1
|
Pasinato A, Singh G. Lichens are a treasure chest of bioactive compounds: fact or fake? THE NEW PHYTOLOGIST 2025; 246:389-395. [PMID: 40013383 PMCID: PMC11923404 DOI: 10.1111/nph.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/05/2025] [Indexed: 02/28/2025]
Affiliation(s)
- Anna Pasinato
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padova, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina, 61, 90133, Palermo, Italy
| | - Garima Singh
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padova, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina, 61, 90133, Palermo, Italy
- Botanical Garden, University of Padova, Via Orto Botanico, 15, 35123, Padova, Italy
| |
Collapse
|
2
|
Piątek M, Stryjak-Bogacka M, Czachura P. Non-lichenized Cytosporella, including C.fuligomixta sp. nov., and related plant-associated and fungicolous genera are close to foliicolous, lichenized fungi (Ascomycota, Graphidales). MycoKeys 2025; 115:1-18. [PMID: 40092606 PMCID: PMC11907247 DOI: 10.3897/mycokeys.115.138252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/15/2025] [Indexed: 03/19/2025] Open
Abstract
The genus Cytosporella includes non-lichenized, plant associated fungi producing eustromatic conidiomata, phialidic conidiophores and hyaline, ellipsoid conidia. Of the 69 names assigned to this genus in Index Fungorum, only three species are associated with sequence data. In this study, a new species: Cytosporellafuligomixta is described based on a strain isolated from the sooty mould community on Quercusrobur leaves in Poland. The phylogenetic analyses including sequences of two loci (LSU, mtSSU) showed that Cytosporella species, together with members of four other non-lichenized, plant associated or fungicolous genera, namely Cladosterigma, Neoacrodontiella, Nothoramularia and Vanderaaea, form a sister group to lichenized and lichenicolous fungi from the family Gomphillaceae and order Graphidales. Previously, Cladosterigma was resolved as a member of Gomphillaceae using multi-locus (mtSSU, SSU, LSU, ITS, rpb2, tef1) and two-locus (LSU, mtSSU) sequence analyses, while Cytosporella, Neoacrodontiella, Nothoramularia were shown to belong to this family using LSU sequence analyses. However, none of them resolved these genera as a sister group to lichenized members of Gomphillaceae. The placement of the genus Vanderaaea within Gomphillaceae is shown here for the first time. Due to phylogenetic, morphological and ecological characteristics a new subfamily Cladosterigmoideae is described for these five non-lichenized genera.
Collapse
Affiliation(s)
- Marcin Piątek
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland W. Szafer Institute of Botany, Polish Academy of Sciences Kraków Poland
| | - Monika Stryjak-Bogacka
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland W. Szafer Institute of Botany, Polish Academy of Sciences Kraków Poland
| | - Paweł Czachura
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland W. Szafer Institute of Botany, Polish Academy of Sciences Kraków Poland
| |
Collapse
|
3
|
Dai Y, Yuan Q, Yang X, Liu R, Liu D, Yuan H, Zhao C. Morphological characteristics and phylogenetic analyses reveal five new species of Hymenochaetales (Agaricomycetes, Basidiomycota) from southwestern China. MycoKeys 2025; 114:133-175. [PMID: 40051985 PMCID: PMC11883501 DOI: 10.3897/mycokeys.114.143851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/04/2025] [Indexed: 03/09/2025] Open
Abstract
Wood-inhabiting fungi can decompose wood materials and play a crucial role in the natural world by maintaining the equilibrium of the Earth's ecosystems. In the present study, five new wood-inhabiting fungal species belonging to the order Hymenochaetales, Hymenochaeteweishanensis, Lyomycesalbofarinaceus, Lyomycesalbomarginatus, Tubulicrinisalbobadius and Xylodonmusicola, collected from southern China, are proposed based on a combination of morphological features and molecular evidence. Hymenochaeteweishanensis is characterized by a coriaceous, tuberculate hymenial surface, a monomitic hyphal system with simple-septate generative hyphae, and ellipsoid to narrow ellipsoid basidiospores (4.0-5.0 × 2.0-3.0 µm); Lyomycesalbofarinaceus is characterized by pruinose hymenial surface, a monomitic hyphal system with clamped generative hyphae, and broadly ellipsoid basidiospores (6.0-7.0 × 5.0-6.0 µm); Lyomycesalbomarginatus is characterized by the cracked hymenial surface, clamped generative hyphae, and elliposoid basidiospores (4.0-5.5 × 2.7-3.5 µm); Tubulicrinisalbobadius is characterized by an arachnoid hymenial surface, a monomitic hyphal system with clamped generative hyphae and cylindrical to allantoid basidiospores (4.0-6.0 × 1.5-2.2 µm) and Xylodonmusicola is characterized by an arachnoid hymenial surface, a monomitic hyphal system with clamped generative hyphae and broadly ellipsoid to globe basidiospores (4.0-5.5 × 3.5-5.0 µm). Sequences of the internal transcribed spacers (ITS) and the large subunit (nrLSU) of the nuclear ribosomal DNA (rDNA) markers of the studied samples were generated. Phylogenetic analyses were performed using maximum likelihood, maximum parsimony, and Bayesian inference methods. Full descriptions, illustrations, and phylogenetic analysis results for the five new species are provided.
Collapse
Affiliation(s)
- Yunfei Dai
- College of Forestry, Southwest Forestry University, Kunming 650224, ChinaSouthwest Forestry UniversityKunmingChina
| | - Qi Yuan
- College of Forestry, Southwest Forestry University, Kunming 650224, ChinaSouthwest Forestry UniversityKunmingChina
| | - Xin Yang
- College of Forestry, Southwest Forestry University, Kunming 650224, ChinaSouthwest Forestry UniversityKunmingChina
| | - Rui Liu
- Kunming Municipal Capital Construction Archives, Kunming 650032, ChinaKunming Municipal Capital Construction ArchivesKunmingChina
| | - Defu Liu
- Yunnan Key Laboratory of Gastrodia and Fungal Symbiotic Biology, Zhaotong University, Zhaotong 657000, ChinaZhaotong UniversityZhaotongChina
| | - Haisheng Yuan
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, ChinaInstitute of Applied Ecology, Chinese Academy of SciencesShenyangChina
| | - Changlin Zhao
- College of Forestry, Southwest Forestry University, Kunming 650224, ChinaSouthwest Forestry UniversityKunmingChina
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, ChinaInstitute of Applied Ecology, Chinese Academy of SciencesShenyangChina
| |
Collapse
|
4
|
Manz C, Amalfi M, Buyck B, Hampe F, Yorou NS, Adamčík S, Piepenbring M. Just the tip of the iceberg: uncovering a hyperdiverse clade of African Russula ( Basidiomycota, Russulales, Russulaceae) species with signs of evolutionary habitat adaptations. IMA Fungus 2025; 16:e140321. [PMID: 40052072 PMCID: PMC11882026 DOI: 10.3897/imafungus.16.140321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/04/2024] [Indexed: 03/09/2025] Open
Abstract
The diversity within the ectomycorrhizal genus Russula (Basidiomycota) in West Africa is largely unexplored. The study area was Benin, where only ten out of the 159 species endemic to tropical Africa have been previously reported. We focused on "Afrovirescentinae", which is a monophyletic lineage within Russulasubgen.Heterophyllidiaesister tosubsect.Virescentinae. The phylogenetic placement of this clade was analysed using sequence data from ITS, LSU, mtSSU, tef1, rpb1 and rpb2 regions. Ten "Afrovirescentinae" species are recognised, described and illustrated from Benin. Four of them, R.carmesina, R.hiemisilvae, R.inflata and R.sublaevis, were previously published. Five species, Russulaacrialbida sp. nov., R.beenkenii sp. nov., R.coronata sp. nov., R.florae sp. nov. and R.spectabilis sp. nov., are newly described. Species within this group are characterised by densely reticulated spore ornamentation, but they exhibit considerable variation in field appearance and pileipellis structure. In gallery forests, their basidiomata are ephemeral, small and their basidiospores have prominent ornamentation; while in savannah woodlands, the basidiomata are fleshy, large and basidiospores present low ornamentation. We suggest that these morphological traits may represent evolutionary adaptations to a specific environmental condition. We analysed the species richness, ecological range and distribution of the "Afrovirescentinae" clade globally based on data from the UNITE database, estimating a total diversity of 94 species primarily distributed in sub-Saharan Africa, but also in the Neotropics. Four additional previously described species not detected in Benin were assigned to this clade, based on holotype sequencing. Several species are widely distributed across tropical Africa and do not show specificity regarding their associated plant symbionts.
Collapse
Affiliation(s)
- Cathrin Manz
- Mycology Working Group, Goethe University, Biologicum, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, GermanyGoethe UniversityFrankfurt am MainGermany
| | - Mario Amalfi
- Meise Botanic Garden, Meise, Nieuwelaan 38, 1860 Meise, BelgiumBotanic Garden MeiseMeiseBelgium
- Fédération Wallonie-Bruxelles, Service Général de l’Enseignement Universitaire et de la Recherche Scientifique, Rue A.Lavallée 1, 1080 Bruxelles, BelgiumFédération Wallonie-Bruxelles, Service Général de l’Enseignement Universitaire et de la Recherche ScientifiqueBruxellesBelgium
| | - Bart Buyck
- Institut de Systématique, Écologie, Biodiversité (ISYEB), Muséum national d’histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP 39, 75005 Paris, FranceMuséum national d’histoire naturelle, CNRS, Sorbonne UniversitéParisFrance
| | - Felix Hampe
- Wetzlarer Str. 1, 35510 Butzbach, GermanyUnaffiliatedButzbachGermany
| | - Nourou S. Yorou
- Research Unit Tropical Mycology and Plant-Soil Fungi Interactions, Faculty of Agronomy, University of Parakou, Parakou, BeninUniversity of ParakouParakouBenin
| | - Slavomír Adamčík
- Laboratory of Molecular Ecology and Mycology, Institute of Botany, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23 Bratislava, SlovakiaInstitute of Botany, Plant Science and Biodiversity Center, Slovak Academy of SciencesBratislavaSlovakia
- Department of Botany, Faculty of Natural Sciences, Comenius University in Bratislava, Révová 39, 811 02 Bratislava, SlovakiaComenius University in BratislavaBratislavaSlovakia
| | - Meike Piepenbring
- Mycology Working Group, Goethe University, Biologicum, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, GermanyGoethe UniversityFrankfurt am MainGermany
| |
Collapse
|
5
|
Forin N, Vizzini A, Amalfi M, Voyron S, Ercole E, Marcolini S, Moschin S, Baldan B. New insights on the Xylaria species (Ascomycota, Xylariales) with bright-coloured exudates: Xylaria aurantiorubroguttata sp. nov. and revision of X. haemorrhoidalis and X. anisopleura type collections. IMA Fungus 2024; 15:37. [PMID: 39574194 PMCID: PMC11583450 DOI: 10.1186/s43008-024-00168-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024] Open
Abstract
A new species of Xylaria is described based on morphological characters of both sexual and asexual morphs, and molecular data based on nuclear rDNA internal transcribed spacer, α-actin, β-tubulin and RNA polymerase subunit II sequences. Xylaria aurantiorubroguttata is characterized by the presence of both upright, cylindrical, long-stipitate and globose to subglobose, short-stipitate stromata, immature stromatal stages producing at first orange and then red drops, and ascospores with a slightly oblique, straight half spore-length germ slit. We provide also new morphological descriptions for X. haemorrhoidalis (holotype) and X. anisopleura (isosyntype), two Xylaria species belonging to X. polymorpha complex together with X. aurantiorubroguttata.
Collapse
Affiliation(s)
- Niccolò Forin
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Viale Dell'Università 16, 35020, Legnaro, Italy.
- Botanical Garden, University of Padova, Via Orto Botanico 15, 35123, Padua, Italy.
| | - Alfredo Vizzini
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125, Turin, Italy.
| | - Mario Amalfi
- Meise Botanic Garden, Nieuwelaan 38, 1860, Meise, Belgium
- Fédération Wallonie-Bruxelles, Service Général de L'Enseignement Supérieur Et de La Recherche Scientifique, 1080, Brussels, Belgium
| | - Samuele Voyron
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125, Turin, Italy
| | | | - Simone Marcolini
- Botanical Garden, University of Padova, Via Orto Botanico 15, 35123, Padua, Italy
- Sant'Anna School of Advanced Studies, Institute of Crop Science, Via Luigi Alamanni 22, 56010, San Giuliano Terme, Italy
| | - Silvia Moschin
- Botanical Garden, University of Padova, Via Orto Botanico 15, 35123, Padua, Italy
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35121, Padua, Italy
| | - Barbara Baldan
- Botanical Garden, University of Padova, Via Orto Botanico 15, 35123, Padua, Italy
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35121, Padua, Italy
| |
Collapse
|
6
|
Rizinde Hakizimana JC, Amalfi M, Balezi A, Decock C. Laetiporus (Laetiporaceae, Basidiomycota) in tropical Africa is represented by a single Afromontane lineage and four species, including Laetiporus discolor, Laetiporus oboensis, sp. nov., Laetiporus tenuiculus, sp. nov., and Laetiporus sp. 1. Mycologia 2024; 116:1083-1100. [PMID: 39423306 DOI: 10.1080/00275514.2024.2395688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 08/20/2024] [Indexed: 10/21/2024]
Abstract
The tropical African Laetiporus species are revised, based on morphological, ecological, distribution, and phylogenetic data. Laetiporus discolor, originally described from insular Mauritius, is accepted for the species spanning over the African eastern mountain ranges. Laetiporus oboensis and Laetiporus tenuiculus are described as new from the African equatorial insular São Tomé, based on phylogenetic, morphological, and distribution data. Laetiporus oboensis is characterized by compound basidiomes, with densely imbricated pilei in pale orange tint, a lobed margin, 3-4 pores/mm, and basidiospores averaging 4.8 × 3.7 μm. Laetiporus tenuiculus has mostly solitary, small, thin basidiomes, with pale flesh to pale orange pileus, an incised margin, 4-5 pores/mm, and basidiospores averaging 5.4 × 4.2 µm. A fourth species, known from two isolates from Ethiopian highlands, but for which voucher specimens were not available for description, is uncertain. These four species form an African endemic lineage, whose distribution is Afromountainous.
