1
|
Thomas G, Rusman Q, Morrison WR, Magalhães DM, Dowell JA, Ngumbi E, Osei-Owusu J, Kansman J, Gaffke A, Pagadala Damodaram KJ, Kim SJ, Tabanca N. Deciphering Plant-Insect-Microorganism Signals for Sustainable Crop Production. Biomolecules 2023; 13:997. [PMID: 37371577 PMCID: PMC10295935 DOI: 10.3390/biom13060997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Agricultural crop productivity relies on the application of chemical pesticides to reduce pest and pathogen damage. However, chemical pesticides also pose a range of ecological, environmental and economic penalties. This includes the development of pesticide resistance by insect pests and pathogens, rendering pesticides less effective. Alternative sustainable crop protection tools should therefore be considered. Semiochemicals are signalling molecules produced by organisms, including plants, microbes, and animals, which cause behavioural or developmental changes in receiving organisms. Manipulating semiochemicals could provide a more sustainable approach to the management of insect pests and pathogens across crops. Here, we review the role of semiochemicals in the interaction between plants, insects and microbes, including examples of how they have been applied to agricultural systems. We highlight future research priorities to be considered for semiochemicals to be credible alternatives to the application of chemical pesticides.
Collapse
Affiliation(s)
- Gareth Thomas
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Quint Rusman
- Department of Systematic and Evolutionary Botany, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland;
| | - William R. Morrison
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center for Grain and Animal Health Research, 1515 College Ave., Manhattan, KS 66502, USA;
| | - Diego M. Magalhães
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil;
| | - Jordan A. Dowell
- Department of Plant Sciences, University of California, Davis, One Shields Ave., Davis, CA 95616, USA;
| | - Esther Ngumbi
- Department of Entomology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA;
| | - Jonathan Osei-Owusu
- Department of Biological, Physical and Mathematical Sciences, University of Environment and Sustainable Development, Somanya EY0329-2478, Ghana;
| | - Jessica Kansman
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Alexander Gaffke
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center for Medical, Agricultural, and Veterinary Entomology, 6383 Mahan Dr., Tallahassee, FL 32308, USA;
| | | | - Seong Jong Kim
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Natural Products Utilization Research Unit, University, MS 38677, USA;
| | - Nurhayat Tabanca
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158, USA
| |
Collapse
|
2
|
Lanier ER, Andersen TB, Hamberger B. Plant terpene specialized metabolism: complex networks or simple linear pathways? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1178-1201. [PMID: 36891828 PMCID: PMC11166267 DOI: 10.1111/tpj.16177] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 05/31/2023]
Abstract
From the perspectives of pathway evolution, discovery and engineering of plant specialized metabolism, the nature of the biosynthetic routes represents a critical aspect. Classical models depict biosynthesis typically from an end-point angle and as linear, for example, connecting central and specialized metabolism. As the number of functionally elucidated routes increased, the enzymatic foundation of complex plant chemistries became increasingly well understood. The perception of linear pathway models has been severely challenged. With a focus on plant terpenoid specialized metabolism, we review here illustrative examples supporting that plants have evolved complex networks driving chemical diversification. The completion of several diterpene, sesquiterpene and monoterpene routes shows complex formation of scaffolds and their subsequent functionalization. These networks show that branch points, including multiple sub-routes, mean that metabolic grids are the rule rather than the exception. This concept presents significant implications for biotechnological production.
