1
|
Piccinini L, Nirina Ramamonjy F, Ursache R. Imaging plant cell walls using fluorescent stains: The beauty is in the details. J Microsc 2024; 295:102-120. [PMID: 38477035 DOI: 10.1111/jmi.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
Plants continuously face various environmental stressors throughout their lifetime. To be able to grow and adapt in different environments, they developed specialized tissues that allowed them to maintain a protected yet interconnected body. These tissues undergo specific primary and secondary cell wall modifications that are essential to ensure normal plant growth, adaptation and successful land colonization. The composition of cell walls can vary among different plant species, organs and tissues. The ability to remodel their cell walls is fundamental for plants to be able to cope with multiple biotic and abiotic stressors. A better understanding of the changes taking place in plant cell walls may help identify and develop new strategies as well as tools to enhance plants' survival under environmental stresses or prevent pathogen attack. Since the invention of microscopy, numerous imaging techniques have been developed to determine the composition and dynamics of plant cell walls during normal growth and in response to environmental stimuli. In this review, we discuss the main advances in imaging plant cell walls, with a particular focus on fluorescent stains for different cell wall components and their compatibility with tissue clearing techniques. Lay Description: Plants are continuously subjected to various environmental stresses during their lifespan. They evolved specialized tissues that thrive in different environments, enabling them to maintain a protected yet interconnected body. Such tissues undergo distinct primary and secondary cell wall alterations essential to normal plant growth, their adaptability and successful land colonization. Cell wall composition may differ among various plant species, organs and even tissues. To deal with various biotic and abiotic stresses, plants must have the capacity to remodel their cell walls. Gaining insight into changes that take place in plant cell walls will help identify and create novel tools and strategies to improve plants' ability to withstand environmental challenges. Multiple imaging techniques have been developed since the introduction of microscopy to analyse the composition and dynamics of plant cell walls during growth and in response to environmental changes. Advancements in plant tissue cleaning procedures and their compatibility with cell wall stains have significantly enhanced our ability to perform high-resolution cell wall imaging. At the same time, several factors influence the effectiveness of cleaning and staining plant specimens, as well as the time necessary for the process, including the specimen's size, thickness, tissue complexity and the presence of autofluorescence. In this review, we will discuss the major advances in imaging plant cell walls, with a particular emphasis on fluorescent stains for diverse cell wall components and their compatibility with tissue clearing techniques. We hope that this review will assist readers in selecting the most appropriate stain or combination of stains to highlight specific cell wall components of interest.
Collapse
Affiliation(s)
- Luca Piccinini
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona, Spain
| | - Fabien Nirina Ramamonjy
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona, Spain
| | - Robertas Ursache
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona, Spain
| |
Collapse
|
2
|
Chen K, Wang Q, Yu X, Wang C, Gao J, Zhang S, Cheng S, You S, Zheng H, Lu J, Zhu X, Lei D, Jian A, He X, Yu H, Chen Y, Zhou M, Li K, He L, Tian Y, Liu X, Liu S, Jiang L, Bao Y, Wang H, Zhao Z, Wan J. OsSRF8 interacts with OsINP1 and OsDAF1 to regulate pollen aperture formation in rice. Nat Commun 2024; 15:4512. [PMID: 38802369 PMCID: PMC11130342 DOI: 10.1038/s41467-024-48813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
In higher plants, mature male gametophytes have distinct apertures. After pollination, pollen grains germinate, and a pollen tube grows from the aperture to deliver sperm cells to the embryo sac, completing fertilization. In rice, the pollen aperture has a single-pore structure with a collar-like annulus and a plug-like operculum. A crucial step in aperture development is the formation of aperture plasma membrane protrusion (APMP) at the distal polar region of the microspore during the late tetrad stage. Previous studies identified OsINP1 and OsDAF1 as essential regulators of APMP and pollen aperture formation in rice, but their precise molecular mechanisms remain unclear. We demonstrate that the Poaceae-specific OsSRF8 gene, encoding a STRUBBELIG-receptor family 8 protein, is essential for pollen aperture formation in Oryza sativa. Mutants lacking functional OsSRF8 exhibit defects in APMP and pollen aperture formation, like loss-of-function OsINP1 mutants. OsSRF8 is specifically expressed during early anther development and initially diffusely distributed in the microsporocytes. At the tetrad stage, OsSRF8 is recruited by OsINP1 to the pre-aperture region through direct protein-protein interaction, promoting APMP formation. The OsSRF8-OsINP1 complex then recruits OsDAF1 to the APMP site to co-regulate annulus formation. Our findings provide insights into the mechanisms controlling pollen aperture formation in cereal species.
Collapse
Affiliation(s)
- Keyi Chen
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Qiming Wang
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Xiaowen Yu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Chaolong Wang
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Junwen Gao
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Shihao Zhang
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Siqi Cheng
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Shimin You
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Hai Zheng
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Jiayu Lu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Xufei Zhu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Dekun Lei
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Anqi Jian
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Xiaodong He
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Hao Yu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Yun Chen
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Mingli Zhou
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Kai Li
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Ling He
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Yunlu Tian
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Yiqun Bao
- School of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhigang Zhao
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China.