Collapse
Affiliation(s)
- Jean-Claude Rizinde Hakizimana
- Faculté des Sciences Agronomiques, Université de Goma, Goma BP 204, République Démocratique du Congo
- Mycology Laboratory, Applied Microbiology Unit, Earth and Life Institute, Université catholique de Louvain, Croix du Sud 2 bte L7.05.06, Louvain-la-Neuve B1348, Belgium
| | - Mario Amalfi
- Meise Botanic Garden, Nieuwelaan 38, Meise 1860, Belgium
- Service Général de l'Enseignement Supérieur et de la Recherche Scientifique, Fédération Wallonie-Bruxelles, Bruxelles 1080, Belgium
| | - Alphonse Balezi
- Faculté des Sciences et Sciences Appliquées, Département de Biologie, Université Officielle de Bukavu, Bukavu BP 570, République Démocratique du Congo
| | - Cony Decock
- Mycology Laboratory, Applied Microbiology Unit, Earth and Life Institute, Université catholique de Louvain, Croix du Sud 2 bte L7.05.06, Louvain-la-Neuve B1348, Belgium
| |
Collapse
|
7
|
Wijayawardene NN, Hyde KD, Mikhailov KV, Péter G, Aptroot A, Pires-Zottarelli CLA, Goto BT, Tokarev YS, Haelewaters D, Karunarathna SC, Kirk PM, de A. Santiago ALCM, Saxena RK, Schoutteten N, Wimalasena MK, Aleoshin VV, Al-Hatmi AMS, Ariyawansa KGSU, Assunção AR, Bamunuarachchige TC, Baral HO, Bhat DJ, Błaszkowski J, Boekhout T, Boonyuen N, Brysch-Herzberg M, Cao B, Cazabonne J, Chen XM, Coleine C, Dai DQ, Daniel HM, da Silva SBG, de Souza FA, Dolatabadi S, Dubey MK, Dutta AK, Ediriweera A, Egidi E, Elshahed MS, Fan X, Felix JRB, Galappaththi MCA, Groenewald M, Han LS, Huang B, Hurdeal VG, Ignatieva AN, Jerônimo GH, de Jesus AL, Kondratyuk S, Kumla J, Kukwa M, Li Q, Lima JLR, Liu XY, Lu W, Lumbsch HT, Madrid H, Magurno F, Marson G, McKenzie EHC, Menkis A, Mešić A, Nascimento ECR, Nassonova ES, Nie Y, Oliveira NVL, Ossowska EA, Pawłowska J, Peintner U, Pozdnyakov IR, Premarathne BM, Priyashantha AKH, Quandt CA, Queiroz MB, Rajeshkumar KC, Raza M, Roy N, Samarakoon MC, Santos AA, Santos LA, Schumm F, Selbmann L, Selçuk F, Simmons DR, Simakova AV, Smith MT, Sruthi OP, Suwannarach N, Tanaka K, Tibpromma S, Tomás EO, Ulukapı M, Van Vooren N, Wanasinghe DN, Weber E, Wu Q, Yang EF, Yoshioka R, et alWijayawardene NN, Hyde KD, Mikhailov KV, Péter G, Aptroot A, Pires-Zottarelli CLA, Goto BT, Tokarev YS, Haelewaters D, Karunarathna SC, Kirk PM, de A. Santiago ALCM, Saxena RK, Schoutteten N, Wimalasena MK, Aleoshin VV, Al-Hatmi AMS, Ariyawansa KGSU, Assunção AR, Bamunuarachchige TC, Baral HO, Bhat DJ, Błaszkowski J, Boekhout T, Boonyuen N, Brysch-Herzberg M, Cao B, Cazabonne J, Chen XM, Coleine C, Dai DQ, Daniel HM, da Silva SBG, de Souza FA, Dolatabadi S, Dubey MK, Dutta AK, Ediriweera A, Egidi E, Elshahed MS, Fan X, Felix JRB, Galappaththi MCA, Groenewald M, Han LS, Huang B, Hurdeal VG, Ignatieva AN, Jerônimo GH, de Jesus AL, Kondratyuk S, Kumla J, Kukwa M, Li Q, Lima JLR, Liu XY, Lu W, Lumbsch HT, Madrid H, Magurno F, Marson G, McKenzie EHC, Menkis A, Mešić A, Nascimento ECR, Nassonova ES, Nie Y, Oliveira NVL, Ossowska EA, Pawłowska J, Peintner U, Pozdnyakov IR, Premarathne BM, Priyashantha AKH, Quandt CA, Queiroz MB, Rajeshkumar KC, Raza M, Roy N, Samarakoon MC, Santos AA, Santos LA, Schumm F, Selbmann L, Selçuk F, Simmons DR, Simakova AV, Smith MT, Sruthi OP, Suwannarach N, Tanaka K, Tibpromma S, Tomás EO, Ulukapı M, Van Vooren N, Wanasinghe DN, Weber E, Wu Q, Yang EF, Yoshioka R, Youssef NH, Zandijk A, Zhang GQ, Zhang JY, Zhao H, Zhao R, Zverkov OA, Thines M, Karpov SA. Classes and phyla of the kingdom Fungi. FUNGAL DIVERS 2024; 128:1-165. [DOI: 10.1007/s13225-024-00540-z] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/03/2024] [Indexed: 01/05/2025]
Abstract
AbstractFungi are one of the most diverse groups of organisms with an estimated number of species in the range of 2–3 million. The higher-level ranking of fungi has been discussed in the framework of molecular phylogenetics since Hibbett et al., and the definition and the higher ranks (e.g., phyla) of the ‘true fungi’ have been revised in several subsequent publications. Rapid accumulation of novel genomic data and the advancements in phylogenetics now facilitate a robust and precise foundation for the higher-level classification within the kingdom. This study provides an updated classification of the kingdom Fungi, drawing upon a comprehensive phylogenomic analysis of Holomycota, with which we outline well-supported nodes of the fungal tree and explore more contentious groupings. We accept 19 phyla of Fungi, viz. Aphelidiomycota, Ascomycota, Basidiobolomycota, Basidiomycota, Blastocladiomycota, Calcarisporiellomycota, Chytridiomycota, Entomophthoromycota, Entorrhizomycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota, Sanchytriomycota, and Zoopagomycota. In the phylogenies, Caulochytriomycota resides in Chytridiomycota; thus, the former is regarded as a synonym of the latter, while Caulochytriomycetes is viewed as a class in Chytridiomycota. We provide a description of each phylum followed by its classes. A new subphylum, Sanchytriomycotina Karpov is introduced as the only subphylum in Sanchytriomycota. The subclass Pneumocystomycetidae Kirk et al. in Pneumocystomycetes, Ascomycota is invalid and thus validated. Placements of fossil fungi in phyla and classes are also discussed, providing examples.
Collapse
|
8
|
Xu TM, Wu DM, Gao N, Zeng L, Xu YH, Fan XP, Sun YF, Cui BK. Five New Species of Wood-Decaying Brown-Rot Fungi within Postiaceae (Polyporales, Basidiomycota) from Xinjiang, Northwest China. J Fungi (Basel) 2024; 10:655. [PMID: 39330415 PMCID: PMC11433077 DOI: 10.3390/jof10090655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Brown-rot fungi are an important group of wood-decaying fungi, but there has been limited research on the species diversity of brown-rot fungi in Xinjiang, China. During an investigation of brown-rot fungi in Xinjiang, from July 2018 to July 2023, five new species belonging to the family Postiaceae were discovered based on morphological and molecular evidence. Amaropostia altaiensis is characterized by a conchate pileus, circular pores (5-8 per mm), and growing on Populus. Amaropostia tianshanensis is characterized by a flabelliform-to-conchate pileus, angular pores (5-6 per mm), and growing on Picfea. Cyanosporus latisporus is characterized by a hirsute and dark greyish blue pileal surface with fresh, larger pores (3-6 per mm) and broad basidiospores (4.3-5.9 × 1.4-2 µm). Cyanosporus tianshanensis is characterized by a smooth and white-to-cream pileal surface with fresh, smaller pores (6-9 per mm). Osteina altaiensis is characterized by a light mouse-grey-to-honey-yellow pileal surface, smaller pores (4-6 per mm), and slightly wide basidiospores (5-6 × 1.7-2.2 µm). Each of these five new species form independent lineages in phylogenetic analyses based on the seven gene loci (ITS + nLSU + nSSU + mtSSU + TEF1 + RPB1 + RPB2). This research enriches the diversity of brown-rot fungi species, while also demonstrating the substantial discovery potential and research value of brown-rot fungi in Xinjiang.
Collapse
Affiliation(s)
- Tai-Min Xu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Dong-Mei Wu
- Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Neng Gao
- Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Long Zeng
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yi-Hua Xu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Xiang-Ping Fan
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yi-Fei Sun
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Bao-Kai Cui
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
9
|
Coelho-Nascimento C, Zabin DA, E Silva-Filho AGDS, Drewinski MP, Alves-Silva G, Kossmann T, Titton M, Drechsler-Santos ER, Menolli N. Unroughing the cat's tongue mushrooms: Four new species of Pseudohydnum from Brazil based on morphological and molecular phylogenetic evidence. Mycologia 2024; 116:792-820. [PMID: 39121366 DOI: 10.1080/00275514.2024.2363141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/30/2024] [Indexed: 08/11/2024]
Abstract
Pseudohydnum, commonly known as cat's tongue mushrooms, is a monophyletic assemblage within Auriculariales, which encompasses species with gelatinous basidiomata, spathulate, flabellate, or shell-shaped pileus, hydnoid hymenophore, globose to ellipsoidal basidiospores, and longitudinally cruciate-septate basidia. According to the available literature, 16 species have been described in Pseudohydnum, mostly represented in temperate-boreal forests of the Northern Hemisphere. However, the limited morphological, molecular, and ecological information, especially from the Southern Hemisphere ecosystems, does not presently allow a reliable assessment of its taxonomic boundaries nor provide a complete picture of the species diversity in the genus. In an ongoing effort to examine specimens collected in dense and mixed ombrophilous forest fragments (Atlantic Rainforest domain) from Southeastern and Southern Brazil, additional taxa assigned to Pseudohydnum were identified. Four new species are recognized based mostly on characters of the pileus surface, stipe, hymenium, and basidiospores. Molecular phylogenetic analyses based on nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS barcode), partial nuc rDNA 28S, and partial RNA polymerase II largest subunit (RPB1) sequences supported the description of these new taxa. Here, we propose Pseudohydnum brasiliense, P. brunneovelutinum, P. cupulisnymphae, and P. viridimontanum as new species. Morphological descriptions, line drawings, habitat photos, and comparisons with closely related taxa are provided. A dichotomous key for identification of currently known Southern Hemisphere Pseudohydnum species is presented.
