1
|
Neira JA, Conrad JV, Rusteika M, Chu LF. The progress of induced pluripotent stem cells derived from pigs: a mini review of recent advances. Front Cell Dev Biol 2024; 12:1371240. [PMID: 38979033 PMCID: PMC11228285 DOI: 10.3389/fcell.2024.1371240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/10/2024] [Indexed: 07/10/2024] Open
Abstract
Pigs (Sus scrofa) are widely acknowledged as an important large mammalian animal model due to their similarity to human physiology, genetics, and immunology. Leveraging the full potential of this model presents significant opportunities for major advancements in the fields of comparative biology, disease modeling, and regenerative medicine. Thus, the derivation of pluripotent stem cells from this species can offer new tools for disease modeling and serve as a stepping stone to test future autologous or allogeneic cell-based therapies. Over the past few decades, great progress has been made in establishing porcine pluripotent stem cells (pPSCs), including embryonic stem cells (pESCs) derived from pre- and peri-implantation embryos, and porcine induced pluripotent stem cells (piPSCs) using a variety of cellular reprogramming strategies. However, the stabilization of pPSCs was not as straightforward as directly applying the culture conditions developed and optimized for murine or primate PSCs. Therefore, it has historically been challenging to establish stable pPSC lines that could pass stringent pluripotency tests. Here, we review recent advances in the establishment of stable porcine PSCs. We focus on the evolving derivation methods that eventually led to the establishment of pESCs and transgene-free piPSCs, as well as current challenges and opportunities in this rapidly advancing field.
Collapse
Affiliation(s)
- Jaime A Neira
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - J Vanessa Conrad
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Margaret Rusteika
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Li-Fang Chu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| |
Collapse
|
2
|
Yang XC, Wu XL, Li WH, Wu XJ, Shen QY, Li YX, Peng S, Hua JL. OCT6 inhibits differentiation of porcine-induced pluripotent stem cells through MAPK and PI3K signaling regulation. Zool Res 2022; 43:911-922. [PMID: 36052561 PMCID: PMC9700490 DOI: 10.24272/j.issn.2095-8137.2022.220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/01/2022] [Indexed: 08/18/2023] Open
Abstract
As a transcription factor of the Pit-Oct-Unc (POU) domain family, octamer-binding transcription factor 6 ( OCT6) participates in various aspects of stem cell development and differentiation. At present, however, its role in porcine-induced pluripotent stem cells (piPSCs) remains unclear. Here, we explored the function of OCT6 in piPSCs. We found that piPSCs overexpressing OCT6 maintained colony morphology and pluripotency under differentiation conditions, with a similar gene expression pattern to that of non-differentiated piPSCs. Functional analysis revealed that OCT6 attenuated the adverse effects of extracellular signal-regulated kinase (ERK) signaling pathway inhibition on piPSC pluripotency by activating phosphatidylinositol 3-kinase-protein kinase B (PI3K-AKT) signaling activity. Our research sheds new light on the mechanism by which OCT6 promotes PSC maintenance.
Collapse
Affiliation(s)
- Xin-Chun Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiao-Long Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Wen-Hao Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiao-Jie Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Qiao-Yan Shen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yun-Xiang Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jin-Lian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China. E-mail:
| |
Collapse
|
3
|
Pieri NCG, de Souza AF, Botigelli RC, Pessôa LVDF, Recchia K, Machado LS, Glória MH, de Castro RVG, Leal DF, Fantinato Neto P, Martins SMMK, Dos Santos Martins D, Bressan FF, de Andrade AFC. Porcine Primordial Germ Cell-Like Cells Generated from Induced Pluripotent Stem Cells Under Different Culture Conditions. Stem Cell Rev Rep 2021; 18:1639-1656. [PMID: 34115317 DOI: 10.1007/s12015-021-10198-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
Culture conditions regulate the process of pluripotency acquisition and self-renewal. This study aimed to analyse the influence of the in vitro environment on the induction of porcine induced pluripotent stem cell (piPSCs) differentiation into primordial germ cell-like cells (pPGCLCs). piPSC culture with different supplementation strategies (LIF, bFGF, or LIF plus bFGF) promoted heterogeneous phenotypic profiles. Continuous bFGF supplementation during piPSCs culture was beneficial to support a pluripotent state and the differentiation of piPSCs into pPGCLCs. The pPGCLCs were positive for the gene and protein expression of pluripotent and germinative markers. This study can provide a suitable in vitro model for use in translational studies and to help answer numerous remaining questions about germ cells.
Collapse
Affiliation(s)
- Naira Caroline Godoy Pieri
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP, Brazil.
| | - Aline Fernanda de Souza
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, SP, Pirassununga, Brazil
| | - Ramon Cesar Botigelli
- Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo, SP, Brazil
| | - Lucas Simões Machado
- Department of Biochemistry, Paulista School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo/SP, Brazil
| | - Mayra Hirakawa Glória
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, SP, Pirassununga, Brazil
| | - Raquel Vasconcelos Guimarães de Castro
- Department of Preventive Veterinary Medicine and Animal Reproduction, Faculty of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Diego Feitosa Leal
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP, Brazil
| | - Paulo Fantinato Neto
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, SP, Pirassununga, Brazil
| | | | - Daniele Dos Santos Martins
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, SP, Pirassununga, Brazil
| | - André Furugen Cesar de Andrade
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP, Brazil
| |
Collapse
|
4
|
Setthawong P, Phakdeedindan P, Techakumphu M, Tharasanit T. Molecular signature and colony morphology affect in vitro pluripotency of porcine induced pluripotent stem cells. Reprod Domest Anim 2021; 56:1104-1116. [PMID: 34013645 DOI: 10.1111/rda.13954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/17/2021] [Indexed: 12/29/2022]
Abstract
Overall efficiency of cell reprogramming for porcine fibroblasts into induced pluripotent stem cells (iPSCs) is currently poor, and few cell lines have been established. This study examined gene expression during early phase of cellular reprogramming in the relationship to the iPSC colony morphology and in vitro pluripotent characteristics. Fibroblasts were reprogrammed with OCT4, SOX2, KLF4 and c-MYC. Two different colony morphologies referred to either compact (n = 10) or loose (n = 10) colonies were further examined for proliferative activity, gene expression and in vitro pluripotency. A total of 1,697 iPSC-like colonies (2.34%) were observed after gene transduction. The compact colonies contained with tightly packed cells with a distinct-clear border between the colony and feeder cells, while loose colonies demonstrated irregular colony boundary. For quantitative expression of genes responsible for early phase cell reprogramming, the Dppa2 and EpCAM were significantly upregulated while NR0B1 was downregulated in compact colonies compared with loose phenotype (p < .05). Higher proportion of compact iPSC phenotype (5 of 10, 50%) could be maintained in undifferentiated state for more than 50 passages compared unfavourably with loose morphology (3 of 10, 30%). All iPS cell lines obtained from these two types of colony morphologies expressed pluripotent genes and proteins (OCT4, NANOG and E-cadherin). In addition, they could aggregate and form three-dimensional structure of embryoid bodies. However, only compact iPSC colonies differentiated into three germ layers. Molecular signature of early phase of cell reprogramming coupled with primary colony morphology reflected the in vitro pluripotency of porcine iPSCs. These findings can be simply applied for pre-screening selection of the porcine iPSC cell line.
Collapse
Affiliation(s)
- Piyathip Setthawong
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Praopilas Phakdeedindan
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Mongkol Techakumphu
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,CU-Animal Fertility Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Kim SH, Choi KH, Lee M, Lee DK, Lee CK. Porcine OCT4 Reporter System Can Monitor Species-Specific Pluripotency During Somatic Cell Reprogramming. Cell Reprogram 2021; 23:168-179. [PMID: 34037424 DOI: 10.1089/cell.2021.0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study examined the activity and function of pig OCT4 enhancer in porcine reprogramming cells. Dual fluorescent protein reporter systems controlled by the upstream regulatory region of OCT4, which is one of the master regulators for pluripotency, are widely used in studies of the mechanism of pluripotency. We analyzed how this reporter system functions in fibroblast growth factor (FGF)- or leukemia inhibitory factor (LIF)-dependent reprogrammed porcine pluripotent stem cells using the previously established porcine-specific reporter system. Porcine embryonic fibroblasts were coinfected with the pOCT4-ΔPE-eGFP (distal enhancer [DE]-green fluorescent protein [GFP]) and pOCT4-ΔDE-DsRed2 (proximal enhancer [PE]-red fluorescent protein [RFP]) vectors, and GFP and RFP expression were verified during a DOX-dependent reprogramming process. We demonstrated that the porcine OCT4 DE and PE were activated in different expression patterns simultaneously as changes in the expression of pluripotent marker genes during the establishment of porcine-induced pluripotent stem cells (iPSCs). Porcine OCT4 upstream region-derived dual fluorescent protein reporter systems confirmed that porcine iPSCs are in primed state after reprogramming in FGF2- or LIF-containing media. This work demonstrates the applicability of porcine OCT4 upstream region-derived dual fluorescence reporter system, which may be applied to investigations of species-specific pluripotency in porcine-origin cells. These reporter systems may be useful tools for studies of porcine-specific pluripotency, early embryo development, and embryonic stem cells.
