1
|
Todd EA, Mirsky NA, Silva BLG, Shinde AR, Arakelians ARL, Nayak VV, Marcantonio RAC, Gupta N, Witek L, Coelho PG. Functional Scaffolds for Bone Tissue Regeneration: A Comprehensive Review of Materials, Methods, and Future Directions. J Funct Biomater 2024; 15:280. [PMID: 39452579 PMCID: PMC11509029 DOI: 10.3390/jfb15100280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Bone tissue regeneration is a rapidly evolving field aimed at the development of biocompatible materials and devices, such as scaffolds, to treat diseased and damaged osseous tissue. Functional scaffolds maintain structural integrity and provide mechanical support at the defect site during the healing process, while simultaneously enabling or improving regeneration through amplified cellular cues between the scaffold and native tissues. Ample research on functionalization has been conducted to improve scaffold-host tissue interaction, including fabrication techniques, biomaterial selection, scaffold surface modifications, integration of bioactive molecular additives, and post-processing modifications. Each of these methods plays a crucial role in enabling scaffolds to not only support but actively participate in the healing and regeneration process in bone and joint surgery. This review provides a state-of-the-art, comprehensive overview of the functionalization of scaffold-based strategies used in tissue engineering, specifically for bone regeneration. Critical issues and obstacles are highlighted, applications and advances are described, and future directions are identified.
Collapse
Affiliation(s)
- Emily Ann Todd
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Bruno Luís Graciliano Silva
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Diagnosis and Surgery, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara 01049-010, Brazil
| | - Ankita Raja Shinde
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Mechanical and Aerospace Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Aris R. L. Arakelians
- Division of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Nikhil Gupta
- Department of Mechanical and Aerospace Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Paulo G. Coelho
- Division of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
2
|
Yoshida H, Yokota S, Satoh K, Ishisaki A, Chosa N. Connective tissue growth factor enhances TGF-β1-induced osteogenic differentiation via activation of p38 MAPK in mesenchymal stem cells. J Oral Biosci 2024; 66:68-75. [PMID: 38266705 DOI: 10.1016/j.job.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
OBJECTIVES Cellular differentiation is based on the effects of various growth factors. Transforming growth factor (TGF)-β1 plays a pivotal role in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). In this study, we investigated the influence of connective tissue growth factor (CTGF), known to function synergistically with TGF-β1, on osteogenic differentiation in MSCs. METHODS UE7T-13 cells were treated with TGF-β1 and/or CTGF. Subsequently, protein levels of intracellular signaling pathway molecules were determined through western blot analysis. The mRNA expression levels of osteogenic differentiation markers were investigated using reverse transcription-quantitative polymerase chain reaction. Bone matrix mineralization was evaluated through alizarin red staining. RESULTS Co-treatment with TGF-β1 and CTGF resulted in the suppression of TGF-β1-induced phosphorylation of extracellular signal-regulated kinase 1/2, an intracellular signaling pathway molecule in MSCs, while significantly enhancing the phosphorylation of p38 mitogen-activated protein kinase (MAPK). In MSCs, co-treatment with CTGF and TGF-β1 led to increased expression levels of alkaline phosphatase and type I collagen, markers of osteogenic differentiation induced by TGF-β1. Osteopontin expression was observed only after TGF-β1 and CTGF co-treatment. Notably, bone sialoprotein and osteocalcin were significantly upregulated by treatment with CTGF alone. Furthermore, CTGF enhanced the TGF-β1-induced mineralization in MSCs, with complete suppression observed after treatment with a p38 MAPK inhibitor. CONCLUSIONS CTGF enhances TGF-β1-induced osteogenic differentiation and subsequent mineralization in MSCs by predominantly activating the p38 MAPK-dependent pathway.
Collapse
Affiliation(s)
- Hironori Yoshida
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan; Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University, Morioka, Iwate, 020-8505, Japan
| | - Seiji Yokota
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan
| | - Kazuro Satoh
- Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University, Morioka, Iwate, 020-8505, Japan
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan
| | - Naoyuki Chosa
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan.
| |
Collapse
|
3
|
Liu GQ, Liu ZX, Lin ZX, Chen P, Yan YC, Lin QR, Hu YJ, Jiang N, Yu B. Effects of Dopamine on stem cells and its potential roles in the treatment of inflammatory disorders: a narrative review. Stem Cell Res Ther 2023; 14:230. [PMID: 37649087 PMCID: PMC10469852 DOI: 10.1186/s13287-023-03454-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Inflammation is the host's protective response against harmful external stimulation that helps tissue repair and remodeling. However, excessive inflammation seriously threatens the patient's life. Due to anti-inflammatory effects, corticosteroids, immunosuppressants, and monoclonal antibodies are used to treat various inflammatory diseases, but drug resistance, non-responsiveness, and severe side effect limit their development and application. Therefore, developing other alternative therapies has become essential in anti-inflammatory therapy. In recent years, the in-depth study of stem cells has made them a promising alternative drug for the treatment of inflammatory diseases, and the function of stem cells is regulated by a variety of signals, of which dopamine signaling is one of the main influencing factors. In this review, we review the effects of dopamine on various adult stem cells (neural stem cells, mesenchymal stromal cells, hematopoietic stem cells, and cancer stem cells) and their signaling pathways, as well as the application of some critical dopamine receptor agonists/antagonists. Besides, we also review the role of various adult stem cells in inflammatory diseases and discuss the potential anti-inflammation function of dopamine receptors, which provides a new therapeutic target for regenerative medicine in inflammatory diseases.
Collapse
Affiliation(s)
- Guan-Qiao Liu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Zi-Xian Liu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Ze-Xin Lin
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Peng Chen
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Yu-Chi Yan
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Qing-Rong Lin
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Yan-Jun Hu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Nan Jiang
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
| | - Bin Yu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
| |
Collapse
|
4
|
The potential effect of BMSCs with miR-27a in improving steroid-induced osteonecrosis of the femoral head. Sci Rep 2022; 12:21051. [PMID: 36473889 PMCID: PMC9726984 DOI: 10.1038/s41598-022-25407-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Steroid induced osteonecrosis of the femoral head (ONFH) frequently leads to femoral head collapse and subsequent hip arthritis. This study aimed to investigate the potential therapeutic mechanism of miR-27a on steroid-induced ONFH. Levels of IL-6, TNF-α, miR-27a, Runx2, PPAR-γ and ApoA5 were first examined in bone marrow tissues from steroid-induced ONFH and controls. Subsequently, we overexpressed or knocked down miR-27a in bone marrow mesenchymal stem cells (BMSCs) and detected cell proliferation, osteogenic differentiation, adipogenic differentiation. In addition, miR-27a mimics and BMSCs were injected into the established steroid-induced ONFH rats, and the osteoprotective effects of both were evaluated. Dual luciferase reporter was used to test the targeting effect of miR-27a-3p and PPARG. miR-27a and Runx2 were lowly expressed in steroid-induced ONFH, PPAR-γ and ApoA5 were highly expressed. Overexpression of miR-27a in BMSCs promoted cell proliferation and osteogenic differentiation, inhibited adipogenic differentiation. Furthermore, increasing miR-27a and BMSCs obviously reduced bone loss in steroid induced ONFH rats. The expressions of Runx2 in BMSCs and steroid-induced ONFH rats was significantly up-regulated, while IL-6, TNF-α, PPAR-γ and ApoA5 were down-regulated with miR-27a overexpression. Additionally, PPARG was the target of miR-27a-3p. The results of the present study reveal a role for miR-27a in promoting osteogenesis and may have a synergistic effect with BMSCs.
Collapse
|
5
|
Zhao J, He W, Zheng H, Zhang R, Yang H. Bone Regeneration and Angiogenesis by Co-transplantation of Angiotensin II-Pretreated Mesenchymal Stem Cells and Endothelial Cells in Early Steroid-Induced Osteonecrosis of the Femoral Head. Cell Transplant 2022; 31:9636897221086965. [PMID: 35313737 PMCID: PMC8943589 DOI: 10.1177/09636897221086965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been shown to exert a positive impact on
osteonecrosis of the femoral head (ONFH) in preclinical experiments and clinical
trials. After the femoral head suffers avascular necrosis, the transplanted MSCs
undergo a great deal of stress-induced apoptosis and senescence in this
microenvironment. So, survival and differentiation of MSCs in osteonecrotic
areas are especially important in ONFH. Although MSCs and endothelial cells
(ECs) co-culture enhancing proliferation and osteogenic differentiation of MSCs
and form more mature vasculature in vivo, it remains unknown
whether the co-culture cells are able to repair ONFH. In this study, we explored
the roles and mechanisms of co-transplantation of angiotensin II (Ang II)-MSCs
and ECs in repairing early ONFH. In vitro, when MSCs and ECs
were co-cultured in a ratio of 5:1, both types of cells managed to proliferate
and induce both osteogenesis and angiogenesis. Then, we established a rabbit
model of steroid-induced ONFH and co-transplantation of Ang II-MSCs and ECs
through the tunnel of core decompression. Four weeks later, histological and
Western blot analyses revealed that ONFH treated with Ang II-MSCs and ECs may
promote ossification and revascularization by increasing the expression of
collagen type I, runt-related transcription factor 2, osteocalcin, and vascular
endothelial growth factor in the femoral head. Our data suggest that
co-transplantation of Ang II-MSCs and ECs was able to rescue the early
steroid-induced ONFH via promoting osteogenesis and angiogenesis, which may be
regarded as a novel therapy for the treatment of ONFH in a clinical setting.