Collapse
Affiliation(s)
| | | | - Björn Hamberger
- Department of Biochemistry and Molecular Biology, Michigan State University, Molecular Plant Sciences Building, 1066 Bogue Street, East Lansing, Michigan, 48824, USA
| |
Collapse
|
3
|
Thompson MN, Grunseich JM, Marmolejo LO, Aguirre NM, Bradicich PA, Behmer ST, Suh CPC, Helms AM. Undercover operation: Belowground insect herbivory modifies systemic plant defense and repels aboveground foraging insect herbivores. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1033730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Plants attacked by insects may induce defenses locally in attacked plant tissues and/or systemically in non-attacked tissues, such as aboveground herbivory affecting belowground roots or belowground herbivory modifying aboveground tissues (i.e., cross-compartment systemic defense). Through induced systemic plant defenses, above-and belowground insect herbivores indirectly interact when feeding on a shared host plant. However, determining the systemic effects of herbivory on cross-compartment plant tissues and cascading consequences for herbivore communities remains underexplored. The goal of this study was to determine how belowground striped cucumber beetle (Acalymma vittatum) larval herbivory alters aboveground zucchini squash (Cucurbita pepo subsp. pepo) defenses and interactions with herbivores, including adult cucumber beetles and squash bugs (Anasa tristis). To explore this question, field and laboratory experiments were conducted to compare responses of aboveground herbivores to belowground larvae-damaged plants and non-damaged control plants. We also characterized changes in defensive chemicals and nutritional content of aboveground plant structures following belowground herbivory. We discovered belowground herbivory enhanced aboveground plant resistance and deterred aboveground foraging herbivores. We also found that larvae-damaged plants emitted higher amounts of a key volatile compound, (E)-β-ocimene, compared to non-damaged controls. Further investigation suggests that other mechanisms, such as plant nutrient content, may additionally contribute to aboveground herbivore foraging decisions. Collectively, our findings underscore connections between above-and belowground herbivore communities as mediated through induced systemic defenses of a shared host plant. Specifically, these findings indicate that belowground larval herbivory systemically enhances plant defenses and deters a suite of aboveground herbivores, suggesting larvae may manipulate aboveground plant defenses for their own benefit, while plants may benefit from enhanced systemic defenses against multi-herbivore attack.
Collapse
|
4
|
Yacine Y, Loeuille N. Stable coexistence in plant-pollinator-herbivore communities requires balanced mutualistic vs antagonistic interactions. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2021.109857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Marmolejo LO, Thompson MN, Helms AM. Defense Suppression through Interplant Communication Depends on the Attacking Herbivore Species. J Chem Ecol 2021; 47:1049-1061. [PMID: 34541611 PMCID: PMC8642252 DOI: 10.1007/s10886-021-01314-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/21/2022]
Abstract
In response to herbivory, plants emit volatile compounds that play important roles in plant defense. Herbivore-induced plant volatiles (HIPVs) can deter herbivores, recruit natural enemies, and warn other plants of possible herbivore attack. Following HIPV detection, neighboring plants often respond by enhancing their anti-herbivore defenses, but a recent study found that herbivores can manipulate HIPV-interplant communication for their own benefit and suppress defenses in neighboring plants. Herbivores induce species-specific blends of HIPVs and how these different blends affect the specificity of plant defense responses remains unclear. Here we assessed how HIPVs from zucchini plants (Cucurbita pepo) challenged with different herbivore species affect resistance in neighboring plants. Volatile "emitter" plants were damaged by one of three herbivore species: saltmarsh caterpillars (Estigmene acrea), squash bugs (Anasa tristis), or striped cucumber beetles (Acalymma vittatum), or were left as undamaged controls. Neighboring "receiver" plants were exposed to HIPVs or control volatiles and then challenged by the associated herbivore species. As measures of plant resistance, we quantified herbivore feeding damage and defense-related phytohormones in receivers. We found that the three herbivore species induced different HIPV blends from squash plants. HIPVs induced by saltmarsh caterpillars suppressed defenses in receivers, leading to greater herbivory and lower defense induction compared to controls. In contrast, HIPVs induced by cucumber beetles and squash bugs did not affect plant resistance to subsequent herbivory in receivers. Our study shows that herbivore species identity affects volatile-mediated interplant communication in zucchini, revealing a new example of herbivore defense suppression through volatile cues.
Collapse
Affiliation(s)
- Laura O Marmolejo
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
| | - Morgan N Thompson
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
| | - Anjel M Helms
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA.