Collapse
Affiliation(s)
- Seung-Hun Kim
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Kwang-Hwan Choi
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Mingyun Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Dong-Kyung Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea.,Designed Animal & Transplantation Research Institute, Institute of Green Bio Science and Technology, Seoul National University, Gangwon-do, Korea
| |
Collapse
|
6
|
Su Y, Zhu J, Salman S, Tang Y. Induced pluripotent stem cells from farm animals. J Anim Sci 2021; 98:5937369. [PMID: 33098420 DOI: 10.1093/jas/skaa343] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
The development of the induced pluripotent stem cells (iPSCs) technology has revolutionized the world on the establishment of pluripotent stem cells (PSCs) across a great variety of animal species. Generation of iPSCs from domesticated animals would provide unrestricted cell resources for the study of embryonic development and cell differentiation of these species, for screening and establishing desired traits for sustainable agricultural production, and as veterinary and preclinical therapeutic tools for animal and human diseases. Induced PSCs from domesticated animals thus harbor enormous scientific, economical, and societal values. Although much progress has been made toward the generation of PSCs from these species, major obstacles remain precluding the exclamation of the establishment of bona fide iPSCs. The most prominent of them remain the inability of these cells to silence exogenous reprogramming factors, the obvious reliance on exogenous factors for their self-renewal, and the restricted development potential in vivo. In this review, we summarize the history and current progress in domestic farm animal iPSC generation, with a focus on swine, ruminants (cattle, ovine, and caprine), horses, and avian species (quails and chickens). We also discuss the problems associated with the farm animal iPSCs and potential future directions toward the complete reprogramming of somatic cells from farm animals.
Collapse
Affiliation(s)
- Yue Su
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Jiaqi Zhu
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Saleh Salman
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Young Tang
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| |
Collapse
|
7
|
Scarfone RA, Pena SM, Russell KA, Betts DH, Koch TG. The use of induced pluripotent stem cells in domestic animals: a narrative review. BMC Vet Res 2020; 16:477. [PMID: 33292200 PMCID: PMC7722595 DOI: 10.1186/s12917-020-02696-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) are undifferentiated stem cells characterized by the ability to differentiate into any cell type in the body. iPSCs are a relatively new and rapidly developing technology in many fields of biology, including developmental anatomy and physiology, pathology, and toxicology. These cells have great potential in research as they are self-renewing and pluripotent with minimal ethical concerns. Protocols for their production have been developed for many domestic animal species, which have since been used to further our knowledge in the progression and treatment of diseases. This research is valuable both for veterinary medicine as well as for the prospect of translation to human medicine. Safety, cost, and feasibility are potential barriers for this technology that must be considered before widespread clinical adoption. This review will analyze the literature pertaining to iPSCs derived from various domestic species with a focus on iPSC production and characterization, applications for tissue and disease research, and applications for disease treatment.
Collapse
Affiliation(s)
- Rachel A Scarfone
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Samantha M Pena
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Keith A Russell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Dean H Betts
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Thomas G Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
8
|
Navarro M, Soto DA, Pinzon CA, Wu J, Ross PJ. Livestock pluripotency is finally captured in vitro. Reprod Fertil Dev 2020; 32:11-39. [PMID: 32188555 DOI: 10.1071/rd19272] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pluripotent stem cells (PSCs) have demonstrated great utility in improving our understanding of mammalian development and continue to revolutionise regenerative medicine. Thanks to the improved understanding of pluripotency in mice and humans, it has recently become feasible to generate stable livestock PSCs. Although it is unlikely that livestock PSCs will be used for similar applications as their murine and human counterparts, new exciting applications that could greatly advance animal agriculture are being developed, including the use of PSCs for complex genome editing, cellular agriculture, gamete generation and invitro breeding schemes.
Collapse
Affiliation(s)
- Micaela Navarro
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA
| | - Delia A Soto
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA
| | - Carlos A Pinzon
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Pablo J Ross
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA; and Corresponding author.
| |
Collapse
|
9
|
Transcriptomic profiling of porcine pluripotency identifies species-specific reprogramming requirements for culturing iPSCs. Stem Cell Res 2019; 41:101645. [DOI: 10.1016/j.scr.2019.101645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 10/09/2019] [Accepted: 10/30/2019] [Indexed: 12/23/2022] Open
|
10
|
Qiao S, Deng Y, Li S, Yang X, Shi D, Li X. Partially Reprogrammed Induced Pluripotent Stem Cells Using MicroRNA Cluster miR-302s in Guangxi Bama Minipig Fibroblasts. Cell Reprogram 2019; 21:229-237. [PMID: 31479283 DOI: 10.1089/cell.2019.0035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pig-induced pluripotent stem cells (piPSCs) have great potential application in regenerative medicine. The miR-302s cluster alone has been shown to reprogram mouse and human somatic cells into induced pluripotent stem cells (iPSCs) without exogenous transcription factors. However, miR-302s alone have not been reported to reprogram cells in large livestock. In this study, we induced pig somatic cells into partially reprogrammed piPSCs using overexpression of the miR-302s cluster (miR-302s-piPSC) and investigated the early reprogramming events during the miRNA induction process. The results showed that miR-302s-piPSCs exhibited some characteristics of pluripotent stem cells including expression of pluripotency markers-particularly, efficient activation of endogenous OCT4-and differentiation to the three germ layers in vitro. During the early reprogramming process, somatic cells first underwent epithelial-mesenchymal transition and then mesenchymal-epithelial transition to eventually form miR-302s-piPSCs. These data show, for the first time, that single factor miR-302s successfully induced pig somatic cells into miR-302s-piPSCs. This study provides a new tool and research direction for the induction of pluripotent stem cells in a large livestock.
Collapse
Affiliation(s)
- Shuye Qiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Sheng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Xiaoling Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Xiangping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| |
Collapse
|
11
|
Cong X, Zhang SM, Ellis MW, Luo J. Large Animal Models for the Clinical Application of Human Induced Pluripotent Stem Cells. Stem Cells Dev 2019; 28:1288-1298. [PMID: 31359827 DOI: 10.1089/scd.2019.0136] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) technology offers a practically infinite and ethically acceptable source to obtain a variety of somatic cells. Coupled with the biotechnologies of cell therapy or tissue engineering, iPSC technology will enormously contribute to human regenerative medicine. Before clinical application, such human iPSC (hiPSC)-based therapies should be assessed using large animal models that more closely match biological or biomechanical properties of human patients. Therefore, it is critical to generate large animal iPSCs, obtain their iPSC-derived somatic cells, and preclinically evaluate their therapeutic efficacy and safety in large animals. During the past decade, the establishment of iPSC lines of a series of large animal species has been documented, and the acquisition and preclinical evaluation of iPSC-derived somatic cells has also been reported. Despite this progress, significant obstacles, such as obtaining or preserving the bona fide pluripotency of large animal iPSCs, have been encountered. Simultaneously, studies of large animal iPSCs have been overlooked in comparison with those of mouse and hiPSCs, and this field deserves more attention and support due to its important preclinical relevance. Herein, this review will focus on the large animal models of pigs, dogs, horses, and sheep/goats, and summarize current progress, challenges, and potential future directions of research on large animal iPSCs.
Collapse
Affiliation(s)
- Xiaoqiang Cong
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut.,Department of Cardiology, Bethune First Hospital of Jilin University, Changchun, China
| | - Shang-Min Zhang
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Matthew W Ellis
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut.,Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Jiesi Luo
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut.,Yale Stem Cell Center, New Haven, Connecticut
| |
Collapse
|
12
|
Li D, Secher J, Hyttel P, Ivask M, Kolko M, Hall VJ, Freude KK. Generation of transgene-free porcine intermediate type induced pluripotent stem cells. Cell Cycle 2018; 17:2547-2563. [PMID: 30457474 DOI: 10.1080/15384101.2018.1548790] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Physiologically and anatomically, humans and pigs share many similarities, which make porcine induced pluripotent stem cells (piPSCs) very attractive for modeling human cell therapy as well as for testing safety of iPSC based cell replacement therapies. To date, several integrative and non-integrative strategies have been reported to successfully generate piPSCs, but all resulting piPSCs had integration of transgenes. The use of integrative methods has the disadvantage of potential lack of silencing or inappropriate re-activation of these genes during differentiation, as well as uncertainty regarding disruption of important genomic regions caused by integration. In our study, we performed a non-integrative vector based reprogramming approach using porcine fetal fibroblasts. The resulting four piPSC lines were positive for pluripotency marker and when subjected to in vitro and in vivo differentiation assays, all four lines formed embryoid bodies, capable to differentiate into all three germ layers, and three out of the four cell lines formed teratomas. PCR analysis on genomic and plasmid DNA revealed that the episomal vectors were undetectable in six out of eight subclones derived from one of the piPSC lines (piPSC1) above passage 20. These piPSCs could potentially be ideal cell lines for the generation of porcine in vitro and in vivo models. Furthermore, subsequent analyses of our new transgene independent piPSCs could provide novel insights on the genetic and epigenetic necessities to achieve and maintain piPSCs.