Collapse
Affiliation(s)
- Jingjing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Wei He
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Hongqing Zheng
- Key Laboratory of Animal Epidemic Disease Diagnostic Laboratory of Molecular Biology, Institute of Animal Husbandry and Veterinary Medicine, Xianyang Vocational Technical College, Xianyang, China
| | - Rui Zhang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Hao Yang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Hepatogenic Potential and Liver Regeneration Effect of Human Liver-derived Mesenchymal-Like Stem Cells. Cells 2020; 9:cells9061521. [PMID: 32580448 PMCID: PMC7348751 DOI: 10.3390/cells9061521] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/22/2022] Open
Abstract
Human liver-derived stem cells (hLD-SCs) have been proposed as a possible resource for stem cell therapy in patients with irreversible liver diseases. However, it is not known whether liver resident hLD-SCs can differentiate toward a hepatic fate better than mesenchymal stem cells (MSCs) obtained from other origins. In this study, we compared the differentiation ability and regeneration potency of hLD-SCs with those of human umbilical cord matrix-derived stem cells (hUC-MSCs) by inducing hepatic differentiation. Undifferentiated hLD-SCs expressed relatively high levels of endoderm-related markers (GATA4 and FOXA1). During directed hepatic differentiation supported by two small molecules (Fasudil and 5-azacytidine), hLD-SCs presented more advanced mitochondrial respiration compared to hUC-MSCs. Moreover, hLD-SCs featured higher numbers of hepatic progenitor cell markers on day 14 of differentiation (CPM and CD133) and matured into hepatocyte-like cells by day 7 through 21 with increased hepatocyte markers (ALB, HNF4A, and AFP). During in vivo cell transplantation, hLD-SCs migrated into the liver of ischemia-reperfusion injury-induced mice within 2 h and relieved liver injury. In the thioacetamide (TAA)-induced liver injury mouse model, transplanted hLD-SCs trafficked into the liver and spontaneously matured into hepatocyte-like cells within 14 days. These results collectively suggest that hLD-SCs hold greater hepatogenic potential, and hepatic differentiation-induced hLD-SCs may be a promising source of stem cells for liver regeneration.
Collapse
|
7
|
Yen MH, Chen YH, Liu YS, Lee OKS. Alteration of Young's modulus in mesenchymal stromal cells during osteogenesis measured by atomic force microscopy. Biochem Biophys Res Commun 2020; 526:827-832. [PMID: 32273088 DOI: 10.1016/j.bbrc.2020.03.146] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022]
Abstract
Mechanical properties of biological tissues are increasingly recognized as an important parameter for the indication of disease states as well as tissue homeostasis and regeneration. Multipotent mesenchymal stromal/stem cells (MSCs), which play important roles in bone formation and remodeling, are potential cell sources for regenerative medicine. However, the cellular mechanical properties of differentiating MSCs corresponding to the substrate stiffness has not been sufficiently studied. In this study, we used Atomic Force Microscopy (AFM) to measure changes of stiffness of human MSCs cultured in rigid Petri dish and on polyacrylamide (PA) substrates during osteogenic differentiation. The results showed that the Young's modulus of MSC cytoplasmic outer region increased over time during osteogenesis. There is a strong linear correlation between the osteogenic induction time and the Young's modulus of the cells cultured in rigid Petri dishes in the first 15 days after the induction; the Young's modulus approaches to a plateau after day 15. On the other hand, the Young's moduli of MSCs cultured on PA gels with stiffness of 7 kPa and 42 kPa also increase over time during osteogenic differentiation, but the inclination of such increase is much smaller than that of MSCs differentiating in rigid dishes. Herein, we established a protocol of AFM measurement to evaluate the maturation of stem cell osteogenic differentiation at the single cell level and could encourage further AFM applications in tissue engineering related to mechanobiology.
Collapse
Affiliation(s)
- Meng-Hua Yen
- Institute of Clinical Medicine, and Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan; Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung, Taiwan.
| | - Yu-Han Chen
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Shiuan Liu
- Institute of Clinical Medicine, and Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan; Department of Physiology and Pharmacology, Chang Gung University College of Medicine, and Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, and Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
8
|
Behdarvandy M, Karimian M, Atlasi MA, Azami Tameh A. Heat shock protein 27 as a neuroprotective biomarker and a suitable target for stem cell therapy and pharmacotherapy in ischemic stroke. Cell Biol Int 2019; 44:356-367. [PMID: 31502740 DOI: 10.1002/cbin.11237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/08/2019] [Indexed: 12/12/2022]
Abstract
Ischemic stroke is a major common cause of death and long-term disability worldwide. Several pathophysiological events including excitotoxicity, oxidative/nitrative stress, inflammation, and apoptosis are involved in ischemic injuries. Recently, the molecular mechanisms involved in cerebral ischemia through a focus on a member of small heat shock proteins family, Hsp27, has been developed. Notably, following exposure to ischemia, Hsp27 expression in the brain could be increased rather than the normal condition and it may play an important role in neuroprotection after ischemic stroke. The neuroprotection effects of Hsp27 may arise from its anti-oxidant, anti-inflammatory, anti-apoptotic, and chaperonic properties. Moreover, some therapeutic strategies such as stem cell therapy and pharmacotherapy have been developed with Hsp27 targeting. In this review, we describe the function and structure of Hsp27 and its possible role in neuroprotection after ischemic stroke. Finally, we present current studies in stroke therapy, which focused on Hsp27 targeting.
Collapse
Affiliation(s)
- Marjan Behdarvandy
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Qotb-e Ravandi Blvd., 8715988141, Kashan, Iran
| | - Mohammad Karimian
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Qotb-e Ravandi Blvd., 8715988141, Kashan, Iran
| | - Mohammad Ali Atlasi
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Qotb-e Ravandi Blvd., 8715988141, Kashan, Iran
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Qotb-e Ravandi Blvd., 8715988141, Kashan, Iran
| |
Collapse
|
9
|
Tsao YT, Huang YJ, Wu HH, Liu YA, Liu YS, Lee OK. Osteocalcin Mediates Biomineralization during Osteogenic Maturation in Human Mesenchymal Stromal Cells. Int J Mol Sci 2017; 18:ijms18010159. [PMID: 28106724 PMCID: PMC5297792 DOI: 10.3390/ijms18010159] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 01/27/2023] Open
Abstract
There is a growing interest in cell therapies using mesenchymal stromal cells (MSCs) for repairing bone defects. MSCs have the ability to differentiate into osteoprogenitors and osteoblasts as well as to form calcified bone matrix. However, the molecular mechanisms governing mineralization during osteogenic differentiation remain unclear. Non-collagenous proteins in the extracellular matrix are believed to control different aspects of the mineralization. Since osteocalcin is the most abundant non-collagenous bone matrix protein, the purpose of this study is to investigate the roles of osteocalcin in mineral species production during osteogenesis of MSCs. Using Raman spectroscopy, we found that the maturation of mineral species was affected by osteocalcin expression level. After osteocalcin was knocked down, the mineral species maturation was delayed and total hydroxyapatite was lower than the control group. In addition, the expression of osteogenic marker genes, including RUNX2, alkaline phosphatase, type I collagen, and osteonectin, was downregulated during osteogenic differentiation compared to the control group; whereas gene expression of osterix was upregulated after the knockdown. Together, osteocalcin plays an essential role for the maturation of mineral species and modulates osteogenic differentiation of MSCs. The results offer new insights into the enhancement of new bone formation, such as for the treatments of osteoporosis and fracture healing.
Collapse
Affiliation(s)
- Yu-Tzu Tsao
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Division of Nephrology, Department of Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan.
| | - Yi-Jeng Huang
- Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Hao-Hsiang Wu
- Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Yu-An Liu
- Stem Cell Research Center, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Yi-Shiuan Liu
- Stem Cell Research Center, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Oscar K Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Stem Cell Research Center, National Yang-Ming University, Taipei 11221, Taiwan.
- Taipei City Hospital, Taipei 10341, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| |
Collapse
|
10
|
Mechanosensitive TRPM7 mediates shear stress and modulates osteogenic differentiation of mesenchymal stromal cells through Osterix pathway. Sci Rep 2015; 5:16522. [PMID: 26558702 PMCID: PMC4642269 DOI: 10.1038/srep16522] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 10/13/2015] [Indexed: 01/13/2023] Open
Abstract
Microenvironments that modulate fate commitments of mesenchymal stromal cells (MSCs) are composed of chemical and physical cues, but the latter ones are much less investigated. Here we demonstrate that intermittent fluid shear stress (IFSS), a potent and physiologically relevant mechanical stimulus, regulates osteogenic differentiation of MSCs through Transient receptor potential melastatin 7 (TRPM7)-Osterix axis. Immunostaining showed the localization of TRPM7 near or at cell membrane upon IFSS, and calcium imaging analysis demonstrated the transient increase of cytosolic free calcium. Expressions of osteogenic marker genes including Osterix, but not Runx2, were upregulated after three-hour IFSS. Phosphorylation of p38 and Smad1/5 was promoted by IFSS as well. TRPM7 gene knockdown abolished the promotion of bone-related gene expressions and phosphorylation. We illustrate that TRPM7 is mechanosensitive to shear force of 1.2 Pa, which is much lower than 98 Pa pressure loading reported recently, and mediates distinct mechanotransduction pathways. Additionally, our results suggest the differential roles of TRPM7 in endochondral and intramembranous ossification. Together, this study elucidates the mechanotransduction in MSCs fate commitments and displays an efficient mechano-modulation for MSCs osteogenic differentiation. Such findings should be taken into consideration when designing relevant scaffolds and microfluidic devices for osteogenic induction in the future.
Collapse
|
11
|
Cipriani P, Ruscitti P, Di Benedetto P, Carubbi F, Liakouli V, Berardicurti O, Ciccia F, Triolo G, Giacomelli R. Mesenchymal stromal cells and rheumatic diseases: new tools from pathogenesis to regenerative therapies. Cytotherapy 2015; 17:832-49. [PMID: 25680301 DOI: 10.1016/j.jcyt.2014.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/24/2014] [Accepted: 12/01/2014] [Indexed: 01/08/2023]
Abstract
In recent years, mesenchymal stromal cells (MSCs) have been largely investigated and tested as a new therapeutic tool for several clinical applications, including the treatment of different rheumatic diseases. MSCs are responsible for the normal turnover and maintenance of adult mesenchymal tissues as the result of their multipotent differentiation abilities and their secretion of a variety of cytokines and growth factors. Although initially derived from bone marrow, MSCs are present in many different tissues such as many peri-articular tissues. MSCs may exert immune-modulatory properties, modulating different immune cells in both in vitro and in vivo models, and they are considered immune-privileged cells. At present, these capacities are considered the most intriguing aspect of their biology, introducing the possibility that these cells may be used as effective therapy in autoimmune diseases. Therefore, stem cell therapies may represent an innovative approach for the treatment of rheumatic diseases, especially for the forms that are not responsive to standard treatments or alternatively still lacking a definite therapy. At present, although the data from scientific literature appear to suggest that such treatments might be more effective whether administered as soon as possible, the use of MSCs in clinical practice is likely to be restricted to patients with a long history of a severe refractory disease. Further results from larger clinical trials are needed to corroborate preclinical findings and human non-controlled studies, and advancement in the knowledge of MSCs might provide information about the therapeutic role of these cells in the treatment of many rheumatic diseases.