Collapse
Affiliation(s)
- Cristiano Coelho-Nascimento
- Departamento de Micologia, Núcleo de Pós-graduação Stricto Sensu, Pós-graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Pesquisas Ambientais (IPA), Av. Miguel Estefano 3687, Água Funda, São Paulo, São Paulo 04301-012, Brazil
- IFungiLab, Subárea de Biologia, Departamento de Ciências da Natureza e Matemática, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), Câmpus São Paulo (SPO), Rua Pedro Vicente 625, São Paulo, São Paulo 01109-010, Brazil
- Departamento de Ciências da Natureza, Laboratório de Biologia, Instituto Federal de Educação, Ciência e Tecnologia do Piauí (IFPI), Câmpus Piripiri (CAPIR), Av. Rio dos Matos s/n, Piripiri, Piauí 74260-000, Brazil
| | - Denis A Zabin
- Departamento de Micologia, Núcleo de Pós-graduação Stricto Sensu, Pós-graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Pesquisas Ambientais (IPA), Av. Miguel Estefano 3687, Água Funda, São Paulo, São Paulo 04301-012, Brazil
- IFungiLab, Subárea de Biologia, Departamento de Ciências da Natureza e Matemática, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), Câmpus São Paulo (SPO), Rua Pedro Vicente 625, São Paulo, São Paulo 01109-010, Brazil
| | - Alexandre G Dos Santos E Silva-Filho
- IFungiLab, Subárea de Biologia, Departamento de Ciências da Natureza e Matemática, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), Câmpus São Paulo (SPO), Rua Pedro Vicente 625, São Paulo, São Paulo 01109-010, Brazil
| | - Mariana P Drewinski
- Departamento de Micologia, Núcleo de Pós-graduação Stricto Sensu, Pós-graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Pesquisas Ambientais (IPA), Av. Miguel Estefano 3687, Água Funda, São Paulo, São Paulo 04301-012, Brazil
- IFungiLab, Subárea de Biologia, Departamento de Ciências da Natureza e Matemática, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), Câmpus São Paulo (SPO), Rua Pedro Vicente 625, São Paulo, São Paulo 01109-010, Brazil
| | - Genivaldo Alves-Silva
- Programa de Pós-graduação em Biologia de Fungos, Algas e Plantas, Laboratório de Micologia (MICOLAB-UFSC), Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Câmpus Universitário Reitor João David Ferreira Lima s/n, Florianópolis, Santa Catarina 88040-900, Brazil
- MIND.Funga (Monitoring and Inventorying Neotropical Diversity of Fungi), Laboratório de Micologia (MICOLAB-UFSC), Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Câmpus Universitário Reitor João David Ferreira Lima s/n, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Thiago Kossmann
- MIND.Funga (Monitoring and Inventorying Neotropical Diversity of Fungi), Laboratório de Micologia (MICOLAB-UFSC), Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Câmpus Universitário Reitor João David Ferreira Lima s/n, Florianópolis, Santa Catarina 88040-900, Brazil
- Ecology and Evolutionary Biology Department, University of Colorado, Boulder, 1900 Pleasant Street, Boulder, Colorado 80304
| | - Mahatma Titton
- Programa de Pós-graduação em Biologia de Fungos, Algas e Plantas, Laboratório de Micologia (MICOLAB-UFSC), Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Câmpus Universitário Reitor João David Ferreira Lima s/n, Florianópolis, Santa Catarina 88040-900, Brazil
- MIND.Funga (Monitoring and Inventorying Neotropical Diversity of Fungi), Laboratório de Micologia (MICOLAB-UFSC), Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Câmpus Universitário Reitor João David Ferreira Lima s/n, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Elisandro R Drechsler-Santos
- Programa de Pós-graduação em Biologia de Fungos, Algas e Plantas, Laboratório de Micologia (MICOLAB-UFSC), Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Câmpus Universitário Reitor João David Ferreira Lima s/n, Florianópolis, Santa Catarina 88040-900, Brazil
- MIND.Funga (Monitoring and Inventorying Neotropical Diversity of Fungi), Laboratório de Micologia (MICOLAB-UFSC), Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Câmpus Universitário Reitor João David Ferreira Lima s/n, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Nelson Menolli
- Departamento de Micologia, Núcleo de Pós-graduação Stricto Sensu, Pós-graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Pesquisas Ambientais (IPA), Av. Miguel Estefano 3687, Água Funda, São Paulo, São Paulo 04301-012, Brazil
- IFungiLab, Subárea de Biologia, Departamento de Ciências da Natureza e Matemática, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), Câmpus São Paulo (SPO), Rua Pedro Vicente 625, São Paulo, São Paulo 01109-010, Brazil
| |
Collapse
|
10
|
Dong J, Zhu Y, Qian C, Zhao C. Taxonomy and phylogeny of Auriculariales (Agaricomycetes, Basidiomycota) with descriptions of four new species from south-western China. MycoKeys 2024; 108:115-146. [PMID: 39246551 PMCID: PMC11380053 DOI: 10.3897/mycokeys.108.128659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/04/2024] [Indexed: 09/10/2024] Open
Abstract
The wood-inhabiting fungi play an integral role in wood degradation and the cycle of matter in the ecological system. They are considered as the "key player" in wood decomposition, because of their ability to produce lignocellulosic enzymes that break down woody lignin, cellulose and hemicellulose. In the present study, four new wood-inhabiting fungal species, Adustochaetealbomarginata, Ad.punctata, Alloexidiopsisgrandinea and Al.xantha collected from southern China, are proposed, based on a combination of morphological features and molecular evidence. Adustochaetealbomarginata is characterised by resupinate basidiomata with cream to buff, a smooth, cracked, hymenial surface, a monomitic hyphal system with clamped generative hyphae and subcylindrical to allantoid basidiospores (12-17.5 × 6.5-9 µm). Adustochaetepunctata is characterised by resupinate basidiomata with cream, a smooth, punctate hymenial surface, a monomitic hyphal system with clamped generative hyphae and subcylindrical to allantoid basidiospores (13.5-18 × 6-8.2 µm). Alloexidiopsisgrandinea is characterised by resupinate basidiomata with buff to slightly yellowish, a grandinioid hymenial surface, a monomitic hyphal system with clamped generative hyphae and allantoid basidiospores (10-12.3 × 5-5.8 µm). Additionally, Alloexidiopsisxantha is characterised by resupinate basidiomata with cream to slightly buff, a smooth hymenial surface, a monomitic hyphal system with clamped generative hyphae and subcylindrical to allantoid basidiospores measuring 20-24 × 5-6.2 µm. Sequences of the internal transcribed spacers (ITS) and the large subunit (nrLSU) of the nuclear ribosomal DNA (rDNA) markers of the studied samples were generated. Phylogenetic analyses were performed with the Maximum Likelihood, Maximum Parsimony and Bayesian Inference methods. The phylogram, based on the ITS+nLSU rDNA gene regions, revealed that four new species were assigned to the genera Adustochaete and Alloexidiopsis within the order Auriculariales, individually. The phylogenetic tree inferred from the ITS sequences highlighted that Ad.albomarginata was retrieved as a sister to Ad.yunnanensis and the species Ad.punctata was sister to Ad.rava. The topology, based on the ITS sequences, showed that Al.grandinea was retrieved as a sister to Al.schistacea and the taxon Al.xantha formed a monophyletic lineage. Furthermore, two identification keys to Adustochaete and Alloexidiopsis worldwide are provided.
Collapse
Affiliation(s)
- Junhong Dong
- The Key Laboratory of Forest Resources Conservation and Utilization in the South-west Mountains of China Ministry of Education, Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Re-source, Southwest Forestry University, Kunming 650224, China Southwest Forestry University Kunming China
| | - Yonggao Zhu
- The Key Laboratory of Forest Resources Conservation and Utilization in the South-west Mountains of China Ministry of Education, Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Re-source, Southwest Forestry University, Kunming 650224, China Southwest Forestry University Kunming China
| | - Chengbin Qian
- The Key Laboratory of Forest Resources Conservation and Utilization in the South-west Mountains of China Ministry of Education, Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Re-source, Southwest Forestry University, Kunming 650224, China Southwest Forestry University Kunming China
| | - Changlin Zhao
- The Key Laboratory of Forest Resources Conservation and Utilization in the South-west Mountains of China Ministry of Education, Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Re-source, Southwest Forestry University, Kunming 650224, China Southwest Forestry University Kunming China
| |
Collapse
|
11
|
Piątek M, Stryjak-Bogacka M, Czachura P. Arthrocatenales, a new order of extremophilic fungi in the Dothideomycetes. MycoKeys 2024; 108:47-74. [PMID: 39220356 PMCID: PMC11362667 DOI: 10.3897/mycokeys.108.128033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
The widely treated order Capnodiales is one of the most important orders in the class Dothideomycetes. Recently, the order Capnodiales s. lat. was reassessed and split into seven orders (Capnodiales s. str., Cladosporiales, Comminutisporales, Mycosphaerellales, Neophaeothecales, Phaeothecales and Racodiales) based on multi-locus phylogeny, morphology and life strategies. In this study, two Arthrocatena strains isolated from sooty mould communities on the leaves of Tiliacordata and needles of Pinusnigra in southern Poland were analyzed. Multi-locus phylogenetic analyses (ITS-LSU-SSU-rpb2-tef1) along with morphological examination showed that they belong to Capnobotryellaantalyensis, which represents a sister taxon to Arthrocatenatenebrosa. Capnobotryellaantalyensis is a rock-inhabiting fungus described from Turkey. The following new combination is proposed: Arthrocatenaantalyensis. Phylogenetic analyses also showed that Arthrocatena and related genus Hyphoconis, both known previously only from rocks, form a sister lineage to orders Cladosporiales and Comminutisporales. The new order Arthrocatenales and new family Arthrocatenaceae are proposed to this clade. Representatives of this order are extremophilic fungi that live on rocks and in sooty mould communities.
Collapse
Affiliation(s)
- Marcin Piątek
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, PolandW. Szafer Institute of Botany, Polish Academy of SciencesKrakówPoland
| | - Monika Stryjak-Bogacka
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, PolandW. Szafer Institute of Botany, Polish Academy of SciencesKrakówPoland
| | - Paweł Czachura
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, PolandW. Szafer Institute of Botany, Polish Academy of SciencesKrakówPoland
| |
Collapse
|
12
|
Senwanna C, Hongsanan S, Khuna S, Kumla J, Yarasheva M, Gafforov Y, Abdurazakov A, Suwannarach N. Insights into the molecular phylogeny and morphology of three novel Dothiora species, along with a worldwide checklist of Dothiora. Front Cell Infect Microbiol 2024; 14:1367673. [PMID: 38707512 PMCID: PMC11067756 DOI: 10.3389/fcimb.2024.1367673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/20/2024] [Indexed: 05/07/2024] Open
Abstract
Most species of Dothiora are known from the dead parts of various host plants as saprobic fungi in terrestrial habitats occurring in tropical and temperate regions. In the present study, samples of Dothiora were collected from dead twigs and branches of Capparis spinosa, Rhaponticum repens, and an unknown angiosperm plant from the Tashkent and Jizzakh regions of Uzbekistan. Multi-gene phylogenetic analyses based on a combined ITS, LSU, SSU, TEF1, and TUB2 sequence data revealed their taxonomic positions within the Dothideaceae. Three new species of Dothiora, namely, Dothiora capparis, Dothiora rhapontici, and Dothiora uzbekistanica were proposed by molecular and morphological data. Likewise, the phylogenetic relationship and morphology of Dothiora are discussed. In addition, we provide a list of accepted Dothiora species, including host information, distribution, morphology descriptions, and availability of sequence data, to enhance the current knowledge of the diversity within Dothiora.
Collapse
Affiliation(s)
- Chanokned Senwanna
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Sinang Hongsanan
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Surapong Khuna
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Jaturong Kumla
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Manzura Yarasheva
- Department of Education and Training Management, Tashkent International University of Education, Tashkent, Uzbekistan
| | - Yusufjon Gafforov
- Central Asian Center for Development Studies, New Uzbekistan University, Tashkent, Uzbekistan
- Mycology Laboratory, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Aziz Abdurazakov
- Department of Ecology and Botany, Faculty of Natural Sciences, Andijan State University, Andijan, Uzbekistan
| | - Nakarin Suwannarach
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
13
|
Bermúdez-Cova MA, Hofmann TA, Yorou NS, Piepenbring M. Systematic revision of species of Atractilina and Spiropes hyperparasitic on Meliolales (Ascomycota) in the tropics. MycoKeys 2024; 103:167-213. [PMID: 38645977 PMCID: PMC11031638 DOI: 10.3897/mycokeys.103.115799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/08/2024] [Indexed: 04/23/2024] Open
Abstract
Atractilina Dearn. & Barthol. and Spiropes Cif. are genera of asexual fungi that comprise species mainly hyperparasitic on black mildews (Meliolales, Ascomycota). Although a common group of anamorphic fungi, they have been described up to now only by morphology and their systematic position is unknown. The present study provides a morphological treatise of all known species of Atractilina and Spiropes hyperparasitic on Meliolales, including insights into their systematic position, based on DNA sequences generated here for the first time. The study was conducted, based on 33 herbarium specimens and 23 specimens recently collected in Benin and Panama. The obtained DNA sequence data (28S rDNA and ITS rDNA) of A.parasitica and of two species of Spiropes show systematic placements in the Dothideomycetes and Leotiomycetes, respectively. The sequence data of the two Spiropes spp. do not group together. Moreover, the anamorph-teleomorph connection between Atractilinaparasitica and Malacariameliolicola, a pseudothecioid fungus, is confirmed. Three species in the genus Spiropes are proposed as new to science, namely S.angylocalycis, S.carpolobiae and S.croissantiformis. Four species are reported for Benin for the first time, three species for Panama and one species for mainland America. Atractilina and Spiropes are currently two genera with highly heterogeneous species and they might have to be split in the future, once the taxonomic concepts are validated by morphology and molecular sequence data.
Collapse
Affiliation(s)
- Miguel A. Bermúdez-Cova
- Mycology Research Group, Faculty of Biological Sciences, Goethe University Frankfurt Am Main, Frankfurt Am Main, GermanyGoethe University Frankfurt Am MainFrankfurt am MainGermany
- Departamento de Biología de Organismos, División de Ciencias Biológicas, Universidad Simón Bolívar, Caracas, VenezuelaUniversidad Simón BolívarCaracasVenezuela
| | - Tina A. Hofmann
- Centro de Investigaciones Micológicas (CIMi), Herbario UCH, Universidad Autónoma de Chiriquí, David, PanamaUniversidad Autónoma de ChiriquíDavidPanama
| | - Nourou S. Yorou
- Research Unit Tropical Mycology and Plants-Soil Fungi Interactions (MyTIPS), Faculty of Agronomy, University of Parakou, BP 123, Parakou, BeninUniversity of ParakouParakouBenin
| | - Meike Piepenbring
- Mycology Research Group, Faculty of Biological Sciences, Goethe University Frankfurt Am Main, Frankfurt Am Main, GermanyGoethe University Frankfurt Am MainFrankfurt am MainGermany
| |
Collapse
|
14
|
Cho M, Kwon SL, Kim C, Kim JJ. Notes of Five Wood-Decaying Fungi from Juwangsan National Park in Korea. MYCOBIOLOGY 2024; 52:30-41. [PMID: 38415179 PMCID: PMC10896149 DOI: 10.1080/12298093.2023.2299098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/20/2023] [Indexed: 02/29/2024]
Abstract
Wood-decaying fungi are essential decomposers in forest ecosystems. They decompose wood substrates by producing various lignocellulolytic enzymes, which have significant industrial and medical applications. A survey was conducted at the Juwangsan National Park from 2018 to 2019 to determine the diversity of macrofungi in Korea. Five previously unrecorded wood-decaying polyporoid and corticioid fungi were identified among the collected specimens: Eichleriella sinensis, Hymenochaete anomala, Hyphoderma subsetigerum, Lyomyces orientalis, and Pseudowrightoporia crassihypha. These species were identified based on morphological, molecular, and phylogenetic analyses of the internal transcribed spacer (ITS) and nuclear large subunit rDNA (nLSU) region. In this study, we provide detailed macro- and micro-morphological figures with phylogenetic trees to support the discovery of five new species in Korea.