Collapse
Affiliation(s)
- Dong Li
- a Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Frederiksberg C , Denmark
| | - Jan Secher
- b Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Taastrup , Denmark
| | - Poul Hyttel
- a Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Frederiksberg C , Denmark
| | - Marilin Ivask
- c Institute of Biomedicine and Translational Medicine , University of Tartu , Tartu , Estonia.,d Institute of Veterinary Medicine and Animal Sciences , Estonian University of Life Sciences , Tartu , Estonia
| | - Miriam Kolko
- e Department of Drug Design and Pharmacology , University of Copenhagen , Copenhagen O , Denmark.,f Department of Ophthalmology , Rigshospital-Glostrup , Glostrup , Denmark
| | - Vanessa Jane Hall
- a Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Frederiksberg C , Denmark
| | - Kristine K Freude
- a Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Frederiksberg C , Denmark
| |
Collapse
|
13
|
Choi KH, Lee DK, Oh JN, Son HY, Lee CK. FGF2 Signaling Plays an Important Role in Maintaining Pluripotent State of Pig Embryonic Germ Cells. Cell Reprogram 2018; 20:301-311. [PMID: 30204498 DOI: 10.1089/cell.2018.0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Germ cells are alternative sources for deriving pluripotent stem cells. Because embryonic germ cells (EGCs) possess physiological and developmental features similar to those of embryonic stem cells, pig EGCs are considered a potential tool for generating transgenic animals for agricultural usage. Therefore, in this study, we attempted to establish and characterize pig EGCs from fetal gonads. EGC lines were derived from the genital ridges of porcine fetuses in media containing leukemia inhibitory factor (LIF), fibroblast growth factor 2 (FGF2), and stem cell factor. After establishment, these cells were cultured and stabilized in LIF- or FGF2-containing media. The cell lines were maintained under both conditions over an extended time period and spontaneously differentiated into the three germ layers in vitro. Interestingly, expression of pluripotency markers showed different patterns between cell lines cultured in LIF or FGF2. SSEA4 was only expressed in FGF2-treated pig EGCs (FGF2-pEGCs), not LIF-treated pig EGCs (LIF-pEGCs). Pluripotency genes were upregulated in FGF2-pEGCs, and germline markers were highly expressed, indicating that FGF2 supplements are more efficient in supporting the pluripotency of pEGCs. In conclusion, we verified that FGF2 signaling plays an important role in reprogramming and maintaining pEGCs from fetal gonads.
Collapse
Affiliation(s)
- Kwang-Hwan Choi
- 1 Animal Biotechnology Major, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University , Seoul, Korea
| | - Dong-Kyung Lee
- 1 Animal Biotechnology Major, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University , Seoul, Korea
| | - Jong-Nam Oh
- 1 Animal Biotechnology Major, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University , Seoul, Korea
| | - Hye-Young Son
- 2 Severance Biomedical Science Institute, Severance Hospital, Yonsei University College of Medicine , Seoul, Korea
| | - Chang-Kyu Lee
- 1 Animal Biotechnology Major, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University , Seoul, Korea.,3 Institute of Green Bio Science and Technology, Seoul National University , Pyeong Chang, Kangwon do, Korea
| |
Collapse
|
14
|
Saadeldin IM, Swelum AAA, Elsafadi M, Moumen AF, Alzahrani FA, Mahmood A, Alfayez M, Alowaimer AN. Isolation and characterization of the trophectoderm from the Arabian camel (Camelus dromedarius). Placenta 2017; 57:113-122. [PMID: 28863999 DOI: 10.1016/j.placenta.2017.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 12/12/2022]
Abstract
We isolated and characterized trophoblast from in vivo-derived camel embryos and compared with embryonic stem-like cells. Camel embryos were flushed on day 8 post-insemination and used to derive trophectoderm and embryonic stem-like cells under feeder-free culture conditions using a basement membrane matrix. Embryos were evaluated for the expression of POU5F1, MYC, KLF4, SOX2, CDX2, and KRT8 mRNA transcripts by relative quantitative polymerase chain reaction. Camel embryos grew and expanded to ∼4.5 mm and maintained their vesicular shape in vitro for 21 days post-insemination. Trophoblast and embryonic stem-like cell lines grew under feeder-free culture conditions and showed distinct morphological criteria and normal chromosomal counts. Embryonic stem-like cells showed positive staining in the alkaline phosphatase reaction. Trophoblast cells showed a significant increase in CDX2, KRT8, KLF4, and SOX2 expression compared with embryonic stem-like cells and whole embryos. Embryonic stem-like cells showed a significant decrease in CDX2 expression and increase in SOX2 and KRT8 expression compared to embryonic expression. POU5F1 and MYC expression showed no difference between embryos and both cell lines. We characterized embryo survival in vitro, particularly the derivation of trophectoderm and embryonic stem-like cells, providing a foundation for further analysis of early embryonic development and placentation in camels.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt.
| | - Ayman Abdel-Aziz Swelum
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia; Department of Theriogeneology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Mona Elsafadi
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F Moumen
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Faisal A Alzahrani
- Department of Biological Sciences, Rabigh College of Science and Arts, King Abdulaziz University, Rabigh Branch, Rabigh 21911, Saudi Arabia
| | - Amer Mahmood
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Musaad Alfayez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah N Alowaimer
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
15
|
DNA repair and replication links to pluripotency and differentiation capacity of pig iPS cells. PLoS One 2017; 12:e0173047. [PMID: 28253351 PMCID: PMC5333863 DOI: 10.1371/journal.pone.0173047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/14/2017] [Indexed: 01/05/2023] Open
Abstract
Pigs are proposed to be suitable large animal models for test of the efficacy and safety of induced pluripotent stem cells (iPSCs) for stem cell therapy, but authentic pig ES/iPS cell lines with germline competence are rarely produced. The pathways or signaling underlying the defective competent pig iPSCs remain poorly understood. By improving induction conditions using various small chemicals, we generated pig iPSCs that exhibited high pluripotency and differentiation capacity that can contribute to chimeras. However, their potency was reduced with increasing passages by teratoma formation test, and correlated with declined expression levels of Rex1, an important marker for naïve state. By RNA-sequencing analysis, genes related to WNT signaling were upregulated and MAPK signaling and TGFβ pathways downregulated in pig iPSCs compared to fibroblasts, but they were abnormally expressed during passages. Notably, pathways involving in DNA repair and replication were upregulated at early passage, but downregulated in iPSCs during prolonged passage in cluster with fibroblasts. Our data suggests that reduced DNA repair and replication capacity links to the instability of pig iPSCs. Targeting these pathways may facilitate generation of truly pluripotent pig iPSCs, with implication in translational studies.
Collapse
|
16
|
Yang F, Wang N, Wang Y, Yu T, Wang H. Activin-SMAD signaling is required for maintenance of porcine iPS cell self-renewal through upregulation of NANOG and OCT4 expression. J Cell Physiol 2017; 232:2253-2262. [PMID: 27996082 DOI: 10.1002/jcp.25747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/17/2016] [Accepted: 12/19/2016] [Indexed: 12/25/2022]
Abstract
Porcine induced pluripotent stem cells (piPSCs) retain the enormous potential for farm animal reproduction and translational medicine, and have been reported by many laboratories worldwide. Some piPSC lines were bFGF-dependence and showed mouse EpiSC-like morphology; other lines were LIF-dependence and showed mouse ESC-like morphology. Metastable state of piPSC line that required both LIF and bFGF was also reported. Because bona fide pig embryonic stem cells were not available, uncovering piPSC state-specific regulatory circuitries was the most important task. In this study, we explored the function of Activin-SMAD signaling pathway and its downstream activated target genes in piPSCs. Transcriptome analysis showed that genes involved in Activin-SMAD signaling pathway were evidently activated during porcine somatic cell reprogramming, regardless piPSCs were LIF- or bFGF-dependent. Addition of Activin A and overexpression of SMAD2/3 significantly promoted expressions of porcine NANOG and OCT4, whereas inhibition of Activin-SMAD signaling by SB431542 and SMAD7 reduced NANOG and OCT4 expressions, and induced piPSCs differentiation exiting from pluripotent state. Our data demonstrate that activation of Activin-SMAD signaling pathway by addition of Activin A in culture medium is necessary for maintenance of self-renewal in porcine pluripotent stem cells.