| |
Collapse
|
6
|
Wu Y, Barrett SCH, Duan X, Zhang J, Cha Y, Tu C, Li Q. Herbivore-Mediated Selection on Floral Display Covaries Nonlinearly With Plant-Antagonistic Interaction Intensity Among Primrose Populations. FRONTIERS IN PLANT SCIENCE 2021; 12:727957. [PMID: 34868113 PMCID: PMC8636000 DOI: 10.3389/fpls.2021.727957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Quantifying the relations between plant-antagonistic interactions and natural selection among populations is important for predicting how spatial variation in ecological interactions drive adaptive differentiation. Here, we investigate the relations between the opportunity for selection, herbivore-mediated selection, and the intensity of plant-herbivore interaction among 11 populations of the insect-pollinated plant Primula florindae over 2 years. We experimentally quantified herbivore-mediated directional selection on three floral traits (two display and one phenological) within populations and found evidence for herbivore-mediated selection for a later flowering start date and a greater number of flowers per plant. The opportunity for selection and strength of herbivore-mediated selection on number of flowers varied nonlinearly with the intensity of herbivory among populations. These parameters increased and then decreased with increasing intensity of plant-herbivore interactions, defined as an increase in the ratio of herbivore-damaged flowers per individual. Our results provide novel insights into how plant-antagonistic interactions can shape spatial variation in selection on floral traits and contribute toward understanding the mechanistic basis of geographic variation in angiosperm flowers.
Collapse
Affiliation(s)
- Yun Wu
- School of Civil Engineering, Architecture and Environment, Xihua University, Chengdu, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Spencer C. H. Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Xuyu Duan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Jie Zhang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Yongpeng Cha
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Chengyi Tu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Qingjun Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
7
|
Fitch G, Vandermeer J. Changes in partner traits drive variation in plant–nectar robber interactions across habitats. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Tools to Tie: Flower Characteristics, VOC Emission Profile, and Glandular Trichomes of Two Mexican Salvia Species to Attract Bees. PLANTS 2020; 9:plants9121645. [PMID: 33255733 PMCID: PMC7760984 DOI: 10.3390/plants9121645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 11/29/2022]
Abstract
A plant can combine physical and chemical tools to interact with other organisms. Some are designed for pollinator attraction (i.e., colors and volatile organic compounds-VOCs); others can act to discourage herbivores (i.e., non-glandular trichomes). Few studies fully address available tools in a single species; notwithstanding, this information can be pivotal in understanding new interactions out of the home range. We characterized flower traits, emission profiles of constitutive compounds from flowers and leaves, micro-morphology of the glandular trichomes, and listed flower visitors of two Mexican bird-pollinated Salvia species (S. blepharophylla and S. greggii), growing in an Italian botanical garden. Flowers were highly variable in their morphometric characteristics. In both species, four trichome morphotypes with similar histochemistry and distribution were documented for leaves and flowers except the calyx abaxial side. The vegetative emission profiles were qualitatively more complex than the floral ones; however, common compounds occurring in high relative percentages were β-caryophyllene and germacrene D. Floral bouquets were dominated by limonene and β-pinene in S. greggii and by 1,8-cineole in S. blepharophylla. Two potential (non-bird) pollinators were especially abundant: small bees belonging to the genus Lasioglossum and large bees belonging to the species Xylocopa violacea. Our study highlights the plasticity of these plants, as well as tools that can be conveniently used to establish novel interactions.
Collapse
|
9
|
Brzozowski LJ, Gore MA, Agrawal AA, Mazourek M. Divergence of defensive cucurbitacins in independent Cucurbita pepo domestication events leads to differences in specialist herbivore preference. PLANT, CELL & ENVIRONMENT 2020; 43:2812-2825. [PMID: 32666553 DOI: 10.1111/pce.13844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/23/2020] [Indexed: 05/19/2023]
Abstract
Crop domestication and improvement often concurrently affect plant resistance to pests and production of secondary metabolites, creating challenges for isolating the ecological implications of selection for specific metabolites. Cucurbitacins are bitter triterpenoids with extreme phenotypic differences between Cucurbitaceae lineages, yet we lack integrated models of herbivore preference, cucurbitacin accumulation, and underlying genetic mechanisms. In Cucurbita pepo, we dissected the effect of cotyledon cucurbitacins on preference of a specialist insect pest (Acalymma vittatum) for multiple tissues, assessed genetic loci underlying cucurbitacin accumulation in diverse germplasm and a biparental F2 population (from a cross between two independent domesticates), and characterized quantitative associations between gene expression and metabolites during seedling development. Acalymma vittatum affinity for cotyledons is mediated by cucurbitacins, but other traits contribute to whole-plant resistance. Cotyledon cucurbitacin accumulation was associated with population structure, and our genetic mapping identified a single locus, Bi-4, containing genes relevant to transport and regulation - not biosynthesis - that diverged between lineages. These candidate genes were expressed during seedling development, most prominently a putative secondary metabolite transporter. Taken together, these findings support the testable hypothesis that breeding for plant resistance to insects involves targeting genes for regulation and transport of defensive metabolites, in addition to core biosynthesis genes.