Collapse
Affiliation(s)
- Minseo Cho
- Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sun Lul Kwon
- Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Changmu Kim
- Species Diversity Research Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Jae-Jin Kim
- Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Bradshaw AJ, Ramírez-Cruz V, Awan AR, Furci G, Guzmán-Dávalos L, Dentinger BTM. Phylogenomics of the psychoactive mushroom genus Psilocybe and evolution of the psilocybin biosynthetic gene cluster. Proc Natl Acad Sci U S A 2024; 121:e2311245121. [PMID: 38194448 PMCID: PMC10801892 DOI: 10.1073/pnas.2311245121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/28/2023] [Indexed: 01/11/2024] Open
Abstract
Psychoactive mushrooms in the genus Psilocybe have immense cultural value and have been used for centuries in Mesoamerica. Despite the recent surge of interest in these mushrooms due to the psychotherapeutic potential of their natural alkaloid psilocybin, their phylogeny and taxonomy remain substantially incomplete. Moreover, the recent elucidation of the psilocybin biosynthetic gene cluster is known for only five of ~165 species of Psilocybe, four of which belong to only one of two major clades. We set out to improve the phylogeny of Psilocybe using shotgun sequencing of fungarium specimens, from which we obtained 71 metagenomes including from 23 types, and conducting phylogenomic analysis of 2,983 single-copy gene families to generate a fully supported phylogeny. Molecular clock analysis suggests the stem lineage of Psilocybe arose ~67 mya and diversified ~56 mya. We also show that psilocybin biosynthesis first arose in Psilocybe, with 4 to 5 possible horizontal transfers to other mushrooms between 40 and 9 mya. Moreover, predicted orthologs of the psilocybin biosynthetic genes revealed two distinct gene orders within the biosynthetic gene cluster that corresponds to a deep split within the genus, possibly a signature of two independent acquisitions of the cluster within Psilocybe.
Collapse
Affiliation(s)
- Alexander J. Bradshaw
- School of Biological Sciences, University of Utah, Salt Lake City, UT84112
- Natural History Museum of Utah, Collections and Research, University of Utah, Salt Lake City, UT84108
| | - Virginia Ramírez-Cruz
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Departamento de Botánica y Zoología, Universidad de Guadalajara, Zapopan45147, Mexico
| | - Ali R. Awan
- Genomics Innovation Unit, Guy’s and St.Thomas’ NHS Foundation Trust, St Thomas’ Hospital, LondonSE1 7EH, United Kingdom
| | | | - Laura Guzmán-Dávalos
- Departamento de Botánica y Zoología, Universidad de Guadalajara, Zapopan45147, Mexico
| | - Bryn T. M. Dentinger
- School of Biological Sciences, University of Utah, Salt Lake City, UT84112
- Natural History Museum of Utah, Collections and Research, University of Utah, Salt Lake City, UT84108
| |
Collapse
|
16
|
Yang Y, Li R, Jiang Q, Zhou H, Muhammad A, Wang H, Zhao C. Phylogenetic and Taxonomic Analyses Reveal Three New Wood-Inhabiting Fungi (Polyporales, Basidiomycota) in China. J Fungi (Basel) 2024; 10:55. [PMID: 38248964 PMCID: PMC10817363 DOI: 10.3390/jof10010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Three new wood-inhabiting fungal species, Cerioporus yunnanensis, Perenniporiopsis sinensis, and Sarcoporia yunnanensis, are proposed based on a combination of the morphological features and molecular evidence. Cerioporus yunnanensis is characterized by the pileate basidiomata having a fawn brown to black pileal surface, a dimitic hyphal system with clamped generative hyphae, and the presence of the fusoid cystidioles and cylindrical basidiospores (9-12.5 × 3.5-5 µm). Perenniporiopsis sinensis is distinct from the osseous pileus with verrucose, an orange-yellow to dark reddish-brown pileal surface with a cream margin, a trimitic hyphal system with clamped generative hyphae, and the presence of the fusiform cystidioles and ellipsoid basidiospores (9-11 × 5.5-6.5 µm). Sarcoporia yunnanensis is typical of the pileate basidiomata with a salmon to reddish-brown pileal surface, a monomitic hyphal system with clamped generative hyphae, and the presence of the ellipsoid basidiospores (4-5.5 × 2.5-4 µm). Sequences of ITS + nLSU + mt-SSU + TEF1 + RPB1 + RPB2 genes were used for the phylogenetic analyses using maximum likelihood, maximum parsimony, and Bayesian inference methods. The multiple genes with six loci analysis showed that the three new species nested within the order Polyporales, in which C. yunnanensis and P. sinensis nested into the family Polyporaceae, and S. yunnanensis grouped into the family Sarcoporiaceae.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (Y.Y.); (H.Z.)
- Yunnan Key Laboratory of Gastrodia and Fungal Symbiotic Biology, Zhaotong University, Zhaotong 657000, China
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (R.L.); (Q.J.); (A.M.)
| | - Rong Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (R.L.); (Q.J.); (A.M.)
| | - Qianquan Jiang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (R.L.); (Q.J.); (A.M.)
| | - Hongmin Zhou
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (Y.Y.); (H.Z.)
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (R.L.); (Q.J.); (A.M.)
| | - Akmal Muhammad
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (R.L.); (Q.J.); (A.M.)
| | - Hongjuan Wang
- Yunnan Forestry and Grassland Bureau, Kunming 650224, China
| | - Changlin Zhao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (Y.Y.); (H.Z.)
- Yunnan Key Laboratory of Gastrodia and Fungal Symbiotic Biology, Zhaotong University, Zhaotong 657000, China
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (R.L.); (Q.J.); (A.M.)
| |
Collapse
|
17
|
Fjelde MO, Timdal E, Haugan R, Bendiksby M. Paraphyly and cryptic diversity unveils unexpected challenges in the "naked lichens" (Calvitimela, Lecanoromycetes, Ascomycota). Mol Phylogenet Evol 2024; 190:107944. [PMID: 37844854 DOI: 10.1016/j.ympev.2023.107944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 09/28/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Molecular phylogenetics has revolutionized the taxonomy of crustose lichens and revealed an extensive amount of cryptic diversity. Resolving the relationships between genera in the crustose lichen family Tephromelataceae has proven difficult and the taxon limits within the genus Calvitimela are only partly understood. In this study, we tested the monophyly of Calvitimela and investigated phylogenetic relationships at different taxonomic levels using an integrative taxonomic approach. We performed a global sampling of all species currently assigned to Calvitimela and conducted additional sampling of C. melaleuca sensu lato across Norway. We included 108 specimens and produced more than 300 sequences from five different loci (ITS, LSU, MCM7, mtSSU, TEF1-α). We inferred phylogenetic relationships and estimated divergence times in Calvitimela. Moreover, we analyzed chemical and morphological characters to test their diagnostic values in the genus. Our molecular phylogenetic results show evolutionarily old and deeply divergent lineages in Calvitimela. The morphological characters are overlapping between divergent subgenera within this genus. Chemical characters, however, are largely informative at the level of subgenera, but are often homoplastic at the species level. The subgenus Calvitimela is found to include four distinct genetic lineages. Detailed morphological examinations of C. melaleuca s. lat. reveal differences between taxa previously assumed to be morphologically cryptic. Furthermore, young evolutionary ages and signs of gene tree discordance indicate a recent divergence and possibly incomplete lineage sorting in the subgenus Calvitimela. Phylogenetic analysis and morphological observations revealed that C. austrochilensis and C. uniseptata are extraneous to Calvitimela (Tephromelataceae). We also found molecular evidence supporting C. septentrionalis being sister to C. cuprea. In the subgenus Severidea, one new grouping is recovered as a highly supported sister to C. aglaea. Lastly, two fertile specimens were found to be phylogenetically nested within the sorediate species C. cuprea. We discuss the need for an updated classification of Calvitimela and the evolution of cryptic species. Through generic circumscription and species delimitation we propose a practical taxonomy of Calvitimela.
Collapse
Affiliation(s)
- Markus Osaland Fjelde
- Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318 Oslo, Norway; Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316, Norway.
| | - Einar Timdal
- Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318 Oslo, Norway
| | - Reidar Haugan
- Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318 Oslo, Norway
| | - Mika Bendiksby
- Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318 Oslo, Norway; NTNU University Museum, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
18
|
Yu PL, Fulton JC, Hudson OH, Huguet-Tapia JC, Brawner JT. Next-generation fungal identification using target enrichment and Nanopore sequencing. BMC Genomics 2023; 24:581. [PMID: 37784013 PMCID: PMC10544392 DOI: 10.1186/s12864-023-09691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Rapid and accurate pathogen identification is required for disease management. Compared to sequencing entire genomes, targeted sequencing may be used to direct sequencing resources to genes of interest for microbe identification and mitigate the low resolution that single-locus molecular identification provides. This work describes a broad-spectrum fungal identification tool developed to focus high-throughput Nanopore sequencing on genes commonly employed for disease diagnostics and phylogenetic inference. RESULTS Orthologs of targeted genes were extracted from 386 reference genomes of fungal species spanning six phyla to identify homologous regions that were used to design the baits used for enrichment. To reduce the cost of producing probes without diminishing the phylogenetic power, DNA sequences were first clustered, and then consensus sequences within each cluster were identified to produce 26,000 probes that targeted 114 genes. To test the efficacy of our probes, we applied the technique to three species representing Ascomycota and Basidiomycota fungi. The efficiency of enrichment, quantified as mean target coverage over the mean genome-wide coverage, ranged from 200 to 300. Furthermore, enrichment of long reads increased the depth of coverage across the targeted genes and into non-coding flanking sequence. The assemblies generated from enriched samples provided well-resolved phylogenetic trees for taxonomic assignment and molecular identification. CONCLUSIONS Our work provides data to support the utility of targeted Nanopore sequencing for fungal identification and provides a platform that may be extended for use with other phytopathogens.
Collapse
Affiliation(s)
- Pei-Ling Yu
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - James C Fulton
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
- Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, FL, 32608, USA
| | - Owen H Hudson
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Jose C Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Jeremy T Brawner
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
19
|
Abdulsalam RA, Ijabadeniyi OA, Cason ED, Sabiu S. Characterization of Microbial Diversity of Two Tomato Cultivars through Targeted Next-Generation Sequencing 16S rRNA and ITS Techniques. Microorganisms 2023; 11:2337. [PMID: 37764180 PMCID: PMC10534366 DOI: 10.3390/microorganisms11092337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Even though the nutritional and economic values of Solanum lycopersicum (tomato) are substantially impacted by microbial spoilage, the available data on its microbial community, particularly during spoilage, are limited and have primarily been characterized using conventional culture-dependent methods. This study employed a targeted high-throughput next-generation sequencing method to longitudinally characterize the microbial diversity of two South African tomato cultivars (jam and round) at varied storage intervals (1, 6, and 12 days). Throughout the storage period, the bacterial communities of the two cultivars were more diverse than the fungal communities. The microbial diversity of both bacteria and fungi was greater and comparable between the cultivars on day 1, but becomes distinct as the storage period increases, with round tomatoes being more diverse than jam tomato, though, on day 12, jam tomato develops greater diversity than round tomato. Overall, the most abundant phyla (though Proteobacteria was most dominant) were Proteobacteria, Firmicutes, and Bacteriodota in the bacterial communities, while Ascomycota and Basidiomycota formed most fungal communities with Ascomycota being dominant. At the genus level, Pantoea and Klebsiella (bacteria), Hanseniaspora, Stemphylium, and Alternaria (fungi) were prevalent. Taken together, this study casts light on a broad microbial diversity profile thus, confirms the cultivars' diversity and abundance differences.
Collapse
Affiliation(s)
- Rukayat Abiola Abdulsalam
- Department of Biotechnology and Food Science, Durban University of Technology, Durban 4000, South Africa
| | | | - Errol D. Cason
- Department of Animal Science, University of the Free State, Bloemfontein 9300, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, Durban 4000, South Africa
| |
Collapse
|
20
|
Zhang ZY, Feng Y, Tong SQ, Ding CY, Tao G, Han YF. Morphological and phylogenetic characterisation of two new soil-borne fungal taxa belonging to Clavicipitaceae (Hypocreales, Ascomycota). MycoKeys 2023; 98:113-132. [PMID: 37324546 PMCID: PMC10267719 DOI: 10.3897/mycokeys.98.106240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/27/2023] [Indexed: 06/17/2023] Open
Abstract
The fungal taxa belonging to the Clavicipitaceae (Hypocreales, Ascomycota) are widely distributed and include diverse saprophytic, symbiotic and pathogenic species that are associated with soils, insects, plants, fungi and invertebrates. In this study, we identified two new fungal taxa belonging to the family Clavicipitaceae that were isolated from soils collected in China. Morphological characterisation and phylogenetic analyses showed that the two species belong to Pochonia (Pochoniasinensissp. nov.) and a new genus for which we propose Paraneoaraneomycesgen. nov. in Clavicipitaceae.
