1
|
Krajnović M, Kožik B, Božović A, Jovanović-Ćupić S. Multiple Roles of the RUNX Gene Family in Hepatocellular Carcinoma and Their Potential Clinical Implications. Cells 2023; 12:2303. [PMID: 37759525 PMCID: PMC10527445 DOI: 10.3390/cells12182303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent cancers in humans, characterised by a high resistance to conventional chemotherapy, late diagnosis, and a high mortality rate. It is necessary to elucidate the molecular mechanisms involved in hepatocarcinogenesis to improve diagnosis and treatment outcomes. The Runt-related (RUNX) family of transcription factors (RUNX1, RUNX2, and RUNX3) participates in cardinal biological processes and plays paramount roles in the pathogenesis of numerous human malignancies. Their role is often controversial as they can act as oncogenes or tumour suppressors and depends on cellular context. Evidence shows that deregulated RUNX genes may be involved in hepatocarcinogenesis from the earliest to the latest stages. In this review, we summarise the topical evidence on the roles of RUNX gene family members in HCC. We discuss their possible application as non-invasive molecular markers for early diagnosis, prognosis, and development of novel treatment strategies in HCC patients.
Collapse
Affiliation(s)
| | - Bojana Kožik
- Laboratory for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, Vinča, 11351 Belgrade, Serbia; (M.K.); (A.B.); (S.J.-Ć.)
| | | | | |
Collapse
|
2
|
Epigenetic Abnormalities in Chondrosarcoma. Int J Mol Sci 2023; 24:ijms24054539. [PMID: 36901967 PMCID: PMC10003547 DOI: 10.3390/ijms24054539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
In recent years, our understanding of the epigenetic mechanisms involved in tumor pathology has improved greatly. DNA and histone modifications, such as methylation, demethylation, acetylation, and deacetylation, can lead to the up-regulation of oncogenic genes, as well as the suppression of tumor suppressor genes. Gene expression can also be modified on a post-transcriptional level by microRNAs that contribute to carcinogenesis. The role of these modifications has been already described in many tumors, e.g., colorectal, breast, and prostate cancers. These mechanisms have also begun to be investigated in less common tumors, such as sarcomas. Chondrosarcoma (CS) is a rare type of tumor that belongs to sarcomas and is the second most common malignant bone tumor after osteosarcoma. Due to unknown pathogenesis and resistance to chemo- and radiotherapies of these tumors, there is a need to develop new potential therapies against CS. In this review, we summarize current knowledge on the influence of epigenetic alterations in the pathogenesis of CS by discussing potential candidates for future therapies. We also emphasize ongoing clinical trials that use drugs targeting epigenetic modifications in CS treatment.
Collapse
|
3
|
MicroRNA-20a-5p regulates the epithelial-mesenchymal transition of human hepatocellular carcinoma by targeting RUNX3. Chin Med J (Engl) 2022; 135:2089-2097. [PMID: 35143426 PMCID: PMC9746768 DOI: 10.1097/cm9.0000000000001975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND MicroRNA-20a (miR-20a) is dysregulated in many types of malignancies, including human hepatocellular carcinoma (HCC), but its expression level and functional significance in HCC are still disputed. We aimed to study the role of miR-20a-5p in HCC and its downstream molecular mechanisms. METHODS We used real-time polymerase chain reaction to detect the expression of miR-20a-5p and runt-related transcription factor 3 ( RUNX3 ) in HCC and paraneoplastic tissue, transfected Huh7 and highly metastatic human hepatocellular carcinoma (MHCC97H) cells. A live cell workstation was used to observe the proliferation and migration of transfected cells. The invasiveness of transfected cells was verified by Transwell assay. Cell apoptosis was detected by flow cytometry. The expression levels of proteins after transfection were measured using simple western immunoblot measurements. Gene expression profiles between HCC and normal samples were obtained from The Cancer Genome Atlas. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment results were processed by the database for annotation, visualization and integrated discovery. Potential target genes of miR-20a-5p were predicted to further investigate how miR-20a-5p regulates epithelial-mesenchymal transition (EMT) in HCC. RESULTS MiR-20a-5p was significantly highly expressed in HCC tissues, and overexpression of miR-20a-5p significantly promoted HCC cell proliferation, migration, and invasion and inhibited apoptosis in vitro. The protein expression of E-cadherin was decreased and that of vimentin was increased after overexpression of miR-20a-5p in HCC cells. We discovered the intersection of genes from miRDB, miR TarBase, and TargetScan, obtained 397 target genes and finally focused on RUNX3. RUNX3 was not only reduced in HCC specimens but also drastically reduced in HCC cells overexpressing miR-20a-5p. RUNX3 expression decreased with elevated miR-20a-5p, which activated downstream EMT signaling and promoted cell proliferation, migration, and invasion. CONCLUSIONS Since RUNX3 is involved in EMT in HCC, as proven by previous research, our findings provide further evidence for a novel regulatory pathway comprising the miR-20a/RUNX3/EMT axis that upregulates EMT signaling and enhances the migration of HCC cells.
Collapse
|
4
|
Zheng J, Mei Y, Zhai G, Zhao N, Jia D, Fan Y. Downregulation of RUNX3 has a poor prognosis and promotes tumor progress in kidney cancer. Urol Oncol 2020; 38:740.e11-740.e20. [PMID: 32600926 DOI: 10.1016/j.urolonc.2020.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Kidney cancer usually shows no symptoms until the tumor is relatively large, and current drugs fail to stop the tumor recurrence. The transcriptional factor Runt-related transcription factor 3 (RUNX3) has been reported to function as a tumor suppressor in many types of cancers. METHODS Kidney cancer and adjacent normal tissues were collected from 12 patients to test the expression of RUNX3 by real-time quantitative PCR, immunoblotting, and immunohistochemistry. Promoter methylation status of RUNX3 was determined using methylation analysis from 103 patient samples. Kidney cancer cell lines and xenograft mouse model were used to investigate the promoter methylation and cancer progression through inhibitor treatment and loss/gain-of-function experiments. RESULTS RUNX3 was significantly downregulated in kidney cancer tissues and cells, which could be elevated by higher methylation status at its promoter region. RUNX3 promoter methylation was positively correlated with poor prognosis of kidney cancer. RUNX3 loss-of-function promoted the cell proliferation, migration, and invasion of kidney cancer cells, in contrast, RUNX3 overexpression inhibited the cancer cell progression. This study provides the first instance of the effect of RUNX3 expression and its promoter methylation status on kidney cancer. CONCLUSION Targeting RUNX3 pathway and its promoter methylation are potential therapeutic strategies to treat kidney cancer.
Collapse
Affiliation(s)
- Jianbo Zheng
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Department of Urology, Central Hospital of Zibo, Zibo, Shandong, China
| | - Yanhui Mei
- Department of Urology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Guangsheng Zhai
- Department of Radiotherapy, Central Hospital of Zibo, Zibo, Shandong, China
| | - Ning Zhao
- Department of Urology, Central Hospital of Zibo, Zibo, Shandong, China
| | - Dongsheng Jia
- Department of Urology, Central Hospital of Zibo, Zibo, Shandong, China
| | - Yidong Fan
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
5
|
Sweeney K, Cameron ER, Blyth K. Complex Interplay between the RUNX Transcription Factors and Wnt/β-Catenin Pathway in Cancer: A Tango in the Night. Mol Cells 2020; 43:188-197. [PMID: 32041394 PMCID: PMC7057843 DOI: 10.14348/molcells.2019.0310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022] Open
Abstract
Cells are designed to be sensitive to a myriad of external cues so they can fulfil their individual destiny as part of the greater whole. A number of well-characterised signalling pathways dictate the cell's response to the external environment and incoming messages. In healthy, well-ordered homeostatic systems these signals are tightly controlled and kept in balance. However, given their powerful control over cell fate, these pathways, and the transcriptional machinery they orchestrate, are frequently hijacked during the development of neoplastic disease. A prime example is the Wnt signalling pathway that can be modulated by a variety of ligands and inhibitors, ultimately exerting its effects through the β-catenin transcription factor and its downstream target genes. Here we focus on the interplay between the three-member family of RUNX transcription factors with the Wnt pathway and how together they can influence cell behaviour and contribute to cancer development. In a recurring theme with other signalling systems, the RUNX genes and the Wnt pathway appear to operate within a series of feedback loops. RUNX genes are capable of directly and indirectly regulating different elements of the Wnt pathway to either strengthen or inhibit the signal. Equally, β-catenin and its transcriptional co-factors can control RUNX gene expression and together they can collaborate to regulate a large number of third party co-target genes.
Collapse
Affiliation(s)
- Kerri Sweeney
- CRUK Beatson Institute, Garscube Estate, Glasgow G6 BD, UK
| | - Ewan R. Cameron
- Glasgow Veterinary School, University of Glasgow, Glasgow G61 1QH, UK
| | - Karen Blyth
- CRUK Beatson Institute, Garscube Estate, Glasgow G6 BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
6
|
Gao QQ, Zhou B, Yu XZ, Zhang Z, Wang YY, Song YP, Zhang L, Luo H, Xi MR. Transcriptome changes induced by RUNX3 in cervical cancer cells in vitro. Oncol Lett 2020; 19:651-662. [PMID: 31897181 PMCID: PMC6924183 DOI: 10.3892/ol.2019.11128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 09/06/2019] [Indexed: 11/06/2022] Open
Abstract
Runt-related transcription factor 3 (RUNX3) is a member of Runt domain family that is known to play key roles in various different types of tumor. It was recently demonstrated that RUNX3 may also be associated with cervical cancer. The aim of the present study was to investigate the potential association between transcriptome changes and RUNX3 expression in cervical cancer. A RUNX3 overexpression model was constructed using cervical cancer cell lines by RUNX3 plasmid transfection. It was demonstrated that the upregulated expression of RUNX3 inhibited proliferation of cervical cancer cell lines, particularly SiHa cells, and was associated with the expression of the IL-6, PTGS2, FOSL1 and TNF genes. In addition, it was revealed that the TNF and FoxO pathways may also be affected by RUNX3. Therefore, the expression of the RUNX3 gene may be involved in the occurrence and progression of cervical cancer.