Collapse
Affiliation(s)
- Lauren J Brzozowski
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Michael Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
10
|
The ecological consequences of herbivore-induced plant responses on plant-pollinator interactions. Emerg Top Life Sci 2020; 4:33-43. [PMID: 32537636 DOI: 10.1042/etls20190121] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022]
Abstract
Plant induced responses to herbivory have long been found to function as plant direct and indirect defenses and to be major drivers of herbivore community and population dynamics. While induced defenses are generally understood as cost-saving strategies that allow plants to allocate valuable resources into defense expression, it recently became clear that, in particular, induced metabolic changes can come with significant ecological costs. In particular, interactions with mutualist pollinators can be significantly compromised by herbivore-induced changes in floral morphology and metabolism. We review recent findings on the evidence for ecological conflict between defending against herbivores and attracting pollinators while using similar modes of information transfer (e.g. visual, olfactory, tactile). Specifically, we discuss plant traits and mechanisms through which plants mediate interactions between antagonists and mutualist and present functional hypotheses for how plants can overcome the resulting conflicts.
Collapse
|
11
|
Brzozowski LJ, Gardner J, Hoffmann MP, Kessler A, Agrawal AA, Mazourek M. Attack and aggregation of a major squash pest: Parsing the role of plant chemistry and beetle pheromones across spatial scales. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lauren J. Brzozowski
- Section of Plant Breeding and Genetics School of Integrative Plant Science Cornell University Ithaca NY USA
| | | | | | - André Kessler
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
| | - Anurag A. Agrawal
- Department of Entomology Cornell University Ithaca NY USA
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
| | - Michael Mazourek
- Section of Plant Breeding and Genetics School of Integrative Plant Science Cornell University Ithaca NY USA
| |
Collapse
|
12
|
Jantzen F, Lynch JH, Kappel C, Höfflin J, Skaliter O, Wozniak N, Sicard A, Sas C, Adebesin F, Ravid J, Vainstein A, Hilker M, Dudareva N, Lenhard M. Retracing the molecular basis and evolutionary history of the loss of benzaldehyde emission in the genus Capsella. THE NEW PHYTOLOGIST 2019; 224:1349-1360. [PMID: 31400223 DOI: 10.1111/nph.16103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/18/2019] [Indexed: 05/13/2023]
Abstract
The transition from pollinator-mediated outbreeding to selfing has occurred many times in angiosperms. This is generally accompanied by a reduction in traits attracting pollinators, including reduced emission of floral scent. In Capsella, emission of benzaldehyde as a main component of floral scent has been lost in selfing C. rubella by mutation of cinnamate-CoA ligase CNL1. However, the biochemical basis and evolutionary history of this loss remain unknown, as does the reason for the absence of benzaldehyde emission in the independently derived selfer Capsella orientalis. We used plant transformation, in vitro enzyme assays, population genetics and quantitative genetics to address these questions. CNL1 has been inactivated twice independently by point mutations in C. rubella, causing a loss of enzymatic activity. Both inactive haplotypes are found within and outside of Greece, the centre of origin of C. rubella, indicating that they arose before its geographical spread. By contrast, the loss of benzaldehyde emission in C. orientalis is not due to an inactivating mutation in CNL1. CNL1 represents a hotspot for mutations that eliminate benzaldehyde emission, potentially reflecting the limited pleiotropy and large effect of its inactivation. Nevertheless, even closely related species have followed different evolutionary routes in reducing floral scent.
