1
|
Fatani AS, Schätzlein AG, Uchegbu IF. Targeting Intracranial Tumours with a Combination of RNA and Chemotherapy. Pharmaceutics 2024; 16:829. [PMID: 38931949 PMCID: PMC11207522 DOI: 10.3390/pharmaceutics16060829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a fast-growing and aggressive brain tumour, which remains largely resistant to treatment; the prognosis for patients is poor, with a median survival time of about 12-18 months, post diagnosis. In an effort to bring more efficacious treatments to patients, we targeted the down regulation of ITCH, an E3 ligase that is overexpressed in a variety of cancers, and which inhibits P73, a tumour suppressor gene. 6-O-glycolchitosan (GC) was used to deliver siRNA ITCH (GC60-siRNA-ITCH) and gemcitabine via the nose to brain route in CD-1 nude mice which had previously been implanted intracranially with U87-MG-luc2 cells. Prior to this in vivo study, an in vitro study established the synergistic effect of siRNA-ITCH in combination with a chemotherapy drug-gemcitabine. A downregulation of ITCH, an upregulation of p73 and enhanced apoptosis were observed in vitro in U87-MG cells, using qPCR, Western blot analysis, confocal laser scanning microscopy, flow cytometry and cytotoxicity assays. When GC60-siRNA-ITCH was combined with gemcitabine, there was a resultant decrease in cell proliferation in vitro. In CD1 mice, the administration of siRNA-ITCH (7 doses of 0.081 mg/kg) alone did not significantly affect animal survival (increasing mean survival from 29 to 33 days when compared to untreated animals), whereas intranasal gemcitabine had a significant effect on survival (increasing survival from 29 to 45 days when compared to untreated animals, p < 0.01). The most significant effect was seen with combination therapy (GC60-siRNA-ITCH plus gemcitabine), where survival increased by 89%, increasing from 29 to 54 days (p < 0.01). Our data demonstrate that siRNA chemosensitises brain tumours to gemcitabine and that the nose-to-brain delivery route may be a viable route for the treatment of intracranial tumours.
Collapse
Affiliation(s)
- Abdulhamid S. Fatani
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; (A.S.F.); (A.G.S.)
| | - Andreas G. Schätzlein
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; (A.S.F.); (A.G.S.)
- Nanomerics Ltd., Block Y, Northwick Park and St Mark’s Hospital, Watford Road, Harrow HA1 3UJ, UK
| | - Ijeoma F. Uchegbu
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; (A.S.F.); (A.G.S.)
- Nanomerics Ltd., Block Y, Northwick Park and St Mark’s Hospital, Watford Road, Harrow HA1 3UJ, UK
| |
Collapse
|
2
|
Handl V, Waldherr L, Arbring Sjöström T, Abrahamsson T, Seitanidou M, Erschen S, Gorischek A, Bernacka-Wojcik I, Saarela H, Tomin T, Honeder SE, Distl J, Huber W, Asslaber M, Birner-Grünberger R, Schäfer U, Berggren M, Schindl R, Patz S, Simon DT, Ghaffari-Tabrizi-Wizsy N. Continuous iontronic chemotherapy reduces brain tumor growth in embryonic avian in vivo models. J Control Release 2024; 369:668-683. [PMID: 38548064 DOI: 10.1016/j.jconrel.2024.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
Local and long-lasting administration of potent chemotherapeutics is a promising therapeutic intervention to increase the efficiency of chemotherapy of hard-to-treat tumors such as the most lethal brain tumors, glioblastomas (GBM). However, despite high toxicity for GBM cells, potent chemotherapeutics such as gemcitabine (Gem) cannot be widely implemented as they do not efficiently cross the blood brain barrier (BBB). As an alternative method for continuous administration of Gem, we here operate freestanding iontronic pumps - "GemIPs" - equipped with a custom-synthesized ion exchange membrane (IEM) to treat a GBM tumor in an avian embryonic in vivo system. We compare GemIP treatment effects with a topical metronomic treatment and observe that a remarkable growth inhibition was only achieved with steady dosing via GemIPs. Daily topical drug administration (at the maximum dosage that was not lethal for the embryonic host organism) did not decrease tumor sizes, while both treatment regimes