Collapse
Affiliation(s)
- Zhi-Yuan Zhang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, ChinaGuizhou Minzu UniversityGuiyangChina
| | - Yao Feng
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, ChinaGuizhou Minzu UniversityGuiyangChina
| | - Shuo-Qiu Tong
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 550025, ChinaGuizhou UniversityGuiyangChina
| | - Chen-Yu Ding
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 550025, ChinaGuizhou UniversityGuiyangChina
| | - Gang Tao
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, ChinaGuizhou Minzu UniversityGuiyangChina
| | - Yan-Feng Han
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 550025, ChinaGuizhou UniversityGuiyangChina
| |
Collapse
|
21
|
Islam SMN, Chowdhury MZH, Mim MF, Momtaz MB, Islam T. Biocontrol potential of native isolates of Beauveria bassiana against cotton leafworm Spodoptera litura (Fabricius). Sci Rep 2023; 13:8331. [PMID: 37221248 DOI: 10.1038/s41598-023-35415-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/17/2023] [Indexed: 05/25/2023] Open
Abstract
The entomopathogenic fungus (EPF), Beauveria bassiana, is reported as the most potent biological control agent against a wide range of insect families. This study aimed to isolate and characterize the native B. bassiana from various soil habitats in Bangladesh and to evaluate the bio-efficacy of these isolates against an important vegetable insect pest, Spodoptera litura. Seven isolates from Bangladeshi soils were characterized as B. bassiana using genomic analysis. Among the isolates, TGS2.3 showed the highest mortality rate (82%) against the 2nd instar larvae of S. litura at 7 days after treatment (DAT). This isolate was further bioassayed against different stages of S. litura and found that TGS2.3 induced 81, 57, 94, 84, 75, 65, and 57% overall mortality at egg, neonatal 1st, 2nd, 3rd, 4th, and 5th instar larvae, respectively, over 7 DAT. Interestingly, treatment with B. bassiana isolate TGS2.3 resulted in pupal and adult deformities as well as decreased adult emergence of S. litura. Taken together, our results suggest that a native isolate of B. bassiana TGS2.3 is a potential biocontrol agent against the destructive insect pest S. litura. However, further studies are needed to evaluate the bio-efficacy of this promising native isolate in planta and field conditions.
Collapse
Affiliation(s)
- Shah Mohammad Naimul Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh.
| | - Md Zahid Hasan Chowdhury
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Mahjabin Ferdaous Mim
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Milia Bente Momtaz
- Cotton Research Training and Seed Multiplication Farm, Gazipur, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh.
| |
Collapse
|
22
|
La Torre RD, Ramos D, Mejía MD, Neyra E, Loarte E, Orjeda G. Survey of Lichenized Fungi DNA Barcodes on King George Island (Antarctica): An Aid to Species Discovery. J Fungi (Basel) 2023; 9:jof9050552. [PMID: 37233263 DOI: 10.3390/jof9050552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 05/27/2023] Open
Abstract
DNA barcoding is a powerful method for the identification of lichenized fungi groups for which the diversity is already well-represented in nucleotide databases, and an accurate, robust taxonomy has been established. However, the effectiveness of DNA barcoding for identification is expected to be limited for understudied taxa or regions. One such region is Antarctica, where, despite the importance of lichens and lichenized fungi identification, their genetic diversity is far from characterized. The aim of this exploratory study was to survey the lichenized fungi diversity of King George Island using a fungal barcode marker as an initial identification tool. Samples were collected unrestricted to specific taxa in coastal areas near Admiralty Bay. Most samples were identified using the barcode marker and verified up to the species or genus level with a high degree of similarity. A posterior morphological evaluation focused on samples with novel barcodes allowed for the identification of unknown Austrolecia, Buellia, and Lecidea s.l. species. These results contribute to better represent the lichenized fungi diversity in understudied regions such as Antarctica by increasing the richness of the nucleotide databases. Furthermore, the approach used in this study is valuable for exploratory surveys in understudied regions to guide taxonomic efforts towards species recognition and discovery.
Collapse
Affiliation(s)
- Renato Daniel La Torre
- Laboratorio de Genómica y Bioinformática para la Biodiversidad, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, German Amezaga 375, Lima 15081, Peru
- Dirección de Investigación en Glaciares, Instituto Nacional de Investigación en Glaciares y Ecosistemas de Montaña, Centenario 2656, Huaraz 02002, Peru
| | - Daniel Ramos
- Herbario Sur Peruano-Instituto Científico Michael Owen Dillon, Jorge Chavez 610, Arequipa 04001, Peru
| | - Mayra Doris Mejía
- Dirección de Investigación en Glaciares, Instituto Nacional de Investigación en Glaciares y Ecosistemas de Montaña, Centenario 2656, Huaraz 02002, Peru
| | - Edgar Neyra
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Honorio Delgado 430, Lima 15102, Peru
- Unidad de Investigación Genómica, Laboratorios de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia, Honorio Delgado 430, Lima 15102, Peru
| | - Edwin Loarte
- Facultad de Ciencias del Ambiente, Universidad Nacional Santiago Antúnez de Mayolo, Centenario 200, Huaraz 02002, Peru
| | - Gisella Orjeda
- Laboratorio de Genómica y Bioinformática para la Biodiversidad, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, German Amezaga 375, Lima 15081, Peru
| |
Collapse
|
23
|
Singavarapu B, Du J, Beugnon R, Cesarz S, Eisenhauer N, Xue K, Wang Y, Bruelheide H, Wubet T. Functional Potential of Soil Microbial Communities and Their Subcommunities Varies with Tree Mycorrhizal Type and Tree Diversity. Microbiol Spectr 2023; 11:e0457822. [PMID: 36951585 PMCID: PMC10111882 DOI: 10.1128/spectrum.04578-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/11/2023] [Indexed: 03/24/2023] Open
Abstract
Soil microbial communities play crucial roles in the earth's biogeochemical cycles. Yet, their genomic potential for nutrient cycling in association with tree mycorrhizal type and tree-tree interactions remained unclear, especially in diverse tree communities. Here, we studied the genomic potential of soil fungi and bacteria with arbuscular (AM) and ectomycorrhizal (EcM) conspecific tree species pairs (TSPs) at three tree diversity levels in a subtropical tree diversity experiment (BEF-China). The soil fungi and bacteria of the TSPs' interaction zone were characterized by amplicon sequencing, and their subcommunities were determined using a microbial interkingdom co-occurrence network approach. Their potential genomic functions were predicted with regard to the three major nutrients carbon (C), nitrogen (N), and phosphorus (P) and their combinations. We found the microbial subcommunities that were significantly responding to different soil characteristics. The tree mycorrhizal type significantly influenced the functional composition of these co-occurring subcommunities in monospecific stands and two-tree-species mixtures but not in mixtures with more than three tree species (here multi-tree-species mixtures). Differentiation of subcommunities was driven by differentially abundant taxa producing different sets of nutrient cycling enzymes across the tree diversity levels, predominantly enzymes of the P (n = 11 and 16) cycles, followed by the N (n = 9) and C (n = 9) cycles, in monospecific stands and two-tree-species mixtures, respectively. Fungi of the Agaricomycetes, Sordariomycetes, Eurotiomycetes, and Leotiomycetes and bacteria of the Verrucomicrobia, Acidobacteria, Alphaproteobacteria, and Actinobacteria were the major differential contributors (48% to 62%) to the nutrient cycling functional abundances of soil microbial communities across tree diversity levels. Our study demonstrated the versatility and significance of microbial subcommunities in different soil nutrient cycling processes of forest ecosystems. IMPORTANCE Loss of multifunctional microbial communities can negatively affect ecosystem services, especially forest soil nutrient cycling. Therefore, exploration of the genomic potential of soil microbial communities, particularly their constituting subcommunities and taxa for nutrient cycling, is vital to get an in-depth mechanistic understanding for better management of forest soil ecosystems. This study revealed soil microbes with rich nutrient cycling potential, organized in subcommunities that are functionally resilient and abundant. Such microbial communities mainly found in multi-tree-species mixtures associated with different mycorrhizal partners can foster soil microbiome stability. A stable and functionally rich soil microbiome is involved in the cycling of nutrients, such as carbon, nitrogen, and phosphorus, and their combinations could have positive effects on ecosystem functioning, including increased forest productivity. The new findings could be highly relevant for afforestation and reforestation regimes, notably in the face of growing deforestation and global warming scenarios.
Collapse
Affiliation(s)
- Bala Singavarapu
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Jianqing Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Rémy Beugnon
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Leipzig Institute for Meteorology, Universität Leipzig, Leipzig, Germany
- CEFE, Université Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Kai Xue
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Yanfen Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Chinese Academy of Sciences, Beijing, China
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Tesfaye Wubet
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| |
Collapse
|
24
|
Villan Larios DC, Diaz Reyes BM, Pirovani CP, Loguercio LL, Santos VC, Góes-Neto A, Fonseca PLC, Aguiar ERGR. Exploring the Mycovirus Universe: Identification, Diversity, and Biotechnological Applications. J Fungi (Basel) 2023; 9:jof9030361. [PMID: 36983529 PMCID: PMC10052124 DOI: 10.3390/jof9030361] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Viruses that infect fungi are known as mycoviruses and are characterized by the lack of an extracellular phase. In recent years, the advances on nucleic acids sequencing technologies have led to a considerable increase in the number of fungi-infecting viral species described in the literature, with a special interest in assessing potential applications as fungal biocontrol agents. In the present study, we performed a comprehensive review using Scopus, Web of Science, and PubMed databases to mine mycoviruses data to explore their molecular features and their use in biotechnology. Our results showed the existence of 267 mycovirus species, of which 189 are recognized by the International Committee on Taxonomy of Viruses (ICTV). The majority of the mycoviruses identified have a dsRNA genome (38.6%), whereas the Botourmiaviridae (ssRNA+) alone represents 14% of all mycoviruses diversity. Regarding fungal hosts, members from the Sclerotinicaeae appeared as the most common species described to be infected by mycoviruses, with 16 different viral families identified so far. It is noteworthy that such results are directly associated with the high number of studies and strategies used to investigate the presence of viruses in members of the Sclerotinicaeae family. The knowledge about replication strategy and possible impact on fungi biology is available for only a small fraction of the mycoviruses studied, which is the main limitation for considering these elements potential targets for biotechnological applications. Altogether, our investigation allowed us to summarize the general characteristics of mycoviruses and their hosts, the consequences, and the implications of this knowledge on mycovirus–fungi interactions, providing an important source of information for future studies.
Collapse
Affiliation(s)
- Diana Carolina Villan Larios
- Department of Biological Sciences, Center for Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (D.C.V.L.); (B.M.D.R.); (C.P.P.); (L.L.L.)
| | - Brayan Maudiel Diaz Reyes
- Department of Biological Sciences, Center for Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (D.C.V.L.); (B.M.D.R.); (C.P.P.); (L.L.L.)
| | - Carlos Priminho Pirovani
- Department of Biological Sciences, Center for Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (D.C.V.L.); (B.M.D.R.); (C.P.P.); (L.L.L.)
| | - Leandro Lopes Loguercio
- Department of Biological Sciences, Center for Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (D.C.V.L.); (B.M.D.R.); (C.P.P.); (L.L.L.)
| | - Vinícius Castro Santos
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Aristóteles Góes-Neto
- Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Paula Luize Camargos Fonseca
- Department of Biological Sciences, Center for Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (D.C.V.L.); (B.M.D.R.); (C.P.P.); (L.L.L.)
- Department of Genetics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
- Correspondence: (P.L.C.F.); (E.R.G.R.A.)
| | - Eric Roberto Guimarães Rocha Aguiar
- Department of Biological Sciences, Center for Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (D.C.V.L.); (B.M.D.R.); (C.P.P.); (L.L.L.)
- Correspondence: (P.L.C.F.); (E.R.G.R.A.)
| |
Collapse
|
25
|
Fungal Diversity in Korean Caves and Cave-Inhabiting Bats with Attention to Pseudogymnoascus Species. DIVERSITY 2023. [DOI: 10.3390/d15020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pseudogymnoascus is a psychrophilic fungus, which is a genus widely distributed in cold regions around the world. Recently, the presence of Pseudogymnoascus destructans (Pd), the causative agent of white-nose syndrome (WNS) belonging to Pseudogymnoascus, has been reported in neighboring countries of Korea. However, no investigation on Pd has been reported in Korea. In this study, cave-inhabiting bats and their habitats were investigated in terms of the diversity of cave fungi, and we tried to confirm the presence of Pd. Three caves suspected of hosting Pd were selected, and 83 environmental and 53 bat samples were collected. A total of 154 fungal strains belonging to 31 different genera were isolated, and 20 of 154 were confirmed to belong to Pseudogymnoascus. Pd-diagnostic PCR was performed to check whether Pd was present in the isolated Pseudogymnoascus, and seven positives were confirmed. However, phylogenetic analyses revealed that no isolates belonged or were closely related to the clade with Pd. Although samples were collected from limited areas, undescribed Pseudogymnoascus species were isolated, and it was confirmed that Korean isolates were distributed in various clades. In conclusion, it is hypothesized that Korean Pseudogymnoascus presents high diversity.
