transcription factors by adenoviral vectors at various combinations at different time of differentiation. We found that the coexpression of Pdx1 and MafA with either Ngn3 or NeuroD, especially at the final stage of the three-step differentiation, significantly increased the differentiation efficiency. It also increased the glucose-stimulated insulin and C-peptide secretion in insulin-secreting cells derived from mES cells compared to the control green fluorescent protein (GFP) vector-transduced group. For the first time, we have demonstrated that the coexpression of Pdx1 and MafA during a specific time window of development can act synergistically with either Ngn3 or NeuroD to promote the differentiation of mES cells into insulin-secreting cells.
Collapse
Affiliation(s)
- Huiming Xu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Current approaches aiming to cure type 1 diabetes (T1D) have made a negligible number of patients insulin-independent. In this review, we revisit the role of stem cell (SC)-based applications in curing T1D. The optimal therapeutic approach for T1D should ideally preserve the remaining β-cells, restore β-cell function, and protect the replaced insulin-producing cells from autoimmunity. SCs possess immunological and regenerative properties that could be harnessed to improve the treatment of T1D; indeed, SCs may reestablish peripheral tolerance toward β-cells through reshaping of the immune response and inhibition of autoreactive T-cell function. Furthermore, SC-derived insulin-producing cells are capable of engrafting and reversing hyperglycemia in mice. Bone marrow mesenchymal SCs display a hypoimmunogenic phenotype as well as a broad range of immunomodulatory capabilities, they have been shown to cure newly diabetic nonobese diabetic (NOD) mice, and they are currently undergoing evaluation in two clinical trials. Cord blood SCs have been shown to facilitate the generation of regulatory T cells, thereby reverting hyperglycemia in NOD mice. T1D patients treated with cord blood SCs also did not show any adverse reaction in the absence of major effects on glycometabolic control. Although hematopoietic SCs rarely revert hyperglycemia in NOD mice, they exhibit profound immunomodulatory properties in humans; newly hyperglycemic T1D patients have been successfully reverted to normoglycemia with autologous nonmyeloablative hematopoietic SC transplantation. Finally, embryonic SCs also offer exciting prospects because they are able to generate glucose-responsive insulin-producing cells. Easy enthusiasm should be mitigated mainly because of the potential oncogenicity of SCs.
Collapse
Affiliation(s)
- Paolo Fiorina
- Transplantation Research Center, Division of Nephrology, Children's Hospital/Harvard Medical School, 221 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
8
|
Insulin-producing surrogate β-cells from embryonic stem cells: are we there yet? Mol Ther 2011; 19:1759-68. [PMID: 21829172 DOI: 10.1038/mt.2011.165] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Embryonic stem cells (ESCs) harbor the potential to generate every cell type of the body by differentiation. The use of hESCs holds great promise for potential cell replacement therapies for degenerative diseases including diabetes mellitus. The recently discovered induced pluripotent stem cells (iPSCs) exhibit immense potential for regenerative medicine as they allow the generation of autologous cells tailored to the patients' immune system. Research for insulin-producing surrogate cells from ESCs has yielded highly controversial results, because many steps and factors in the differentiation process are currently still unknown. Thus, there is no consensus on common standard protocols. The protocols presently used established the differentiation from pluripotent cells toward pancreatic progenitor cells. However, none of the differentiation protocols reported to date have generated by exclusive in vitro differentiation sufficient numbers of insulin-producing cells meeting all essential criteria of a β-cell. The cells often lack the crucial function of regulated insulin secretion upon glucose stimulation. This review focuses on past and current approaches to the generation of insulin-producing cells from pluripotent sources, such as ESCs and iPSCs, and critically discusses the hurdles to be taken before insulin-secreting surrogate cells derived from these stem cells will be of clinical use in humans.
Collapse
|
9
|
Li W, Qin J, Li X, Zhang L, Liu C, Chen F, Wang Z, Zhang L, Zhang X, Lahn BT, Xiang AP. A versatile tool for tracking the differentiation of human embryonic stem cells. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11515-010-0870-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Eve DJ, Fillmore RW, Borlongan CV, Sanberg PR. Stem cell research in cell transplantation: sources, geopolitical influence, and transplantation. Cell Transplant 2010; 19:1493-509. [PMID: 21054954 DOI: 10.3727/096368910x540612] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
If the rapidly progressing field of stem cell research reaches its full potential, successful treatments and enhanced understanding of many diseases are the likely results. However, the full potential of stem cell science will only be reached if all possible avenues can be explored and on a worldwide scale. Until 2009, the US had a highly restrictive policy on obtaining cells from human embryos and fetal tissue, a policy that pushed research toward the use of adult-derived cells. Currently, US policy is still in flux, and retrospective analysis does show the US lagging behind the rest of the world in the proportional increase in embryonic/fetal stem cell research. The majority of US studies being on either a limited number of cell lines, or on cells derived elsewhere (or funded by other sources than Federal) rather than on freshly isolated embryonic or fetal material. Neural, mesenchymal, and the mixed stem cell mononuclear fraction are the most commonly investigated types, which can generally be classified as adult-derived stem cells, although roughly half of the neural stem cells are fetal derived. Other types, such as embryonic and fat-derived stem cells, are increasing in their prominence, suggesting that new types of stem cells are still being pursued. Sixty percent of the reported stem cell studies involved transplantation, of which over three quarters were allogeneic transplants. A high proportion of the cardiovascular systems articles were on allogeneic transplants in a number of different species, including several autologous studies. A number of pharmaceutical grade stem cell products have also recently been tested and reported on. Stem cell research shows considerable promise for the treatment of a number of disorders, some of which have entered clinical trials; over the next few years it will be interesting to see how these treatments progress in the clinic.