Collapse
Affiliation(s)
- Friederike Jantzen
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam-Golm, Germany
| | - Joseph H Lynch
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN, 47907-2063, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Christian Kappel
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam-Golm, Germany
| | - Jona Höfflin
- Institute of Biology, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Haderslebener Straße 9, 12163, Berlin, Germany
| | - Oded Skaliter
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, 76100, Rehovot, Israel
| | - Natalia Wozniak
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam-Golm, Germany
| | - Adrien Sicard
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam-Golm, Germany
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Claudia Sas
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam-Golm, Germany
| | - Funmilayo Adebesin
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN, 47907-2063, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jasmin Ravid
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, 76100, Rehovot, Israel
| | - Alexander Vainstein
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, 76100, Rehovot, Israel
| | - Monika Hilker
- Institute of Biology, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Haderslebener Straße 9, 12163, Berlin, Germany
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN, 47907-2063, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Michael Lenhard
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam-Golm, Germany
| |
Collapse
|
13
|
Mechanisms of Resistance to Insect Herbivores in Isolated Breeding Lineages of Cucurbita pepo. J Chem Ecol 2019; 45:313-325. [DOI: 10.1007/s10886-019-01046-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/05/2018] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
|
14
|
Santangelo JS, Thompson KA, Johnson MTJ. Herbivores and plant defences affect selection on plant reproductive traits more strongly than pollinators. J Evol Biol 2018; 32:4-18. [PMID: 30339305 DOI: 10.1111/jeb.13392] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 01/14/2023]
Abstract
Pollinators and herbivores can both affect the evolutionary diversification of plant reproductive traits. However, plant defences frequently alter antagonistic and mutualistic interactions, and therefore, variation in plant defences may alter patterns of herbivore- and pollinator-mediated selection on plant traits. We tested this hypothesis by conducting a common garden field experiment using 50 clonal genotypes of white clover (Trifolium repens) that varied in a Mendelian-inherited chemical antiherbivore defence-the production of hydrogen cyanide (HCN). To evaluate whether plant defences alter herbivore- and/or pollinator-mediated selection, we factorially crossed chemical defence (25 cyanogenic and 25 acyanogenic genotypes), herbivore damage (herbivore suppression) and pollination (hand pollination). We found that herbivores weakened selection for increased inflorescence production, suggesting that large displays are costly in the presence of herbivores. In addition, herbivores weakened selection on flower size but only among acyanogenic plants, suggesting that plant defences reduce the strength of herbivore-mediated selection. Pollinators did not independently affect selection on any trait, although pollinators weakened selection for later flowering among cyanogenic plants. Overall, cyanogenic plant defences consistently increased the strength of positive directional selection on reproductive traits. Herbivores and pollinators both strengthened and weakened the strength of selection on reproductive traits, although herbivores imposed ~2.7× stronger selection than pollinators across all traits. Contrary to the view that pollinators are the most important agents of selection on reproductive traits, our data show that selection on reproductive traits is driven primarily by variation in herbivory and plant defences in this system.
Collapse
Affiliation(s)
- James S Santangelo
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Ken A Thompson
- Biodiversity Research Centre & Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marc T J Johnson
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
15
|
Kessler A, Kalske A. Plant Secondary Metabolite Diversity and Species Interactions. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062406] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ever since the first plant secondary metabolites (PSMs) were isolated and identified, questions about their ecological functions and diversity have been raised. Recent advances in analytical chemistry and complex data computation, as well as progress in chemical ecology from mechanistic to functional and evolutionary questions, open a new box of hypotheses. Addressing these hypotheses includes the measurement of complex traits, such as chemodiversity, in a context-dependent manner and allows for a deeper understanding of the multifunctionality and functional redundancy of PSMs. Here we review a hypothesis framework that addresses PSM diversity on multiple ecological levels (α, β, and γ chemodiversity), its variation in space and time, and the potential agents of natural selection. We use the concept of chemical information transfer as mediator of antagonistic and mutualistic interaction to interpret functional and microevolutionary studies and create a hypothesis framework for understanding chemodiversity as a factor driving ecological processes.
Collapse
Affiliation(s)
- André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA;,
| | - Aino Kalske
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA;,
| |
Collapse
|
16
|
The effect of pollinators and herbivores on selection for floral signals: a case study in Brassica rapa. Evol Ecol 2016. [DOI: 10.1007/s10682-016-9878-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Brzozowski L, Leckie BM, Gardner J, Hoffmann MP, Mazourek M. Curcurbita pepo subspecies delineates striped cucumber beetle (Acalymma vittatum) preference. HORTICULTURE RESEARCH 2016; 3:16028. [PMID: 27347423 PMCID: PMC4908230 DOI: 10.1038/hortres.2016.28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/21/2016] [Accepted: 05/10/2016] [Indexed: 05/29/2023]
Abstract
The striped cucumber beetle (Acalymma vittatum (F.)) is a destructive pest of cucurbit crops, and management could be improved by host plant resistance, especially in organic farming systems. However, despite the variation in striped cucumber beetle preference observed within the economically important species, Cucurbita pepo L., plant breeders and entomologists lacked a simple framework to classify and exploit these differences. This study used recent phylogenetic evidence and bioassays to organize striped cucumber beetle preference within C. pepo. Our results indicate preference contrasts between the two agriculturally relevant subspecies: C. pepo subsp. texana and C. pepo subsp. pepo. Plants of C. pepo subsp. pepo were more strongly preferred than C. pepo subsp. texana plants. This structure of beetle preference in C. pepo will allow plant breeders and entomologists to better focus research efforts on host plant non-preference to control striped cucumber beetles.