Collapse
Affiliation(s)
- Paola Cipriani
- Rheumatology Unit, Clinical Science and Biotechnology Department, University of L'Aquila, L'Aquila, Italy.
| | - Piero Ruscitti
- Rheumatology Unit, Clinical Science and Biotechnology Department, University of L'Aquila, L'Aquila, Italy
| | - Paola Di Benedetto
- Rheumatology Unit, Clinical Science and Biotechnology Department, University of L'Aquila, L'Aquila, Italy
| | - Francesco Carubbi
- Rheumatology Unit, Clinical Science and Biotechnology Department, University of L'Aquila, L'Aquila, Italy
| | - Vasiliki Liakouli
- Rheumatology Unit, Clinical Science and Biotechnology Department, University of L'Aquila, L'Aquila, Italy
| | - Onorina Berardicurti
- Rheumatology Unit, Clinical Science and Biotechnology Department, University of L'Aquila, L'Aquila, Italy
| | - Francesco Ciccia
- Rheumatology Unit, Internal Medicine Department, University of Palermo, Palermo, Italy
| | - Giovanni Triolo
- Rheumatology Unit, Internal Medicine Department, University of Palermo, Palermo, Italy
| | - Roberto Giacomelli
- Rheumatology Unit, Clinical Science and Biotechnology Department, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
12
|
Niu J, Yue W, Song Y, Zhang Y, Qi X, Wang Z, Liu B, Shen H, Hu X. Prevention of acute liver allograft rejection by IL-10-engineered mesenchymal stem cells. Clin Exp Immunol 2014; 176:473-84. [PMID: 24527865 DOI: 10.1111/cei.12283] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2014] [Indexed: 01/02/2023] Open
Abstract
Hepatic allograft rejection remains a challenging problem, with acute rejection episode as the major barrier for long-term survival in liver transplant recipients. To explore a strategy to prevent allograft rejection, we hypothesized that mesenchymal stem cells (MSCs) genetically engineered with interleukin-10 (IL-10) could produce beneficial effects on orthotopic liver transplantation (OLT) in the experimental rat model. Syngeneic MSCs transduced with IL-10 were delivered via the right jugular vein 30 min post-orthotopic transplantation in the rat model. To evaluate liver morphology and measure cytokine concentration, the blood and liver samples from each animal group were collected at different time-points (3, 5 and 7 days) post-transplantation. The mean survival time of the rats treated with MSCs-IL-10 was shown to be much longer than those treated with saline. According to Banff scheme grading, the saline group scores increased significantly compared with those in the MSCs-IL-10 group. Retinoid acid receptor-related orphan receptor gamma t (RORγt) expression was more increased in the saline group compared to those in the MSCs-IL-10 group in a time-dependent manner; forkhead box protein 3 (FoxP3) expression also decreased significantly in the saline group compared with those in the MSCs-IL-10 group in a time-dependent manner. The expression of cytokines [IL-17, IL-23, IL-6, interferon (IFN)-γ and tumour necrosis factor (TNF)-α] in the saline groups increased significantly compared with the time-point-matched MSCs-IL-10 group, whereas cytokine expression of (IL-10, TGF-β1) was deceased markedly compared to that in the MSCs-IL-10 group. These results suggest a potential role for IL-10-engineered MSC therapy to overcome clinical liver transplantation rejection.
Collapse
Affiliation(s)
- J Niu
- General Surgery of the Hospital Affiliated Xuzhou Medical College, Xuzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mele C. Tissue engineering with stem cells: an innovative technological treatment in pediatrics disorders. J Pediatr Nurs 2013; 28:504-7. [PMID: 23891786 DOI: 10.1016/j.pedn.2013.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Tsai HL, Chang JW, Yang HW, Chen CW, Yang CC, Yang AH, Liu CS, Chin TW, Wei CF, Lee OK. Amelioration of Paraquat-Induced Pulmonary Injury by Mesenchymal Stem Cells. Cell Transplant 2013; 22:1667-81. [DOI: 10.3727/096368912x657765] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Acute paraquat (PQ) poisoning induces redox cycle and leads to fatal injury of lung. Clinical management is supportive in nature due to lack of effective antidote, and the mortality is very high. Mesenchymal stem cells (MSCs) process the properties of immunomodulation, anti-inflammatory, and antifibrotic effects and oxidative stress resistance. MSC transplantation may theoretically serve as an antidote in PQ intoxication. In this study, we examined the potential therapeutic effects of MSCs in PQ-induced lung injury. The degree of PQ toxicity in the rat type II pneumocyte cell line, L2, and MSCs was evaluated by examining cell viability, ultrastructural changes, and gene expression. L2 cells treated with 0.5 mM PQ were cocultured in the absence or presence of MSCs. For the in vivo study, adult male SD rats were administered an intraperitoneal injection of PQ (24 mg/kg body weight) and were divided into three groups: group I, control; group II, cyclophosphamide and methylprednisolone; group III, MSC transplantation 6 h after PQ exposure. MSCs were relatively resistant to PQ toxicity. Coculture with MSCs significantly inhibited PQ accumulation in L2 cells and upregulated the expression of antioxidative heme oxygenase 1 and metallothionein 1a genes, reversed epithelial-to-mesenchymal transition, and increased the viability of PQ-exposed L2 cells. Treatment with MSCs resulted in a significant reduction in severity of liver and renal function deterioration, alleviated lung injury, and prolonged the life span of rats. Altogether, our results suggest that MSCs possess antidote-like effect through multifactorial protection mechanism. The results of this preclinical study demonstrate that transplantation of MSCs may be a promising therapy and should be further validated clinically.
Collapse
Affiliation(s)
- Hsin-Lin Tsai
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Pediatric Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jei-Wen Chang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hui-Wen Yang
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chang-Wei Chen
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chen-Chang Yang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Environmental and Occupational Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Clinical Toxicology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - An-Hang Yang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Ultrastructural and Molecular Pathology, Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chin-Su Liu
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Pediatric Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tai-Wai Chin
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Pediatric Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chou-Fu Wei
- Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Oscar K. Lee
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
15
|
The effect of dexamethasone and triiodothyronine on terminal differentiation of primary bovine chondrocytes and chondrogenically differentiated mesenchymal stem cells. PLoS One 2013; 8:e72973. [PMID: 23977373 PMCID: PMC3745539 DOI: 10.1371/journal.pone.0072973] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/17/2013] [Indexed: 11/25/2022] Open
Abstract
The newly evolved field of regenerative medicine is offering solutions in the treatment of bone or cartilage loss and deficiency. Mesenchymal stem cells, as well as articular chondrocytes, are potential cells for the generation of bone or cartilage. The natural mechanism of bone formation is that of endochondral ossification, regulated, among other factors, through the hormones dexamethasone and triiodothyronine. We investigated the effects of these hormones on articular chondrocytes and chondrogenically differentiated mesenchymal stem cells, hypothesizing that these hormones would induce terminal differentiation, with chondrocytes and differentiated stem cells being similar in their response. Using a 3D-alginate cell culture model, bovine chondrocytes and chondrogenically differentiated stem cells were cultured in presence of triiodothyronine or dexamethasone, and cell proliferation and extracellular matrix production were investigated. Collagen mRNA expression was measured by real-time PCR. Col X mRNA and alkaline phosphatase were monitored as markers of terminal differentiation, a prerequisite of endochondral ossification. The alginate culture system worked well, both for the culture of chondrocytes and for the chondrogenic differentiation of mesenchymal stem cells. Dexamethasone led to an increase in glycosaminoglycan production. Triiodothyronine increased the total collagen production only in chondrocytes, where it also induced signs of terminal differentiation, increasing both collagen X mRNA and alkaline phosphatase activity. Dexamethasone induced terminal differentiation in the differentiated stem cells. The immature articular chondrocytes used in this study seem to be able to undergo terminal differentiation, pointing to their possible role in the onset of degenerative osteoarthritis, as well as their potential for a cell source in bone tissue engineering. When chondrocyte-like cells, after their differentiation, can indeed be moved on towards terminal differentiation, they can be used to generate a model of endochondral ossification, but this limitation must be kept in mind when using them in cartilage tissue engineering application.
Collapse
|
16
|
Kuo YC, Li YSJ, Zhou J, Shih YRV, Miller M, Broide D, Lee OKS, Chien S. Human mesenchymal stem cells suppress the stretch-induced inflammatory miR-155 and cytokines in bronchial epithelial cells. PLoS One 2013; 8:e71342. [PMID: 23967196 PMCID: PMC3742760 DOI: 10.1371/journal.pone.0071342] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/30/2013] [Indexed: 12/31/2022] Open
Abstract
Current research in pulmonary pathology has focused on inflammatory reactions initiated by immunological responses to allergens and irritants. In addition to these biochemical stimuli, physical forces also play an important role in regulating the structure, function, and metabolism of the lung. Hyperstretch of lung tissues can contribute to the inflammatory responses in asthma, but the mechanisms of mechanically induced inflammation in the lung remain unclear. Our results demonstrate that excessive stretch increased the secretion of inflammatory cytokines by human bronchial epithelial cells (hBECs), including IL-8. This increase of IL-8 secretion was due to an elevated microRNA-155 (miR-155) expression, which caused the suppression of Src homology 2 domain–containing inositol 5-phosphatase 1 (SHIP1) production and the subsequent activation of JNK signaling. In vivo studies in our asthmatic mouse model also showed such changes in miR-155, IL-8, and SHIP1 expressions that reflect inflammatory responses. Co-culture with human mesenchymal stem cells (hMSCs) reversed the stretch-induced hBEC inflammatory responses as a result of IL-10 secretion by hMSCs to down-regulate miR-155 expression in hBECs. In summary, we have demonstrated that mechanical stretch modulates the homeostasis of the hBEC secretome involving miR-155 and that hMSCs can be used as a potential therapeutic approach to reverse bronchial epithelial inflammation in asthma.