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
3
|
Zhong S, Zhao P, Peng X, Li HJ, Duan Q, Cheung AY. From gametes to zygote: Mechanistic advances and emerging possibilities in plant reproduction. PLANT PHYSIOLOGY 2024; 195:4-35. [PMID: 38431529 PMCID: PMC11060694 DOI: 10.1093/plphys/kiae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hong-Ju Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Center for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiaohong Duan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Program, Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
4
|
Zhao W, Hou Q, Qi Y, Wu S, Wan X. Structural and molecular basis of pollen germination. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108042. [PMID: 37738868 DOI: 10.1016/j.plaphy.2023.108042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/27/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
Pollen germination is a prerequisite for double fertilization of flowering plants. A comprehensive understanding of the structural and molecular basis of pollen germination holds great potential for crop yield improvement. The pollen aperture serves as the foundation for most plant pollen germination and pollen aperture formation involves the establishment of cellular polarity, the formation of distinct membrane domains, and the precise deposition of extracellular substances. Successful pollen germination requires precise material exchange and signal transduction between the pollen grain and the stigma. Recent cytological and mutant analysis of pollen germination process in Arabidopsis and rice has expanded our understanding of this biological process. However, the overall changes in germination site structure and energy-related metabolites during pollen germination remain to be further explored. This review summarizes and compares the recent advances in the processes of pollen aperture formation, pollen adhesion, hydration, and germination between eudicot Arabidopsis and monocot rice, and provides insights into the structural basis and molecular mechanisms underlying pollen germination process.
Collapse
Affiliation(s)
- Wei Zhao
- Research Institute of Biology and Agriculture, Shunde Innovation School, University of Science and Technology Beijing (USTB), Beijing, 100083, China
| | - Quancan Hou
- Research Institute of Biology and Agriculture, Shunde Innovation School, University of Science and Technology Beijing (USTB), Beijing, 100083, China; Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China
| | - Yuchen Qi
- Research Institute of Biology and Agriculture, Shunde Innovation School, University of Science and Technology Beijing (USTB), Beijing, 100083, China
| | - Suowei Wu
- Research Institute of Biology and Agriculture, Shunde Innovation School, University of Science and Technology Beijing (USTB), Beijing, 100083, China; Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China.
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, Shunde Innovation School, University of Science and Technology Beijing (USTB), Beijing, 100083, China; Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China.
| |
Collapse
|
5
|
Robinson R, Sprott D, Couroux P, Routly E, Labbé N, Xing T, Robert LS. The triticale mature pollen and stigma proteomes - assembling the proteins for a productive encounter. J Proteomics 2023; 278:104867. [PMID: 36870675 DOI: 10.1016/j.jprot.2023.104867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Triticeae crops are major contributors to global food production and ensuring their capacity to reproduce and generate seeds is critical. However, despite their importance our knowledge of the proteins underlying Triticeae reproduction is severely lacking and this is not only true of pollen and stigma development, but also of their pivotal interaction. When the pollen grain and stigma are brought together they have each accumulated the proteins required for their intended meeting and accordingly studying their mature proteomes is bound to reveal proteins involved in their diverse and complex interactions. Using triticale as a Triticeae representative, gel-free shotgun proteomics was used to identify 11,533 and 2977 mature stigma and pollen proteins respectively. These datasets, by far the largest to date, provide unprecedented insights into the proteins participating in Triticeae pollen and stigma development and interactions. The study of the Triticeae stigma has been particularly neglected. To begin filling this knowledge gap, a developmental iTRAQ analysis was performed revealing 647 proteins displaying differential abundance as the stigma matures in preparation for pollination. An in-depth comparison to an equivalent Brassicaceae analysis divulged both conservation and diversification in the makeup and function of proteins involved in the pollen and stigma encounter. SIGNIFICANCE: Successful pollination brings together the mature pollen and stigma thus initiating an intricate series of molecular processes vital to crop reproduction. In the Triticeae crops (e.g. wheat, barley, rye, triticale) there persists a vast deficit in our knowledge of the proteins involved which needs to be addressed if we are to face the many upcoming challenges to crop production such as those associated with climate change. At maturity, both the pollen and stigma have acquired the protein complement necessary for their forthcoming encounter and investigating their proteomes will inevitably provide unprecedented insights into the proteins enabling their interactions. By combining the analysis of the most comprehensive Triticeae pollen and stigma global proteome datasets to date with developmental iTRAQ investigations, proteins implicated in the different phases of pollen-stigma interaction enabling pollen adhesion, recognition, hydration, germination and tube growth, as well as those underlying stigma development were revealed. Extensive comparisons between equivalent Triticeae and Brassiceae datasets highlighted both the conservation of biological processes in line with the shared goal of activating the pollen grain and promoting pollen tube invasion of the pistil to effect fertilization, as well as the significant distinctions in their proteomes consistent with the considerable differences in their biochemistry, physiology and morphology.