Collapse
|
26
|
García-Calvo L, Rodríguez-Castro R, Ullán RV, Albillos SM, Fernández-Aguado M, Vicente CM, Degnes KF, Sletta H, Barreiro C. Penicillium chrysogenum as a fungal factory for feruloyl esterases. Appl Microbiol Biotechnol 2023; 107:691-717. [PMID: 36595038 DOI: 10.1007/s00253-022-12335-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 01/04/2023]
Abstract
Plant biomass is a promising substrate for biorefinery, as well as a source of bioactive compounds, platform chemicals, and precursors with multiple industrial applications. These applications depend on the hydrolysis of its recalcitrant structure. However, the effective biological degradation of plant cell walls requires several enzymatic groups acting synergistically, and novel enzymes are needed in order to achieve profitable industrial hydrolysis processes. In the present work, a feruloyl esterase (FAE) activity screening of Penicillium spp. strains revealed a promising candidate (Penicillium rubens Wisconsin 54-1255; previously Penicillium chrysogenum), where two FAE-ORFs were identified and subsequently overexpressed. Enzyme extracts were analyzed, confirming the presence of FAE activity in the respective gene products (PrFaeA and PrFaeB). PrFaeB-enriched enzyme extracts were used to determine the FAE activity optima (pH 5.0 and 50-55 °C) and perform proteome analysis by means of MALDI-TOF/TOF mass spectrometry. The studies were completed with the determination of other lignocellulolytic activities, an untargeted metabolite analysis, and upscaled FAE production in stirred tank reactors. The findings described in this work present P. rubens as a promising lignocellulolytic enzyme producer. KEY POINTS: • Two Penicillium rubens ORFs were first confirmed to have feruloyl esterase activity. • Overexpression of the ORFs produced a novel P. rubens strain with improved activity. • The first in-depth proteomic study of a P. rubens lignocellulolytic extract is shown.
Collapse
Affiliation(s)
- Laura García-Calvo
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Raquel Rodríguez-Castro
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain
| | - Ricardo V Ullán
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain.
- mAbxience, Upstream Production, Parque Tecnológico de León, Julia Morros, S/N, Armunia, 24009, León, Spain.
| | - Silvia M Albillos
- Área de Bioquímica Y Biología Molecular, Departamento de Biotecnología Y Ciencia de los Alimentos, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Marta Fernández-Aguado
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain
| | - Cláudia M Vicente
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077, Toulouse, France
| | - Kristin F Degnes
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands Vei 3 B, 7034, Trondheim, Norway
| | - Håvard Sletta
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands Vei 3 B, 7034, Trondheim, Norway
| | - Carlos Barreiro
- Área de Bioquímica Y Biología Molecular, Departamento de Biología Molecular, Universidad de León, Campus de Vegazana, 24007, León, Spain.
| |
Collapse
|
27
|
Gunathilaka MGRSS, Senevirathna RMISK, Illappereruma SC, Keragala KARK, Hathagoda KLW, Bandara HMHN. Mucormycosis-causing fungi in humans: a meta-analysis establishing the phylogenetic relationships using internal transcribed spacer (ITS) sequences. J Med Microbiol 2023; 72. [PMID: 36762526 DOI: 10.1099/jmm.0.001651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Introduction. Mucormycosis is a severe angio-invasive fungal infection caused by mucormycetes, a group of fungi that are ubiquitous in the environment. The incidence of mucormycosis has been surging rapidly due to the global corona virus disease 2019 (COVID-19) pandemic.Gap Statement. The complete picture of the causative fungi associated with mucormycosis and their phylogenetic relationships are not well defined.Aim. This meta-analysis aimed to collate all confirmed fungal pathogens that cause mucormycosis, and assess their taxonomic relationships.Methodology. All types of articles in the PubMed database that report fungi as a cause of mucormycosis were reviewed. We summarized the fungal morphological characteristic up to the genus level. The internal transcribed spacer (ITS) nucleotide sequences of these fungi were retrieved from the National Center for Biotechnology Information (NCBI) and UNITE databases whenever available, and multiple sequence analysis was conducted using Clustal W. The phylogenetic tree was constructed using mega version 7.Results. Forty-seven fungal species were identified as pathogens causing mucormycosis in humans. Thirty-two fungal species were phylogenetically grouped into three clades, and it was evident that the ITS sequences have well-conserved regions in all clades, especially from the 400th to 500th base pairs.Conclusion. The findings of this work contribute to the descriptive data for fungi that cause mucormycosis, emphasizing the need for robust phylogenetic approaches when identifying clinical isolates from infected patients.
Collapse
Affiliation(s)
- M G R S S Gunathilaka
- Department of Microbiology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| | - R M I S K Senevirathna
- Department of Biochemistry, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| | - S C Illappereruma
- Department of Microbiology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| | - K A R K Keragala
- Department of Microbiology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| | - K L W Hathagoda
- Department of Paediatrics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | |
Collapse
|
28
|
Douanla-Meli C, Moll J. Bark-inhabiting fungal communities of European chestnut undergo substantial alteration by canker formation following chestnut blight infection. Front Microbiol 2023; 14:1052031. [PMID: 36778875 PMCID: PMC9911167 DOI: 10.3389/fmicb.2023.1052031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Background Chestnut forests are severely threatened by chestnut blight caused by the fungal pathogen Cryphonectria parasitica and the infected trees exhibit bark canker in the later stage of the disease. European chestnut (Castanea sativa) is further infected by Gnomoniopsis smithogilvyi, another canker-causing fungal pathogen. We explored whether and how chestnut blight is reflected in bark-inhabiting fungal communities of European chestnut and also assessed the co-occurrence of C. parasitica and G. smithogilvyi. Materials and methods We initially investigated the fungal communities of European chestnut bark tissues and further monitored changes in these fungal communities with regard to disease progression from infection to canker formation by analyzing bark samples from asymptomatic trees, asymptomatic trees with latent C. parasitica infection, and infected trees with canker tissues, using amplicon sequencing of the ITS2 region of rDNA. Results The results showed that fungal community composition and diversity differed between the sample types. The fungal community composition was substantially reshaped by canker formation, whereas latent C. parasitica infection and more specifically pre-canker infection period per se had a weak effect. Fungal communities of canker samples was less diverse and more dissimilar to those of other sample types. C. parasitica dominated the mycobiome of canker samples, whereas G. smithogilvyi was found in only 9% of canker samples at very low abundances. However, G. smithogilvyi was a dominant fungus in the bark of healthy plants. Conclusion This study highlights that canker formation is the principal driver of decreasing diversity and altered composition of the mycobiome in bark tissues of European chestnut infected by C. parasitica infection. It additionally emphasizes the scarce co-occurrence of C. parasitica and G. smithogilvyi on European chestnut.
Collapse
Affiliation(s)
- Clovis Douanla-Meli
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for National and International Plant Health, Quedlinburg, Germany,*Correspondence: Clovis Douanla-Meli, ✉
| | - Julia Moll
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany
| |
Collapse
|
29
|
Humicolopsis cephalosporioides synthesizes DHN-melanin in its chlamydospores. Mycol Prog 2023. [DOI: 10.1007/s11557-022-01853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Lunn K, Frøslev T, Rhodes M, Taylor L, Oliveira HFM, Gresty CEA, Clare EL. Non-target effects of agri-environmental schemes on solitary bees and fungi in the United Kingdom. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:734-744. [PMID: 36082699 DOI: 10.1017/s0007485322000414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Agri-environmental schemes (AES) are used to enhance pollinator diversity on agricultural farms within the UK. Though the impacts of these schemes on archetypal pollinator species such as the bumblebee (Bombus) and honeybee (Apis) are well-studied, the effects on non-target bee species like solitary bees, in the same environment, are generally lacking. One goal of AES is to alter floral provision and taxonomic composition of plant communities to provide better forage for pollinators, however, this may potentially impact other ecological communities such as fungal diversity associated with plant-bee communities. Fungi are integral in these bee communities as they can impact bee species both beneficially and detrimentally. We test the hypothesis that alteration of the environment through provision of novel plant communities has non-target effects on the fungi associated with solitary bee communities. We analyse fungal diversity and ecological networks formed between fungi and solitary bees present on 15 agricultural farms in the UK using samples from brood cells. The farms were allocated to two categories, low and high management, which differ in the number of agri-environmental measures implemented. Using internal transcribed spacer metabarcoding, we identified 456 fungal taxa that interact with solitary bees. Of these, 202 (approximately 44%) could be assigned to functional groups, the majority being pathotrophic and saprotrophic species. A large proportion was Ascosphaeraceae, a family of bee-specialist fungi. We considered the connectance, nestedness, modularity, nestedness overlap and decreasing fill, linkage density and fungal generality of the farms' bee-fungi ecological networks. We found no difference in the structure of bee-fungi ecological networks between low and high management farms, suggesting floral provision by AES has no significant impact on interactions between these two taxonomic groups. However, bee emergence was lower on the low management farms compared to high management, suggesting some limited non-target effects of AES. This study characterizes the fungal community associated with solitary bees and provides evidence that floral provision through AES does not impact fungal interactions.
Collapse
Affiliation(s)
- Katherine Lunn
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Tobias Frøslev
- Globe Institute, University of Copenhagen, København, Denmark
| | - Madeleine Rhodes
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Leah Taylor
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | | | | | - Elizabeth L Clare
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
- Department of Biology, York University, Toronto, Canada
| |
Collapse
|
31
|
Haq IU, Ijaz S, Khan NA, Khan IA, Ali HM, Moya-Elizondo EA. Integrative Pathogenicity Assay and Operational Taxonomy-Based Detection of New Forma Specialis of Fusarium oxysporum Causing Datepalm Wilt. PLANTS (BASEL, SWITZERLAND) 2022; 11:2643. [PMID: 36235510 PMCID: PMC9571862 DOI: 10.3390/plants11192643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Pathogenicity-associated genes are highly host-specific and contribute to host-specific virulence. We tailored the traditional Koch's postulates with integrative omics by hypothesizing that the effector genes associated with host-pathogenicity are determinant markers for virulence, and developed Integrative Pathogenicity (IP) postulates for authenticated pathogenicity testing in plants. To set the criteria, we experimented on datepalm (Phoenix dactylifera) for the vascular wilt pathogen and confirmed the pathogen based on secreted in xylem genes (effectors genes) using genomic and transcriptomic approaches, and found it a reliable solution when pathogenicity is in question. The genic regions ITS, TEF1-α, and RPBII of Fusarium isolates were examined by phylogenetic analysis to unveil the validated operational taxonomy at the species level. The hierarchical tree generated through phylogenetic analysis declared the fungal pathogen as Fusarium oxysporum. Moreover, the Fusarium isolates were investigated at the subspecies level by probing the IGS, TEF1-α, and Pgx4 genic regions to detect the forma specialis of F. oxysporum that causes wilt in datepalm. The phylogram revealed a new forma specialis in F. oxysporum that causes vascular wilt in datepalm.
Collapse
Affiliation(s)
- Imran Ul Haq
- Department of Plant Pathology, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Siddra Ijaz
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Nabeeha Aslam Khan
- Department of Plant Pathology, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Iqrar Ahmad Khan
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Hayssam M. Ali
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
32
|
Liu S, Chen YY, Sun YF, He XL, Song CG, Si J, Liu DM, Gates G, Cui BK. Systematic classification and phylogenetic relationships of the brown-rot fungi within the Polyporales. FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00511-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
33
|
Abstract
Gene expression divergence through evolutionary processes is thought to be important for achieving programmed development in multicellular organisms. To test this premise in filamentous fungi, we investigated transcriptional profiles of 3,942 single-copy orthologous genes (SCOGs) in five related sordariomycete species that have morphologically diverged in the formation of their flask-shaped perithecia. We compared expression of the SCOGs to inferred gene expression levels of the most recent common ancestor of the five species, ranking genes from their largest increases to smallest increases in expression during perithecial development in each of the five species. We found that a large proportion of the genes that exhibited evolved increases in gene expression were important for normal perithecial development in Fusarium graminearum. Many of these genes were previously uncharacterized, encoding hypothetical proteins without any known functional protein domains. Interestingly, the developmental stages during which aberrant knockout phenotypes appeared largely coincided with the elevated expression of the deleted genes. In addition, we identified novel genes that affected normal perithecial development in Magnaporthe oryzae and Neurospora crassa, which were functionally and transcriptionally diverged from the orthologous counterparts in F. graminearum. Furthermore, comparative analysis of developmental transcriptomes and phylostratigraphic analysis suggested that genes encoding hypothetical proteins are generally young and transcriptionally divergent between related species. This study provides tangible evidence of shifts in gene expression that led to acquisition of novel function of orthologous genes in each lineage and demonstrates that several genes with hypothetical function are crucial for shaping multicellular fruiting bodies. IMPORTANCE The fungal class Sordariomycetes includes numerous important plant and animal pathogens. It also provides model systems for studying fungal fruiting body development, as its members develop fruiting bodies with a few well-characterized tissue types on common growth media and have rich genomic resources that enable comparative and functional analyses. To understand transcriptional divergence of key developmental genes between five related sordariomycete fungi, we performed targeted knockouts of genes inferred to have evolved significant upward shifts in expression. We found that many previously uncharacterized genes play indispensable roles at different stages of fruiting body development, which have undergone transcriptional activation in specific lineages. These novel genes are predicted to be phylogenetically young and tend to be involved in lineage- or species-specific function. Transcriptional activation of genes with unknown function seems to be more frequent than ever thought, which may be crucial for rapid adaption to changing environments for successful sexual reproduction.