Collapse
Affiliation(s)
- David J Eve
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL 33612, USA.
| | | | | | | |
Collapse
|
11
|
Li W, Liu C, Qin J, Zhang L, Chen R, Chen J, Yu X, Wu G, Lahn BT, Fu Y, Xiang AP. Efficient genetic modification of cynomolgus monkey embryonic stem cells with lentiviral vectors. Cell Transplant 2010; 19:1181-93. [PMID: 20447344 DOI: 10.3727/096368910x504469] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Embryonic stem (ES) cells have the ability to undergo indefinite self-renewal in vitro and give rise during development to derivatives of all three primary germ layers (ectoderm, endoderm, and mesoderm), which make them a highly prized reagent in cell and gene therapy. Efficient introduction of various genes of interest into primate ES cells has proven to be difficult. Here, we demonstrated that the self-inactivating HIV-1-based lentiviral vectors constructed by MultiSite gateway technology are efficient tools for the transduction of cynomolgus monkey (Macaca fasicularis) ES (cmES) cells. After antibiotic selection, all of the transduced cells can stably express the reporter gene (humanized Renilla GFP or dTomato) while maintaining their stem cell properties, including continuous expression of stem cell markers, alkaline phosphatase (AKP), OCT-4, SSEA-4, and TRA-1-60, formation of embryoid bodies in vitro and teratomas in vivo containing derivatives of three embryonic germ layers. This approach will provide a useful tool for both gene function studies and in vivo cell tracking of stem cells.
Collapse
Affiliation(s)
- Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Selective Removal of Undifferentiated Embryonic Stem Cells from Differentiation Cultures Through HSV1 Thymidine Kinase and Ganciclovir Treatment. Stem Cell Rev Rep 2010; 6:450-61. [DOI: 10.1007/s12015-010-9148-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Naujok O, Francini F, Picton S, Bailey CJ, Lenzen S, Jörns A. Changes in gene expression and morphology of mouse embryonic stem cells on differentiation into insulin-producing cells in vitro and in vivo. Diabetes Metab Res Rev 2009; 25:464-76. [PMID: 19425055 DOI: 10.1002/dmrr.965] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Embryonic stem (ES) cells have the potential to produce unlimited numbers of surrogate insulin-producing cells for cell replacement therapy of type 1 diabetes mellitus. The impact of the in vivo environment on mouse ES cell differentiation towards insulin-producing cells was analysed morphologically after implantation. METHODS ES cells differentiated in vitro into insulin-producing cells according to the Lumelsky protocol or a new four-stage differentiation protocol were analysed morphologically before and after implantation for gene expression by in situ reverse transcription polymerase chain reaction and protein expression by immunohistochemistry and ultrastructural analysis. RESULTS In comparison with nestin positive ES cells developed according to the reference protocol, the number of ES cells differentiated with the four-stage protocol increased under in vivo conditions upon morphological analysis. The cells exhibited, in comparison to the in vitro situation, increased gene and protein expression of Pdx1, insulin, islet amyloid polypeptide (IAPP), the GLUT2 glucose transporter and glucokinase, which are functional markers for glucose-induced insulin secretion of pancreatic beta cells. Renal sub-capsular implantation of ES cells with a higher degree of differentiation achieved by in vitro differentiation with a four-stage protocol enabled further significant maturation for the beta-cell-specific markers, insulin and the co-stored IAPP as well as the glucose recognition structures. In contrast, further in vivo differentiation was not achieved with cells differentiated in vitro by the reference protocol. CONCLUSIONS A sufficient degree of in vitro differentiation is an essential prerequisite for further substantial maturation in a beta-cell-specific way in vivo, supported by cell-cell contacts and vascularisation.
Collapse
Affiliation(s)
- Ortwin Naujok
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | |
Collapse
|