Collapse
Affiliation(s)
- Qian-Qian Gao
- Department of Ultrasound, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bin Zhou
- Laboratory of Molecular Translational Medicine, West China Institute of Women and Children's Health, Key Laboratory of Obstetric and Gynecological and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiu-Zhang Yu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhu Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yan-Yun Wang
- Laboratory of Molecular Translational Medicine, West China Institute of Women and Children's Health, Key Laboratory of Obstetric and Gynecological and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ya-Ping Song
- Laboratory of Molecular Translational Medicine, West China Institute of Women and Children's Health, Key Laboratory of Obstetric and Gynecological and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lin Zhang
- Laboratory of Molecular Translational Medicine, West China Institute of Women and Children's Health, Key Laboratory of Obstetric and Gynecological and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hong Luo
- Department of Ultrasound, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ming-Rong Xi
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
7
|
Jeong D, Kim H, Ryu A, Sunwoo J, Choi SD, Nam GH, Jeon S. Loss of RUNX3 is significantly associated with advanced tumor grade and stage in endometrial cancers. Mol Med Rep 2018; 17:8173-8179. [PMID: 29693143 PMCID: PMC5983989 DOI: 10.3892/mmr.2018.8915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/05/2017] [Indexed: 12/18/2022] Open
Abstract
Loss of runt-related transcription factor 3 (RUNX3) has been reported in various cancers, and one of the mechanisms mediating loss of RUNX3 expression is DNA methylation. However, the role of RUNX3 expression and its DNA methylation status as prognostic factors in endometrial cancer remain unclear. In the present study, the expression and promoter methylation of RUNX3 was examined in endometrial cancer tissues and cell lines, as well as their association with endometrial cancer prognosis. Fifty-five endometrial cancer tissues and two endometrial cancer cell lines (HEC1-α and Ishikawa) were studied. RUNX3 expression and promoter methylation were examined using reverse transcription-polymerase chain reaction (RT-PCR), methylation specific PCR (MS-PCR), and immunohistochemical staining. The demethylating agent 5-aza-2′-deoxycytidine (ADC) was used to reverse the methylation of the RUNX3 promoter. Loss of RUNX3 expression was observed in 50.9% (27/53) of endometrial cancer tissues and in the HEC1-α cell line by immunohistochemistry and RT-PCR, respectively. Methylation of the RUNX3 promoter was observed in 62.2% (33/53) of endometrial cancer tissues, 12.5% (1/8) of normal endometrial tissues, and the HEC1-α cell line by MS-PCR. Tumor grade and stage were significantly correlated with loss of RUNX3 expression. The expression of RUNX3 was restored by treatment with ADC and resulted in growth inhibition in HEC1-α cells. The present results suggested that methylation may serve a critical role in the silencing of RUNX3 and loss of RUNX3 expression may serve as a prognostic marker in endometrial cancer.
Collapse
Affiliation(s)
- Dongjun Jeong
- Soonchunhyang Medical Science Research Institute, Cheonan, South Chungcheong 31151, Republic of Korea
| | - Hyungjoo Kim
- Soonchunhyang Medical Science Research Institute, Cheonan, South Chungcheong 31151, Republic of Korea
| | - Aeli Ryu
- Department of Obstetrics and Gynecology, Soonchunhyang University Cheonan Hospital, Cheonan, South Chungcheong 31151, Republic of Korea
| | - Jaegun Sunwoo
- Department of Obstetrics and Gynecology, Soonchunhyang University Cheonan Hospital, Cheonan, South Chungcheong 31151, Republic of Korea
| | - Seung Do Choi
- Department of Obstetrics and Gynecology, Soonchunhyang University Cheonan Hospital, Cheonan, South Chungcheong 31151, Republic of Korea
| | - Gye Hyun Nam
- Department of Obstetrics and Gynecology, Soonchunhyang University Bucheon Hospital, Bucheon, Gyeonggi 14584, Republic of Korea
| | - Seob Jeon
- Department of Obstetrics and Gynecology, Soonchunhyang University Cheonan Hospital, Cheonan, South Chungcheong 31151, Republic of Korea
| |
Collapse
|
8
|
Shin EJ, Kim HJ, Son MW, Ahn TS, Lee HY, Lim DR, Bae SB, Jeon S, Kim H, Jeong D, Lee MS, Kim DS, Noh JS, Baek MJ. Epigenetic inactivation of RUNX3 in colorectal cancer. Ann Surg Treat Res 2018; 94:19-25. [PMID: 29333422 PMCID: PMC5765274 DOI: 10.4174/astr.2018.94.1.19] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/26/2017] [Accepted: 06/14/2017] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Emerging evidence indicates that runt-related transcription factor 3 (RUNX3) is an important tumor suppressor gene in several cancer types, including colorectal cancer (CRC). However, the clinical significance of RUNX3 inactivation in CRC remains unclear. The aim of this study was to examine the correlation between clinicopathologic factors and RUNX3 hypermethylation/expression in CRC. METHODS Sixty-two CRC patients who were treated at the Soonchunhyang University College of Medicine were recruited in this study. The hypermethylation of CpG islands in the RUNX3 promoter and the expression of RUNX3 mRNA were identified by methylation-specific polymerase chain reaction (PCR) and reverse transcriptase-PCR, respectively. The expression of RUNX3 was determined by immunohistochemical staining. RESULTS Of the 62 CRC tissue samples, 20 (32.3%) presented hypermethylated RUNX3 promoters. Aberrant RUNX3 hypermethylation was found to be associated with vascular (P = 0.006) and lymphatic (P = 0.002) invasion. Hypermethylation of RUNX3 was associated with poor survival outcomes (P = 0.038). However, expression of RUNX3 was not a prognostic factor (P = 0.363). CONCLUSION Hypermethylation of RUNX3 may be a predictor of a poor prognosis in CRC.
Collapse
Affiliation(s)
- Eung Jin Shin
- Department of Surgery, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Han Jo Kim
- Department of Hematology and Oncology, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Myoung Won Son
- Department of Surgery, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Tae Sung Ahn
- Department of Surgery, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Hyun Yong Lee
- Department of Surgery, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Dae Ro Lim
- Department of Surgery, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Sang Byung Bae
- Department of Hematology and Oncology, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Seob Jeon
- Department of Obstetrics and Gynecology, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Hyungjoo Kim
- Medical Science Research Institute, Soonchunhyang University, Cheonan, Korea
| | - Dongjun Jeong
- Medical Science Research Institute, Soonchunhyang University, Cheonan, Korea
| | - Moon Soo Lee
- Department of Surgery, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Dong-Sun Kim
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jeong Se Noh
- Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Moo-Jun Baek
- Department of Surgery, Soonchunhyang University College of Medicine, Cheonan, Korea
| |
Collapse
|
9
|
Voon DCC, Thiery JP. The Emerging Roles of RUNX Transcription Factors in Epithelial-Mesenchymal Transition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:471-489. [PMID: 28299674 DOI: 10.1007/978-981-10-3233-2_28] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is an evolutionary conserved morphogenetic program necessary for the shaping of the body plan during development. It is guided precisely by growth factor signaling and a dedicated network of specialised transcription factors. These are supported by other transcription factor families serving auxiliary functions during EMT, beyond their general roles as effectors of major signaling pathways. EMT transiently induces in epithelial cells mesenchymal properties, such as the loss of cell-cell adhesion and a gain in cell motility. Together, these newly acquired properties enable their migration to distant sites where they eventually give rise to adult epithelia. However, it is now recognized that EMT contributes to the pathogenesis of several human diseases, notably in tissue fibrosis and cancer metastasis. The RUNX family of transcription factors are important players in cell fate determination during development, where their spatio-temporal expression often overlaps with the occurrence of EMT. Furthermore, the dysregulation of RUNX expression and functions are increasingly linked to the aberrant induction of EMT in cancer. The present chapter reviews the current knowledge of this emerging field and the common themes of RUNX involvement during EMT, with the intention of fostering future research.
Collapse
Affiliation(s)
- Dominic Chih-Cheng Voon
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan.
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan.
| | - Jean Paul Thiery
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
- Institute of Molecular and Cell Biology, A-STAR, Singapore, 138673, Singapore
| |
Collapse
|
10
|
Rahmanian N, Tarighi P, Gharghabi M, Torshabi M, Tarfiei GA, Mohammadi Farsani T, Ostad SN, Ghahremani MH. Truncated forms of RUNX3 Unlike Full Length Protein Alter Cell Proliferation in a TGF-β Context Dependent Manner. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2017; 16:1194-1203. [PMID: 29201108 PMCID: PMC5610775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Runt related transcription factors (RUNX) are recognized as key players in suppressing or promoting tumor growth. RUNX3, a member of this family, is known as a tumor suppressor in many types of cancers, although such a paradigm was challenged by some researchers. The TGF-β pathway governs major upstream signals to activate RUNX3. RUNX3 protein consists of several regions and domains. The Runt domain is a conserved DNA binding domain and is considered as the main part of RUNX proteins. Herein, we compared the effects of Runt domains and full-Runx3 in cell viability by designing two constructs of Runx3, including N-terminal region and Runt domain. We investigated the effect of full-Runx3, N-t, and RD on growth inhibition in AGS, MCF-7, A549, and HEK293 cell lines which are different in TGF-β sensitivity, in the absence and presence of TGF-β. The full length RUNX3 did not notably inhibit growth of these cell lines while, the N-t and RD truncates showed different trends in these cell lines. Cell proliferation in the TGF-β impaired context cell lines (AGS and MCF-7) significantly decrease while in the A549 significantly increase. On the other hand, transfection of N-t and RD did not considerably affect the cell proliferation in the HEK293.Our results show that full-lenght RUNX3 did not affect the cell viability. Conversely, the N-t and RD constructs significantly changed cell proliferation. Therefore, therapeutic potentials for these truncated proteins are suggested in tumors with RUNX proteins dysfunction, even in the TGF-β impair context.