Collapse
Affiliation(s)
- Yi-Chun Kuo
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Bioengineering and Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Yi-Shuan Julie Li
- Department of Bioengineering and Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jing Zhou
- Department of Bioengineering and Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Yu-Ru Vernon Shih
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Marina Miller
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - David Broide
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
- * E-mail: (OK-SL); (SC)
| | - Shu Chien
- Department of Bioengineering and Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (OK-SL); (SC)
| |
Collapse
|
17
|
Jiang L, Song XH, Liu P, Zeng CL, Huang ZS, Zhu LJ, Jiang YZ, Ouyang HW, Hu H. Platelet-mediated mesenchymal stem cells homing to the lung reduces monocrotaline-induced rat pulmonary hypertension. Cell Transplant 2013; 21:1463-75. [PMID: 22525351 DOI: 10.3727/096368912x640529] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bone marrow mesenchymal stem cell (BM-MSC) transplantation has been suggested to be a promising method for the treatment of pulmonary arterial hypertension (PAH), a fatal disease currently without effective preventive/therapeutic strategies. However, the detailed mechanisms underlying BM-MSC therapy are largely unknown. We designed the present study to test the hypothesis that circulating platelets facilitate BM-MSC homing to the lung vasculature in a rat model of PAH induced by monocrotalin (MCT). A single subcutaneous administration of MCT induced a marked rise in right ventricular systolic pressure (RVSP) and the weight ratio of right to left ventricle plus septum (RV/LV+S) 3 weeks after injection. The injection of MSCs via tail vein 3 days after MCT significantly reduced the increase of RVSP and RV/LV+S. The fluorescence-labeled MSCs injected into the PAH rat circulation were found mostly distributed in the lungs, particularly on the pulmonary vascular wall, whereas cell homing was abolished by an anti-P-selectin antibody and the GPIIb/IIIa inhibitor tirofiban. Furthermore, using an in vitro flow chamber, we demonstrated that MSC adhesion to the major extracellular matrix collagen was facilitated by platelets and their P-selectin and GPIIb/IIIa. Therefore, the current study suggested that platelet-mediated MSC homing prevented the aggravation of MCT-induced rat PAH, via P-selectin and GPIIb/IIIa-mediated mechanisms.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Stem cell-based therapy for prevention of delayed fracture union: a randomized and prospective preliminary study. Mol Ther 2013; 21:1631-8. [PMID: 23732992 DOI: 10.1038/mt.2013.109] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 04/28/2013] [Indexed: 12/23/2022] Open
Abstract
Distal tibial fractures tend towards delayed- or nonunion. The purpose of this study was to evaluate the safety and efficacy of early minimally invasive intervention (MII) in the treatment of these fractures. A total 24 consecutive patients who underwent operative treatment for distal tibial fractures were randomized into a control and an intervention group. MII entailed aspirating iliac crest bone marrow and peripheral blood, yielding mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP) respectively, that were mixed with demineralized bone matrix (DBM) and injected under fluoroscopic control into the fracture site. No complications occurred in either group. The median time to union was 1.5 months in the MII group and 3 months in the control group. MII was found to be a safe and efficient procedure.
Collapse
|
19
|
Hung PS, Kuo YC, Chen HG, Chiang HHK, Lee OKS. Detection of osteogenic differentiation by differential mineralized matrix production in mesenchymal stromal cells by Raman spectroscopy. PLoS One 2013; 8:e65438. [PMID: 23734254 PMCID: PMC3667172 DOI: 10.1371/journal.pone.0065438] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/24/2013] [Indexed: 11/21/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) hold great potential in skeletal tissue engineering and regenerative medicine. However, conventional methods that are used in molecular biology to evaluate osteogenic differentiation of MSCs require a relatively large amount of cells. Cell lysis and cell fixation are also required and all these steps are time-consuming. Therefore, it is imperative to develop a facile technique which can provide real-time information with high sensitivity and selectivity to detect the osteogenic maturation of MSCs. In this study, we use Raman spectroscopy as a biosensor to monitor the production of mineralized matrices during osteogenic induction of MSCs. In summary, Raman spectroscopy is an excellent biosensor to detect the extent of maturation level during MSCs-osteoblast differentiation with a non-disruptive, real-time and label free manner. We expect that this study will promote further investigation of stem cell research and clinical applications.
Collapse
Affiliation(s)
- Pei-San Hung
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Chun Kuo
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - He-Guei Chen
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Hui-Hua Kenny Chiang
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
- Institute of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Oscar Kuang-Sheng Lee
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Stem cell Research Center, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
20
|
Choi EW, Shin IS, Park SY, Yoon EJ, Kang SK, Ra JC, Hong SH. Characteristics of mouse adipose tissue-derived stem cells and therapeutic comparisons between syngeneic and allogeneic adipose tissue-derived stem cell transplantation in experimental autoimmune thyroiditis. Cell Transplant 2013; 23:873-87. [PMID: 23485102 DOI: 10.3727/096368913x664586] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Previously, we found that the intravenous administration of human adipose tissue-derived mesenchymal stem cells was a promising therapeutic option for autoimmune thyroiditis even when the cells were transplanted into a xenogeneic model without an immunosuppressant. Therefore, we explored the comparison between the therapeutic effects of syngeneic and allogeneic adipose tissue-derived stem cells on an experimental autoimmune thyroiditis mouse model. Experimental autoimmune thyroiditis was induced in C57BL/6 mice by immunization with porcine thyroglobulin. Adipose tissue-derived stem cells derived from C57BL/6 mice (syngeneic) or BALB/c mice (allogeneic) or saline as a vehicle control were administered intravenously four times weekly. Blood and tissue samples were collected 1 week after the last transplantation. Adipose tissue-derived stem cells from mice were able to differentiate into multiple lineages in vitro; however, mouse adipose tissue-derived stem cells did not have immunophenotypes identical to those from humans. Syngeneic and allogeneic administrations of adipose tissue-derived stem cells reduced thyroglobulin autoantibodies and the inflammatory immune response, protected against lymphocyte infiltration into the thyroid, and restored the Th1/Th2 balance without any adverse effects. However, different humoral immune responses were observed for infused cells from different stem cell sources. The strongest humoral immune response was induced by xenogeneic transplantation, followed by allogeneic and syngeneic administration, in that order. The stem cells were mostly found in the spleen, not the thyroid. This migration might be because the stem cells primarily function in systemic immune modulation, due to being given prior to disease induction. In this study, we confirmed that there were equal effects of adipose tissue-derived stem cells in treating autoimmune thyroiditis between syngeneic and allogeneic transplantations.
Collapse
Affiliation(s)
- Eun Wha Choi
- Laboratory Animal Research Center, Samsung Biomedical Research Institute, Gangnam-gu, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Therapeutic application of mesenchymal stem cells in bone and joint diseases. Clin Exp Med 2012; 14:13-24. [DOI: 10.1007/s10238-012-0218-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 10/22/2012] [Indexed: 02/06/2023]
|
22
|
Proksch S, Steinberg T, Schulz S, Sauerbier S, Hellwig E, Tomakidi P. Environmental Biomechanics Substantiated by Defined Pillar Micropatterns Govern Behavior of Human Mesenchymal Stem Cells. Cell Transplant 2012; 21:2455-69. [DOI: 10.3727/096368912x637037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
While evidence on the impact of the biomechanical environment elasticity on human mesenchymal stem cell (hMSC) behavior is growing, the aspect of micropatterning is still poorly understood. Thus, the present study aimed at investigating the influence of defined environmental micropatterning on hMSC behavior. Following characterization, hMSCs were grown on defined pillar micropatterns of 5, 7, 9, and 11 μm. With respect to cell behavior, primary hMSC adhesion was detected by indirect immunofluorescence (iIF) for paxillin, vinculin, integrin αV, and actin, while proliferation was visualized by histone H3. Morphogenesis was monitored by scanning electron microscopy and the expression of stem cell-specific biomarkers by real-time PCR. Favoritism of primary adhesion of hMSCs on pillar tops occurred at smaller pillar micropatterns, concomitant with cell flattening. While vinculin, integrin αV, and paxillin appeared initially more cytoplasmic, high pillar micropatterns favored a progressive redistribution with polarization to cell tension sites and at cell borders. Accomplishment of morphogenesis at day 3 revealed establishment of fully rotund cell somata at 5 μm, while hMSCs appeared progressively elongated at rising micropatterns. The hMSC proliferation capacity was influenced by pillar micropatterns and gene expression analysis of stem cell- and differentiation-associated biomarkers disclosed clear modulation by distinct pillar micropatterns. In response to environmental biomechanics, our results show that hMSC behavior is governed by pillar micropatterning. In turn, these findings may form the basis to prospectively direct lineage specificity of hMSCs in a customized fashion.
Collapse
Affiliation(s)
- S. Proksch
- Department of Operative Dentistry and Periodontology, Dental School and Hospital, University Freiburg Medical Center, Freiburg, Germany
| | - T. Steinberg
- Department of Oral Biotechnology, Dental School and Hospital, University Freiburg Medical Center, Freiburg, Germany
| | - S. Schulz
- Department of Oral Biotechnology, Dental School and Hospital, University Freiburg Medical Center, Freiburg, Germany
| | - S. Sauerbier
- Department of Oral and Maxillofacial Surgery, Dental School and Hospital, University Freiburg Medical Center, Freiburg, Germany
| | - E. Hellwig
- Department of Operative Dentistry and Periodontology, Dental School and Hospital, University Freiburg Medical Center, Freiburg, Germany
| | - P. Tomakidi
- Department of Oral Biotechnology, Dental School and Hospital, University Freiburg Medical Center, Freiburg, Germany
| |
Collapse
|
23
|
Jacobs SA, Pinxteren J, Roobrouck VD, Luyckx A, van't Hof W, Deans R, Verfaillie CM, Waer M, Billiau AD, Van Gool SW. Human multipotent adult progenitor cells are nonimmunogenic and exert potent immunomodulatory effects on alloreactive T-cell responses. Cell Transplant 2012; 22:1915-28. [PMID: 23031260 DOI: 10.3727/096368912x657369] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multipotent adult progenitor cells (MAPCs) are bone marrow-derived nonhematopoietic stem cells with a broad differentiation potential and extensive expansion capacity. A comparative study between human mesenchymal stem cells (hMSCs) and human MAPCs (hMAPCs) has shown that hMAPCs have clearly distinct phenotypical and functional characteristics from hMSCs. In particular, hMAPCs express lower levels of MHC class I than hMSCs and cannot only differentiate into typical mesenchymal cell types but can also differentiate in vitro and in vivo into functional endothelial cells. The use of hMSCs as cellular immunomodulatory stem cell products gained much interest since their immunomodulatory capacities in vitro became evident over the last decade. Currently, the clinical grade stem cell product of hMAPCs is already used in clinical trials to prevent graft-versus-host disease (GVHD), as well as for the treatment of acute myocardial infarct, ischemic stroke, and Crohn's disease. Therefore, we studied the immune phenotype, immunogenicity, and immunosuppressive effect of hMAPCs in vitro. We demonstrated that hMAPCs are nonimmunogenic for T-cell proliferation and cytokine production. In addition, hMAPCs exert strong immunosuppressive effects on T-cell alloreactivity and on T-cell proliferation induced by mitogens and recall antigens. This immunomodulatory effect was not MHC restricted, which makes off-the-shelf use promising. The immunosuppressive effect of hMAPCs is partially mediated via soluble factors and dependent on indoleamine 2,3-dioxygenase (IDO) activity. At last, we isolated hMAPCs, the clinical grade stem cell product of hMAPCs, named MultiStem, and hMSCs from one single donor and observed that both the immunogenicity and the immunosuppressive capacities of all three stem cell products are comparable in vitro. In conclusion, hMAPCs have potent immunomodulatory properties in vitro and can serve as a valuable cell source for the clinical use of immunomodulatory cellular stem cell product.