Collapse
Affiliation(s)
- Fan Yang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ning Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaxian Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong Yu
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Huayan Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
17
|
Mao J, Zhang Q, Deng W, Wang H, Liu K, Fu H, Zhao Q, Wang X, Liu L. Epigenetic Modifiers Facilitate Induction and Pluripotency of Porcine iPSCs. Stem Cell Reports 2016; 8:11-20. [PMID: 28041878 PMCID: PMC5233437 DOI: 10.1016/j.stemcr.2016.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 11/27/2016] [Accepted: 11/28/2016] [Indexed: 12/11/2022] Open
Abstract
Inadequate silencing of exogenous genes represents a major obstacle to complete epigenetic reprogramming of porcine-induced pluripotent stem cells (piPSCs) by conventional pluripotency transcription factors (OSKM). We tested the hypothesis that epigenetic modification by active DNA or histone demethylation or by inhibition of histone deacetylase would enhance reprogramming and exogenous gene silencing in piPSCs. piPSCs induced by OSKM in combination with epigenetic factors, specifically Ten-Eleven Translocation (Tet1 or Tet3) or lysine (K)-specific demethylase 3A (Kdm3a), expressed higher levels of Rex1 and other genes representing naive state and exhibited more open chromatin status, compared with those of OSKM controls. Tet1 also improved differentiation capacity. Conversion with inhibitors of histone deacetylases (HDACi), NaB, TSA, or VPA, further increased Rex1 expression, while decreasing expression of exogenous genes. piPSCs induced by Tet1+OSKM followed by conversion with HDACi show high pluripotency. Together, epigenetic modifiers enhance generation of piPSCs and reduce their reliance on exogenous genes. Epigenetic modifiers facilitate induction and quality of porcine iPSCs Tet1, Tet3, or Kdm3a increases naive pluripotency network in association with Rex1 Unlike cytoplasmic Rex1, nuclear expression of Rex1 is associated with high pluripotency HDAC inhibitors further activate Rex1 and reduce reliance on the exogenous genes
Collapse
Affiliation(s)
- Jian Mao
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qian Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wei Deng
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hua Wang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Kai Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Haifeng Fu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xumin Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
18
|
Song H, Li H, Huang M, Xu D, Wang Z, Wang F. Big Animal Cloning Using Transgenic Induced Pluripotent Stem Cells: A Case Study of Goat Transgenic Induced Pluripotent Stem Cells. Cell Reprogram 2016; 18:37-47. [PMID: 26836033 DOI: 10.1089/cell.2015.0035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Using of embryonic stem cells (ESCs) could improve production traits and disease resistance by improving the efficiency of somatic cell nuclear transfer (SCNT) technology. However, robust ESCs have not been established from domestic ungulates. In the present study, we generated goat induced pluripotent stem cells (giPSCs) and transgenic cloned dairy goat induced pluripotent stem cells (tgiPSCs) from dairy goat fibroblasts (gFs) and transgenic cloned dairy goat fibroblasts (tgFs), respectively, using lentiviruses that contained hOCT4, hSOX2, hMYC, and hKLF4 without chemical compounds. The giPSCs and tgiPSCs expressed endogenous pluripotent markers, including OCT4, SOX2, MYC, KLF4, and NANOG. Moreover, they were able to maintain a normal karyotype and differentiate into derivatives from all three germ layers in vitro and in vivo. Using SCNT, tgFs and tgiPSCs were used as donor cells to produce embryos, which were named tgF-Embryos and tgiPSC-Embryos. The fusion rates and cleavage rates had no significant differences between tgF-Embryos and tgiPSC-Embryos. However, the expression of IGF-2, which is an important gene associated with embryonic development, was significantly lower in tgiPSC-Embryos than in tgF-Embryos and was not significantly different from vivo-Embryos.
Collapse
Affiliation(s)
- Hui Song
- 1 Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University , Nanjing, 210095, P.R. China .,2 Department of Medical Genetic and Cell Biology, Ningxia Medical University , Yinchuan, 750004, China
| | - Hui Li
- 1 Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University , Nanjing, 210095, P.R. China .,2 Department of Medical Genetic and Cell Biology, Ningxia Medical University , Yinchuan, 750004, China
| | - Mingrui Huang
- 1 Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University , Nanjing, 210095, P.R. China
| | - Dan Xu
- 3 Stanford University School of Medicine , Stanford, CA, 94305
| | - Ziyu Wang
- 1 Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University , Nanjing, 210095, P.R. China
| | - Feng Wang
- 1 Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University , Nanjing, 210095, P.R. China
| |
Collapse
|
19
|
Choi KH, Park JK, Son D, Hwang JY, Lee DK, Ka H, Park J, Lee CK. Reactivation of Endogenous Genes and Epigenetic Remodeling Are Barriers for Generating Transgene-Free Induced Pluripotent Stem Cells in Pig. PLoS One 2016; 11:e0158046. [PMID: 27336671 PMCID: PMC4918974 DOI: 10.1371/journal.pone.0158046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/09/2016] [Indexed: 12/22/2022] Open
Abstract
Cellular reprogramming of committed cells into a pluripotent state can be induced by ectopic expression of genes such as OCT4, SOX2, KLF4, and MYC. Reprogrammed cells can be maintained by activating endogenous pluripotent networks without transgene expression. Although various research groups have attempted to generate pig induced pluripotent stem cells (iPSCs), authentic iPSCs have not be obtained, instead showing dependence on transgene expression. In this study, iPSCs were derived from porcine fetal fibroblasts via drug-inducible vectors carrying human transcription factors (OCT4, SOX2, KLF4, and MYC). Therefore, this study investigated characteristics of iPSCs and reprogramming mechanisms in pig. The iPSCs were stably maintained over an extended period with potential in vitro differentiation into three germ layers. In addition, the pluripotent state of iPSCs was regulated by modulating culture conditions. They showed naive- or primed-like pluripotent states in LIF or bFGF supplemented culture conditions, respectively. However, iPSCs could not be maintained without ectopic expression of transgenes. The cultured iPSCs expressed endogenous transcription factors such as OCT4 and SOX2, but not NANOG (a known gateway to complete reprogramming). Endogenous genes related to mesenchymal-to-epithelial transition (DPPA2, CDH1, EPCAM, and OCLN) were not sufficiently reactivated, as measured by qPCR. DNA methylation analysis for promoters of OCT4, NANOG, and XIST showed that epigenetic reprogramming did not occur in female iPSCs. Based on our results, expression of exogenous genes could not sufficiently activate the essential endogenous genes and remodel the epigenetic milieu to achieve faithful pluripotency in pig. Accordingly, investigating iPSCs could help us improve and develop reprogramming methods by understanding reprogramming mechanisms in pig.
Collapse
Affiliation(s)
- Kwang-Hwan Choi
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Jin-Kyu Park
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Dongchan Son
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Jae Yeon Hwang
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Dong-Kyung Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Hakhyun Ka
- Department of Biological Resources and Technology, Yonsei University, Wonju, Korea
| | | | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
- Institute of Green Bio Science and Technology, Seoul National University, Pyeong Chang, Kangwon do, Korea
- * E-mail:
| |
Collapse
|
20
|
Park KM, Lee J, Hussein KH, Hong SH, Yang SR, Lee E, Woo HM. Generation of liver-specific TGF-α/c-Myc-overexpressing porcine induced pluripotent stem-like cells and blastocyst formation using nuclear transfer. J Vet Med Sci 2016; 78:709-13. [PMID: 26725870 PMCID: PMC4873867 DOI: 10.1292/jvms.15-0363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Transgenic porcine induced pluripotent stem (iPS) cells are attractive cell sources for
the development of genetically engineered pig models, because they can be expanded without
senescence and have the potential for multiple gene manipulation. They are also useful
cell sources for disease modeling and treatment. However, the generation of transgenic
porcine iPS cells is rare, and their embryonic development after nuclear transfer (NT) has
not yet been reported. We report here the generation of liver-specific oncogenes
(TGF-α/c-Myc)-overexpressing porcine iPS (T/M iPS)-like cells. They
expressed stem cell characteristics and were differentiated into hepatocyte-like cells
that express oncogenes. We also confirmed that NT embryos derived from T/M iPS-like cells
successfully developed blastocysts in vitro. As an initial approach
toward porcine transgenic iPS cell generation and their developmental competence after NT,
this study provides foundations for the efficient generation of genetically modified
porcine iPS cells and animal models.