Collapse
Affiliation(s)
- Narges Rahmanian
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Gharghabi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Torshabi
- Department of Dental Biomaterial, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ghorban Ali Tarfiei
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Taiebeh Mohammadi Farsani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Naser Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hossein Ghahremani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran. ,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Corresponding author: E-mail: *
| |
Collapse
|
11
|
Lee SH, Jung YD, Choi YS, Lee YM. Targeting of RUNX3 by miR-130a and miR-495 cooperatively increases cell proliferation and tumor angiogenesis in gastric cancer cells. Oncotarget 2016; 6:33269-78. [PMID: 26375442 PMCID: PMC4741764 DOI: 10.18632/oncotarget.5037] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/25/2015] [Indexed: 12/31/2022] Open
Abstract
Mature microRNAs (miRNAs) are 21 to 23 nucleotide noncoding RNA molecules that can downregulate multiple gene expression by mRNA degradation or translational repression. miRNAs are considered to play important roles in cell proliferation, apoptosis, and differentiation during mammalian development. The Runt-related transcription factor 3 (RUNX3) expression and activity are frequently downregulated by various mechanisms in gastric cancer. We have reported that RUNX3 inactivation is crucial for early tumorigenesis. In this study, we investigated the role of miRNAs targeting RUNX3 in early tumorigenesis. miR-130a and miR-495 upregulated under hypoxic conditions that bind to the RUNX3 3′-untranslated region (3′-UTR) were identified in gastric cancer cells by using microarray analysis and bioinformatics programs. Combination of miR-130a and miR-495 inhibited RUNX3 expression at the protein level, but not at the mRNA level. miR-130a and miR-495 significantly inhibited the RUNX3–3′UTR-luciferase activity. Combination of miR-130a and miR-495 significantly decreased apoptosis determined by Annexin V-FITC/propidium iodide staining and flow cytometric analysis, and the expression of Bim in SNU484 gastric cancer cells. In addition, p21 and Bim, RUNX3 target genes, were completely downregulated by the combination of miR-130a and miR-495. Using matrigel plug assay, we found that antagomiRs specific for miR-130a and miR-495 significantly reduced angiogenesis in vivo. In conclusion, targeting miR-130a and miR-495 could be a potential therapeutics to recover RUNX3 expression under hypoxic conditions and in early tumorigenic progression.
Collapse
Affiliation(s)
- Sun Hee Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Daegu, 702-701, Republic of Korea
| | - Yuk Dong Jung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Daegu, 702-701, Republic of Korea
| | - Young Sun Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Daegu, 702-701, Republic of Korea
| | - You Mie Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Daegu, 702-701, Republic of Korea
| |
Collapse
|
12
|
Epigenetic mechanisms regulating the development of hepatocellular carcinoma and their promise for therapeutics. Hepatol Int 2016; 11:45-53. [PMID: 27271356 DOI: 10.1007/s12072-016-9743-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/17/2016] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers around the globe and third most fatal malignancy. Chronic liver disorders such as chronic hepatitis and liver cirrhosis often lead to the development of HCC. Accumulation of genetic and epigenetic alterations are involved in the development of HCC. Genetic research sparked by recent developments in next generation sequencing has identified the frequency of genetic alterations that occur in HCC and has led to the identification of genetic hotspots. Emerging evidence suggests that epigenetic aberrations are strongly associated with the initiation and development of HCC. Various important genes encoding tumor suppressors including P16, RASSF1A, DLC-1, RUNX3 and SOCS-1 are targets of epigenetic dysregulation during the development of HCC. The present review discusses the importance of epigenetic regulations including DNA methylation, histone modification and microRNA mediated regulation of gene expression during tumorigenesis and their use as disease biomarkers. Furthermore, these epigenetic alterations have been discussed in relationship with promising therapeutic perspectives for HCC and related cancers.
Collapse
|
13
|
Kataoka J, Shiraha H, Horiguchi S, Sawahara H, Uchida D, Nagahara T, Iwamuro M, Morimoto H, Takeuchi Y, Kuwaki K, Onishi H, Nakamura S, Takaki A, Nouso K, Yagi T, Yamamoto K, Okada H. Loss of Runt-related transcription factor 3 induces resistance to 5-fluorouracil and cisplatin in hepatocellular carcinoma. Oncol Rep 2016; 35:2576-82. [PMID: 26985715 PMCID: PMC4811400 DOI: 10.3892/or.2016.4681] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/18/2015] [Indexed: 12/17/2022] Open
Abstract
Runt-related transcription factor 3 (RUNX3) is known to function as a tumor suppressor in gastric cancer and other types of cancers, including hepatocellular carcinoma (HCC). However, its role has not been fully elucidated. In the present study, we aimed to evaluate the role of RUNX3 in HCC. We used the human HCC cell lines Hep3B, Huh7 and HLF; RUNX3 cDNA was introduced into Hep3B and Huh7 cells, which were negative for endogenous RUNX3 expression, and RUNX3 siRNA was transfected into HLF cells, which were positive for endogenous RUNX3. We analyzed the expression of RUNX3 and multidrug resistance-associated protein (MRP) by immunoblotting. MTT assays were used to determine the effects of RUNX3 expression on 5-fluorouracil (5-FU) and cisplatin (CDDP) sensitivity. Finally, 23 HCC specimens resected from patients with HCC at Okayama University Hospital were analyzed, and correlations among immunohistochemical expression of RUNX3 protein and MRP protein were evaluated in these specimens. Exogenous RUNX3 expression reduced the expression of MRP1, MRP2, MRP3 and MRP5 in the RUNX3-negative cells, whereas knockdown of RUNX3 in the HLF cells stimulated the expression of these MRPs. An inverse correlation between RUNX3 and MRP expression was observed in the HCC tissues. Importantly, loss of RUNX3 expression contributed to 5-FU and CDDP resistance by inducing MRP expression. These data have important implications in the study of chemotherapy resistance in HCC.
Collapse
Affiliation(s)
- Junro Kataoka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hidenori Shiraha
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shigeru Horiguchi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiroaki Sawahara
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Daisuke Uchida
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Teruya Nagahara
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masaya Iwamuro
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiroki Morimoto
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yasuto Takeuchi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kenji Kuwaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hideki Onishi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shinichiro Nakamura
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kazuhiro Nouso
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Takahito Yagi
- Department of Gastroenterological Surgery, Transplant and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kazuhide Yamamoto
- Department of Gastroenterology, Okayama Saiseikai General Hospital, Okayama 700-8511, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
14
|
HCV core protein promotes hepatocyte proliferation and chemoresistance by inhibiting NR4A1. Biochem Biophys Res Commun 2015; 466:592-8. [PMID: 26392314 DOI: 10.1016/j.bbrc.2015.09.091] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/17/2015] [Indexed: 12/12/2022]
Abstract
This study investigated the effect of HCV core protein on the proliferation of hepatocytes and hepatocellular carcinoma cells (HCC), the influence of HCV core protein on HCC apoptosis induced by the chemotherapeutic agent cisplatin, and the mechanism through which HCV core protein acts as a potential oncoprotein in HCV-related HCC by measuring the levels of NR4A1 and Runt-related transcription factor 3 (RUNX3), which are associated with tumor suppression and chemotherapy resistance. In the present study, PcDNA3.1-core and RUNX3 siRNA were transfected into LO2 and HepG2 cells using Lipofectamine 2000. LO2-core, HepG2-core, LO2-RUNX3 (low) and control cells were treated with different concentrations of cisplatin for 72 h, and cell proliferation and apoptosis were assayed using the CellTiter 96(®)Aqueous Non-Radioactive Cell Proliferation Assay Kit. Western blot and real time PCR analyses were used to detect NR4A1, RUNX3, smad7, Cyclin D1 and BAX. Confocal microscopy was used to determine the levels of NR4A1 in HepG2 and HepG2-core cells. The growth rate of HepG2-core cells was considerably greater than that of HepG2 cells. HCV core protein increased the expression of cyclin D1 and decreased the expressions of NR4A1 and RUNX3. In LO2 - RUNX3 (low), the rate of cell proliferation and the level of cisplatin resistance were the same as in the LO2 -core. These results suggest that HCV core protein decreases the sensitivity of hepatocytes to cisplatin by inhibiting the expression of NR4A1 and promoting the expression of smad7, which negatively regulates the TGF-β pathway. This effect results in down regulation of RUNX3, a target of the TGF-β pathway. Taken together, these findings indicate that in hepatocytes, HCV core protein increases drug resistance and inhibits cell apoptosis by inhibiting the expressions of NR4A1 and RUNX3.
Collapse
|
15
|
Maccani JZ, Maccani MA. Altered placental DNA methylation patterns associated with maternal smoking: current perspectives. ADVANCES IN GENOMICS AND GENETICS 2015; 2015:205-214. [PMID: 26203295 PMCID: PMC4507353 DOI: 10.2147/agg.s61518] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The developmental origins of health and disease hypothesis states that adverse early life exposures can have lasting, detrimental effects on lifelong health. Exposure to maternal cigarette smoking during pregnancy is associated with morbidity and mortality in offspring, including increased risks for miscarriage, stillbirth, low birth weight, preterm birth, asthma, obesity, altered neurobehavior, and other conditions. Maternal cigarette smoking during pregnancy interferes with placental growth and functioning, and it has been proposed that this may occur through the disruption of normal and necessary placental epigenetic patterns. Epigenome-wide association studies have identified a number of differentially methylated placental genes that are associated with maternal smoking during pregnancy, including RUNX3, PURA, GTF2H2, GCA, GPR135, and HKR1. The placental methylation status of RUNX3 and NR3C1 has also been linked to adverse infant outcomes, including preterm birth and low birth weight, respectively. Candidate gene analyses have also found maternal smoking-associated placental methylation differences in the NR3C1, CYP1A1, HTR2A, and HSD11B2 genes, as well as in the repetitive elements LINE-1 and AluYb8. The differential methylation patterns of several genes have been confirmed to also exhibit altered gene expression patterns, including CYP1A1, CYP19A1, NR3C1, and HTR2A. Placental methylation patterns associated with maternal smoking during pregnancy may be largely gene-specific and tissue-specific and, to a lesser degree, involve global changes. It is important for future research to investigate the mechanistic roles that these differentially methylated genes may play in mediating the association between maternal smoking during pregnancy and disease in later life, as well as to elucidate the potential influence of emerging tobacco product use during pregnancy, including the use of electronic cigarettes, on placental epigenetics.