Collapse
Affiliation(s)
- Reneé Robinson
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada; Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - David Sprott
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Philippe Couroux
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Elizabeth Routly
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Natalie Labbé
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Tim Xing
- Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Laurian S Robert
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada.
| |
Collapse
|
6
|
Miller K, Strychalski W, Nickaeen M, Carlsson A, Haswell ES. In vitro experiments and kinetic models of Arabidopsis pollen hydration mechanics show that MSL8 is not a simple tension-gated osmoregulator. Curr Biol 2022; 32:2921-2934.e3. [PMID: 35660140 DOI: 10.1016/j.cub.2022.05.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/12/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
Pollen, a neighbor-less cell containing the male gametes, undergoes mechanical challenges during plant sexual reproduction, including desiccation and rehydration. It was previously shown that the pollen-specific mechanosensitive ion channel MscS-like (MSL)8 is essential for pollen survival during hydration and proposed that it functions as a tension-gated osmoregulator. Here, we test this hypothesis with a combination of mathematical modeling and laboratory experiments. Time-lapse imaging revealed that wild-type pollen grains swell, and then they stabilize in volume rapidly during hydration. msl8 mutant pollen grains, however, continue to expand and eventually burst. We found that a mathematical model, wherein MSL8 acts as a simple-tension-gated osmoregulator, does not replicate this behavior. A better fit was obtained from variations of the model, wherein MSL8 inactivates independent of its membrane tension gating threshold or MSL8 strengthens the cell wall without osmotic regulation. Experimental and computational testing of several perturbations, including hydration in an osmolyte-rich solution, hyper-desiccation of the grains, and MSL8-YFP overexpression, indicated that the cell wall strengthening model best simulated experimental responses. Finally, the expression of a nonconducting MSL8 variant did not complement the msl8 overexpansion phenotype. These data indicate that contrary to our hypothesis and to the current understanding of MS ion channel function in bacteria, MSL8 does not act as a simple membrane tension-gated osmoregulator. Instead, they support a model wherein ion flux through MSL8 is required to alter pollen cell wall properties. These results demonstrate the utility of pollen as a cellular scale model system and illustrate how mathematical models can correct intuitive hypotheses.
Collapse
Affiliation(s)
- Kari Miller
- Department of Biology, Washington University, St. Louis, MO 63130, USA; NSF Center for Engineering Mechanobiology, Cleveland, OH, USA
| | - Wanda Strychalski
- Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Masoud Nickaeen
- University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Anders Carlsson
- NSF Center for Engineering Mechanobiology, Cleveland, OH, USA; Department of Physics, Washington University, St. Louis, MO 63130, USA
| | - Elizabeth S Haswell
- Department of Biology, Washington University, St. Louis, MO 63130, USA; NSF Center for Engineering Mechanobiology, Cleveland, OH, USA.
| |
Collapse
|
7
|
Severova EE, Rudall PJ, Macfarlane TD, Krasnova ED, Sokoloff DD. Pollen in water of unstable salinity: Evolution and function of dynamic apertures in monocot aquatics. AMERICAN JOURNAL OF BOTANY 2022; 109:500-513. [PMID: 35244214 DOI: 10.1002/ajb2.1835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
PREMISE The sporoderm of seed-plant pollen grains typically has apertures in which the outer sporopollenin-bearing layer is relatively sparse. The apertures allow regulation of the internal volume of the pollen grain during desiccation and rehydration (harmomegathy) and also serve as sites of pollen germination. A small fraction of angiosperms undergo pollination in water or at the water surface, where desiccation is unlikely. Their pollen grains commonly lack apertures, though with some notable exceptions. We tested a hypothesis that in some angiosperm aquatics that inhabit water of unstable salinity, the pollen apertures accommodate osmotic effects that occur during pollination in such conditions. METHODS Pollen grains of the tepaloid clade of the monocot order Alismatales, which contains ecologically diverse aquatic and marshy plants, were examined using light microscopy and scanning electron microscopy. We used Ruppia as a model to test pollen grain response in water of various salinities. Pollen aperture evolution was also analyzed using molecular tree topologies. RESULTS Phylogenetic optimizations demonstrated an evolutionary loss and two subsequent regains of the aperturate condition in the tepaloid clade of Alismatales. Both of the taxa that have reverted to aperturate pollen (Ruppia, Ruppiaceae; Althenia, Potamogetonaceae) are adapted to changeable water salinity. Direct experiments with Ruppia showed that the pollen apertures have a role in a harmomegathic response to differences in water salinity. CONCLUSIONS Our results showed that the inferred regain of pollen apertures represents an adaptation to changeable water salinity. We invoke a loss-and-regain scenario, prompting questions that are testable using developmental genetics and plant physiology.