Collapse
Affiliation(s)
- Kyung-Mee Park
- Stem Cell Institute-KNU, Kangwon National University, Chuncheon, 200-701, Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Ogorevc J, Orehek S, Dovč P. Cellular reprogramming in farm animals: an overview of iPSC generation in the mammalian farm animal species. J Anim Sci Biotechnol 2016; 7:10. [PMID: 26900466 PMCID: PMC4761155 DOI: 10.1186/s40104-016-0070-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/11/2016] [Indexed: 12/19/2022] Open
Abstract
Establishment of embryonic stem cell (ESC) lines has been successful in mouse and human, but not in farm animals. Development of direct reprogramming technology offers an alternative approach for generation of pluripotent stem cells, applicable also in farm animals. Induced pluripotent stem cells (iPSCs) represent practically limitless, ethically acceptable, individuum-specific source of pluripotent cells that can be generated from different types of somatic cells. iPSCs can differentiate to all cell types of an organism’s body and have a tremendous potential for numerous applications in medicine, agriculture, and biotechnology. However, molecular mechanisms behind the reprogramming process remain largely unknown and hamper generation of bona fide iPSCs and their use in human clinical practice. Large animal models are essential to expand the knowledge obtained on rodents and facilitate development and validation of transplantation therapies in preclinical studies. Additionally, transgenic animals with special traits could be generated from genetically modified pluripotent cells, using advanced reproduction techniques. Despite their applicative potential, it seems that iPSCs in farm animals haven’t received the deserved attention. The aim of this review was to provide a systematic overview on iPSC generation in the most important mammalian farm animal species (cattle, pig, horse, sheep, goat, and rabbit), compare protein sequence similarity of pluripotency-related transcription factors in different species, and discuss potential uses of farm animal iPSCs. Literature mining revealed 32 studies, describing iPSC generation in pig (13 studies), cattle (5), horse (5), sheep (4), goat (3), and rabbit (2) that are summarized in a concise, tabular format.
Collapse
Affiliation(s)
- J Ogorevc
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - S Orehek
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - P Dovč
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| |
Collapse
|
22
|
Pluripotent stem cells and livestock genetic engineering. Transgenic Res 2016; 25:289-306. [PMID: 26894405 DOI: 10.1007/s11248-016-9929-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/06/2016] [Indexed: 01/12/2023]
Abstract
The unlimited proliferative ability and capacity to contribute to germline chimeras make pluripotent embryonic stem cells (ESCs) perfect candidates for complex genetic engineering. The utility of ESCs is best exemplified by the numerous genetic models that have been developed in mice, for which such cells are readily available. However, the traditional systems for mouse genetic engineering may not be practical for livestock species, as it requires several generations of mating and selection in order to establish homozygous founders. Nevertheless, the self-renewal and pluripotent characteristics of ESCs could provide advantages for livestock genetic engineering such as ease of genetic manipulation and improved efficiency of cloning by nuclear transplantation. These advantages have resulted in many attempts to isolate livestock ESCs, yet it has been generally concluded that the culture conditions tested so far are not supportive of livestock ESCs self-renewal and proliferation. In contrast, there are numerous reports of derivation of livestock induced pluripotent stem cells (iPSCs), with demonstrated capacity for long term proliferation and in vivo pluripotency, as indicated by teratoma formation assay. However, to what extent these iPSCs represent fully reprogrammed PSCs remains controversial, as most livestock iPSCs depend on continuous expression of reprogramming factors. Moreover, germline chimerism has not been robustly demonstrated, with only one successful report with very low efficiency. Therefore, even 34 years after derivation of mouse ESCs and their extensive use in the generation of genetic models, the livestock genetic engineering field can stand to gain enormously from continued investigations into the derivation and application of ESCs and iPSCs.
Collapse
|
23
|
Hansel MC, Davila JC, Vosough M, Gramignoli R, Skvorak KJ, Dorko K, Marongiu F, Blake W, Strom SC. The Use of Induced Pluripotent Stem Cells for the Study and Treatment of Liver Diseases. ACTA ACUST UNITED AC 2016; 67:14.13.1-14.13.27. [PMID: 26828329 DOI: 10.1002/0471140856.tx1413s67] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Liver disease is a major global health concern. Liver cirrhosis is one of the leading causes of death in the world and currently the only therapeutic option for end-stage liver disease (e.g., acute liver failure, cirrhosis, chronic hepatitis, cholestatic diseases, metabolic diseases, and malignant neoplasms) is orthotropic liver transplantation. Transplantation of hepatocytes has been proposed and used as an alternative to whole organ transplant to stabilize and prolong the lives of patients in some clinical cases. Although these experimental therapies have demonstrated promising and beneficial results, their routine use remains a challenge due to the shortage of donor livers available for cell isolation, variable quality of those tissues, the potential need for lifelong immunosuppression in the transplant recipient, and high costs. Therefore, new therapeutic strategies and more reliable clinical treatments are urgently needed. Recent and continuous technological advances in the development of stem cells suggest they may be beneficial in this respect. In this review, we summarize the history of stem cell and induced pluripotent stem cell (iPSC) technology in the context of hepatic differentiation and discuss the potential applications the technology may offer for human liver disease modeling and treatment. This includes developing safer drugs and cell-based therapies to improve the outcomes of patients with currently incurable health illnesses. We also review promising advances in other disease areas to highlight how the stem cell technology could be applied to liver diseases in the future. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Marc C Hansel
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania
| | - Julio C Davila
- Department of Biochemistry, University of Puerto Rico School of Medicine, Medical Sciences Campus, San Juan, Puerto Rico
| | - Massoud Vosough
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kristen J Skvorak
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kenneth Dorko
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, Kansas
| | - Fabio Marongiu
- Department of Biomedical Sciences, Section of Experimental Pathology, Unit of Experimental Medicine, University of Cagliari, Cagliari, Italy
| | - William Blake
- Genetically Modified Models Center of Emphasis, Pfizer, Groton, Connecticut
| | - Stephen C Strom
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania.,Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Abstract
This review deals with the latest advances in the study of embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) from domesticated species, with a focus on pigs, cattle, sheep, goats, horses, cats, and dogs. Whereas the derivation of fully pluripotent ESC from these species has proved slow, reprogramming of somatic cells to iPSC has been more straightforward. However, most of these iPSC depend on the continued expression of the introduced transgenes, a major drawback to their utility. The persistent failure in generating ESC and the dependency of iPSC on ectopic genes probably stem from an inability to maintain the stability of the endogenous gene networks necessary to maintain pluripotency. Based on work in humans and rodents, achievement of full pluripotency will likely require fine adjustments in the growth factors and signaling inhibitors provided to the cells. Finally, we discuss the future utility of these cells for biomedical and agricultural purposes.
Collapse
Affiliation(s)
- Toshihiko Ezashi
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211; , ,
| | - Ye Yuan
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211; , ,
| | - R Michael Roberts
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211; , ,
| |
Collapse
|
25
|
Two Effective Routes for Removing Lineage Restriction Roadblocks: From Somatic Cells to Hepatocytes. Int J Mol Sci 2015; 16:20873-95. [PMID: 26340624 PMCID: PMC4613233 DOI: 10.3390/ijms160920873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022] Open
Abstract
The conversion of somatic cells to hepatocytes has fundamentally re-shaped traditional concepts regarding the limited resources for hepatocyte therapy. With the various induced pluripotent stem cell (iPSC) generation routes, most somatic cells can be effectively directed to functional stem cells, and this strategy will supply enough pluripotent material to generate promising functional hepatocytes. However, the major challenges and potential applications of reprogrammed hepatocytes remain under investigation. In this review, we provide a summary of two effective routes including direct reprogramming and indirect reprogramming from somatic cells to hepatocytes and the general potential applications of the resulting hepatocytes. Through these approaches, we are striving toward the goal of achieving a robust, mature source of clinically relevant lineages.
Collapse
|
26
|
Koh S, Piedrahita JA. From "ES-like" cells to induced pluripotent stem cells: a historical perspective in domestic animals. Theriogenology 2014; 81:103-11. [PMID: 24274415 DOI: 10.1016/j.theriogenology.2013.09.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/05/2013] [Accepted: 09/05/2013] [Indexed: 01/10/2023]
Abstract
Pluripotent stem cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) provide great potential as cell sources for gene editing to generate genetically modified animals, as well as in the field of regenerative medicine. Stable, long-term ESCs have been established in laboratory mouse and rat; however, isolation of true pluripotent ESCs in domesticated animals such as pigs and dogs have been less successful. Initially, domesticated animal pluripotent cell lines were referred to as "embryonic stem-like" cells owing to their similar morphologic characteristics to mouse ESCs, but accompanied by a limited ability to proliferate in vitro in an undifferentiated state. That is, they shared some but not all the characteristics of true ESCs. More recently, advances in reprogramming using exogenous transcription factors, combined with the utilization of small chemical inhibitors of key biochemical pathways, have led to the isolation of iPSCs. In this review, we provide a historical perspective of the isolation of various types of pluripotent stem cells in domesticated animals. In addition, we summarize the latest progress and limitations in the derivation and application of iPSCs.