Collapse
Affiliation(s)
- Jennifer Zj Maccani
- Penn State Tobacco Center of Regulatory Science, College of Medicine, Department of Public Health Sciences, Hershey, PA, USA
| | - Matthew A Maccani
- Penn State Tobacco Center of Regulatory Science, College of Medicine, Department of Public Health Sciences, Hershey, PA, USA
| |
Collapse
|
16
|
Zhang X, He H, Zhang X, Guo W, Wang Y. RUNX3 Promoter Methylation Is Associated with Hepatocellular Carcinoma Risk: A Meta-Analysis. Cancer Invest 2015; 33:121-5. [DOI: 10.3109/07357907.2014.1003934] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
EZH2 elevates the proliferation of human cholangiocarcinoma cells through the downregulation of RUNX3. Med Oncol 2014; 31:271. [PMID: 25280519 DOI: 10.1007/s12032-014-0271-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/26/2014] [Indexed: 02/05/2023]
Abstract
To investigate the impact of histone methyltransferase enhancer of zeste homolog 2 (EZH2) on the proliferation and apoptosis of human cholangiocarcinoma cells as well as its related mechanisms. Immunohistochemistry and Western blot analyses were used to examine the expression of EZH2 in 40 cases of human cholangiocarcinoma tissues and four strains of human cholangiocarcinoma cells. The influence of EZH2 on cell growth and apoptosis were assessed by knockdown experiments, and a xenograft experiment in nude mice was performed to evaluate the impact of siEZH2 on the tumorigenicity of tumor cells. The correlation of EZH2, clinic pathological features and overall survival rates was also analyzed. EZH2 was highly expressed in human cholangiocarcinoma tissues and cells. Silencing of EZH2 could significantly reduce the methylation level of RUNX3 DNA in human cholangiocarcinoma cells and improve its protein expression as well as inhibit cell proliferation, induce apoptosis and slow down the growth of tumor in nude mice. In addition, the expression of EZH2 was associated with the tumor stage, lymph node positivity and poor prognoses. Overexpression of EZH2 can promote the proliferation of cholangiocarcinoma cells and inhibit their apoptosis. It is associated with poor prognoses in patients with cholangiocarcinoma. Therefore, EZH2 could be a potential clinical therapeutic target for the treatment of cholangiocarcinoma.
Collapse
|
18
|
Anestopoulos I, Voulgaridou GP, Georgakilas AG, Franco R, Pappa A, Panayiotidis MI. Epigenetic therapy as a novel approach in hepatocellular carcinoma. Pharmacol Ther 2014; 145:103-19. [PMID: 25205159 DOI: 10.1016/j.pharmthera.2014.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/02/2014] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver malignancy and one with high fatality. Its 5-year survival rate remains low and thus, there is a need for improvement of current treatment strategies as well as development of novel targeted methodologies in order to optimize existing therapeutic protocols. To this end, only recently, it was discovered that its pathophysiology also involves epigenetic alterations in DNA methylation, histone modifications and/or non-coding microRNA patterns. Unlike genetic events, epigenetic alterations are reversible and thus potentially considered to be an alternative option in cancer treatment protocols. In this review, we describe the general characteristics and resulted major alterations of the epigenetic machinery as well as current state of progress of epigenetic therapy (via different single or combinatorial experimental approaches) in HCC.
Collapse
Affiliation(s)
- Ioannis Anestopoulos
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Alexandros G Georgakilas
- School of Applied Mathematical & Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Rodrigo Franco
- Redox Biology Center, School of Veterinary Medicine & Biomedical Sciences, Redox Biology Center, University of Nebraska-Lincoln, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | |
Collapse
|
19
|
Yang Y, Ye Z, Zou Z, Xiao G, Luo G, Yang H. Clinicopathological significance of RUNX3 gene hypermethylation in hepatocellular carcinoma. Tumour Biol 2014; 35:10333-40. [DOI: 10.1007/s13277-014-2329-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 07/07/2014] [Indexed: 12/16/2022] Open
|
20
|
Maccani JZJ, Koestler DC, Houseman EA, Marsit CJ, Kelsey KT. Placental DNA methylation alterations associated with maternal tobacco smoking at the RUNX3 gene are also associated with gestational age. Epigenomics 2013; 5:619-30. [PMID: 24283877 PMCID: PMC3982305 DOI: 10.2217/epi.13.63] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIMS The developmental origins of health and disease hypothesis states that later-life disease may be influenced by the quality of the in utero environment. Environmental toxicants can have detrimental effects on fetal development, potentially through effects on placental development and function. Maternal smoking during pregnancy is associated with low birth weight, preterm birth and other complications, and exposure to cigarette smoke in utero has been linked to gross pathologic and molecular changes to the placenta, including differential DNA methylation in placental tissue. The aim of this study was to investigate the relationship between maternal smoking during pregnancy, methylation changes in the placenta and gestational age. MATERIALS & METHODS We used Illumina(®)'s (CA, USA) Human Methylation27 BeadChip technology platform to investigate the methylation status of 21,551 autosomal, non-SNP-associated CpG loci in DNA extracted from 206 human placentas and examined loci whose variation in methylation was associated with maternal smoking during pregnancy. RESULTS We found that methylation patterns of a number of loci within the RUNX3 gene were significantly associated with smoking during pregnancy, and one of these loci was associated with decreased gestational age (p = 0.04). CONCLUSION Our findings, demonstrating maternal smoking-induced changes in DNA methylation at specific loci, suggest a mechanism by which in utero tobacco smoke exposure could exert its detrimental effects upon the health of the fetus.
Collapse
Affiliation(s)
- Jennifer ZJ Maccani
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, USA
| | - Devin C Koestler
- Section of Biostatistics & Epidemiology, Department of Community & Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | - Carmen J Marsit
- Section of Biostatistics & Epidemiology, Department of Community & Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Pharmacology & Toxicology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Karl T Kelsey
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, USA
- Department of Epidemiology, Brown University, Providence, RI, USA
| |
Collapse
|
21
|
Jin Z, Han YX, Han XR. Loss of RUNX3 expression may contribute to poor prognosis in patients with chondrosarcoma. J Mol Histol 2013; 44:645-52. [DOI: 10.1007/s10735-013-9511-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/06/2013] [Indexed: 12/20/2022]
|
22
|
Tahara T, Arisawa T. Potential usefulness of DNA methylation as a risk marker for digestive cancer associated with inflammation. Expert Rev Mol Diagn 2012; 12:489-97. [PMID: 22702365 DOI: 10.1586/erm.12.38] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA methylation has been deeply involved in the development and progression of digestive cancer, while aberrant DNA methylation has also often been observed in aged and inflammatory digestive tissues. Helicobacter pylori-related chronic gastritis, ulcerative colitis, and hepatitis B virus- and hepatitis C virus-related chronic hepatitis, are significant risk factors for developing cancer. A number of studies have revealed the specific methylation patterns for specific tissue types. DNA methylation status is stably transmitted to daughter cells. Also, unlike genetic mutations, it is possible to detect very tiny amounts of methylated DNA among tissues. Therefore, the use of aberrant methylation as a marker could be applicable to risk estimation of cancer development. We discuss the potential usefulness of DNA methylation as a risk marker for inflammation-associated digestive cancer, especially with attempts on gastric cancer, ulcerative colitis-associated cancer, and hepatitis B virus- and hepatitis C virus-related hepatocellular carcinoma.
Collapse
Affiliation(s)
- Tomomitsu Tahara
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, 1-98 Dengakugakubo Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| | | |
Collapse
|
23
|
Ichikawa M, Arai Y, Haruta M, Furukawa S, Ariga T, Kajii T, Kaneko Y. Meiosis error and subsequent genetic and epigenetic alterations invoke the malignant transformation of germ cell tumor. Genes Chromosomes Cancer 2012; 52:274-86. [DOI: 10.1002/gcc.22027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/07/2012] [Indexed: 11/07/2022] Open
|
24
|
Ko HJ, Kim BY, Jung CH, Chun SW, Mok JO, Kim YJ, Park HK, Kim CH, Kim SJ, Byun DW, Suh KI, Yoo MH, Kang SG. DNA methylation of RUNX3 in papillary thyroid cancer. Korean J Intern Med 2012; 27:407-10. [PMID: 23269881 PMCID: PMC3529239 DOI: 10.3904/kjim.2012.27.4.407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/03/2011] [Accepted: 11/21/2011] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND/AIMS The relationship between Runt-related transcription factor 3 (RUNX3) gene inactivation and various solid tumors has been reported; however, little information is available about RUNX3 in thyroid cancers. METHODS We evaluated the DNA methylation of RUNX3 in 13 papillary thyroid cancer tissues and four thyroid cancer cell lines. Additionally, using reverse transcriptase-polymerase chain reaction, we analyzed RUNX3 gene expression in several thyroid cancer cell lines after treating with the demethylating agent 5-aza-2'-deoxycytidine (DAC). RESULTS RUNX3 was hypermethylated in many thyroid cancer cell lines and in 10 of the 12 papillary thyroid cancer tissues. Treatment with DAC increased the expression of RUNX3 in some thyroid cancer cell lines. CONCLUSIONS We suggest that RUNX3 is associated with thyroid carcinogenesis, and RUNX3 methylation is a potentially useful diagnostic marker for papillary thyroid cancer.
Collapse
Affiliation(s)
- Hee Ja Ko
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Bo Yeon Kim
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Chan Hee Jung
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Sung Wan Chun
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Ji Oh Mok
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Yeo Joo Kim
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Hyeong Kyu Park
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Chul Hee Kim
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Sang Jin Kim
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Dong Won Byun
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Kyo Il Suh
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Myung Hi Yoo
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Sung Gu Kang
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| |
Collapse
|
25
|
Tanaka S, Shiraha H, Nakanishi Y, Nishina SI, Matsubara M, Horiguchi S, Takaoka N, Iwamuro M, Kataoka J, Kuwaki K, Hagihara H, Toshimori J, Ohnishi H, Takaki A, Nakamura S, Nouso K, Yagi T, Yamamoto K. Runt-related transcription factor 3 reverses epithelial-mesenchymal transition in hepatocellular carcinoma. Int J Cancer 2012; 131:2537-46. [PMID: 22488108 DOI: 10.1002/ijc.27575] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 03/19/2012] [Indexed: 01/17/2023]
Abstract
Loss or decreased expression of runt-related transcription factor 3 (RUNX3), a tumor suppressor gene involved in gastric and other cancers, has been frequently observed in hepatocellular carcinoma (HCC). The objective of this study was to identify the regulatory mechanism of the epithelial-mesenchymal transition (EMT) by RUNX3 in HCC. Human HCC cell lines, Hep3B, Huh7, HLF and SK-Hep1, were divided into low- and high-EMT lines, based on their expression of TWIST1 and SNAI2, and were used in this in vitro study. Ectopic RUNX3 expression had an anti-EMT effect in low-EMT HCC cell lines characterized by increased E-cadherin expression and decreased N-cadherin and vimentin expression. RUNX3 expression has previously been reported to reduce jagged-1 (JAG1) expression; therefore, JAG1 ligand peptide was used to reinduce EMT in RUNX3-expressing low-EMT HCC cells. Immunohistochemical analyses were performed for RUNX3, E-cadherin, N-cadherin and TWIST1 in 33 human HCC tissues, also divided into low- and high-EMT HCC, based on TWIST1 expression. E-cadherin expression was correlated positively and N-cadherin expression was correlated negatively with RUNX3 expression in low-EMT HCC tissues. Correlations between EMT markers and RUNX3 mRNA expression were analyzed using Oncomine datasets. Similarly, mRNA expression of E-cadherin was also significantly correlated with that of RUNX3 in low-EMT HCC, while mRNA expression of JAG1 was negatively correlated with that of RUNX3. These results suggest a novel mechanism by which loss or decreased expression of RUNX3 induces EMT via induction of JAG1 expression in low-EMT HCC.