Collapse
Affiliation(s)
- Sandra A Jacobs
- Department of Experimental Medicine, Laboratory of Experimental Immunology, Catholic University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Patel AN, Vargas V, Revello P, Bull DA. Mesenchymal stem cell population isolated from the subepithelial layer of umbilical cord tissue. Cell Transplant 2012; 22:513-9. [PMID: 23057960 DOI: 10.3727/096368912x655064] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The therapeutic use of stem cells to treat diseases and injuries is a promising tool in regenerative medicine. The umbilical cord provides a rich source of stem cells; we have previously reported a population of stem cells isolated from Wharton's jelly. In this report, we aimed to isolate a novel cell population that was different than those found in Wharton's jelly. We isolated stem cells from the subepithelial layer of the umbilical cord; the cells could be expanded for greater than 90 population doubling and had mesenchymal stem cell characteristics, expressing CD9, SSEA4, CD44, CD90, CD166, CD73, and CD146 but were negative for STRO-1. The cells can be directionally differentiated and undergo osteo-, chondro-, adipo-, and cardiogenesis. In addition, we have identified for the first time that mesenchymal stem cells isolated from umbilical cord can produce microvesicles, termed exosomes. This is the first report describing a stem cell population isolated from the subepithelial layer of the umbilical cord. Given the growth capacity, multilineage potential, and most importantly the low levels of HLA-ABC, we propose that this novel cell isolated from the subepithelial layer of umbilical cord is an ideal candidate for allogeneic cell-based therapy.
Collapse
Affiliation(s)
- Amit N Patel
- Division of Cardiothoracic Surgery, University of Utah, Salt Lake City, UT, USA.
| | | | | | | |
Collapse
|
25
|
Burra P, Arcidiacono D, Bizzaro D, Chioato T, Di Liddo R, Banerjee A, Cappon A, Bo P, Conconi MT, Parnigotto PP, Mirandola S, Gringeri E, Carraro A, Cillo U, Russo FP. Systemic administration of a novel human umbilical cord mesenchymal stem cells population accelerates the resolution of acute liver injury. BMC Gastroenterol 2012; 12:88. [PMID: 22788801 PMCID: PMC3458924 DOI: 10.1186/1471-230x-12-88] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 07/12/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hepatocytes and stem cells transplantation may be an alternative to liver transplantation in acute or chronic liver disease. We aimed to evaluate the therapeutic potential of mesenchymal stem cells from human umbilical cord (UCMSCs), a readily available source of mesenchymal stem cells, in the CCl4-induced acute liver injury model. METHODS Mesenchymal stem cells profile was analyzed by flow cytometry. In order to evaluate the capability of our UCMSCs to differentiate in hepatocytes, cells were seeded on three different supports, untreated plastic support, MatrigelTM and human liver acellular matrix. Cells were analyzed by immunocitochemistry for alpha-fetoprotein and albumin expression, qPCR for hepatocyte markers gene expression, Periodic Acid-Schiff staining for glycogen storage, ELISA for albumin detection and colorimetric assay for urea secretion.To assess the effects of undifferentiated UCMSCs in hepatic regeneration after an acute liver injury, we transplanted them via tail vein in mice injected intraperitoneally with a single dose of CCl4. Livers were analyzed by histological evaluation for damage quantification, immunostaining for Kupffer and stellate cells/liver myofibroblasts activation and for UCMSCs homing. Pro- and anti-inflammatory cytokines gene expression was evaluated by qPCR analysis and antioxidant enzyme activity was measured by catalase quantification.Data were analyzed by Mann-Whitney U-test, Kruskal-Wallis test and Cuzick's test followed by Bonferroni correction for multiple comparisons. RESULTS We have standardized the isolation procedure to obtain a cell population with hepatogenic properties prior to in vivo transplantation. When subjected to hepatogenic differentiation on untreated plastic support, UCMSCs differentiated in hepatocyte-like cells as demonstrated by their morphology, progressive up-regulation of mature hepatocyte markers, glycogen storage, albumin and urea secretion. However, cells seeded on 3D-supports showed a minor or negligible differentiation capacity.UCMSCs-transplanted mice showed a more rapid damage resolution, as shown by histological analysis, with a lower inflammation level and an increased catalase activity compared to CCl4-treated mice. CONCLUSIONS Our findings show that UCMSCs can be reliably isolated, have hepatogenic properties and following systemic administration are able to accelerate the resolution of an acute liver injury without any differentiation and manipulation. These features make UCMSCs strong candidates for future application in regenerative medicine for human acute liver disease.
Collapse
Affiliation(s)
- Patrizia Burra
- Gastroenterology, Department of Surgical, Oncological and Gastroenterological Sciences, Padova University Hospital, Via Giustiniani 2, Padova, 35128, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chen HT, Lee MJ, Chen CH, Chuang SC, Chang LF, Ho ML, Hung SH, Fu YC, Wang YH, Wang HI, Wang GJ, Kang L, Chang JK. Proliferation and differentiation potential of human adipose-derived mesenchymal stem cells isolated from elderly patients with osteoporotic fractures. J Cell Mol Med 2012; 16:582-93. [PMID: 21545685 PMCID: PMC3822933 DOI: 10.1111/j.1582-4934.2011.01335.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aging has less effect on adipose-derived mesenchymal stem cells (ADSCs) than on bone marrow-derived mesenchymal stem cells (BMSCs), but whether the fact holds true in stem cells from elderly patients with osteoporotic fractures is unknown. In this study, ADSCs and BMSCs of the same donor were harvested and divided into two age groups. Group A consisted of 14 young patients (36.4 ± 11.8 years old), and group B consisted of eight elderly patients (71.4 ± 3.6 years old) with osteoporotic fractures. We found that the doubling time of ADSCs from both age groups was maintained below 70 hrs, while that of BMSCs increased significantly with the number of passage. When ADSCs and BMSCs from the same patient were compared, there was a significant increase in the doubling time of BMSCs in each individual from passages 3 to 6. On osteogenic induction, the level of matrix mineralization of ADSCs from group B was comparable to that of ADSCs from group A, whereas BMSCs from group B produced least amount of mineral deposits and had a lower expression level of osteogenic genes. The p21 gene expression and senescence-associated β-galactosidase activity were lower in ADSCs compared to BMSCs, which may be partly responsible for the greater proliferation and differentiation potential of ADSCs. It is concluded that the proliferation and osteogenic differentiation of ADSCs were less affected by age and multiple passage than BMSCs, suggesting that ADSCs may become a potentially effective therapeutic option for cell-based therapy, especially in elderly patients with osteoporosis.
Collapse
Affiliation(s)
- Hui-Ting Chen
- Department of Fragrance and Cosmetic Science, Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Alfarano C, Roubeix C, Chaaya R, Ceccaldi C, Calise D, Mias C, Cussac D, Bascands JL, Parini A. Intraparenchymal injection of bone marrow mesenchymal stem cells reduces kidney fibrosis after ischemia-reperfusion in cyclosporine-immunosuppressed rats. Cell Transplant 2012; 21:2009-19. [PMID: 22525800 DOI: 10.3727/096368912x640448] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ischemia-reperfusion and immunosuppressive therapy are a major cause of progressive renal failure after kidney transplantation. Recent studies have shown that administration of bone marrow mesenchymal stem cells (MSCs) improves kidney functional recovery in the acute phase of post ischemia-reperfusion injury. In the present study, we used an original model of renal ischemia-reperfusion in immunosuppressed rats (NIRC) to investigate the effects of bone marrow MSCs on progression of chronic renal failure and the mechanisms potentially involved. Left renal ischemia-reperfusion (IR) was induced in unilateral nephrectomized Lewis rats. After IR, rats were treated daily with cyclosporine (10 mg/kg SC) for 28 days. MSCs were injected into the kidney at day 7 after IR. At day 28 after IR, kidneys were removed for histomorphological, biochemical, and gene expression analysis. The effect of conditioned media from MSCs on epithelial-mesenchymal transition was studied in vitro on HK2 cells. Our results show that, as compared to untreated NIRC rats, rats treated by intrarenal injection of MSCs 7 days after IR displayed improvement in renal function, reduction of interstitial fibrosis, and decrease in chronic tubule injury. These effects were associated with a decrease in interstitial α-SMA accumulation and MMP2 activity, markers of fibroblast/fibroblast-like cell activation, and renal remodeling, respectively. Finally, experiments in vitro showed that MSC-conditioned medium prevented epithelial-mesenchymal transition induced by TGF-β in HK2 cells. In conclusion, our results show that, in immunosuppressed animals, a single intrarenal administration of MSCs reduced renal fibrosis and promoted the recovery of renal function.
Collapse
Affiliation(s)
- C Alfarano
- Inserm, UMR 1048, Institute of Metabolic and Cardiovascular Diseases (I2MC), Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dai W, Kay GL, Jyrala AJ, Kloner RA. Experience from experimental cell transplantation therapy of myocardial infarction: what have we learned? Cell Transplant 2012; 22:563-8. [PMID: 22490337 DOI: 10.3727/096368911x627570] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
During the past 15 years, our research group has transplanted fetal/neonatal cardiomyocytes, mesenchymal stem cells, and embryonic stem cell-derived cardiomyocytes into infarcted myocardium in a rat myocardial infarction model. Our experimental data demonstrated that cell transplantation therapy provides a potential approach for the treatment of injured myocardium after myocardial infarction based on the reported positive effects upon histological appearance and left ventricular function. However, the underlying mechanisms of the benefits from cell transplantation therapy remain unclear and may involve replacement of scar tissue by transplanted cells, induced neoangiogenesis and paracrine effects of factors released by the transplanted cells. In this review, we summarize our experiences from experimental cell transplantation therapy in a rat myocardial infarction model and discuss the controversies and questions that need to be addressed in future studies.