Collapse
Affiliation(s)
- Sehwon Koh
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, USA; Genomics Program, North Carolina State University, Raleigh, North Carolina, USA
| | | |
Collapse
|
27
|
Generation of Intermediate Porcine iPS Cells Under Culture Condition Favorable for Mesenchymal-to-Epithelial Transition. Stem Cell Rev Rep 2014; 11:24-38. [DOI: 10.1007/s12015-014-9552-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Park KE, Telugu BPVL. Role of stem cells in large animal genetic engineering in the TALENs-CRISPR era. Reprod Fertil Dev 2014; 26:65-73. [PMID: 24305178 DOI: 10.1071/rd13258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The establishment of embryonic stem cells (ESCs) and gene targeting technologies in mice has revolutionised the field of genetics. The relative ease with which genes can be knocked out, and exogenous sequences introduced, has allowed the mouse to become the prime model for deciphering the genetic code. Not surprisingly, the lack of authentic ESCs has hampered the livestock genetics field and has forced animal scientists into adapting alternative technologies for genetic engineering. The recent discovery of the creation of induced pluripotent stem cells (iPSCs) by upregulation of a handful of reprogramming genes has offered renewed enthusiasm to animal geneticists. However, much like ESCs, establishing authentic iPSCs from the domestic animals is still beset with problems, including (but not limited to) the persistent expression of reprogramming genes and the lack of proven potential for differentiation into target cell types both in vitro and in vivo. Site-specific nucleases comprised of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regulated interspaced short palindromic repeats (CRISPRs) emerged as powerful genetic tools for precisely editing the genome, usurping the need for ESC-based genetic modifications even in the mouse. In this article, in the aftermath of these powerful genome editing technologies, the role of pluripotent stem cells in livestock genetics is discussed.
Collapse
Affiliation(s)
- Ki-Eun Park
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
29
|
Dolezalova D, Hruska-Plochan M, Bjarkam CR, Sørensen JCH, Cunningham M, Weingarten D, Ciacci JD, Juhas S, Juhasova J, Motlik J, Hefferan MP, Hazel T, Johe K, Carromeu C, Muotri A, Bui J, Strnadel J, Marsala M. Pig models of neurodegenerative disorders: Utilization in cell replacement-based preclinical safety and efficacy studies. J Comp Neurol 2014; 522:2784-801. [DOI: 10.1002/cne.23575] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Dasa Dolezalova
- Department of Anesthesiology; University of California; San Diego La Jolla CA USA
| | | | - Carsten R. Bjarkam
- Department of Neurosurgery; Aalborg University Hospital; Aalborg Denmark
- Department of Biomedicine; Institute of Anatomy, University of Aarhus; Aarhus Denmark
| | | | - Miles Cunningham
- MRC 312, McLean Hospital, Harvard Medical School; Belmont MA 02478 USA
| | - David Weingarten
- UCSD Division of Neurosurgery; University of California; San Diego CA USA
| | - Joseph D. Ciacci
- UCSD Division of Neurosurgery; University of California; San Diego CA USA
| | - Stefan Juhas
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences; 277 21 Libechov Czech Republic
| | - Jana Juhasova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences; 277 21 Libechov Czech Republic
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences; 277 21 Libechov Czech Republic
| | | | | | | | - Cassiano Carromeu
- Department of Cellular and Molecular Medicine; University of California; San Diego CA USA
| | - Alysson Muotri
- Department of Cellular and Molecular Medicine; University of California; San Diego CA USA
| | - Jack Bui
- Department of Pathology; University of California; San Diego CA USA
| | - Jan Strnadel
- Department of Pathology; University of California; San Diego CA USA
| | - Martin Marsala
- Department of Anesthesiology; University of California; San Diego La Jolla CA USA
- Institute of Neurobiology, Slovak Academy of Sciences; Kosice Slovakia
| |
Collapse
|
30
|
Sharma R, Livesey MR, Wyllie DJA, Proudfoot C, Whitelaw CBA, Hay DC, Donadeu FX. Generation of functional neurons from feeder-free, keratinocyte-derived equine induced pluripotent stem cells. Stem Cells Dev 2014; 23:1524-34. [PMID: 24548115 DOI: 10.1089/scd.2013.0565] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pluripotent stem cells (PSCs) offer unprecedented biomedical potential not only in relation to humans but also companion animals, particularly the horse. Despite this, attempts to generate bona fide equine embryonic stem cells have been unsuccessful. A very limited number of induced PSC lines have so far been generated from equine fibroblasts but their potential for directed differentiation into clinically relevant tissues has not been explored. In this study, we used retroviral vectors to generate induced pluripotent stem cells (iPSCs) with comparatively high efficiency from equine keratinocytes. Expression of endogenous PSC markers (OCT4, SOX2, LIN28, NANOG, DNMT3B, and REX1) was effectively restored in these cells, which could also form in vivo several tissue derivatives of the three germ layers, including functional neurons, keratinized epithelium, cartilage, bone, muscle, and respiratory and gastric epithelia. Comparative analysis of different reprogrammed cell lines revealed an association between the ability of iPSCs to form well-differentiated teratomas and the distinct endogenous expression of OCT4 and REX1 and reduced expression of viral transgenes. Importantly, unlike in previous studies, equine iPSCs were successfully expanded using simplified feeder-free culture conditions, constituting significant progress toward future biomedical applications. Further, under appropriate conditions equine iPSCs generated cells with features of cholinergic motor neurons including the ability to generate action potentials, providing the first report of functional cells derived from equine iPSCs. The ability to derive electrically active neurons in vitro from a large animal reveals highly conserved pathways of differentiation across species and opens the way for new and exciting applications in veterinary regenerative medicine.
Collapse
Affiliation(s)
- Ruchi Sharma
- 1 The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh , Midlothian, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
31
|
Efficient reprogramming of naïve-like induced pluripotent stem cells from porcine adipose-derived stem cells with a feeder-independent and serum-free system. PLoS One 2014; 9:e85089. [PMID: 24465482 PMCID: PMC3896366 DOI: 10.1371/journal.pone.0085089] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 11/22/2013] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) are somatic cells reprogrammed by ectopic expression of transcription factors or small molecule treatment, which resemble embryonic stem cells (ESCs). They hold great promise for improving the generation of genetically modified large animals. However, few porcine iPSCs (piPSCs) lines obtained currently can support development of cloned embryos. Here, we generated iPSCs from porcine adipose-derived stem cells (pADSCs), using drug-inducible expression of defined human factors (Oct4, Sox2, c-Myc and Klf4). Reprogramming of iPSCs from pADSCs was more efficient than from fibroblasts, regardless of using feeder-independent or feeder-dependent manners. By addition of Lif-2i medium containing mouse Lif, CHIR99021 and PD0325901 (Lif-2i), naïve-like piPSCs were obtained under feeder-independent and serum-free conditions. These successfully reprogrammed piPSCs were characterized by short cell cycle intervals, alkaline phosphatase (AP) staining, expression of Oct4, Sox2, Nanog, SSEA3 and SSEA4, and normal karyotypes. The resemblance of piPSCs to naïve ESCs was confirmed by their packed dome morphology, growth after single-cell dissociation, Lif-dependency, up-regulation of Stella and Eras, low expression levels of TRA-1-60, TRA-1-81 and MHC I and activation of both X chromosomes. Full reprogramming of naïve-like piPSCs was evaluated by the significant up-regulation of Lin28, Esrrb, Utf1 and Dppa5, differentiating into cell types of all three germ layers in vitro and in vivo. Furthermore, nuclear transfer embryos from naïve-like piPSCs could develop to blastocysts with improved quality. Thus, we provided an efficient protocol for generating naïve-like piPSCs from pADSCs in a feeder-independent and serum-free system with controlled regulation of exogenous genes, which may facilitate optimization of culture media and the production of transgenic pigs.