Collapse
Affiliation(s)
- Shigetomi Tanaka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mei PJ, Bai J, Liu H, Li C, Wu YP, Yu ZQ, Zheng JN. RUNX3 expression is lost in glioma and its restoration causes drastic suppression of tumor invasion and migration. J Cancer Res Clin Oncol 2011; 137:1823-30. [PMID: 21922326 DOI: 10.1007/s00432-011-1063-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 09/02/2011] [Indexed: 11/29/2022]
Abstract
PURPOSE The aim of this study is to investigate whether the expression of RUNX3 is related to the development of glioma, and the role of RUNX3 in glioma cells growth, invasion and migration. METHODS We analyzed the protein expression of RUNX3 by immunohistochemistry in 188 glioma tissues, 8 normal brain tissues and 8 tumor adjacent normal brain tissues using tissue microarray technique. We studied whether RUNX3 restoration can suppress glioma cells growth, invasion and migration by performing MTT cell proliferation assay, matrigel cell invasion assay, wound-healing assay and migration assay. We also detected MMP-2 protein expression and enzyme activity by western blot analysis and gelatin zymography. RESULTS We found that RUNX3 expression was decreased in benign tumor and malignant tumor compared with tumor adjacent normal brain tissue (P < 0.01 and P < 0.05, respectively). We did not find any correlation between RUNX3 expression and clinicopathological parameters. In addition, we demonstrated that re-expression of RUNX3 in glioma cells resulted in significantly inhibited cell invasion and migration abilities. This reduced cell invasion and migration abilities were due to MMP-2 protein expression and enzyme activity suppression after RUNX3 restoration. CONCLUSIONS Our data indicated that RUNX3 expression is significantly decreased in human glioma, and targeting of the RUNX3 pathway may constitute a potential treatment modality for glioma.
Collapse
Affiliation(s)
- Peng-Jin Mei
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Shiraha H, Nishina SI, Yamamoto K. Loss of runt-related transcription factor 3 causes development and progression of hepatocellular carcinoma. J Cell Biochem 2011; 112:745-9. [PMID: 21328447 DOI: 10.1002/jcb.22973] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Runt-related transcription factor 3 (RUNX3) is reported as a tumor suppressor gene for gastric cancer, and may be important in the development of hepatocellular carcinoma (HCC). RUNX3 expression is frequently lost or decreased by hemizygous deletion or hypermethylation of its promoter lesion in HCC. The significance of decreased expression of RUNX3 in HCC has not been fully elucidated, but is likely related to dysfunction of cell cycle regulation, decrement of apoptosis, enhancement of angiogenesis, and development of epithelial-mesenchymal transition. RUNX3 is a promising candidate as a tumor suppressor gene for HCC.
Collapse
Affiliation(s)
- Hidenori Shiraha
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | | | | |
Collapse
|
28
|
Kudo Y, Tsunematsu T, Takata T. Oncogenic role of RUNX3 in head and neck cancer. J Cell Biochem 2011; 112:387-93. [PMID: 21268058 DOI: 10.1002/jcb.22967] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cumulative evidences show that Runt-related transcription factor 3 (RUNX3) has a tumor suppressive role in various cancers. In particular, RUNX3 appears to be an important component of the transforming growth factor-β (TGF-β)-induced tumor suppression pathway. Contrary to reports on this tumor suppressive role of RUNX3, RUNX3 can also function as an oncogene when overexpressed. Recently, we found that RUNX3 overexpression was frequently observed and was well correlated with malignant behaviors in head and neck cancer, which is one of the most common types of human cancer. Moreover, it has been revealed that RUNX3 overexpression promoted cell growth and inhibited apoptosis in head and neck cancer cells. This review introduces the oncogenic role of RUNX3 in certain types of cancer including head and neck cancer.
Collapse
Affiliation(s)
- Yasusei Kudo
- Division of Frontier Medical Science, Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan.
| | | | | |
Collapse
|
29
|
Shio S, Kodama Y, Ida H, Shiokawa M, Kitamura K, Hatano E, Uemoto S, Chiba T. Loss of RUNX3 expression by histone deacetylation is associated with biliary tract carcinogenesis. Cancer Sci 2011; 102:776-83. [PMID: 21205092 PMCID: PMC11159032 DOI: 10.1111/j.1349-7006.2011.01848.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/21/2010] [Accepted: 12/21/2010] [Indexed: 11/30/2022] Open
Abstract
RUNX3 is a candidate tumor suppressor gene localized in 1p36, a region frequently inactivated through hypermethylation, histone modulation, and other processes in various human tumors. In this study, to elucidate a causal link between RUNX3 expression and biliary tract cancer, we investigated 17 human biliary cancer specimens. In addition, to examine roles of RUNX3 in biliary tract cancer, we restored silenced RUNX3 in the human biliary cancer cell line Mz-ChA-2 using a histone deacetylase inhibitor. Thirteen of 17 human cancer specimens exhibited suppressed RUNX3 expression compared with normal biliary ducts. Moreover, the decreased RUNX3 expression was related to a lower accumulation of acetylated histone H3 associated with RUNX3. In in vitro experiments, vorinostat, a member of a new class of highly potent histone deacetylase inhibitors, restored RUNX3 expression in Mz-ChA-2 cells. Furthermore, vorinostat-induced RUNX3 significantly enhanced p21 expression and growth inhibition of Mz-ChA-2 cells through restoration of TGF-β signaling. These data suggest the significance of histone deacetylation-associated suppression of RUNX3 expression in biliary tract carcinogenesis. Furthermore, vorinostat might hold promise for treating biliary tract cancer through enhancement of TGF-β signaling by restoration of RUNX3.
Collapse
Affiliation(s)
- Seiji Shio
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Calvisi DF. Of mice and men: the nonrandom genomic instability in hepatocarcinogenesis. Hepatology 2011; 53:723-5. [PMID: 21374655 DOI: 10.1002/hep.24205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
31
|
Nakanishi Y, Shiraha H, Nishina SI, Tanaka S, Matsubara M, Horiguchi S, Iwamuro M, Takaoka N, Uemura M, Kuwaki K, Hagihara H, Toshimori J, Ohnishi H, Takaki A, Nakamura S, Kobayashi Y, Nouso K, Yagi T, Yamamoto K. Loss of runt-related transcription factor 3 expression leads hepatocellular carcinoma cells to escape apoptosis. BMC Cancer 2011; 11:3. [PMID: 21205319 PMCID: PMC3022884 DOI: 10.1186/1471-2407-11-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 01/04/2011] [Indexed: 01/27/2023] Open
Abstract
Background Runt-related transcription factor 3 (RUNX3) is known as a tumor suppressor gene for gastric cancer and other cancers, this gene may be involved in the development of hepatocellular carcinoma (HCC). Methods RUNX3 expression was analyzed by immunoblot and immunohistochemistry in HCC cells and tissues, respectively. Hep3B cells, lacking endogenous RUNX3, were introduced with RUNX3 constructs. Cell proliferation was measured using the MTT assay and apoptosis was evaluated using DAPI staining. Apoptosis signaling was assessed by immunoblot analysis. Results RUNX3 protein expression was frequently inactivated in the HCC cell lines (91%) and tissues (90%). RUNX3 expression inhibited 90 ± 8% of cell growth at 72 h in serum starved Hep3B cells. Forty-eight hour serum starvation-induced apoptosis and the percentage of apoptotic cells reached 31 ± 4% and 4 ± 1% in RUNX3-expressing Hep3B and control cells, respectively. Apoptotic activity was increased by Bim expression and caspase-3 and caspase-9 activation. Conclusion RUNX3 expression enhanced serum starvation-induced apoptosis in HCC cell lines. RUNX3 is deleted or weakly expressed in HCC, which leads to tumorigenesis by escaping apoptosis.
Collapse
Affiliation(s)
- Yutaka Nakanishi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lee KS, Lee YS, Lee JM, Ito K, Cinghu S, Kim JH, Jang JW, Li YH, Goh YM, Chi XZ, Wee H, Lee HW, Hosoya A, Chung JH, Jang JJ, Kundu JK, Surh YJ, Kim WJ, Ito Y, Jung HS, Bae SC. Runx3 is required for the differentiation of lung epithelial cells and suppression of lung cancer. Oncogene 2010; 29:3349-61. [PMID: 20228843 DOI: 10.1038/onc.2010.79] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human lung adenocarcinoma, the most prevalent form of lung cancer, is characterized by many molecular abnormalities. K-ras mutations are associated with the initiation of lung adenocarcinomas, but K-ras-independent mechanisms may also initiate lung tumors. Here, we find that the runt-related transcription factor Runx3 is essential for normal murine lung development and is a tumor suppressor that prevents lung adenocarcinoma. Runx3-/- mice, which die soon after birth, exhibit alveolar hyperplasia. Importantly, Runx3-/- bronchioli exhibit impaired differentiation, as evidenced by the accumulation of epithelial cells containing specific markers for both alveolar (that is SP-B) and bronchiolar (that is CC10) lineages. Runx3-/- epithelial cells also express Bmi1, which supports self-renewal of stem cells. Lung adenomas spontaneously develop in aging Runx3+/- mice ( approximately 18 months after birth) and invariably exhibit reduced levels of Runx3. As K-ras mutations are very rare in these adenomas, Runx3+/- mice provide an animal model for lung tumorigenesis that recapitulates the preneoplastic stage of human lung adenocarcinoma development, which is independent of K-Ras mutation. We conclude that Runx3 is essential for lung epithelial cell differentiation, and that downregulation of Runx3 is causally linked to the preneoplastic stage of lung adenocarcinoma.