Collapse
Affiliation(s)
- Wangde Dai
- The Heart Institute of Good Samaritan Hospital and Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| | | | | | | |
Collapse
|
29
|
Lui PPY, Chan KM. Tendon-derived stem cells (TDSCs): from basic science to potential roles in tendon pathology and tissue engineering applications. Stem Cell Rev Rep 2012; 7:883-97. [PMID: 21611803 DOI: 10.1007/s12015-011-9276-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Traditionally, tendons are considered to only contain tenocytes that are responsible for the maintenance, repair and remodeling of tendons. Stem cells, which are termed tendon-derived stem cells (TDSCs), have recently been identified in tendons. This review aims to summarize the current information about the in vitro characteristics of TDSCs, including issues related to TDSC isolation and culture, their cell morphology, immunophenotypes, proliferation and differentiation characteristics and senescence during in vitro passaging. The challenges in studying the functions of these cells are also discussed. The niche where TDSCs resided essentially provides signals that are conducive to the maintenance of definitive stem cell properties of TDSCs. Yet the niche may also induce pathologies by imposing an aberrant function on TDSCs or other targets. The possible niche factors of TDSCs are herein discussed. We presented current evidences supporting the potential pathogenic role of TDSCs in the development of tendinopathy with reference to the recent findings on the altered biological responses of these cells in response to their potential niche factors. The use of resident stem cells may promote engraftment and differentiation of transplanted cells in tendon and tendon-bone junction repair because the tendon milieu is an ideal and familiar environment to the transplanted cells. Evidences are presented to show the potential advantages and results of using TDSCs as a new cell source for tendon and tendon-bone junction repair. Issues pertaining to the use of TDSCs for tissue repair are also discussed.
Collapse
Affiliation(s)
- Pauline Po Yee Lui
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| | | |
Collapse
|
30
|
Zhang ZY, Teoh SH, Hui JHP, Fisk NM, Choolani M, Chan JKY. The potential of human fetal mesenchymal stem cells for off-the-shelf bone tissue engineering application. Biomaterials 2012; 33:2656-72. [PMID: 22217806 DOI: 10.1016/j.biomaterials.2011.12.025] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 12/13/2011] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) have become one of the most promising cell sources for bone tissue engineering (BTE) applications. In this review, we first highlight recent progress in the understanding of MSC biology, their in vivo niche, multi-faceted contribution to fracture healing and bone re-modelling, and their role in BTE. A literature review from clinicaltrials.gov and Pubmed on clinical usage of MSC for both orthopedic and non-orthopedic indications suggests that translational use of MSC for BTE indications is likely to bear fruit in the ensuing decade. Last, we disscuss the profound influence of ontological and antomical origins of MSC on their proliferation and osteogenesis and demonstrated human fetal MSC (hfMSC) as a superior cellular candidate for off-the-shelf BTE applications. This relates to their superior proliferation capacity, more robust osteogenic potential and lower immunogenecity, as compared to MSC from perinatal and postnatal sources. Furthermore, we discuss our experience in developing a hfMSC based BTE strategy with the integrated use of bioreactor-based dynamic priming within macroporous scaffolds, now ready for evaluation in clinical trials. In conclusion, hfMSC is likely the most promising cell source for allogeneic based BTE application, with proven advantages compared to other MSC based ones.
Collapse
Affiliation(s)
- Zhi-Yong Zhang
- Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
31
|
De La Garza-Rodea AS, Van Der Velde-Van Dijke I, Boersma H, Gonçalves MAFV, Van Bekkum DW, De Vries AAF, Knaän-Shanzer S. Myogenic Properties of Human Mesenchymal Stem Cells Derived from Three Different Sources. Cell Transplant 2012; 21:153-73. [DOI: 10.3727/096368911x580554] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) of mammals have been isolated from many tissues and are characterized by their aptitude to differentiate into bone, cartilage, and fat. Differentiation into cells of other lineages like skeletal muscle, tendon/ligament, nervous tissue, and epithelium has been attained with MSCs derived from some tissues. Whether such abilities are shared by MSCs of all tissues is unknown. We therefore compared for three human donors the myogenic properties of MSCs from adipose tissue (AT), bone marrow (BM), and synovial membrane (SM). Our data show that human MSCs derived from the three tissues differ in phenotype, proliferation capacity, and differentiation potential. The division rate of AT-derived MSCs (AT-MSCs) was distinctly higher than that of MSCs from the other two tissue sources. In addition, clear donor-specific differences in the long-term maintenance of MSC proliferation ability were observed. Although similar in their in vitro fusogenic capacity with murine myoblasts, MSCs of the three sources contributed to a different extent to skeletal muscle regeneration in vivo. Transplanting human AT-, BM-, or SM-MSCs previously transduced with a lentiviral vector encoding β-galactosidase into cardiotoxin-damaged tibialis anterior muscles (TAMs) of immunodeficient mice revealed that at 30 days after treatment the frequency of hybrid myofibers was highest in the TAMs treated with AT-MSCs. Our finding of human-specific β-spectrin and dystrophin in hybrid myofibers containing human nuclei argues for myogenic programming of MSCs in regenerating murine skeletal muscle. For the further development of MSC-based treatments of myopathies, AT-MSCs appear to be the best choice in view of their efficient contribution to myoregeneration, their high ex vivo expansion potential, and because their harvesting is less demanding than that of BM- or SM-MSCs.
Collapse
Affiliation(s)
| | | | - Hester Boersma
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Dirk W. Van Bekkum
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Antoine A. F. De Vries
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Shoshan Knaän-Shanzer
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
32
|
Spontaneous osteogenesis of MSCs cultured on 3D microcarriers through alteration of cytoskeletal tension. Biomaterials 2012; 33:556-64. [DOI: 10.1016/j.biomaterials.2011.09.090] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 09/29/2011] [Indexed: 11/21/2022]
|
33
|
Huang ZY, Hong LQ, Na N, Luo Y, Miao B, Chen J. Infusion of mesenchymal stem cells overexpressing GDNF ameliorates renal function in nephrotoxic serum nephritis. Cell Biochem Funct 2011; 30:139-44. [PMID: 22105543 DOI: 10.1002/cbf.1827] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/20/2011] [Accepted: 09/30/2011] [Indexed: 01/08/2023]
Abstract
Nephrotoxic serum nephritis (NSN) is a well-established animal model of glomerulonephritis, a frequent clinical condition with a high mortality rate owing to the ineffectiveness of current therapies. Mesenchymal stem cells (MSCs) are adult stem cells with potential as novel therapies in regenerative medicine owing to the absence of allogenic rejection. Glial cell-derived neurotrophic factor (GDNF) acts as a morphogen in kidney development. The therapeutic effectiveness of bone marrow MSCs overexpressing GDNF (GDNF-MSCs) was evaluated in an NSN rat model. An adenoviral vector was used to transduce MSCs with GDNF and a green fluorescent protein reporter gene. Then, GDNF-MSCs were injected into NSN rats via the renal artery. The influence of GDNF on renal injury was assessed. The location of GDNF-MSCs in kidneys was detected using fluorescence microscopy, cells were counted, and kidney function was measured. Infusion of GNDF-MSCs enhanced the recovery of renal function in NSN rats. MSCs were detected in the kidney cortex after injection. Compared with control MSCs, GDNF-MSCs led to significantly better renal function and injury recovery in NSN rats. GDNF has a positive effect on MSC differentiation in renal tissue. Owing to their highly renoprotective capacity, GDNF-MSCs represent a possible novel cell-based paradigm for treatment of glomerulonephritis.
Collapse
Affiliation(s)
- Zheng-Yu Huang
- Department of Kidney Transplantation, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
34
|
Hang D, Wang Q, Guo C, Chen Z, Yan Z. Treatment of osteonecrosis of the femoral head with VEGF165 transgenic bone marrow mesenchymal stem cells in mongrel dogs. Cells Tissues Organs 2011; 195:495-506. [PMID: 22056983 DOI: 10.1159/000329502] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2011] [Indexed: 02/06/2023] Open
Abstract
We evaluated the efficacy of vascular endothelial growth factor 165 (VEGF(165)) transgenic bone marrow mesenchymal stem cells (BMSCs) for the repair of early-stage osteonecrosis of the femoral head (ONFH) in mature mongrel dogs. This animal model was surgically established by femoral neck osteotomy and subsequent repinning. Twenty-seven dogs (54 hips) were divided into 3 equal-sized groups: a pCI-neo-VEGF(165) BMSC group, a pCI-neo BMSC group and a core decompression-alone group. The lipofectamine was used to introduce the VEGF(165) gene into the BMSCs. After core decompression, transgenic and non-transgenic autologous BMSCs were implanted. Therapeutic efficacy, including new bone formation and neovascularization in the femoral head, was examined by computed radiography, single-photon emission computed tomography, histological and histomorphometric analysis and immunofluorescent staining for von Willebrand factor in pathological sections. The femoral osteotomy site healed completely by the 4th week after the osteotomy surgery and regions of histologically evident osteonecrosis were found 12 weeks later. A regular arrangement of trabeculae and obvious bone regeneration were observed in the animals receiving implanted VEGF-transgenic BMSCs. The quantity of newly generated capillaries was significantly increased in the pCI-neo-VEGF(165) BMSC group, but there was no significant difference between the pCI-neo BMSC group and the core decompression-alone group. These results demonstrated that VEGF(165) transgenic autologous BMSCs enhanced bone reconstruction and blood vessel regeneration in the ONFH model. Compared with non-transgenic BMSCs, this approach could provide advanced benefits in the treatment of ONFH.