Collapse
Affiliation(s)
- Elena E Severova
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1, 12, Leninskie Gory, Moscow, 119234, Russia
| | - Paula J Rudall
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Terry D Macfarlane
- Western Australian Herbarium, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, WA, 6983, Australia
| | - Elena D Krasnova
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1, 12, Leninskie Gory, Moscow, 119234, Russia
| | - Dmitry D Sokoloff
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1, 12, Leninskie Gory, Moscow, 119234, Russia
| |
Collapse
|
8
|
Cortez PA, Dos Santos Silva LNN, de Ornellas Paschoalini G, Albuquerque-Pinna J, Sibinelli V, Melo-de-Pinna GFDA. Light and electron microscopies reveal unknown details of the pollen grain structure and physiology from Brazilian Cerrado species. PROTOPLASMA 2022; 259:399-412. [PMID: 34145472 DOI: 10.1007/s00709-021-01671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Pollen grains have a relatively simple structure and microscopic size, with two or three cells surrounded by the protective sporoderm at maturity. The viability and efficiency of pollen transport from anther to stigma depends on pollen physiological properties, especially the relative water content of the vegetative cell. Pollen transport is a crucial fate for most angiosperms that depends on biotic pollinators and studies focusing on understanding the morpho-physiological properties of pollen grains are still scarce, especially to tropical open physiognomies as the Brazilian Cerrado. Therefore, we investigate some structural and physiological aspects of pollen grains from six native species naturally growing in one Cerrado area: Campomanesia pubescens (Myrtaceae), Caryocar brasiliense (Caryocaraceae), Erythroxylum campestre (Erythroxylaceae), Lippia lupulina (Verbenaceae), Pyrostegia venusta (Bignoniaceae), and Xylopia aromatica (Annonaceae). We selected dehiscent anthers and mature pollen grains to analyze (1) the anther wall and pollen microstructure, (2) the pollen water status at the time of anther dehiscence, and (3) the pollen chemical compounds. In all analyzed species, the anther and pollen developed in a successfully way, and except for Caryocar brasiliense, all species were able to emit pollen tubes in the germination tests. As expected for a dry and open environment, most species dispersed their pollen grains in a partially dehydrated form, as indicated by our harmomegathy experiment. As indicated by our study, the pollen ability in preventing dissection, maintaining its viability in a dry and hot environment during its transport from anther to stigma, may be related to the sporoderm apertures and to the reserve compounds, mainly carbohydrates in the form of hydrolysable starch grains.
Collapse
Affiliation(s)
- Priscila Andressa Cortez
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, São Paulo-SP, 05508-090, Brazil.
- Centro de Microscopia Eletrônica, Universidade Federal de São Paulo, Rua Botucatu 862, São Paulo-SP, 04023-062, Brazil.
| | | | | | - Julia Albuquerque-Pinna
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, São Paulo-SP, 05508-090, Brazil
| | - Victor Sibinelli
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, São Paulo-SP, 05508-090, Brazil
| | | |
Collapse
|
9
|
Božič A, Šiber A. Mechanics of inactive swelling and bursting of porate pollen grains. Biophys J 2022; 121:782-792. [PMID: 35093340 PMCID: PMC8943692 DOI: 10.1016/j.bpj.2022.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/23/2021] [Accepted: 01/21/2022] [Indexed: 11/02/2022] Open
Abstract
The structure of pollen grains, which is typically characterized by soft apertures in an otherwise stiff exine shell, guides their response to changes in the humidity of the environment. These changes can lead to desiccation of the grain and its infolding but also to excessive swelling of the grain and even its bursting. Here we use an elastic model to explore the mechanics of pollen grain swelling and the role of soft, circular apertures (pores) in this process. Small, circular apertures typically occur in airborne and allergenic pollen grains so that the bursting of such grains is important in the context of human health. We identify and quantify a mechanical weakness of the pores, which are prone to rapid inflation when the grain swells to a critical extent. The inflation occurs as a sudden transition and may induce bursting of the grain and release of its content. This process crucially depends on the size of the pores and their softness. Our results provide insight into the inactive part of the mechanical response of pollen grains to hydration when they land on a stigma as well as bursting of airborne pollen grains during changes in air humidity.
Collapse
Affiliation(s)
- Anže Božič
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia
| | | |
Collapse
|
10
|
Williams JH. Consequences of whole genome duplication for 2n pollen performance. PLANT REPRODUCTION 2021; 34:321-334. [PMID: 34302535 DOI: 10.1007/s00497-021-00426-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
The vegetative cell of the angiosperm male gametophyte (pollen) functions as a free-living, single-celled organism that both produces and transports sperm to egg. Whole-genome duplication (WGD) should have strong effects on pollen because of the haploid to diploid transition and because of both genetic and epigenetic effects on cell-level phenotypes. To disentangle historical effects of WGD on pollen performance, studies can compare 1n pollen from diploids to neo-2n pollen from diploids and synthetic autotetraploids to older 2n pollen from established neo-autotetraploids. WGD doubles both gene number and bulk nuclear DNA mass, and a substantial proportion of diploid and autotetraploid heterozygosity can be transmitted to 2n pollen. Relative to 1n pollen, 2n pollen can exhibit heterosis due to higher gene dosage, higher heterozygosity and new allelic interactions. Doubled genome size also has consequences for gene regulation and expression as well as epigenetic effects on cell architecture. Pollen volume doubling is a universal effect of WGD, whereas an increase in aperture number is common among taxa with simultaneous microsporogenesis and pored apertures, mostly eudicots. WGD instantly affects numerous evolved compromises among mature pollen functional traits and these are rapidly shaped by highly diverse tissue interactions and pollen competitive environments in the early post-WGD generations. 2n pollen phenotypes generally incur higher performance costs, and the degree to which these are met or evolve by scaling up provisioning and metabolic vigor needs further study.