Collapse
|
34
|
Day TC, Márquez-Zacarías P, Bravo P, Pokhrel AR, MacGillivray KA, Ratcliff WC, Yunker PJ. Varied solutions to multicellularity: The biophysical and evolutionary consequences of diverse intercellular bonds. BIOPHYSICS REVIEWS 2022; 3:021305. [PMID: 35673523 PMCID: PMC9164275 DOI: 10.1063/5.0080845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/29/2022] [Indexed: 11/16/2022]
Abstract
The diversity of multicellular organisms is, in large part, due to the fact that multicellularity has independently evolved many times. Nonetheless, multicellular organisms all share a universal biophysical trait: cells are attached to each other. All mechanisms of cellular attachment belong to one of two broad classes; intercellular bonds are either reformable or they are not. Both classes of multicellular assembly are common in nature, having independently evolved dozens of times. In this review, we detail these varied mechanisms as they exist in multicellular organisms. We also discuss the evolutionary implications of different intercellular attachment mechanisms on nascent multicellular organisms. The type of intercellular bond present during early steps in the transition to multicellularity constrains future evolutionary and biophysical dynamics for the lineage, affecting the origin of multicellular life cycles, cell-cell communication, cellular differentiation, and multicellular morphogenesis. The types of intercellular bonds used by multicellular organisms may thus result in some of the most impactful historical constraints on the evolution of multicellularity.
Collapse
Affiliation(s)
- Thomas C. Day
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | - Aawaz R. Pokhrel
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | - William C. Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Peter J. Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
35
|
Haelewaters D, Stallman JK, Henkel TW, Aime MC. Molecular phylogenetic analyses and micromorphology reveal placement of the enigmatic tropical discomycete Polydiscidium in Sclerococcum (Sclerococcales, Eurotiomycetes). Mycologia 2022; 114:626-641. [PMID: 35605135 DOI: 10.1080/00275514.2022.2048625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Polydiscidium is an enigmatic, monotypic, and rarely reported genus of Ascomycota of uncertain placement. The morphologically unique Polydiscidium martynii grows on dead wood and forms compound ascomata composed of thick, black, gelatinous somatic tissue that branches out from a common base. Multiple apothecia are located on the branches, mostly toward the tips, and are composed of 8-spored asci and paraphyses embedded in a gelatinous matrix that turns blue in Melzer's reagent. The species was previously known from only three collections from Guyana (holotype), Trinidad, and the Democratic Republic of the Congo and no sequences exist. Due to its peculiar morphology, taxonomic affinities of Polydiscidium have been debated, with different authors having placed it in Helotiaceae, Leotiaceae, or Leotiomycetes incertae sedis. Recent collections of this species resulting from long-term field work in Guyana and Cameroon led us to revisit the morphology and phylogenetic position of this fungus. Newly generated sequences of P. martynii were added to an Ascomycota-wide six-locus data set. The resulting phylogeny showed Polydiscidium to be a member of order Sclerococcales (Eurotiomycetes). Next, a four-locus (18S, ITS, 28S, mtSSU) phylogenetic reconstruction revealed that Polydiscidium is congeneric with Sclerococcum. A new combination is proposed for this species, Sclerococcum martynii. Micromorphological features, including the gelatinous hymenium composed of asci with amyloid gel cap and septate brown ascospores, are in agreement with Sclerococcum. New combinations are proposed for two additional species: Sclerococcum chiangraiensis and S. fusiformis. Finally, Dactylosporales is considered a later synonym of Sclerococcales.
Collapse
Affiliation(s)
- Danny Haelewaters
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.,Research Group Mycology, Department of Biology, Ghent University, Ghent, Belgium
| | - Jeffery K Stallman
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Terry W Henkel
- Department of Biological Sciences, Humboldt State University, Arcata, California 95521
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
36
|
Taxonomy and Phylogeny of Meruliaceae with Descriptions of Two New Species from China. J Fungi (Basel) 2022; 8:jof8050501. [PMID: 35628756 PMCID: PMC9146420 DOI: 10.3390/jof8050501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 01/27/2023] Open
Abstract
Two new wood-inhabiting fungi Hermanssonia fimbriata sp. nov. and Phlebia austroasiana sp. nov. in the Meruliaceae family are described and illustrated from southwestern China based on molecular and morphological evidence. The characteristics of H. fimbriata include annual, resupinate basidiomata, the absence of cystidia and cystidioles, oblong ellipsoid basidiospores of 5–6 × 2.4–3 μm, and growth on rotten gymnosperm wood in the east Himalayas. Its basidiomata change drastically upon drying, from being a light-coloured, juicy, papillose-to-wrinkled hymenophore, to a dark-coloured, corky-to-gelatinous, and more or less smooth hymenophore. The characteristics of Ph. austroasiana include annual, resupinate basidiomata, a hydnoid hymenophore, 2–3 spines per mm, the presence of tubular cystidia of 20–25 × 3–3.5 µm, oblong ellipsoid basidiospores of 4.4–5.2 × 2.1–3 μm, and growth on angiosperm wood in tropical forests in the southern Yunnan Province. The phylogenetic analyses based on the combined 2-locus dataset (ITS1-5.8S-ITS2 (ITS) + nuclear large subunit RNA (nLSU)) confirm the placement of two new species, respectively, in Hermanssonia and Phlebia s. lato. Phylogenetically, the closely-related species to these two new species are discussed.
Collapse
|
37
|
Nie Y, Zhao H, Wang Z, Zhou Z, Liu X, Huang B. Two new species in Capillidium (Ancylistaceae, Entomophthorales) from China, with a proposal for a new combination. MycoKeys 2022; 89:139-153. [PMID: 36760830 PMCID: PMC9849098 DOI: 10.3897/mycokeys.89.79537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 04/12/2022] [Indexed: 01/24/2023] Open
Abstract
A taxonomic revision of Conidiobolus s.l. (Ancylistaceae, Entomophthorales) delimited all members that form capilliconidia into the genus Capillidium. In this study, we report two new species of Capillidium that were isolated in China. Capillidiummacrocapilliconidium sp. nov. is characterised by large capilliconidia. Capillidiumjiangsuense sp. nov. is differentiated by large capilliconidia and long, slender secondary conidiophores. Phylogenetic analyses were performed using sequences from the nuclear large subunit of rDNA (nucLSU), the mitochondrial small subunit of rDNA (mtSSU) and elongation-factor-like (EFL). The analyses revealed sister relationships between Ca.macrocapilliconidium sp. nov. and Ca.globuliferus / Ca.pumilum and between Ca.jiangsuense sp. nov. and Ca.denaeosporum. Additionally, a new combination of Ca.rugosum (Drechsler) B. Huang & Y. Nie comb. nov. is proposed herein. An identification key is provided for the ten accepted Capillidium species.
Collapse
Affiliation(s)
- Yong Nie
- Anhui Provincial Key Laboratory for Microbial Pest Control, Anhui Agricultural University, Hefei 230036, ChinaAnhui Agricultural UniversityHefeiChina,School of Civil Engineering and Architecture, Anhui University of Technology, Ma,anshan 243002, ChinaAnhui University of TechnologyMa'anshanChina
| | - Heng Zhao
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - ZiMin Wang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma,anshan 243002, ChinaAnhui University of TechnologyMa'anshanChina
| | - ZhengYu Zhou
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma,anshan 243002, ChinaAnhui University of TechnologyMa'anshanChina
| | - XiaoYong Liu
- College of Life Sciences, Shandong Normal University, Jinan 250014, ChinaShandong Normal UniversityJinanChina
| | - Bo Huang
- Anhui Provincial Key Laboratory for Microbial Pest Control, Anhui Agricultural University, Hefei 230036, ChinaAnhui Agricultural UniversityHefeiChina
| |
Collapse
|
38
|
Menolli N, Sánchez-Ramírez S, Sánchez-García M, Wang C, Patev S, Ishikawa NK, Mata JL, Lenz AR, Vargas-Isla R, Liderman L, Lamb M, Nuhn M, Hughes KW, Xiao Y, Hibbett DS. Global phylogeny of the Shiitake mushroom and related Lentinula species uncovers novel diversity and suggests an origin in the Neotropics. Mol Phylogenet Evol 2022; 173:107494. [PMID: 35490968 DOI: 10.1016/j.ympev.2022.107494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 01/18/2023]
Abstract
Lentinula (Basidiomycota, Agaricales) includes the most widely cultivated mushroom in the world, Lentinula edodes, also known as shiitake (Japanese) or xiang-gu (Chinese). At present, nine species are recognized in the genus, based on morphology, mating criteria, and geographic distributions. However, analyses of internal transcribed spacers (ITS) of ribosomal RNA genes have suggested that there are cryptic lineages. We analyzed a global-scale phylogenetic dataset from 325 Lentinula individuals from 24 countries in Asia-Australasia and the Americas plus Madagascar, with 325 sequences of ITS, 80 LSU sequences, and 111 sequences of translation elongation factor (tef1-α) genes. We recovered 15 independent lineages (Groups 1-15) that may correspond to species. Lineages in Asia-Australasia (Groups 1-5) and the Americas plus Madagascar (Groups 6-15) formed sister clades. Four lineages are represented only by sequences from single individuals and require further molecular sampling, including L. aff. raphanica (Group 7), L. ixodes (Group 8), L. boryana (Group 12), and L. aff. aciculospora (Group 14). Groups 1 and 5 are here referred to L. edodes and L. aff. edodes, respectively. However, these groups most likely represent the same species and are only recognized as (unsupported) monophyletic lineages by maximum likelihood analyses of ITS alone. Other putative species resolved here include L. lateritia (Group 2), L. novae-zelandieae (Group 3), L. aff. lateritia (Group 4), L. raphanica (Group 6), L. aff. detonsa (Group 9), L. detonsa (Group 10), L. guzmanii sp. nov. (Group 11), L. aciculospora (Group 13), and L. madagasikarensis (Group 15). Groups 9-12 represent the "L. boryana complex". Molecular clock and historical biogeographic analyses suggest that the most recent common ancestor (MRCA) of Lentinula can be placed in the middle Oligocene, ca. 30 million years ago (Ma), and had a likely presence in neotropical America. The MRCA of Lentinula in the Americas and Madagascar lived ca. 22 Ma in the Neotropics and the MRCA of Lentinula in Asia-Australasia lived ca. 6 Ma in Oceania. Given the current knowledge about plate tectonics and paleoclimatic models of the last 30 Myr, our phylogenetic hypothesis suggests that the extant distribution of Lentinula is likely to have arisen, in large part, due to long-distance dispersal. Lentinula collections include at least four dubious taxa that need further taxonomic studies: L. reticeps from the USA (Ohio); L. guarapiensis from Paraguay; Lentinus puiggarii from Brazil (São Paulo); and "L. platinedodes" from Vietnam. Approximately ten of the fifteen Groups are reported on Fagaceae, which appears to be the ancestral substrate of Lentinula.
Collapse
Affiliation(s)
- Nelson Menolli
- IFungiLab, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), Câmpus São Paulo (SPO), Departamento de Ciências da Natureza e Matemática (DCM) / Subárea de Biologia (SAB), Rua Pedro Vicente 625, São Paulo, SP 01109-010, Brazil.
| | - Santiago Sánchez-Ramírez
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada
| | - Marisol Sánchez-García
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-75005, Sweden
| | - Chaoqun Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou 510070, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sean Patev
- Biology Department, Clark University, Worcester, MA 01610, USA
| | - Noemia Kazue Ishikawa
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Av. André Araújo, 2936, Petrópolis, Manaus, AM 69067-375, Brazil
| | - Juan L Mata
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Alexandre Rafael Lenz
- Departamento de Ciências Exatas e da Terra, Colegiado de Sistemas de Informação, Campus I, Universidade do Estado da Bahia (UNEB), Salvador, BA, Brazil
| | - Ruby Vargas-Isla
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Av. André Araújo, 2936, Petrópolis, Manaus, AM 69067-375, Brazil
| | - Lauren Liderman
- Biology Department, Clark University, Worcester, MA 01610, USA
| | - Meriel Lamb
- Biology Department, Clark University, Worcester, MA 01610, USA
| | - Mitchell Nuhn
- Biology Department, Clark University, Worcester, MA 01610, USA
| | - Karen W Hughes
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Yang Xiao
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - David S Hibbett
- Biology Department, Clark University, Worcester, MA 01610, USA
| |
Collapse
|
39
|
Decock CA, Ryvarden L, Amalfi M. Niveoporofomes (Basidiomycota, Fomitopsidaceae) in Tropical Africa: two additions from Afromontane forests, Niveoporofomes oboensis sp. nov. and N. widdringtoniae comb. nov. and N. globosporus comb. nov. from the Neotropics. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01787-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Ceballos-Escalera A, Richards J, Arias MB, Inward DJG, Vogler AP. Metabarcoding of insect-associated fungal communities: a comparison of internal transcribed spacer (ITS) and large-subunit (LSU) rRNA markers. MycoKeys 2022; 88:1-33. [PMID: 35585929 PMCID: PMC8924126 DOI: 10.3897/mycokeys.88.77106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
Full taxonomic characterisation of fungal communities is necessary for establishing ecological associations and early detection of pathogens and invasive species. Complex communities of fungi are regularly characterised by metabarcoding using the Internal Transcribed Spacer (ITS) and the Large-Subunit (LSU) gene of the rRNA locus, but reliance on a single short sequence fragment limits the confidence of identification. Here we link metabarcoding from the ITS2 and LSU D1-D2 regions to characterise fungal communities associated with bark beetles (Scolytinae), the likely vectors of several tree pathogens. Both markers revealed similar patterns of overall species richness and response to key variables (beetle species, forest type), but identification against the respective reference databases using various taxonomic classifiers revealed poor resolution towards lower taxonomic levels, especially the species level. Thus, Operational Taxonomic Units (OTUs) could not be linked via taxonomic classifiers across ITS and LSU fragments. However, using phylogenetic trees (focused on the epidemiologically important Sordariomycetes) we placed OTUs obtained with either marker relative to reference sequences of the entire rRNA cistron that includes both loci and demonstrated the largely similar phylogenetic distribution of ITS and LSU-derived OTUs. Sensitivity analysis of congruence in both markers suggested the biologically most defensible threshold values for OTU delimitation in Sordariomycetes to be 98% for ITS2 and 99% for LSU D1-D2. Studies of fungal communities using the canonical ITS barcode require corroboration across additional loci. Phylogenetic analysis of OTU sequences aligned to the full rRNA cistron shows higher success rate and greater accuracy of species identification compared to probabilistic taxonomic classifiers.