Collapse
|
32
|
Song H, Li H, Huang M, Xu D, Gu C, Wang Z, Dong F, Wang F. Induced pluripotent stem cells from goat fibroblasts. Mol Reprod Dev 2013; 80:1009-17. [PMID: 24123501 DOI: 10.1002/mrd.22266] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/27/2013] [Indexed: 01/06/2023]
Abstract
Embryonic stem cells (ESCs) are a powerful model for genetic engineering, studying developmental biology, and modeling disease. To date, ESCs have been established from the mouse (Evans and Kaufman, 1981, Nature 292:154-156), non-human primates (Thomson et al., , Proc Nat Acad Sci USA 92:7844-7848), humans (Thomson et al., 1998, Science 282:1145-1147), and rats (Buehr et al., , Cell 135:1287-1298); however, the derivation of ESCs from domesticated ungulates such as goats, sheep, cattle, and pigs have not been successful. Alternatively, induced pluripotent stem cells (iPSCs) can be generated by reprogramming somatic cells with several combinations of genes encoding transcription factors (OCT3/4, SOX2, KLF4, cMYC, LIN28, and NANOG). To date, iPSCs have been isolated from various species, but only limited information is available regarding goat iPSCs (Ren et al., 2011, Cell Res 21:849-853). The objectives of this study were to generate goat iPSCs from fetal goat primary ear fibroblasts using lentiviral transduction of four human transcription factors: OCT4, SOX2, KLF4, and cMYC. The goat iPSCs were successfully generated by co-culture with mitomycin C-treated mouse embryonic fibroblasts using medium supplemented with knockout serum replacement and human basic fibroblast growth factor. The goat iPSCs colonies are flat, compact, and closely resemble human iPSCs. They have a normal karyotype; stain positive for alkaline phosphatase, OCT4, and NANOG; express endogenous pluripotency genes (OCT4, SOX2, cMYC, and NANOG); and can spontaneously differentiate into three germ layers in vitro and in vivo.
Collapse
Affiliation(s)
- Hui Song
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University, Nanjing, People's Republic of China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Gao Y, Guo Y, Duan A, Cheng D, Zhang S, Wang H. Optimization of culture conditions for maintaining porcine induced pluripotent stem cells. DNA Cell Biol 2013; 33:1-11. [PMID: 24256201 DOI: 10.1089/dna.2013.2095] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ground state porcine induced pluripotent stem cells (piPSCs), which retain the potential to generate chimeric animal and germline transmission, are difficult to produce. This study investigated morphological and biological progression at the early stage of porcine somatic cell reprogramming, and explored suitable conditions to increase the induction efficiency of piPSCs. A cocktail of defined transcription factors was used to generate piPSCs. The amphotropic retrovirus, which carried human OCT4 (O), SOX2 (S), KLF4 (K), C-MYC (M), TERT (T), and GFP, were used to infect porcine embryonic fibroblasts (PEFs). The number of clones derived from OSKM (4F) and OSKMT (4F+T) was significantly higher than that from SKM (3F) and SKMT (3F+T), suggesting that OCT4 played a critical role in regulating porcine cell reprogramming. The number of alkaline phosphatase-positive clones from a medium with leukemia inhibitory factor (LIF) and basic fibroblast growth factor (bFGF) (M1 medium) was significantly higher than that with insulin and 2i PD0325901/CHIR99021 (M2 medium), indicating that insulin and 2i could not effectively maintain piPSC propagation. In the M1 medium, piPSC lines could not maintain the typical self-renewal morphology on gelatin-coated and Matrigel-coated plates. Without the mouse embryonic fibroblast (MEF) feeder, piPSCs started to simultaneously differentiate. Based on the potential for self-renewal and activation of pluripotent markers, we found that the culture condition of 4F+T plus LIF and bFGF plus MEF feeder promoted PEF reprogramming more efficiently than the other conditions tested here. Two piPSC lines (IB-1 and IB-2) were derived and maintained for up to 20 passages in vitro.
Collapse
Affiliation(s)
- Yi Gao
- Department of Animal Biotechnology, College of Veterinary Medicine , Northwest A&F University, Yangling, Shaanxi, China
| | | | | | | | | | | |
Collapse
|
34
|
Androgen receptor-mediated apoptosis in bovine testicular induced pluripotent stem cells in response to phthalate esters. Cell Death Dis 2013; 4:e907. [PMID: 24201806 PMCID: PMC3847308 DOI: 10.1038/cddis.2013.420] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 09/09/2013] [Accepted: 09/24/2013] [Indexed: 12/26/2022]
Abstract
The androgen receptor (AR) has a critical role in promoting androgen-dependent and -independent apoptosis in testicular cells. However, the molecular mechanisms that underlie the ligand-independent apoptosis, including the activity of AR in testicular stem cells, are not completely understood. In the present study, we generated induced pluripotent stem cells (iPSCs) from bovine testicular cells by electroporation of octamer-binding transcription factor 4 (OCT4). The cells were supplemented with leukemia inhibitory factor and bone morphogenetic protein 4, which maintained and stabilized the expression of stemness genes and pluripotency. The iPSCs were used to assess the apoptosis activity following exposure to phthalate esters, including di (2-ethyhexyl) phthalates, di (n-butyl) phthalate, and butyl benzyl phthalate. Phthalate esters significantly reduced the expression of AR in iPSCs and induced a higher ratio of BAX/BCL-2, thereby favoring apoptosis. Phthalate esters also increased the expression of cyclin-dependent kinase inhibitor 1 (p21Cip1) in a p53-dependent manner and enhanced the transcriptional activity of p53. The forced expression of AR and knockdown of p21Cip1 led to the rescue of the phthalate-mediated apoptosis. Overall, this study suggests that testicular iPSCs are a useful system for screening the toxicity of environmental disruptors and examining their effect on the maintenance of stemness and pluripotency, as well as for identifying the iPSC signaling pathway(s) that are deregulated by these chemicals.
Collapse
|
35
|
Cebrian-Serrano A, Stout T, Dinnyes A. Veterinary applications of induced pluripotent stem cells: regenerative medicine and models for disease? Vet J 2013; 198:34-42. [PMID: 24129109 DOI: 10.1016/j.tvjl.2013.03.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/24/2013] [Accepted: 03/26/2013] [Indexed: 01/12/2023]
Abstract
Induced pluripotent stem cells (iPSCs) can now be derived from a tissue biopsy and represent a promising new platform for disease modelling, drug and toxicity testing, biomarker development and cell-based therapies for regenerative medicine. In regenerative medicine, large animals may represent the best models for man, and thereby provide invaluable systems in which to test the safety and the potential of iPSCs. Hence, testing iPSCs in veterinary species may serve a double function, namely, developing therapeutic products for regenerative medicine in veterinary patients while providing valuable background information for human clinical trials. The production of iPSCs from livestock or wild species is attractive because it could improve efficiency and reduce costs in various fields, such as transgenic animal generation and drug development, preservation of biological diversity, and because it also offers an alternative to xenotransplantation for in vivo generation of organs. Although the technology of cellular reprogramming using the so-called 'Yamanaka factors' is in its peak expectation phase and many concerns still need to be addressed, the rapid technical progress suggests that iPSCs could contribute significantly to novel therapies in veterinary and biomedical practice in the near future. This review provides an overview of the potential applications of iPSCs in veterinary medicine.
Collapse
|
36
|
Reprogramming of Pig Dermal Fibroblast into Insulin Secreting Cells by a Brief Exposure to 5-aza-cytidine. Stem Cell Rev Rep 2013; 10:31-43. [DOI: 10.1007/s12015-013-9477-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Ye L, Swingen C, Zhang J. Induced pluripotent stem cells and their potential for basic and clinical sciences. Curr Cardiol Rev 2013; 9:63-72. [PMID: 22935022 PMCID: PMC3584308 DOI: 10.2174/157340313805076278] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/31/2012] [Accepted: 08/27/2012] [Indexed: 02/08/2023] Open
Abstract
Induced pluripotent stem (iPS) cells, are a type of pluripotent stem cell derived from adult somatic cells. They have been reprogrammed through inducing genes and factors to be pluripotent. iPS cells are similar to embryonic stem (ES) cells in many aspects. This review summarizes the recent progresses in iPS cell reprogramming and iPS cell based therapy, and describe patient specific iPS cells as a disease model at length in the light of the literature. This review also analyzes and discusses the problems and considerations of iPS cell therapy in the clinical perspective for the treatment of disease.
Collapse
Affiliation(s)
- Lei Ye
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA.
| | | | | |
Collapse
|
38
|
Tandon N, Marolt D, Cimetta E, Vunjak-Novakovic G. Bioreactor engineering of stem cell environments. Biotechnol Adv 2013; 31:1020-31. [PMID: 23531529 DOI: 10.1016/j.biotechadv.2013.03.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 12/02/2012] [Accepted: 03/11/2013] [Indexed: 12/31/2022]
Abstract
Stem cells hold promise to revolutionize modern medicine by the development of new therapies, disease models and drug screening systems. Standard cell culture systems have limited biological relevance because they do not recapitulate the complex 3-dimensional interactions and biophysical cues that characterize the in vivo environment. In this review, we discuss the current advances in engineering stem cell environments using novel biomaterials and bioreactor technologies. We also reflect on the challenges the field is currently facing with regard to the translation of stem cell based therapies into the clinic.