Collapse
Affiliation(s)
- Joseph H Williams
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
11
|
Jaffri SRF, MacAlister CA. Sequential Deposition and Remodeling of Cell Wall Polymers During Tomato Pollen Development. FRONTIERS IN PLANT SCIENCE 2021; 12:703713. [PMID: 34386029 PMCID: PMC8354551 DOI: 10.3389/fpls.2021.703713] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/21/2021] [Indexed: 06/09/2023]
Abstract
The cell wall of a mature pollen grain is a highly specialized, multilayered structure. The outer, sporopollenin-based exine provides protection and support to the pollen grain, while the inner intine, composed primarily of cellulose, is important for pollen germination. The formation of the mature pollen grain wall takes place within the anther with contributions of cell wall material from both the developing pollen grain as well as the surrounding cells of the tapetum. The process of wall development is complex; multiple cell wall polymers are deposited, some transiently, in a controlled sequence of events. Tomato (Solanum lycopersicum) is an important agricultural crop, which requires successful fertilization for fruit production as do many other members of the Solanaceae family. Despite the importance of pollen development for tomato, little is known about the detailed pollen gain wall developmental process. Here, we describe the structure of the tomato pollen wall and establish a developmental timeline of its formation. Mature tomato pollen is released from the anther in a dehydrated state and is tricolpate, with three long apertures without overlaying exine from which the pollen tube may emerge. Using histology and immunostaining, we determined the order in which key cell wall polymers were deposited with respect to overall pollen and anther development. Pollen development began in young flower buds when the premeiotic microspore mother cells (MMCs) began losing their cellulose primary cell wall. Following meiosis, the still conjoined microspores progressed to the tetrad stage characterized by a temporary, thick callose wall. Breakdown of the callose wall released the individual early microspores. Exine deposition began with the secretion of the sporopollenin foot layer. At the late microspore stage, exine deposition was completed and the tapetum degenerated. The pollen underwent mitosis to produce bicellular pollen; at which point, intine formation began, continuing through to pollen maturation. The entire cell wall development process was also punctuated by dynamic changes in pectin composition, particularly changes in methyl-esterified and de-methyl-esterified homogalacturonan.
Collapse
|
12
|
Mazuecos-Aguilera I, Romero-García AT, Klodová B, Honys D, Fernández-Fernández MC, Ben-Menni Schuler S, Dobritsa AA, Suárez-Santiago VN. The Role of INAPERTURATE POLLEN1 as a Pollen Aperture Factor Is Conserved in the Basal Eudicot Eschscholzia californica (Papaveraceae). FRONTIERS IN PLANT SCIENCE 2021; 12:701286. [PMID: 34305989 PMCID: PMC8294094 DOI: 10.3389/fpls.2021.701286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Pollen grains show an enormous variety of aperture systems. What genes are involved in the aperture formation pathway and how conserved this pathway is in angiosperms remains largely unknown. INAPERTURATE POLLEN1 (INP1) encodes a protein of unknown function, essential for aperture formation in Arabidopsis, rice and maize. Yet, because INP1 sequences are quite divergent, it is unclear if their function is conserved across angiosperms. Here, we conducted a functional study of the INP1 ortholog from the basal eudicot Eschscholzia californica (EcINP1) using expression analyses, virus-induced gene silencing, pollen germination assay, and transcriptomics. We found that EcINP1 expression peaks at the tetrad stage of pollen development, consistent with its role in aperture formation, which occurs at that stage, and showed, via gene silencing, that the role of INP1 as an important aperture factor extends to basal eudicots. Using germination assays, we demonstrated that, in Eschscholzia, apertures are dispensable for pollen germination. Our comparative transcriptome analysis of wild-type and silenced plants identified over 900 differentially expressed genes, many of them potential candidates for the aperture pathway. Our study substantiates the importance of INP1 homologs for aperture formation across angiosperms and opens up new avenues for functional studies of other aperture candidate genes.