Collapse
Affiliation(s)
- K-S Lee
- Department of Biochemistry, Chungbuk National University, Cheongju, South Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lai KW, Koh KX, Loh M, Tada K, Subramaniam MM, Lim XY, Vaithilingam A, Salto-Tellez M, Iacopetta B, Ito Y, Soong R. MicroRNA-130b regulates the tumour suppressor RUNX3 in gastric cancer. Eur J Cancer 2010; 46:1456-63. [PMID: 20176475 DOI: 10.1016/j.ejca.2010.01.036] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/20/2010] [Accepted: 01/26/2010] [Indexed: 02/07/2023]
Abstract
AIM Accumulating evidence indicates that RUNX3 is an important tumour suppressor that is inactivated in many cancer types. This study aimed to assess the role of microRNA (miRNA) in the regulation of RUNX3. METHODS Four bioinformatic algorithms were used to predict miRNA binding to RUNX3. The correlation between candidate miRNAs and RUNX3 expression in cell lines was determined by real-time reverse transcriptase quantitative PCR (RT-qPCR) and Western blot. Candidate miRNAs were tested for functional effects through transfection of miRNA precursors and inhibitors, and monitoring cell viability, apoptosis and Bim expression. miRNA and RUNX3 expression, RUNX3 methylation and RUNX3 protein levels were assessed in gastric tissue by RT-qPCR, Methylight analysis and immunohistochemistry, respectively. RESULTS Bioinformatics, gene and protein expression analysis in eight gastric cell lines identified miR-130b as the top candidate miRNA for RUNX3 binding. Overexpression of miR-130b increased cell viability, reduced cell death and decreased expression of Bim in TGF-beta mediated apoptosis, subsequent to the downregulation of RUNX3 protein expression. In 15 gastric tumours, miR-130b expression was significantly higher compared to matched normal tissue, and was inversely associated with RUNX3 hypermethylation. CONCLUSION Attenuation of RUNX3 protein levels by miRNA may reduce the growth suppressive potential of RUNX3 and contribute to tumourigenesis.
Collapse
Affiliation(s)
- Kin Wai Lai
- Cancer Science Institute of Singapore, Centre for Life Sciences #02-15, 28 Medical Drive, National University of Singapore, Singapore 117456, Singapore
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Goh YM, Cinghu S, Hong ETH, Lee YS, Kim JH, Jang JW, Li YH, Chi XZ, Lee KS, Wee H, Ito Y, Oh BC, Bae SC. Src kinase phosphorylates RUNX3 at tyrosine residues and localizes the protein in the cytoplasm. J Biol Chem 2010; 285:10122-10129. [PMID: 20100835 PMCID: PMC2843174 DOI: 10.1074/jbc.m109.071381] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RUNX3 is a transcription factor that functions as a tumor suppressor. In some cancers, RUNX3 expression is down-regulated, usually due to promoter hypermethylation. Recently, it was found that RUNX3 can also be inactivated by the mislocalization of the protein in the cytoplasm. The molecular mechanisms controlling this mislocalization are poorly understood. In this study, we found that the overexpression of Src results in the tyrosine phosphorylation and cytoplasmic localization of RUNX3. We also found that the tyrosine residues of endogenous RUNX3 are phosphorylated and that the protein is localized in the cytoplasm in Src-activated cancer cell lines. We further showed that the knockdown of Src by small interfering RNA, or the inhibition of Src kinase activity by a chemical inhibitor, causes the re-localization of RUNX3 to the nucleus. Collectively, our results demonstrate that the tyrosine phosphorylation of RUNX3 by activated Src is associated with the cytoplasmic localization of RUNX3 in gastric and breast cancers.
Collapse
Affiliation(s)
- Yun-Mi Goh
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 361-763, South Korea
| | - Senthilkumar Cinghu
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 361-763, South Korea
| | - Eileen Tan Hwee Hong
- Cancer Science Institute Singapore, National University of Singapore and Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - You-Soub Lee
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 361-763, South Korea
| | - Jang-Hyun Kim
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 361-763, South Korea
| | - Ju-Won Jang
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 361-763, South Korea
| | - Ying-Hui Li
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 361-763, South Korea
| | - Xin-Zi Chi
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 361-763, South Korea
| | - Kyeong-Sook Lee
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 361-763, South Korea
| | - Heejun Wee
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 361-763, South Korea
| | - Yoshiaki Ito
- Cancer Science Institute Singapore, National University of Singapore and Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Byung-Chul Oh
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, 7-45 Songdo-dong, Yeonsu-ku, Inchon 406-840, South Korea.
| | - Suk-Chul Bae
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 361-763, South Korea.
| |
Collapse
|
35
|
Molecular pathology of RUNX3 in human carcinogenesis. Biochim Biophys Acta Rev Cancer 2009; 1796:315-31. [PMID: 19682550 DOI: 10.1016/j.bbcan.2009.07.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 07/31/2009] [Indexed: 12/12/2022]
Abstract
A major goal of molecular biology is to elucidate the mechanisms underlying cancer development and progression in order to achieve early detection, better diagnosis and staging and novel preventive and therapeutic strategies. We feel that an understanding of Runt-related transcription factor 3 (RUNX3)-regulated biological pathways will directly impact our knowledge of these areas of human carcinogenesis. The RUNX3 transcription factor is a downstream effector of the transforming growth factor-beta (TGF-beta) signaling pathway, and has a critical role in the regulation of cell proliferation and cell death by apoptosis, and in angiogenesis, cell adhesion and invasion. We previously identified RUNX3 as a major gastric tumor suppressor by establishing a causal relationship between loss of function and gastric carcinogenesis. More recently, we showed that RUNX3 functions as a bona fide initiator of colonic carcinogenesis by linking the Wnt oncogenic and TGF-beta tumor suppressive pathways. Apart from gastric and colorectal cancers, a multitude of epithelial cancers exhibit inactivation of RUNX3, thereby making it a putative tumor suppressor in human neoplasia. This review highlights our current understanding of the molecular mechanisms of RUNX3 inactivation in the context of cancer development and progression.
Collapse
|
36
|
Frequent inactivation of RUNX3 by promoter hypermethylation and protein mislocalization in oral squamous cell carcinomas. J Cancer Res Clin Oncol 2008; 135:739-47. [PMID: 19015875 DOI: 10.1007/s00432-008-0508-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Accepted: 10/20/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE RUNX3 is a functionally important component in transforming growth factor-beta (TGF-beta) mediated signaling pathway. Epigenetic silencing expression of RUNX3, as well as aberrant cytoplasmic retention of RUNX3 protein are causally involved in gastric carcinogenesis. Here, we examined the expression of RUNX3 gene and protein in oral squamous cell carcinomas (OSCCs) and analyzed the methylation status of RUNX3 promoter region. METHODS About 10 normal oral mucosa and 30 OSCCs were collected to examine RUNX3 expression by RT-PCR analysis and immunohistochemistry assay using anti-RUNX3 monoclonal antibody R3-6E9. Methylation-specific PCR was carried out on the same specimens to analyze the methylation status of RUNX3 promoter. In addition, the stored paraffin-embedded specimens, including 40 oral leucoplakia (OLK) and 120 OSCCs, were examined by immunohistochemistry assay. RESULTS RUNX3 gene and protein were underexpressed in OSCCs due to promoter hypermethylation. Protein mislocalization occurred frequently. Both downregulation of RUNX3 protein expression (P = 0.001) and protein mislocalization (P = 0.001) were correlated with the differentiation grades in OSCCs. CONCLUSIONS RUNX3 plays an important role in oral carcinogenesis. It may be a useful diagnostic marker and a potential therapeutic target for OSCC.
Collapse
|
37
|
Frequent inactivation of RUNX3 in endometrial carcinoma. Gynecol Oncol 2008; 110:439-44. [DOI: 10.1016/j.ygyno.2008.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 05/04/2008] [Accepted: 05/06/2008] [Indexed: 11/23/2022]
|
38
|
Kim EJ, Kim YJ, Jeong P, Ha YS, Bae SC, Kim WJ. Methylation of the RUNX3 promoter as a potential prognostic marker for bladder tumor. J Urol 2008; 180:1141-5. [PMID: 18639281 DOI: 10.1016/j.juro.2008.05.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Indexed: 12/21/2022]
Abstract
PURPOSE DNA methylation is a key regulator of gene transcription and genomic stability, and alterations in DNA methylation patterns are frequently detected in human tumors. Previously we reported that inactivation of RUNX3 by primarily epigenetic alterations in DNA methylation is closely associated with bladder tumor development, recurrence and progression. In the current series we evaluated the association between RUNX3 inactivation and bladder tumors after a long-term followup study. MATERIALS AND METHODS We used previously published data on the methylation patterns of RUNX3 in bladder tumor samples as well as 25 new data sets obtained by methylation specific polymerase chain reaction and direct DNA sequencing. Of the 149 patients examined 118 were followed periodically and included in the final analysis. Median followup was 49.8 months (range 1 to 146). RESULTS RUNX3 promoter methylation was observed in 84 of the 118 tumor samples (71.2%) examined. RUNX3 methylation patterns correlated significantly with the development of invasive tumor, tumor progression, and overall and cancer specific survival (each p <0.05). Kaplan-Meyer curves showed identical results (p <0.05). Multivariate Cox regression models revealed that RUNX3 methylation status was a strong predictor of tumor progression and cancer specific survival. CONCLUSIONS Results strongly suggest that inactivation of RUNX3 by the methylation of its promoter region is a significant risk factor for invasive bladder tumors, tumor progression and cancer specific survival. RUNX3 promoter methylation status could be a promising marker for assessing the prognosis of human bladder tumors.
Collapse
Affiliation(s)
- Eun-Jung Kim
- Department of Urology, College of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju, South Korea
| | | | | | | | | | | |
Collapse
|
39
|
Fujii S, Ito K, Ito Y, Ochiai A. Enhancer of zeste homologue 2 (EZH2) down-regulates RUNX3 by increasing histone H3 methylation. J Biol Chem 2008; 283:17324-32. [PMID: 18430739 PMCID: PMC2427338 DOI: 10.1074/jbc.m800224200] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Overexpression of enhancer of zeste homologue 2 (EZH2) occurs in various malignancies and is associated with a poor prognosis, especially because of increased cancer cell proliferation. In this study we found an inverse correlation between EZH2 and RUNX3 gene expression in five cancer cell lines, i.e. gastric, breast, prostate, colon, and pancreatic cancer cell lines. Chromatin immunoprecipitation assay showed an association between EZH2 bound to the RUNX3 gene promoter, and trimethylated histone H3 at lysine 27, and HDAC1 (histone deacetylase 1) bound to the RUNX3 gene promoter in cancer cells. RNA interference-mediated knockdown of EZH2 resulted in a decrease in H3K27 trimethylation and unbound HDAC1 and an increase in expression of the RUNX3 gene. Restoration of RUNX3 expression was not associated with any change in DNA methylation status in the RUNX3 promoter region. RUNX3 was repressed by histone deacetylation and hypermethylation of a CpG island in the promoter region and restored by trichostatin A or/and 5-aza-2'-deoxycytidine. Immunofluorescence staining confirmed restoration of expression of the RUNX3 protein after knockdown of EZH2 and its restoration resulted in decreased cell proliferation. In vivo, an inverse relationship between expression of the EZH2 and RUNX3 proteins was observed at the individual cell level in gastric cancer patients in the absence of DNA methylation in the RUNX3 promoter region. The results showed that RUNX3 is a target for repression by EZH2 and indicated an underlying mechanism of the functional role of EZH2 overexpression on cancer cell proliferation.