Collapse
Affiliation(s)
- Nina Tandon
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | | | | | | |
Collapse
|
39
|
Primed pluripotent cell lines derived from various embryonic origins and somatic cells in pig. PLoS One 2013; 8:e52481. [PMID: 23326334 PMCID: PMC3543426 DOI: 10.1371/journal.pone.0052481] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/19/2012] [Indexed: 01/18/2023] Open
Abstract
Since pluripotent embryonic stem cell (ESC) lines were first derived from the mouse, tremendous efforts have been made to establish ESC lines in several domestic species including the pig; however, authentic porcine ESCs have not yet been established. It has proven difficult to maintain an ESC-like state in pluripotent porcine cell lines due to the frequent occurrence of spontaneous differentiation into an epiblast stem cell (EpiSC)-like state during culture. We have been able to derive EpiSC-like porcine ESC (pESC) lines from blastocyst stage porcine embryos of various origins, including in vitro fertilized (IVF), in vivo derived, IVF aggregated, and parthenogenetic embryos. In addition, we have generated induced pluripotent stem cells (piPSCs) via plasmid transfection of reprogramming factors (Oct4, Sox2, Klf4, and c-Myc) into porcine fibroblast cells. In this study, we analyzed characteristics such as marker expression, pluripotency and the X chromosome inactivation status in female of our EpiSC-like pESC lines along with our piPSC line. Our results show that these cell lines demonstrate the expression of genes associated with the Activin/Nodal and FGF2 pathways along with the expression of pluripotent markers Oct4, Sox2, Nanog, SSEA4, TRA 1–60 and TRA 1–81. Furthermore all of these cell lines showed in vitro differentiation potential, the X chromosome inactivation in female and a normal karyotype. Here we suggest that the porcine species undergoes reprogramming into a primed state during the establishment of pluripotent stem cell lines.
Collapse
|
40
|
Abstract
Characterization of pluripotent stem cells is required for the registration of stem cell lines and allows for an impartial and objective comparison of the results obtained when generating multiple lines. It is therefore crucial to establish specific, fast and reliable protocols to detect the hallmarks of pluripotency. Such protocols should include immunocytochemistry (takes 2 d), identification of the three germ layers in in vitro-derived embryoid bodies by immunocytochemistry (immunodetection takes 3 d) and detection of differentiation markers in in vivo-generated teratomas by immunohistochemistry (differentiation marker detection takes 4 d). Standardization of the immunodetection protocols used ensures minimum variations owing to the source, the animal species, the endogenous fluorescence or the inability to collect large amounts of cells, thereby yielding results as fast as possible without loss of quality. This protocol provides a description of all the immunodetection procedures necessary to characterize mouse and human stem cell lines in different circumstances.
Collapse
|
41
|
Cheng D, Guo Y, Li Z, Liu Y, Gao X, Gao Y, Cheng X, Hu J, Wang H. Porcine induced pluripotent stem cells require LIF and maintain their developmental potential in early stage of embryos. PLoS One 2012; 7:e51778. [PMID: 23251622 PMCID: PMC3522612 DOI: 10.1371/journal.pone.0051778] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 11/12/2012] [Indexed: 12/16/2022] Open
Abstract
Porcine induced pluripotent stem (piPS) cell lines have been generated recently by using a cocktail of defined transcription factors, however, the features of authentic piPS cells have not been agreed upon and most of published iPS clones did not meet the stringent requirements of pluripotency. Here, we report the generation of piPS cells from fibroblasts using retrovirus carrying four mouse transcription factors (mOct4, mSox2, mKlf4 and mc-Myc, 4F). Multiple LIF-dependent piPS cell lines were generated and these cells showed the morphology similar to mouse embryonic stem cells and other pluripotent stem cells. In addition to the routine characterization, piPS cells were injected into porcine pre-compacted embryos to generate chimera embryos and nuclear transfer (NT) embryos. The results showed that piPS cells retain the ability to integrate into inner and outer layers of the blastocysts, and support the NT embryos development to blastocysts. The generations of chimera embryos and NT embryos derived from piPS clones are a practical means to determine the quality of iPS cells ex vivo.
Collapse
Affiliation(s)
- De Cheng
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
| | - Yanjie Guo
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
| | - Zhenzhen Li
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
| | - Yajun Liu
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
| | - Xing Gao
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
| | - Yi Gao
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
| | - Xiang Cheng
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
| | - Junhe Hu
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
| | - Huayan Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
- * E-mail:
| |
Collapse
|
42
|
Rezanejad H, Matin MM. Induced Pluripotent Stem Cells: Progress and Future Perspectives in the Stem Cell World. Cell Reprogram 2012; 14:459-70. [DOI: 10.1089/cell.2012.0039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Habib Rezanejad
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
43
|
Liu K, Ji G, Mao J, Liu M, Wang L, Chen C, Liu L. Generation of porcine-induced pluripotent stem cells by using OCT4 and KLF4 porcine factors. Cell Reprogram 2012; 14:505-13. [PMID: 23035653 DOI: 10.1089/cell.2012.0047] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) can be artificially reprogrammed from somatic cells by overexpression of exogenous transcription factors. The pig has increasingly become an important large animal model for preclinical tests and studies of human diseases; thus, the generation of porcine iPSCs will facilitate research into the efficacy and safety of stem cell therapy. A current major problem facing the generation of porcine iPSCs is the failure to silence exogenous transgenes. We hypothesized that this problem can be resolved by reducing the number of transcriptional factors used for porcine iPSCs induction. Here, we report the successful generation of porcine iPSCs using the porcine factors Oct4 and Klf4 in combination with specific small molecules. In comparison with high oxygen conditions (20%), the efficiency of porcine iPSC generation was higher under low oxygen conditions (5%). Porcine iPSCs exhibited a normal karyotype and morphology, like mouse embryonic stem cells (ESCs), and could proliferate in the absence of basic fibroblast growth factor (bFGF) and in the presence of human leukemia inhibitory factor (hLIF) and mouse embryonic fibroblast feeder cells. These iPSCs also expressed ESC-like markers (Oct4, Nanog, Klf4, c-Myc, Bmp4, bFgf). Importantly, the porcine iPSCs showed pluripotency, as evidenced by differentiation into three germ layers in vitro following embryoid body formation, as well as by efficiently forming teratomas containing three germ layers in immunodeficient mice. Thus, pluripotent porcine iPSCs can be generated from somatic stem cells by using only two porcine transcription factors in combination with small molecules. These attempts represent the first step toward generating truly pluripotent porcine iPSCs with fewer exogenous genes and less integration.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Tang L, Yin Y, Zhou H, Song G, Fan A, Tang B, Shi W, Li Z. Proliferative capacity and pluripotent characteristics of porcine adult stem cells derived from adipose tissue and bone marrow. Cell Reprogram 2012; 14:342-52. [PMID: 22775457 DOI: 10.1089/cell.2011.0098] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Direct reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) provides an invaluable resource for regenerative medicine. Because of some ethical and logistical barriers, human iPSCs cannot be used to generate a chimera, which is one of markers representing pluripotency. As the most attractive model for preclinical studies, pigs offer another path to improve clinical medicine. In this study, porcine adult stem cells (pASCs), including adipose mesenchymal stem cells (AMSCs) and bone marrow mesenchymal stem cells (BMSCs), were collected and cultured under the same conditions in vitro. Real-time PCR, immunocytochemical staining, apoptosis analysis, and induced differentiation and reprogramming techniques were used to investigate the proliferative capacity and pluripotent characteristics of pASCs. Our results showed that both AMSCs and BMSCs displayed a similar immunophenotype, and their proliferative capacity appeared as a downward trend as the cell passage number increased. The cell proliferative capacity of AMSCs was significantly lower than that of BMSCs (p<0.05). Moreover, each type of pASCs went through 20 passages without undergoing alterations in the expression of reprogramming transcriptional factors (Oct4, Sox2, c-Myc, and Nanog). All pASCs had adipogenic and osteogenic differentiation potential. In addition, they also could be reprogrammed to pig induced pluripotent stem cells (piPSCs) with similar time and efficiency. In conclusion, porcine BMSCs had a higher proliferative capacity than AMSCs, and the pluripotency of pASCs was stable in long-term culture.
Collapse
Affiliation(s)
- Lina Tang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, the Center for Animal Embryo Engineering of Jilin Province, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | | | | | | | | | | | | | | |
Collapse
|