Collapse
Affiliation(s)
- L Brzozowski
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - B M Leckie
- School of Agriculture, Tennessee Tech University, Cookeville, TN, USA
| | - J Gardner
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - M P Hoffmann
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - M Mazourek
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
18
|
Johnson MT, Campbell SA, Barrett SC. Evolutionary Interactions Between Plant Reproduction and Defense Against Herbivores. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2015. [DOI: 10.1146/annurev-ecolsys-112414-054215] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marc T.J. Johnson
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, L5L 1C6 Canada;
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2 Canada; ,
| | - Stuart A. Campbell
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2 Canada; ,
| | - Spencer C.H. Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2 Canada; ,
| |
Collapse
|
19
|
Bailes EJ, Ollerton J, Pattrick JG, Glover BJ. How can an understanding of plant-pollinator interactions contribute to global food security? CURRENT OPINION IN PLANT BIOLOGY 2015; 26:72-79. [PMID: 26116979 DOI: 10.1016/j.pbi.2015.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/29/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
Pollination of crops by animals is an essential part of global food production, but evidence suggests that wild pollinator populations may be declining while a number of problems are besetting managed honey bee colonies. Animal-pollinated crops grown today, bred in an environment where pollination was less likely to limit fruit set, are often suboptimal in attracting and sustaining their pollinator populations. Research into plant-pollinator interactions is often conducted in a curiosity-driven, ecological framework, but may inform breeding and biotechnological approaches to enhance pollinator attraction and crop yield. In this article we review key topics in current plant-pollinator research that have potential roles in future crop breeding for enhanced global food security.
Collapse
Affiliation(s)
- Emily J Bailes
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Jeff Ollerton
- Department of Environmental and Geographic Sciences, University of Northampton, Avenue Campus, Northampton NN2 6JD, UK
| | - Jonathan G Pattrick
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| |
Collapse
|
20
|
Milla R, Osborne CP, Turcotte MM, Violle C. Plant domestication through an ecological lens. Trends Ecol Evol 2015; 30:463-9. [DOI: 10.1016/j.tree.2015.06.006] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 01/20/2023]
|
21
|
Kessler D, Kallenbach M, Diezel C, Rothe E, Murdock M, Baldwin IT. How scent and nectar influence floral antagonists and mutualists. eLife 2015; 4:e07641. [PMID: 26132861 PMCID: PMC4530224 DOI: 10.7554/elife.07641] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 06/30/2015] [Indexed: 02/01/2023] Open
Abstract
Many plants attract and reward pollinators with floral scents and nectar, respectively, but these traits can also incur fitness costs as they also attract herbivores. This dilemma, common to most flowering plants, could be solved by not producing nectar and/or scent, thereby cheating pollinators. Both nectar and scent are highly variable in native populations of coyote tobacco, Nicotiana attenuata, with some producing no nectar at all, uncorrelated with the tobacco's main floral attractant, benzylacetone. By silencing benzylacetone biosynthesis and nectar production in all combinations by RNAi, we experimentally uncouple these floral rewards/attractrants and measure their costs/benefits in the plant's native habitat and experimental tents. Both scent and nectar increase outcrossing rates for three, separately tested, pollinators and both traits increase oviposition by a hawkmoth herbivore, with nectar being more influential than scent. These results underscore that it makes little sense to study floral traits as if they only mediated pollination services.
Collapse
Affiliation(s)
- Danny Kessler
- Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Mario Kallenbach
- Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Celia Diezel
- Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Eva Rothe
- Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Mark Murdock
- Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|