Collapse
Affiliation(s)
- Satoshi Fujii
- Pathology Division, Research Center for Innovative Oncology, National Cancer Center at Kashiwa, 6-5-1, Kashiwanoha, Kashiwa, Chiba 277-857 7 Japan
| | | | | | | |
Collapse
|
40
|
Park DY, Sakamoto H, Kirley SD, Ogino S, Kawasaki T, Kwon E, Mino-Kenudson M, Lauwers GY, Chung DC, Rueda BR, Zukerberg LR. The Cables gene on chromosome 18q is silenced by promoter hypermethylation and allelic loss in human colorectal cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 171:1509-19. [PMID: 17982127 DOI: 10.2353/ajpath.2007.070331] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cables is a cyclin-dependent kinase-binding nuclear protein that maps to chromosome 18q11-12. Here, we assessed Cables expression in 160 colorectal cancers (CRCs), its role in colon cancer cell growth, and the potential mechanisms of Cables inactivation. Expression levels, promoter methylation, and mutational status of Cables were investigated in colon cancer cell lines and primary colon tumors. Chromosome 18q loss of heterozygosity (LOH) was evaluated with multiple polymorphic markers. Cables inhibited cellular proliferation and colony formation in colon cancer cell lines. Cables expression was reduced in 65% of primary CRCs. No mutations were detected in 10 exons of Cables in 20 primary colon tumors. Cables promoter was methylated in cell lines with decreased Cables expression and vice versa. 5-Aza-2'-deoxycytidine resulted in increased Cables expression in methylated cell lines. There was a significant correlation between promoter methylation and Cables gene expression in primary colon tumors. Sixty-five percent of primary colon tumors demonstrated chromosome 18q LOH. LOH involving the Cables region was observed in 35% of cases, including those in which more distal portions of chromosome 18q were retained, and Cables expression was decreased in all such cases. Loss of Cables expression in 65% of CRCs suggests that it is a common event in colonic carcinogenesis, with promoter methylation and LOH appearing to be important mechanisms of Cables gene inactivation.
Collapse
Affiliation(s)
- Do Youn Park
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Nagahama Y, Ishimaru M, Osaki M, Inoue T, Maeda A, Nakada C, Moriyama M, Sato K, Oshimura M, Ito H. Apoptotic pathway induced by transduction of RUNX3 in the human gastric carcinoma cell line MKN-1. Cancer Sci 2008; 99:23-30. [PMID: 17956589 PMCID: PMC11158759 DOI: 10.1111/j.1349-7006.2007.00650.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 09/05/2007] [Accepted: 09/10/2007] [Indexed: 11/28/2022] Open
Abstract
The human runt-related transcription factor 3 gene (RUNX3) is considered to be a candidate tumor suppressor gene in gastric carcinoma. However, the role of RUNX3 in the regulation of cell proliferation remains unclear. In the present study, we constructed an adenoviral vector encoding human RUNX3 cDNA under the control of a Tet-responsive promoter (Ad-Tet-FLAG-RUNX3), which regulates the expression of RUNX3 in the presence or absence of doxycycline. A recombinant adenoviral expression vector encoding LacZ (Ad-Tet-LacZ) was used as a negative control. The effect of the transduction of RUNX3 on cell growth was examined using the Tet-On system in a human gastric carcinoma cell line, MKN-1. Exogenous RUNX3 expression was induced successfully by Ad-Tet-FLAG-RUNX3, but not Ad-Tet-LacZ, in the presence of doxycycline in the MKN-1 cells. At 72 h after infection, the proliferative activity in RUNX3-expressing cells was 55% or less of that of the control cells. Flow cytometry revealed that the sub-G(1) peak was increased in cells expressing RUNX3 (34.11%), indicating that the inhibition of cell growth was due to apoptosis, which was confirmed based on Hoechst 33258 staining, the release of cytochrome c from mitochondria into the cytosol, and detection of cleaved caspase-3 by western blotting in MKN-1 cells. Comprehensive analysis using a cDNA microarray showed that RUNX3 upregulated 17 apoptosis-related genes (including FADD, TRAF6, caspase-2, ING1, ING4, Calpain 10, and DNase1) and downregulated 135 apoptosis-related genes (including FLIP, PEA15, TXN2, HSPD1, IKK, and TIAL1) in MKN-1 cells. Pathway analyses to generate functional networks of the genes suggested that promotion of the formation of the death-inducing signaling complex and activation of the mitochondria-mediated pathway were associated with RUNX3-induced apoptosis. In conclusion, our findings suggest that exogenous RUNX3 expression suppressed cell proliferation by inducing apoptosis via the death-receptor mitochondria-mediated pathway in MKN-1 cells.
Collapse
Affiliation(s)
- Yumi Nagahama
- Division of Organ Pathology, Department of Microbiology and Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Jiang Y, Tong D, Lou G, Zhang Y, Geng J. Expression of RUNX3 Gene, Methylation Status and Clinicopathological Significance in Breast Cancer and Breast Cancer Cell Lines. Pathobiology 2008; 75:244-51. [DOI: 10.1159/000132385] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 01/30/2008] [Indexed: 11/19/2022] Open
|
43
|
Hwang KT, Han W, Bae JY, Hwang SE, Shin HJ, Lee JE, Kim SW, Min HJ, Noh DY. Downregulation of the RUNX3 gene by promoter hypermethylation and hemizygous deletion in breast cancer. J Korean Med Sci 2007; 22 Suppl:S24-31. [PMID: 17923751 PMCID: PMC2694388 DOI: 10.3346/jkms.2007.22.s.s24] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The RUNX3 gene is regarded as a tumor suppressor gene in many human solid tumors, and its inactivation is believed to be related with solid tumor carcinogenesis. As little information is available about the role of the RUNX3 gene in breast cancer, we investigated the relationship between the RUNX3 gene and breast cancer. We performed reverse transcriptase-polymerases chain reaction (RT-PCR), methylation specific PCR, and bicolor fluorescent in situ hybridization analysis in an effort to reveal related mechanisms. Forty breast tissue samples and 13 cell lines were used in this study. Eighty-five percent of breast cancer tissues showed downregulated RUNX3 gene expression, whereas it was downregulated in only 25% of normal breast tissues by RT-PCR assay. Sixty-seven percent of breast cancer cell lines showed downregulated RUNX3 expression, but the RUNX3 gene was not expressed in two normal breast cell lines. Hypermethylation was observed in 53% of breast cancer tissues and 57% of breast cancer cell lines. Hemizygous deletion was observed in 43% of breast cancer cell lines. Hypermethylation and/or hemizygous deletion was observed in 5 of 7 breast cancer cell lines, and the four of these five examined showed no RUNX3 gene expression. We suggest that various mechanisms, including methylation and hemizygous deletion, could contribute to RUNX3 gene inactivation.
Collapse
Affiliation(s)
- Ki-Tae Hwang
- Department of Surgery, Seoul National University Boramae Hospital, Seoul, Korea
| | - Wonshik Han
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Ji-Yeon Bae
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Eun Hwang
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Hyuk Jai Shin
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Eon Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Sung-Won Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Jung Min
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Dong-Young Noh
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
44
|
Pineau P, Ezzikouri S, Marchio A, Benazzouz M, Cordina E, Afifi R, Elkihal L, Khalfallah MT, Mestiri H, Tebbal S, Berkane S, Debzi N, Triki H, Dejean A, Iguer F, Bahri O, Essaid El Feydi AEE, Benjelloun S. Genomic stability prevails in North-African hepatocellular carcinomas. Dig Liver Dis 2007; 39:671-7. [PMID: 17531558 DOI: 10.1016/j.dld.2007.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 03/22/2007] [Accepted: 03/31/2007] [Indexed: 12/11/2022]
Abstract
The molecular pathogenesis of hepatocellular carcinoma, a tumour characterized by a vast clinical heterogeneity, remains unexplored outside Europe and Eastern Asia. We analysed by direct sequencing or loss of heterozygosity assay, the common targets of genomic alterations in 42 hepatocellular carcinomas collected in western North-Africa. Overall, genomic instability was uncommon, allelic losses affecting mostly chromosomes 1p, 4q, 8p and 17p (24-28% of cases). CTNNB1 and TP53 were infrequently mutated (9 and 17% of cases, respectively). Surprisingly, TP53 mutation R249S, diagnostic of aflatoxin B1 exposure, usually frequent in Africa, was exceptional (one case), indicating that in western North-Africa, hepatocellular carcinoma genetics differs markedly from that of the remainder of the continent.
Collapse
Affiliation(s)
- P Pineau
- Nuclear Organization and Oncogenesis Unit, INSERM U579, Pasteur Institute, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hasegawa K, Yazumi S, Wada M, Sakurai T, Kida M, Yamauchi J, Hisatsune H, Tada S, Ida H, Nakase Y, Sakakura C, Hagiwara A, Chiba T. Restoration of RUNX3 enhances transforming growth factor-beta-dependent p21 expression in a biliary tract cancer cell line. Cancer Sci 2007; 98:838-43. [PMID: 17470130 PMCID: PMC11159762 DOI: 10.1111/j.1349-7006.2007.00460.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RUNX3 is a candidate tumor suppressor gene localized in 1p36, a region commonly inactivated by deletion and methylation in various human tumors. To elucidate the role of RUNX3 in transforming growth factor (TGF)-beta signaling in biliary tract cancer, we transfected Mz-ChA-2 cells, which do not express RUNX3 but have intact TGF-beta type II receptor and SMAD4 genes, with the RUNX3 expression plasmid pcDNA3.1/RUNX3 or with the vector pcDNA3.1 as a control. Four Mz-ChA-2/RUNX3 clones and one control clone were obtained. Although TGF-beta1 only slightly inhibited growth of the control cells, growth inhibition and TGF-beta-dependent G(1) arrest were significantly enhanced in the RUNX3-transfected clones. None of the clones, however, exhibited apoptosis. The slightly increased TGF-beta1-induced p21 expression in the control clone was strongly enhanced in the RUNX3-transfected clones, and was accompanied by augmented decreases in the expression of cyclins D1 and E. When RUNX3 small interfering RNA was added, TGF-beta-dependent induction of p21 was reduced in the RUNX3-transfected clones. Xenografts of the clones in nude mice demonstrated that tumorigenicity was significantly decreased in the RUNX3-transfected clones in inverse proportion to the expression levels of RUNX3. Based on these results, RUNX3 is involved in TGF-beta-induced expression of p21 and the resulting induction of TGF-beta-dependent G(1) arrest.