Collapse
Affiliation(s)
| | | | - Božena Klodová
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | | | | | - Anna A. Dobritsa
- Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, OH, United States
| | | |
Collapse
|
13
|
Abstract
When pollen grains become exposed to the environment, they rapidly desiccate. To protect themselves until rehydration, the grains undergo characteristic infolding with the help of special structures in the grain wall-apertures-where the otherwise thick exine shell is absent or reduced in thickness. Recent theoretical studies have highlighted the importance of apertures for the elastic response and the folding of the grain. Experimental observations show that different pollen grains sharing the same number and type of apertures can nonetheless fold in quite diverse fashions. Using the thin-shell theory of elasticity, we show how both the absolute elastic properties of the pollen wall and the relative elastic differences between the exine wall and the apertures play an important role in determining pollen folding upon desiccation. Focusing primarily on colpate pollen, we delineate the regions of pollen elastic parameters where desiccation leads to a regular, complete closing of all apertures and thus to an infolding which protects the grain against water loss. Phase diagrams of pollen folding pathways indicate that an increase in the number of apertures leads to a reduction of the region of elastic parameters where the apertures close in a regular fashion. The infolding also depends on the details of the aperture shape and size, and our study explains how the features of the mechanical design of apertures influence the pollen folding patterns. Understanding the mechanical principles behind pollen folding pathways should also prove useful for the design of the elastic response of artificial inhomogeneous shells.
Collapse
|
14
|
Zhou Y, Dobritsa AA. Formation of aperture sites on the pollen surface as a model for development of distinct cellular domains. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110222. [PMID: 31521218 DOI: 10.1016/j.plantsci.2019.110222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Pollen grains are covered by the complex extracellular structure, called exine, which in most species is deposited on the pollen surface non-uniformly. Certain surface areas receive fewer exine deposits and develop into regions whose structure and morphology differ significantly from the rest of pollen wall. These regions are known as pollen apertures. Across species, pollen apertures can vary in their numbers, positions, and morphology, generating highly diverse patterns. The process of aperture formation involves establishment of cell polarity, formation of distinct plasma membrane domains, and deposition of extracellular materials at precise positions. Thus, pollen apertures present an excellent model for studying the development of cellular domains and formation of patterns at the single-cell level. Until very recently, the molecular mechanisms underlying the specification and formation of aperture sites were completely unknown. Here, we review recent advances in understanding of the molecular processes involved in pollen aperture formation, focusing on the molecular players identified through genetic approaches in the model plant Arabidopsis. We discuss a potential working model that describes the process of aperture formation, including specification of domains, creation of their defining features, and protection of these regions from exine deposition.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, OH, 43210, United States
| | - Anna A Dobritsa
- Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, OH, 43210, United States.
| |
Collapse
|
15
|
Zhao Y, Man Y, Wen J, Guo Y, Lin J. Advances in Imaging Plant Cell Walls. TRENDS IN PLANT SCIENCE 2019; 24:867-878. [PMID: 31257154 DOI: 10.1016/j.tplants.2019.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/20/2019] [Accepted: 05/27/2019] [Indexed: 05/24/2023]
Abstract
Understanding of cell wall architecture, including the crosslinking of cell wall polymers, provides crucial information for elucidating the relationship between cell wall structure and cell function. Moreover, examination of the cell wall informs efforts to improve biomass breakdown in bioreactor conditions. Over the past decades, imaging techniques have been used extensively to reveal the structural organization and chemical composition of cell walls, but detailed imaging of the native composition and architecture of the cell wall remains challenging. Here, we review progress in the development of cell wall imaging techniques. In particular, we focus on several advanced, label-free techniques for imaging cell walls and their potential applications in investigation of the biological functions of plant cell walls.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yi Man
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jialong Wen
- Beijing Key laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Yayu Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
16
|
Fan TF, Potroz MG, Tan EL, Ibrahim MS, Miyako E, Cho NJ. Species-Specific Biodegradation of Sporopollenin-Based Microcapsules. Sci Rep 2019; 9:9626. [PMID: 31270392 PMCID: PMC6610089 DOI: 10.1038/s41598-019-46131-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 06/07/2019] [Indexed: 11/30/2022] Open
Abstract
Sporoderms, the outer layers of plant spores and pollen grains, are some of the most robust biomaterials in nature. In order to evaluate the potential of sporoderms in biomedical applications, we studied the biodegradation in simulated gastrointestinal fluid of sporoderm microcapsules (SDMCs) derived from four different plant species: lycopodium (Lycopodium clavatum L.), camellia (Camellia sinensis L.), cattail (Typha angustifolia L.), and dandelion (Taraxacum officinale L.). Dynamic image particle analysis (DIPA) and field-emission scanning electron microscopy (FE-SEM) were used to investigate the morphological characteristics of the capsules, and Fourier-transform infrared (FTIR) spectroscopy was used to evaluate their chemical properties. We found that SDMCs undergo bulk degradation in a species-dependent manner, with camellia SDMCs undergoing the most extensive degradation, and dandelion and lycopodium SDMCs being the most robust.