Collapse
|
41
|
Morel B, Schade P, Lutteropp S, Williams TA, Szöllősi GJ, Stamatakis A. SpeciesRax: A Tool for Maximum Likelihood Species Tree Inference from Gene Family Trees under Duplication, Transfer, and Loss. Mol Biol Evol 2022; 39:msab365. [PMID: 35021210 PMCID: PMC8826479 DOI: 10.1093/molbev/msab365] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Species tree inference from gene family trees is becoming increasingly popular because it can account for discordance between the species tree and the corresponding gene family trees. In particular, methods that can account for multiple-copy gene families exhibit potential to leverage paralogy as informative signal. At present, there does not exist any widely adopted inference method for this purpose. Here, we present SpeciesRax, the first maximum likelihood method that can infer a rooted species tree from a set of gene family trees and can account for gene duplication, loss, and transfer events. By explicitly modeling events by which gene trees can depart from the species tree, SpeciesRax leverages the phylogenetic rooting signal in gene trees. SpeciesRax infers species tree branch lengths in units of expected substitutions per site and branch support values via paralogy-aware quartets extracted from the gene family trees. Using both empirical and simulated data sets we show that SpeciesRax is at least as accurate as the best competing methods while being one order of magnitude faster on large data sets at the same time. We used SpeciesRax to infer a biologically plausible rooted phylogeny of the vertebrates comprising 188 species from 31,612 gene families in 1 h using 40 cores. SpeciesRax is available under GNU GPL at https://github.com/BenoitMorel/GeneRax and on BioConda.
Collapse
Affiliation(s)
- Benoit Morel
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Paul Schade
- Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sarah Lutteropp
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Gergely J Szöllősi
- ELTE-MTA “Lendület” Evolutionary Genomics Research Group, Budapest, Hungary
- Department of Biological Physics, Eötvös University, Budapest, Hungary
- Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
| | - Alexandros Stamatakis
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
42
|
Gad M, Hou L, Cao M, Adyari B, Zhang L, Qin D, Yu CP, Sun Q, Hu A. Tracking microeukaryotic footprint in a peri-urban watershed, China through machine-learning approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150401. [PMID: 34562761 DOI: 10.1016/j.scitotenv.2021.150401] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/17/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Microeukaryotes play a significant role in biogeochemical cycling and can serve as bioindicators of water quality in freshwater ecosystems. However, there is a knowledge gap on how freshwater microeukaryotic communities are assembled, especially that how terrestrial microeukaryotes influence freshwater microeukaryotic assemblages. Here, we used a combination of 18S rRNA gene amplicon sequencing and community-based microbial source tracking (MST) approaches (i.e., SourceTracker and FEAST) to assess the contribution of microeukaryotes from surrounding environments (i.e., soils, river sediments, swine wastewater, influents and effluents of decentralized wastewater treatment plants) to planktonic microeukaryotes in the main channel, tributaries and reservoir of a peri-urban watershed, China in wet and dry seasons. The results indicated that SAR (~ 49% of the total communities), Opithokonta (~ 34%), Archaeplastida (~ 9%), and Amoebozoa (~ 2%) were dominant taxa in the watershed. The community-based MST analysis revealed that sewage effluents (7.96 - 21.84%), influents (2.23 - 13.97%), and river sediments (2.56 - 11.71%) were the major exogenous sources of riverine microeukaryotes. At the spatial scale, the downstream of the watershed (i.e., main channel and tributaries) received higher proportions of exogenous microeukaryotic OTUs compared to the upstream reservoirs, while at the seasonal scale, the sewage effluents and influents contributed higher exogenous microeukaryotes to river water in wet season than in dry season. Moreover, the swine and domestic wastewater led to the presence of Apicomplexa in wet season only, implying rainfall runoff may enhance the spread of parasitic microeukaryotes. Taken together, our study provides novel insights into the immigration patterns of microeukaryotes and their dominant supergroups between terrestrial and riverine habitats.
Collapse
Affiliation(s)
- Mahmoud Gad
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Water Pollution Research Department, National Research Centre, Giza 12622, Egypt
| | - Liyuan Hou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Meixian Cao
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bob Adyari
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Environmental Engineering, Universitas Pertamina, Jakarta 12220, Indonesia
| | - Lanping Zhang
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Qin
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Qian Sun
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Anyi Hu
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
43
|
Sugita R, Tanaka K. Thyridium revised: Synonymisation of Phialemoniopsis under Thyridium and establishment of a new order, Thyridiales. MycoKeys 2022; 86:147-176. [PMID: 35145340 PMCID: PMC8825628 DOI: 10.3897/mycokeys.86.78989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/11/2022] [Indexed: 11/23/2022] Open
Abstract
The genus Thyridium, previously known as a saprobic or hemibiotrophic ascomycete on various plants, was revised taxonomically and phylogenetically. Sequences of the following six regions, that is, the nuclear ribosomal internal transcribed spacer (ITS) region, the large subunit (LSU) of rDNA, the second largest RNA polymerase II subunit (rpb2) gene, translation elongation factor 1-alpha (tef1) gene, the actin (act) gene, and the beta-tubulin (tub2) gene, were generated for molecular phylogenetic analyses of species of this genus. Phialemoniopsis, a genus encompassing medically important species, is synonymised with Thyridium based on molecular evidence and morphological similarities in their asexual characters. The generic concept for Thyridium is expanded to include species possessing both coelomycetous and hyphomycetous complex asexual morphs. In addition to type species of Thyridium, T.vestitum, nine species were accepted in Thyridium upon morphological comparison and molecular phylogenetic analyses in this study. All seven species of Phialemoniopsis were treated as members of the genus Thyridium and new combinations were proposed. A bambusicolous fungus, Pleosporapunctulata, was transferred to Thyridium, and an epitype is designated for this species. A new species, T.flavostromatum, was described from Phyllostachyspubescens. The family Phialemoniopsidaceae, proposed as a familial placement for Phialemoniopsis, was regarded as a synonym of Thyridiaceae. A new order, Thyridiales, was established to accommodate Thyridiaceae; it forms a well-supported, monophyletic clade in Sordariomycetes.
Collapse
|
44
|
Cai F, Dou K, Wang P, Chenthamara K, Chen J, Druzhinina IS. The Current State of Trichoderma Taxonomy and Species Identification. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Fekry T, Salem M, Abd-Elaziz A, Muawia S, Naguib Y, Khalil H. Anticancer Properties of Selenium-Enriched Mushroom, Pleurotus ostreatus, in Colon Cancer In-Vitro. Int J Med Mushrooms 2022; 24:1-20. [DOI: 10.1615/intjmedmushrooms.2022045181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
46
|
Mehta N, Jadhav R, Baghela A. Molecular Taxonomy and Multigene Phylogeny of Filamentous Fungi. Fungal Biol 2022. [DOI: 10.1007/978-3-030-83749-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Species diversity, taxonomy and multi-gene phylogeny of phlebioid clade (Phanerochaetaceae, Irpicaceae, Meruliaceae) of Polyporales. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00490-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
48
|
Novelties in Fuscosporellaceae (Fuscosporellales): Two New Parafuscosporella from Thailand Revealed by Morphology and Phylogenetic Analyses. DIVERSITY 2021. [DOI: 10.3390/d13110517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Asexual morphs of freshwater fungi have been mostly reported from tropical and subtropical regions. From our ongoing investigation of the diversity and taxonomy of freshwater microfungi in Thailand, a country with rich natural resources and diverse ecosystems, Parafuscosporella ellipsoconidiogena sp. nov. and P. obovata sp. nov., collected from decaying submerged twigs at Phalad Waterfall in a conserved forest in Chiang Mai Zoo, Chiang Mai Province, northern Thailand, are proposed. DNA phylogenies based on a combination of ITS and LSU datasets support the placement of these species in Parafuscosporella (Fuscosporellaceae, Fuscosporellales, Sordariomycetes), and these two novel species differ from known species in terms of morphology. Detailed descriptions, illustrations and a key to Parafuscosporella species are provided, as well as comparisons with other accepted Parafuscosporella species.
Collapse
|
49
|
Błaszczyk L, Salamon S, Mikołajczak K. Fungi Inhabiting the Wheat Endosphere. Pathogens 2021; 10:1288. [PMID: 34684238 PMCID: PMC8539314 DOI: 10.3390/pathogens10101288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/22/2023] Open
Abstract
Wheat production is influenced by changing environmental conditions, including climatic conditions, which results in the changing composition of microorganisms interacting with this cereal. The group of these microorganisms includes not only endophytic fungi associated with the wheat endosphere, both pathogenic and symbiotic, but also those with yet unrecognized functions and consequences for wheat. This paper reviews the literature in the context of the general characteristics of endophytic fungi inhabiting the internal tissues of wheat. In addition, the importance of epigenetic regulation in wheat-fungus interactions is recognized and the current state of knowledge is demonstrated. The possibilities of using symbiotic endophytic fungi in modern agronomy and wheat cultivation are also proposed. The fact that the current understanding of fungal endophytes in wheat is based on a rather small set of experimental conditions, including wheat genotypes, plant organs, plant tissues, plant development stage, or environmental conditions, is recognized. In addition, most of the research to date has been based on culture-dependent methods that exclude biotrophic and slow-growing species and favor the detection of fast-growing fungi. Additionally, only a few reports of studies on the entire wheat microbiome using high-throughput sequencing techniques exist. Conducting comprehensive research on the mycobiome of the endosphere of wheat, mainly in the context of the possibility of using this knowledge to improve the methods of wheat management, mainly the productivity and health of this cereal, is needed.
Collapse
Affiliation(s)
- Lidia Błaszczyk
- Department of Plant Microbiomics, Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszyńska Street, 60-479 Poznań, Poland; (S.S.); (K.M.)
| | | | | |
Collapse
|
50
|
Finn DR, Lee S, Lanzén A, Bertrand M, Nicol GW, Hazard C. Cropping systems impact changes in soil fungal, but not prokaryote, alpha-diversity and community composition stability over a growing season in a long-term field trial. FEMS Microbiol Ecol 2021; 97:6374554. [PMID: 34555173 DOI: 10.1093/femsec/fiab136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/21/2021] [Indexed: 12/30/2022] Open
Abstract
Crop harvest followed by a fallow period can act as a disturbance on soil microbial communities. Cropping systems intended to improve alpha-diversity of communities may also confer increased compositional stability during succeeding growing seasons. Over a single growing season in a long-term (18 year) agricultural field experiment incorporating conventional (CON), conservation (CA), organic (ORG) and integrated (INT) cropping systems, temporal changes in prokaryote, fungal and arbuscular mycorrhizal fungi (AMF) communities were investigated overwinter, during crop growth and at harvest. While certain prokaryote phyla were influenced by cropping system (e.g. Acidobacteria), the community as a whole was primarily driven by temporal changes over the growing season as distinct overwinter and crop-associated communities, with the same trend observed regardless of cropping system. Species-rich prokaryote communities were most stable over the growing season. Cropping system exerted a greater effect on fungal communities, with alpha-diversity highest and temporal changes most stable under CA. CON was particularly detrimental for alpha-diversity in AMF communities, with AMF alpha-diversity and stability improved under all other cropping systems. Practices that promoted alpha-diversity tended to also increase the similarity and temporal stability of soil fungal (and AMF) communities during a growing season, while prokaryote communities were largely insensitive to management.
Collapse
Affiliation(s)
- Damien R Finn
- Thünen Institut für Biodiversität, 38116 Braunschweig, Germany.,Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, 69134 Écully, France
| | - Sungeun Lee
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, 69134 Écully, France
| | - Anders Lanzén
- NEIKER, Basque Institute of Agricultural Research and Development, c/ Berreaga 1, 48160 Derio, Spain
| | - Michel Bertrand
- UMR Agronomie, INRAE AgroParisTech Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Graeme W Nicol
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, 69134 Écully, France
| | - Christina Hazard
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, 69134 Écully, France
| |
Collapse
|