Collapse
Affiliation(s)
- Kazunori Hasegawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Nishida N, Nishimura T, Nagasaka T, Ikai I, Goel A, Ajay G, Boland CR. Extensive Methylation Is Associated with β-Catenin Mutations in Hepatocellular Carcinoma: Evidence for Two Distinct Pathways of Human Hepatocarcinogenesis. Cancer Res 2007; 67:4586-94. [PMID: 17510384 DOI: 10.1158/0008-5472.can-06-3464] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hepatocellular carcinoma (HCC) with p53 mutations is usually characterized by extensive chromosomal instability (CIN), whereas those with beta-catenin mutations have relatively less CIN and the molecular pathogenesis of these tumors is unknown. Methylation of CpG dinucleotides in the promoters of cancer-related genes is another characteristic feature of HCCs. The aim of this study was to determine the contribution of the methylator phenotype to HCC and its relationship to genomic instability. Fractional allelic loss (FAL) was determined using 400 microsatellite markers in 81 HCCs and 77 corresponding noncancerous livers as a measure of CIN. Methylation of 21 genetic loci was quantitated using combined bisulfite restriction analysis. Using hierarchical clustering analysis based upon the quantification of methylation levels, all HCCs were segregated into two groups characterized by either limited or extensive methylation. Mutations in the beta-catenin and p53 genes were determined by DNA sequencing. We found that the methylation levels were significantly higher in the HCCs than in noncancerous livers in 18 of the 21 loci (P values ranged from 0.035 to <0.0001). Among 18 loci, elevated levels of methylation at nine loci were significantly associated with beta-catenin mutations (P values ranged from 0.02 to <0.0001). In addition, the presence of beta-catenin mutations was associated with HCCs in the extensive methylation group (P < 0.0001), whereas p53 mutations correlated with high FAL scores (P = 0.0036). These data suggest that HCCs can be classified into two distinct categories based upon promoter methylation, CIN, and mutations of cancer-related genes. HCCs with extensive methylation harbor frequent beta-catenin mutations, whereas HCCs with high levels of CIN are associated with p53 mutations, suggesting the presence of two independent pathways for the pathogenesis of HCC.
Collapse
Affiliation(s)
- Naoshi Nishida
- Department of Internal Medicine, Division of Gastroenterology, Sammons Cancer Center, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Chen W, Salto-Tellez M, Palanisamy N, Ganesan K, Hou Q, Tan LK, Sii LH, Ito K, Tan B, Wu J, Tay A, Tan KC, Ang E, Tan BK, Tan PH, Ito Y, Tan P. Targets of genome copy number reduction in primary breast cancers identified by integrative genomics. Genes Chromosomes Cancer 2007; 46:288-301. [PMID: 17171680 DOI: 10.1002/gcc.20411] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The identification of specific oncogenes and tumor suppressor genes in regions of recurrent aneuploidy is a major challenge of molecular cancer research. Using both oligonucleotide single-nucleotide polymorphism and mRNA expression arrays, we integrated genomic and transcriptional information to identify and prioritize candidate cancer genes in regions of increased and decreased chromosomal copy number in a cohort of primary breast cancers. Confirming the validity of this approach, several regions of previously-known copy number (CN) alterations in breast cancer could be successfully reidentified. Focusing on regions of decreased CN, we defined a prioritized list of eighteen candidate genes, which included ARPIN, FBN1, and LZTS1, previously shown to be associated with cancers in breast or other tissue types, and novel genes such as P29, MORF4L1, and TBC1D5. One such gene, the RUNX3 transcription factor, was selected for further study. We show that RUNX3 is present at reduced CNs in proportion to the rest of the tumor genome and that RUNX3 CN reductions can also be observed in a breast cancer series from a different center. Using tissue microarrays, we demonstrate in an independent cohort of over 120 breast tissues that RUNX3 protein is expressed in normal breast epithelium but not fat and stromal tissue, and widely down-regulated in the majority of breast cancers (>85%). In vitro, RUNX3 overexpression suppressed the invasive potential of MDA-MB-231 breast cancer cells in a matrigel assay. Our results demonstrate the utility of integrative genomic approaches to identify novel potential cancer-related genes in primary tumors. This article contains Supplementary Material available at http://www.interscience.wiley.com/jpages/1045-2257/suppmat.
Collapse
Affiliation(s)
- Wei Chen
- Agenica Research, Singapore 169610, Republic of Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Mueller W, Nutt CL, Ehrich M, Riemenschneider MJ, von Deimling A, van den Boom D, Louis DN. Downregulation of RUNX3 and TES by hypermethylation in glioblastoma. Oncogene 2006; 26:583-93. [PMID: 16909125 DOI: 10.1038/sj.onc.1209805] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Glioblastoma, the most aggressive and least treatable form of malignant glioma, is the most common human brain tumor. Although many regions of allelic loss occur in glioblastomas, relatively few tumor suppressor genes have been found mutated at such loci. To address the possibility that epigenetic alterations are an alternative means of glioblastoma gene inactivation, we coupled pharmacological manipulation of methylation with gene profiling to identify potential methylation-regulated, tumor-related genes. Duplicates of three short-term cultured glioblastomas were exposed to 5 microM 5-aza-dC for 96 h followed by cRNA hybridization to an oligonucleotide microarray (Affymetrix U133A). We based candidate gene selection on bioinformatics, reverse transcription-polymerase chain reaction (RT-PCR), bisulfite sequencing, methylation-specific PCR and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Two genes identified in this manner, RUNX3 and Testin (TES), were subsequently shown to harbor frequent tumor-specific epigenetic alterations in primary glioblastomas. This overall approach therefore provides a powerful means to identify candidate tumor-suppressor genes for subsequent evaluation and may lead to the identification of genes whose epigenetic dysregulation is integral to glioblastoma tumorigenesis.
Collapse
Affiliation(s)
- W Mueller
- Department of Pathology, Cancer Center and Neurosurgical Service, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Yano T, Ito K, Fukamachi H, Chi XZ, Wee HJ, Inoue KI, Ida H, Bouillet P, Strasser A, Bae SC, Ito Y. The RUNX3 tumor suppressor upregulates Bim in gastric epithelial cells undergoing transforming growth factor beta-induced apoptosis. Mol Cell Biol 2006; 26:4474-88. [PMID: 16738314 PMCID: PMC1489128 DOI: 10.1128/mcb.01926-05] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Genes involved in the transforming growth factor beta (TGF-beta) signaling pathway are frequently altered in several types of cancers, and a gastric tumor suppressor RUNX3 appears to be an integral component of this pathway. We reported previously that apoptosis is notably reduced in Runx3-/- gastric epithelial cells. In the present study, we show that a proapoptotic gene Bim was transcriptionally activated by RUNX3 in the gastric cancer cell lines SNU16 and SNU719 treated with TGF-beta. The human Bim promoter contains RUNX sites, which are required for its activation. Furthermore, a dominant negative form of RUNX3 comprised of amino acids 1 to 187 increased tumorigenicity of SNU16 by inhibiting Bim expression. In Runx3-/- mouse gastric epithelium, Bim was down-regulated, and apoptosis was reduced to the same extent as that in Bim-/- gastric epithelium. We confirmed comparable expression of TGF-beta1 and TGF-beta receptors between wild-type and Runx3-/- gastric epithelia and reduction of Bim in TGF-beta1-/- stomach. These results demonstrate that RUNX3 is responsible for transcriptional up-regulation of Bim in TGF-beta-induced apoptosis.
Collapse
Affiliation(s)
- Takashi Yano
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lau QC, Raja E, Salto-Tellez M, Liu Q, Ito K, Inoue M, Putti TC, Loh M, Ko TK, Huang C, Bhalla KN, Zhu T, Ito Y, Sukumar S. RUNX3 Is Frequently Inactivated by Dual Mechanisms of Protein Mislocalization and Promoter Hypermethylation in Breast Cancer. Cancer Res 2006; 66:6512-20. [PMID: 16818622 DOI: 10.1158/0008-5472.can-06-0369] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A tumor suppressor function has been attributed to RUNX3, a member of the RUNX family of transcription factors. Here, we examined alterations in the expression of three members, RUNX1, RUNX2, and RUNX3, and their interacting partner, CBF-beta, in breast cancer. Among them, RUNX3 was consistently underexpressed in breast cancer cell lines and primary tumors. Fifty percent of the breast cancer cell lines (n = 19) showed hypermethylation at the promoter region and displayed significantly lower levels of RUNX3 mRNA expression (P < 0.0001) and protein (P < 0.001). In primary Singaporean breast cancers, 9 of 44 specimens showed undetectable levels of RUNX3 by immunohistochemistry. In 35 of 44 tumors, however, low levels of RUNX3 protein were present. Remarkably, in each case, protein was mislocalized to the cytoplasm. In primary tumors, hypermethylation of RUNX3 was observed in 23 of 44 cases (52%) and was undetectable in matched adjacent normal breast epithelium. Mislocalization of the protein, with or without methylation, seems to account for RUNX3 inactivation in the vast majority of the tumors. In in vitro and in vivo assays, RUNX3 behaved as a growth suppressor in breast cancer cells. Stable expression of RUNX3 in MDA-MB-231 breast cancer cells led to a more cuboidal phenotype, significantly reduced invasiveness in Matrigel invasion assays, and suppressed tumor formation in immunodeficient mice. This study provides biological and mechanistic insights into RUNX3 as the key member of the family that plays a role in breast cancer. Frequent protein mislocalization and methylation could render RUNX3 a valuable marker for early detection and risk assessment.
Collapse
Affiliation(s)
- Quek Choon Lau
- Oncology Research Institute and Department of Pathology, National University of Singapore, 10 Medical Drive, Singapore 117597
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|