Collapse
Affiliation(s)
- Teng-Fei Fan
- School of Materials Science and Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Michael G Potroz
- School of Materials Science and Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Ee-Lin Tan
- School of Materials Science and Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Mohammed Shahrudin Ibrahim
- School of Materials Science and Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Eijiro Miyako
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Nam-Joon Cho
- School of Materials Science and Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore.
| |
Collapse
|
17
|
Abstract
With the origin of pollination in ancient seed plants, the male gametophyte ("pollen") began to evolve a new and unique life history stage, the progamic phase, a post-pollination period in which pollen sexual maturation occurs in interaction with sporophyte-derived tissues. Pollen performance traits mediate the timing of the fertilization process, often in competition with other pollen, via the speed of pollen germination, sperm development, and pollen tube growth. Studies of pollen development rarely address the issue of performance or its evolution, which involves linking variation in developmental rates to relative fitness within populations or to adaptations on a macroevolutionary scale. Modifications to the pollen tube pathway and changes in the intensity of pollen competition affect the direction and strength of selection on pollen performance. Hence, pollen developmental evolution is always contextual-it involves both the population biology of pollen reaching stigmas and the co-evolution of sporophytic traits, such as the pollen tube pathway and mating system. For most species, performance evolution generally reflects a wandering history of periods of directional selection and relaxed selection, channeled by developmental limitations, a pattern that favors the accumulation of diversity and redundancy in developmental mechanisms and the genetic machinery. Developmental biologists are focused on finding universal mechanisms that underlie pollen function, and these are largely mechanisms that have evolved through their effects on performance. Here, we suggest ways in which studies of pollen performance or function could progress by cross-fertilization between the "evo" and "devo" fields.
Collapse
Affiliation(s)
- Joseph H Williams
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States.
| | - John B Reese
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
18
|
Abstract
In this introductory chapter, we describe male germline development in plants taking Arabidopsis thaliana as a reference species. We first describe the transition from sporophytic to germline development, then microsporogenesis including meiosis, followed by male gametophyte development prior to pollination, and finally the progamic phase culminating in double fertilization, which leads to the formation of the embryo and the endosperm. For detailed information on some of these processes or on the molecular underpinning of certain fate transitions, we refer the reader to recent reviews. An important but often neglected aspect of male gametophyte development is the formation of the unique pollen cell wall. In contrast to that of other plant cells, the pollen cell wall is composed of two principal layers, the intine and exine. While the intine, the inner pecto-cellulosic cell wall layer, is biochemically and structurally similar to a "classical" plant cell wall, the exine is a unique composite with sporopollenin as its main component. Biosynthesis of the cell wall is remarkably similar between the spores of mosses and ferns, and pollen of seed plants, although slight differences exist, even between closely related species (reviewed in Wallace et al., AoB Plants 2011:plr027, 2011). In the latter sections of this chapter, we will present a brief overview of cell wall development in Arabidopsis pollen, where this aspect has been intensively studied.
Collapse
|
19
|
Albert B, Ressayre A, Dillmann C, Carlson AL, Swanson RJ, Gouyon PH, Dobritsa AA. Effect of aperture number on pollen germination, survival and reproductive success in Arabidopsis thaliana. ANNALS OF BOTANY 2018; 121:733-740. [PMID: 29360918 PMCID: PMC5853032 DOI: 10.1093/aob/mcx206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 12/15/2017] [Indexed: 05/07/2023]
Abstract
Background and Aims Pollen grains of flowering plants display a fascinating diversity of forms, including diverse patterns of apertures, the specialized areas on the pollen surface that commonly serve as the sites of pollen tube initiation and, therefore, might play a key role in reproduction. Although many aperture patterns exist in angiosperms, pollen with three apertures (triaperturate) constitutes the predominant pollen type found in eudicot species. The aim of this study was to explore whether having three apertures provides selective advantages over other aperture patterns in terms of pollen survival, germination and reproductive success, which could potentially explain the prevalence of triaperturate pollen among eudicots. Methods The in vivo pollen germination, pollen tube growth, longevity and competitive ability to sire seeds were compared among pollen grains of Arabidopsis thaliana with different aperture numbers. For this, an arabidopsis pollen aperture series was used, which included the triaperturate wild type, as well as mutants without an aperture (inaperturate) and with more than three apertures. Key Results Aperture number appears to influence pollen grain performance. In most germination and longevity experiments, the triaperturate and inaperturate pollen grains performed better than pollen with higher aperture numbers. In mixed pollinations, in which triaperturate and inaperturate pollen were forced to compete with each other, the triaperturate pollen outperformed the inaperturate pollen. Conclusions Triaperturate pollen grains might provide the best trade-off among various pollen performance traits, thus explaining the prevalence of this morphological trait in the eudicot clade.