Collapse
Affiliation(s)
- Donghua Hang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | | | | | | | | |
Collapse
|
35
|
Ho JH, Tseng TC, Ma WH, Ong WK, Chen YF, Chen MH, Lin MW, Hong CY, Lee OK. Multiple intravenous transplantations of mesenchymal stem cells effectively restore long-term blood glucose homeostasis by hepatic engraftment and β-cell differentiation in streptozocin-induced diabetic mice. Cell Transplant 2011; 21:997-1009. [PMID: 22004871 DOI: 10.3727/096368911x603611] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Depletion of pancreatic β-cells results in insulin insufficiency and diabetes mellitus (DM). Single transplantation of mesenchymal stem cells exhibits short-term effects in some preclinical studies. Here, we further investigated the long-term therapeutic effects of multiple intravenous MSC transplantations. In this study, multiple human MSC transplantations (4.2 × 10(7) cells/kg each time) were performed intravenously at 2-week intervals into streptozocin (STZ)-induced diabetic mice for 6 months. Blood sugar, insulin, renal function, cholesterol, and triglyceride levels were monitored. We demonstrated that compared to single intravenous transplantation, which only transiently decreased hyperglycemia, multiple MSC transplantations effectively restored blood glucose homeostasis. Systemic oxidative stress levels were reduced from the seventh week of treatment. From the 11th week, production of human insulin was markedly increased. When MSC transplantation was skipped after blood sugar level returned to normal at the end of 15th week, a sharp rebound of blood sugar occurred, and was then controlled by subsequent transplantations. At the end of 6 months, histopathology examination revealed MSCs specifically engrafted into liver tissues of the recipients. Fifty-one percent of human cells in the recipient liver coexpressed human insulin, especially those surrounding the central veins. Taken together, intravenous MSC delivery was safe and effective for blood glucose stabilization in this preclinical DM model. Multiple transplantations were essential to restore and maintain glucose homeostasis through decreasing systemic oxidative stress in the early stage and insulin production in the late stage. Liver engraftment and differentiation into insulin-producing cells account for the long-term therapeutic effects of MSCs.
Collapse
Affiliation(s)
- Jennifer H Ho
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Johann Peterson
- Department of Pediatrics, Stanford University School of Medicine
| | | |
Collapse
|
37
|
Affiliation(s)
- Shinn-Zong Lin
- Center for Neuropsychiatry and Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
38
|
Yen ML, Hou CH, Peng KY, Tseng PC, Jiang SS, Shun CT, Chen YC, Kuo ML. Efficient derivation and concise gene expression profiling of human embryonic stem cell-derived mesenchymal progenitors (EMPs). Cell Transplant 2011; 20:1529-45. [PMID: 21396155 DOI: 10.3727/096368910x564067] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
New potential sources of stem cells for clinical application include bone marrow mesenchymal stem cells (BMMSCs), human embryonic stem cells (hESCs), and induced pluripotent stem cells (iPS). However, each source is not without its own concerns. While research continues in an effort to overcome these problems, the generation of mesenchymal progenitors from existing hESC lines may circumvent many of these issues. We report here a simple and efficient method of generating hESC-derived mesenchymal progenitors (EMPs) and transcriptome profiling using a concise, custom-designed, oligomnucleotide gene expression microarray. Characterization of EMPs shows that these cells are similar to BMMSCs in terms of differentiation capacity as well as cell surface marker expression. In addition, EMPs express several ESC markers and HLA-G, a nonclassical MHC class I molecule with immunomodulatory properties. Morevoer, EMPs possess significantly enhanced proliferative ability over BMMSCs during which karyotypic stability was maintained. Although derived from hESCs, EMPs do not form any tumors in immunocompromised mice. To efficiently profile gene expression in multiple samples, we designed an oligoarray to probe just over 11,000 genes highly expressed in stem cells. We found that the transcriptome of EMPs is more similar to BMMSCs than hESCs. Both cell types highly express genes involved in processes related to the cytoskeleton, extracellular matrix, and cell adhesion, but EMPs show higher expression of genes involved in cell proliferation whereas BMMSCs showed higher expression of immune-related genes. Based on our data, EMPs may be an accessible source of mesenchymal progenitor for therapeutic use.
Collapse
Affiliation(s)
- Men-Luh Yen
- Department of Primary Care Medicine & Department of Obstetrics/Gynecology, National Taiwan University Hospital & College of Medicine, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Stem cells have two features: the ability to differentiate along different lineages and the ability of self-renewal. Two major types of stem cells have been described, namely, embryonic stem cells and adult stem cells. Embryonic stem cells (ESC) are obtained from the inner cell mass of the blastocyst and are associated with tumorigenesis, and the use of human ESCs involves ethical and legal considerations. The use of adult mesenchymal stem cells is less problematic with regard to these issues. Mesenchymal stem cells (MSCs) are stromal cells that have the ability to self-renew and also exhibit multilineage differentiation. MSCs can be isolated from a variety of tissues, such as umbilical cord, endometrial polyps, menses blood, bone marrow, adipose tissue, etc. This is because the ease of harvest and quantity obtained make these sources most practical for experimental and possible clinical applications. Recently, MSCs have been found in new sources, such as menstrual blood and endometrium. There are likely more sources of MSCs waiting to be discovered, and MSCs may be a good candidate for future experimental or clinical applications. One of the major challenges is to elucidate the mechanisms of differentiation, mobilization, and homing of MSCs, which are highly complex. The multipotent properties of MSCs make them an attractive choice for possible development of clinical applications. Future studies should explore the role of MSCs in differentiation, transplantation, and immune response in various diseases.
Collapse
Affiliation(s)
- Dah-Ching Ding
- Department of Obstetrics and Gynecology, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - Woei-Cherng Shyu
- Center for Neuropsychiatry, China Medical University & Hospital, Taichung, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Shinn-Zong Lin
- Center for Neuropsychiatry, China Medical University & Hospital, Taichung, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- China Medical University Beigang Hospital, Yunlin, Taiwan
| |
Collapse
|
40
|
Ho JHC, Ma WH, Tseng TC, Chen YF, Chen MH, Lee OKS. Isolation and Characterization of Multi-Potent Stem Cells from Human Orbital Fat Tissues. Tissue Eng Part A 2011; 17:255-66. [DOI: 10.1089/ten.tea.2010.0106] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jennifer Hui-Chun Ho
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Stem Cell Research, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
- Department of Ophthalmology, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | - Wei-Hsien Ma
- Center for Stem Cell Research, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | - Tzu-Ching Tseng
- Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Fan Chen
- Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Hsiang Chen
- Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Oscar Kuang-Sheng Lee
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
41
|
Pradier A, Passweg J, Villard J, Kindler V. Human bone marrow stromal cells and skin fibroblasts inhibit natural killer cell proliferation and cytotoxic activity. Cell Transplant 2010; 20:681-91. [PMID: 21054933 DOI: 10.3727/096368910x536545] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are potent immunomodulators that have successfully been used to circumvent various types of inflammations, including steroid-resistant graft-versus-host disease. Although initially believed to be restricted to multipotent MSCs, this immunoregulatory function is shared with differentiated cells from the mesenchymal lineage such as skin fibroblasts (SFs). Mesenchymal cell-induced immunoregulation is so potent that it may allow the reactivation of dormant malignancies, a fact that would preclude using such cells as therapeutic agents. Because NK cells are pivotal effectors controlling tumor cell containment we investigated the effect of allogenic MSCs and SFs on NK cell function in vitro. When NK cells were incubated with IL-15 and MSCs or SFs for 6 days, their proliferation and cytotoxic activity were significantly decreased compared to NK cells cultured with IL-15 alone or with human venous endothelial cells. Cytotoxic activity inhibition reached 86% when assayed on MHC-I(+) allogenic primary hematopoietic blasts, and was associated with a significant decrease in cytolytic granule exocytosis and in perforin release. Stromal cell-mediated inhibition was effective only if cell-cell proximity was long lasting: when NK cells were activated with IL-15 in the absence of MSCs and assayed for cytotoxicity in their presence no inhibition occurred. MSC inhibition was ultimately mediated by a soluble factor generated upon incubation with NK cells activated by IL-15 or IL-2. The indoleamine 2,3 dioxygenase was activated in MSCs and SFs because L-kynurenine was detected in inhibitory supernatants, but its blockade did not restore NK cell functions. The profound inhibition of cytotoxic activity directed against allogenic hematopoietic blasts exerted by MSCs and SFs on NK cells may be a concern. Should this occur in vivo it may induce the inability of NK cells to control residual or dormant malignant diseases after infusion of therapeutic MSCs.
Collapse
|
42
|
Eve DJ, Fillmore RW, Borlongan CV, Sanberg PR. Stem cell research in cell transplantation: sources, geopolitical influence, and transplantation. Cell Transplant 2010; 19:1493-509. [PMID: 21054954 DOI: 10.3727/096368910x540612] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
If the rapidly progressing field of stem cell research reaches its full potential, successful treatments and enhanced understanding of many diseases are the likely results. However, the full potential of stem cell science will only be reached if all possible avenues can be explored and on a worldwide scale. Until 2009, the US had a highly restrictive policy on obtaining cells from human embryos and fetal tissue, a policy that pushed research toward the use of adult-derived cells. Currently, US policy is still in flux, and retrospective analysis does show the US lagging behind the rest of the world in the proportional increase in embryonic/fetal stem cell research. The majority of US studies being on either a limited number of cell lines, or on cells derived elsewhere (or funded by other sources than Federal) rather than on freshly isolated embryonic or fetal material. Neural, mesenchymal, and the mixed stem cell mononuclear fraction are the most commonly investigated types, which can generally be classified as adult-derived stem cells, although roughly half of the neural stem cells are fetal derived. Other types, such as embryonic and fat-derived stem cells, are increasing in their prominence, suggesting that new types of stem cells are still being pursued. Sixty percent of the reported stem cell studies involved transplantation, of which over three quarters were allogeneic transplants. A high proportion of the cardiovascular systems articles were on allogeneic transplants in a number of different species, including several autologous studies. A number of pharmaceutical grade stem cell products have also recently been tested and reported on. Stem cell research shows considerable promise for the treatment of a number of disorders, some of which have entered clinical trials; over the next few years it will be interesting to see how these treatments progress in the clinic.