Collapse
Affiliation(s)
- Béatrice Albert
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay cedex, France
| | - Adrienne Ressayre
- UMR de Génétique Végétale, Univ. Paris-Sud, INRA, CNRS, Université Paris-Saclay, Gif sur Yvette, France
| | - Christine Dillmann
- UMR de Génétique Végétale, Univ. Paris-Sud, INRA, CNRS, Université Paris-Saclay, Gif sur Yvette, France
| | - Ann L Carlson
- Biology Department, Valparaiso University, Valparaiso, IN, USA
| | | | - Pierre-Henri Gouyon
- Institut de Systématique, Évolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Anna A Dobritsa
- Department of Molecular Genetics and Center for Applied Plant Sciences, The Ohio State University, Columbus, USA
| |
Collapse
|
20
|
Li P, Ben-Menni Schuler S, Reeder SH, Wang R, Suárez Santiago VN, Dobritsa AA. INP1 involvement in pollen aperture formation is evolutionarily conserved and may require species-specific partners. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:983-996. [PMID: 29190388 PMCID: PMC5965098 DOI: 10.1093/jxb/erx407] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/24/2017] [Indexed: 05/22/2023]
Abstract
Pollen wall exine is usually deposited non-uniformly on the pollen surface, with areas of low exine deposition corresponding to pollen apertures. Little is known about how apertures form, with the novel Arabidopsis INP1 (INAPERTURATE POLLEN1) protein currently being the only identified aperture factor. In developing pollen, INP1 localizes to three plasma membrane domains and underlies formation of three apertures. Although INP1 homologs are found across angiosperms, they lack strong sequence conservation. Thus, it has been unclear whether they also act as aperture factors and whether their sequence divergence contributes to interspecies differences in aperture patterns. To explore the functional conservation of INP1 homologs, we used mutant analysis in maize and tested whether homologs from several other species could function in Arabidopsis. Our data suggest that the INP1 involvement in aperture formation is evolutionarily conserved, despite the significant divergence of INP1 sequences and aperture patterns, but that additional species-specific factors are likely to be required to guide INP1 and to provide information for aperture patterning. To determine the regions in INP1 necessary for its localization and function, we used fragment fusions, domain swaps, and interspecific protein chimeras. We demonstrate that the central portion of the protein is particularly important for mediating the species-specific functionality.
Collapse
Affiliation(s)
- Peng Li
- Department of Molecular Genetics and Center for Applied Plant Science, Ohio State University, Columbus, OH 43210, USA
| | - Samira Ben-Menni Schuler
- Department of Molecular Genetics and Center for Applied Plant Science, Ohio State University, Columbus, OH 43210, USA
| | - Sarah H Reeder
- Department of Molecular Genetics and Center for Applied Plant Science, Ohio State University, Columbus, OH 43210, USA
| | - Rui Wang
- Department of Molecular Genetics and Center for Applied Plant Science, Ohio State University, Columbus, OH 43210, USA
| | | | - Anna A Dobritsa
- Department of Molecular Genetics and Center for Applied Plant Science, Ohio State University, Columbus, OH 43210, USA
- Correspondence:
| |
Collapse
|
21
|
Edlund AF, Olsen K, Mendoza C, Wang J, Buckley T, Nguyen M, Callahan B, Owen HA. Pollen wall degradation in the Brassicaceae permits cell emergence after pollination. AMERICAN JOURNAL OF BOTANY 2017; 104:1266-1273. [PMID: 29756225 DOI: 10.3732/ajb.1700201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/26/2017] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Despite attempts to degrade the sporopollenin in pollen walls, this material has withstood a hundred years of experimental treatments and thousands of years of environmental attack in insects and soil. We present evidence that sporopollenin, nonetheless, locally degrades only minutes after pollination in Arabidopsis thaliana flowers, and describe here a two-part pollen germination mechanism in A. thaliana involving both chemical weakening of the exine wall and swelling of the underlying intine. METHODS We explored naturally occurring components from pollen and stigma surfaces and found a tripartite mix of hydrogen peroxide, peroxidase and catalase enzymes (all at high levels at the pollination interface) to be experimentally sufficient to degrade the sporopollenin of some Brassicaceae family members. KEY RESULTS At pollination, factors carried on the pollen surface may mix with factors on the stigma surface in a reaction that locally oxidizes the exine pollen wall. Hydrogen peroxide, catalases, and peroxidases are biologically present at the right time and place and, when mixed experimentally, are sufficient to degrade the walls of susceptible pollen. CONCLUSIONS Our work on native biochemistry for breaching sporopollenin suggests new research directions in pollen aperture evolution and could aid efforts to analyze sporopollenin's composition, needed for application of this corrosion-resistant, but long-intractable material.
Collapse
Affiliation(s)
- Anna F Edlund
- Biology Department, Lafayette College, Easton, Pennsylvania 18042 USA
| | - Katrina Olsen
- Department of Biological Sciences, University of Wisconsin-Milwaukee, 3209 North Maryland Avenue, Milwaukee, Wisconsin 53211 USA
| | - Christian Mendoza
- Biology Department, Lafayette College, Easton, Pennsylvania 18042 USA
| | - Jing Wang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, 3209 North Maryland Avenue, Milwaukee, Wisconsin 53211 USA
| | - Trudyann Buckley
- Biology Department, Lafayette College, Easton, Pennsylvania 18042 USA
| | - Mai Nguyen
- Biology Department, Lafayette College, Easton, Pennsylvania 18042 USA
| | - Brooke Callahan
- Biology Department, Lafayette College, Easton, Pennsylvania 18042 USA
| | - Heather A Owen
- Department of Biological Sciences, University of Wisconsin-Milwaukee, 3209 North Maryland Avenue, Milwaukee, Wisconsin 53211 USA
| |
Collapse
|
22
|
Läubli N, Shamsudhin N, Ahmed D, Nelson BJ. Controlled Three-dimensional Rotation of Single Cells Using Acoustic Waves. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.procir.2017.04.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|