Collapse
Affiliation(s)
- David J Eve
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL 33612, USA.
| | | | | | | |
Collapse
|
43
|
Lo T, Ho JH, Yang MH, Lee OK. Glucose reduction prevents replicative senescence and increases mitochondrial respiration in human mesenchymal stem cells. Cell Transplant 2010; 20:813-25. [PMID: 21054932 DOI: 10.3727/096368910x539100] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The unique self-renewal and multilineage differentiation potential of mesenchymal stem cells (MSCs) make them a promising candidate for cell therapy applications. However, during in vitro expansion of MSCs, replicative senescence may occur and will compromise the quality of the expanded cells. Because calorie restriction has been shown to effectively extend the life span of various organisms, the purpose of this study is to investigate the effect of glucose reduction on MSCs and the coordinated changes in energy utilization. It was found that the frequency of cycling cells was significantly increased, while senescence markers such as β-galactosidase activities and p16(INK4a) expression level were markedly reduced in MSCs under low-glucose culture condition. Quantitative real-time PCR analysis demonstrated the preserved trilineage differentiation potentials of MSCs after low-glucose treatment. Interestingly, the ability of osteogenic lineage commitment was improved, while the ability of adipogenic lineage commitment was delayed in MSCs after glucose reduction. In addition, we observed decreased lactate production, increased electron transport chain complexes expression, and increased oxygen consumption in MSCs after glucose reduction treatment. Increased antioxidant defensive responses were evidenced by increased antioxidant enzymes expression and decreased superoxide production after glucose reduction. Taken together, our findings suggest that MSCs utilize energy more efficiently under restricted glucose treatment and exhibit greater self-renewal and antisenescence abilities, while their differentiation potentials remain unaffected.
Collapse
Affiliation(s)
- Ting Lo
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | |
Collapse
|
44
|
Gonzalez R, Griparic L, Umana M, Burgee K, Vargas V, Nasrallah R, Silva F, Patel A. An Efficient Approach to Isolation and Characterization of Pre- and Postnatal Umbilical Cord Lining Stem Cells for Clinical Applications. Cell Transplant 2010; 19:1439-49. [DOI: 10.3727/096368910x514260] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
There have been various forms of mesenchymal stem cell-like (MSC-like) cells isolated from umbilical cords (UCs). The isolation of umbilical cord lining stem cells (ULSCs) may be of great value for those interested in a possible treatment to several disease/disorders. Unlike umbilical cord blood cells, these cells are unique because they can be expanded to therapeutically relevant numbers and cryopreserved for several different uses. Here we efficiently isolate stem cells from a small segment of pre- and postnatal UCs, and obtain therapeutically relevant amounts of ULSCs within 3 weeks. We demonstrate their growth potential and characterize them using immunocytochemistry, flow cytometry, and RT-PCR. In addition, we differentiate ULSCs into multiple lineages. Pre- and postnatal ULSCs are morphologically similar to mesenchymal stem cells (MSCs) and easily expand to greater than 70 population doublings. They express pluripotent markers Oct4 and nanog at the protein and RNA level. Flow cytometry demonstrates that they express markers indicative of MSCs in addition to high SSEA-4 expression. ULSCs are easily differentiated into osteogenic, adipogenic, chondrogenic, cardiogenic, and neurogenic cells. Pre- and postnatal ULSCs are characteristically similar in respect to their growth, marker expression, and plasticity, demonstrating they are highly conserved throughout development. ULSCs have phenotypic and genotypic properties of MSCs. These studies demonstrate the therapeutic potential of an otherwise discarded tissue. They are a perfect HLA match for the donor and an excellent match for immediate family members; therefore, they may serve as a therapeutic cell source.
Collapse
Affiliation(s)
- R. Gonzalez
- DaVinci Biosciences LLC, Costa Mesa, CA, USA
| | - L. Griparic
- DaVinci Biosciences LLC, Costa Mesa, CA, USA
| | - M. Umana
- DaVinci Biosciences LLC, Costa Mesa, CA, USA
| | - K. Burgee
- DaVinci Biosciences LLC, Costa Mesa, CA, USA
| | - V. Vargas
- DaVinci Biosciences LLC, Costa Mesa, CA, USA
| | | | - F. Silva
- DaVinci Biosciences LLC, Costa Mesa, CA, USA
| | - A. Patel
- Cardiovascular Center, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
45
|
Liu SP, Ding DC, Wang HJ, Su CY, Lin SZ, Li H, Shyu WC. Nonsenescent Hsp27-Upregulated MSCs Implantation Promotes Neuroplasticity in Stroke Model. Cell Transplant 2010; 19:1261-79. [PMID: 20525429 DOI: 10.3727/096368910x507204] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cellular senescence induces changes in cellular physiology, morphology, proliferative capacity, and gene expression. Stem cell senescence might be one of the major issues of limited efficacy of stem cell transplantation. In this study, we demonstrated that implantation of human umbilical cord mesenchymal stem cells (hUCMSCs) cultured in human umbilical cord serum (hUCS) significantly enhanced neuroplasticity and angiogenesis in stroke and ischemic limb models. Immunophenotypic analysis indicated that hUCMSCs cultured in hUCS had more small and rapidly self-renewing cells than those expanded in FCS. The main cause of greater senescence in FCS-cultured cells was increased generation of reactive oxygen species (ROS). Proteome profiling showed significantly more senescence-associated vimentin in FCS-cultured hUCMSCs than in hUCS-cultured hUCMSCs. In contrast, there was significant upregulation of heat shock protein 27 (Hsp27) in the hUCS-cultured hUCMSCs. By gene targeting, we found that overexpression of Hsp27 may downregulate vimentin expression through inhibition of the nuclear translocation of p65 (NF-κB signaling). Thus, an interaction between Hsp27 and vimentin may modulate the degree of senescence in hUCS- and FCS-cultured hUCMSCs. In summary, hUCMSCs exhibiting senescence are detrimental to cell engraftment and differentiation in animal models via activation of NF-κB pathway. Human stem cells incubated in hUCS might reduce the senescent process through upregulation of Hsp27 to increase implantation efficiency.
Collapse
Affiliation(s)
- Shih-Ping Liu
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Buddhist Tzu-Chi General Hospital, Hualien, Taiwan
| | - Hsiao-Jung Wang
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Ching-Yuan Su
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shinn-Zong Lin
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Hung Li
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Woei-Cherng Shyu
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| |
Collapse
|
46
|
Manzanedo A, Rodriguez F, Obeso JA, Rodriguez M. In Vivo Growing of New Cell Colonies in a Portion of Bone Marrow: Potential Use for Indirect Cell Therapy. CELL MEDICINE 2010; 1:93-103. [PMID: 26966633 DOI: 10.3727/215517910x528969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The ability of bone marrow cells (BMCs) to migrate to different organs can be used for indirect cell therapy, a procedure based on the engraftment of therapeutic cells in a different place from where they will finally move to and perform their action and which could be particularly useful for chronic illness where a persistent and long-lasting therapeutic action is required. Thus, establishing a stable colony of engineered BMCs is a requisite for the chronic provision of damaged tissues with engineered cells. Reported here is a procedure for creating such a cell colony in a portion of the bone marrow (BM). The study was performed in C57BL/6j mice and consisted of developing a focal niche in a portion of the bone marrow with focal irradiation so that it could be selectively colonized by BM cells (C57BL/6-FG-VC-GFP mice) injected in the blood stream. Both the arrival of cells coming from the nonirradiated BM (week 1 after irradiation) and the proliferation of cells in the irradiated BM (week 2) prevented the homing of injected cells in the BM niche. However, when BMCs were injected in a time window about 48 h after irradiation they migrated to the BM niche where they established a cell colony able to: 1) survive for a long period of time [the percentage of injected cells increased in the BM from day 30 postinjection (15%) to day 110 postinjection 28%)]; 2) express cell differentiation markers (90% of them were lineage committed 4 weeks after engraftment); and 3) colonize to the blood stream (with 5% and 9% of all blood cells being computed 1 and 3 months after engraftment, respectively). The intravenous injection of BMCs in combination with a previous transitory focal myeloablation is a safe and easy method for creating the long-lasting colony of modified BMCs needed for treating chronic and progressive illness with indirect cell therapy.
Collapse
Affiliation(s)
- Ana Manzanedo
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna , La Laguna, Tenerife, Canary Islands , Spain
| | - Fidel Rodriguez
- † Department of Pharmacology and Physical Medicine, Faculty of Medicine, University of La Laguna , La Laguna, Tenerife, Canary Islands , Spain
| | - Jose A Obeso
- ‡Department of Neurology and Neurosurgery, Clinica Universitaria and Medical School, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; §Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Manuel Rodriguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, La Laguna, Tenerife, Canary Islands, Spain; §Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
47
|
Suzuki J, Ricordi C, Chen Z. Immune tolerance induction by integrating innate and adaptive immune regulators. Cell Transplant 2009; 19:253-68. [PMID: 19919733 PMCID: PMC2884065 DOI: 10.3727/096368909x480314] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A diversity of immune tolerance mechanisms have evolved to protect normal tissues from immune damage. Immune regulatory cells are critical contributors to peripheral tolerance. These regulatory cells, exemplified by the CD4(+)Foxp3(+) regulatory T (Treg) cells and a recently identified population named myeloid-derived suppressor cells (MDSCs), regulate immune responses and limiting immune-mediated pathology. In a chronic inflammatory setting, such as allograft-directed immunity, there may be a dynamic "cross-talk" between the innate and adaptive immunomodulatory mechanisms for an integrated control of immune damage. CTLA4-B7-based interaction between the two branches may function as a molecular "bridge" to facilitate such "cross-talk." Understanding the interplays among Treg cells, innate suppressors, and pathogenic effector T (Teff) cells will be critical in the future to assist in the development of therapeutic strategies to enhance and synergize physiological immunosuppressive elements in the innate and adaptive immune system. Successful development of localized strategies of regulatory cell therapies could circumvent the requirement for very high number of cells and decrease the risks associated with systemic immunosuppression. To realize the potential of innate and adaptive immune regulators for the still elusive goal of immune tolerance induction, adoptive cell therapies may also need to be coupled with agents enhancing endogenous tolerance mechanisms.
Collapse
Affiliation(s)
- Jun Suzuki
- Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - Camillo Ricordi
- Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
- Diabetes Research Institute, University of Miami, Miami, FL, USA
- Department of Surgery, University of Miami, Miami, FL, USA
- Karolinska Institute, Stockholm, Sweden
| | - Zhibin Chen
- Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| |
Collapse
|
48
|
Affiliation(s)
- Shinn-Zong Lin
- Scientific Committee Professor of Neurosurgery, China Medical University Superintendent, China Medical University Beigan Hospital
- China Medical University Hospital Taichung, Taiwan
| |
Collapse
|