caused S-phase cell cycle arrest and apoptosis. We hypothesize that the pharmacodynamic effects generate different intratumoral drug concentration profiles for each technique, which causes this difference in outcome. We created a digital model of the experiment, which proposes a fast decay in the local drug concentration for the topical daily treatment, but a long-lasting high local concentration of Gem close to the tumor area with GemIPs. Continuous chemotherapy with iontronic devices opens new possibilities in cancer treatment: the long-lasting and highly local dosing of clinically available, potent chemotherapeutics to greatly enhance treatment efficiency without systemic side-effects. SIGNIFICANCE STATEMENT: Iontronic pumps (GemIPs) provide continuous and localized administration of the chemotherapeutic gemcitabine (Gem) for treating glioblastoma in vivo. By generating high and constant drug concentrations near the vascularized growing tumor, GemIPs offer an efficient and less harmful alternative to systemic administration. Continuous GemIP dosing resulted in remarkable growth inhibition, superior to daily topical Gem application at higher doses. Our digital modelling shows the advantages of iontronic chemotherapy in overcoming limitations of burst release and transient concentration profiles, and providing precise control over dosing profiles and local distribution. This technology holds promise for future implants, could revolutionize treatment strategies, and offers a new platform for studying the influence of timing and dosing dependencies of already-established drugs in the fight against hard-to-treat tumors.
Collapse
Affiliation(s)
- Verena Handl
- Gottfried Schatz Research Center - Medical Physics and Biophysics, Medical University of Graz, 8010 Graz, Austria
| | - Linda Waldherr
- Gottfried Schatz Research Center - Medical Physics and Biophysics, Medical University of Graz, 8010 Graz, Austria; BioTechMed-Graz, Austria, Auenbruggerplatz 30, 8036 Graz, Austria
| | - Theresia Arbring Sjöström
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
| | - Tobias Abrahamsson
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
| | - Maria Seitanidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
| | - Sabine Erschen
- Gottfried Schatz Research Center - Medical Physics and Biophysics, Medical University of Graz, 8010 Graz, Austria
| | - Astrid Gorischek
- Gottfried Schatz Research Center - Medical Physics and Biophysics, Medical University of Graz, 8010 Graz, Austria
| | - Iwona Bernacka-Wojcik
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
| | - Helena Saarela
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
| | - Tamara Tomin
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria
| | - Sophie Elisabeth Honeder
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria; Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Joachim Distl
- Gottfried Schatz Research Center - Medical Physics and Biophysics, Medical University of Graz, 8010 Graz, Austria
| | - Waltraud Huber
- Otto Loewi Research Center, Division of Immunology, Research Unit CAM Lab, Medical University of Graz, 8010 Graz, Austria
| | - Martin Asslaber
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Ruth Birner-Grünberger
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria; Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Ute Schäfer
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, 8010 Graz, Austria
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
| | - Rainer Schindl
- Gottfried Schatz Research Center - Medical Physics and Biophysics, Medical University of Graz, 8010 Graz, Austria; BioTechMed-Graz, Austria, Auenbruggerplatz 30, 8036 Graz, Austria.
| | - Silke Patz
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, 8010 Graz, Austria.
| | - Daniel T Simon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden.
| | - Nassim Ghaffari-Tabrizi-Wizsy
- Otto Loewi Research Center, Division of Immunology, Research Unit CAM Lab, Medical University of Graz, 8010 Graz, Austria.
| |
Collapse
|
3
|
Lu J, Wu XJ, Hassouna A, Wang KS, Li Y, Feng T, Zhao Y, Jin M, Zhang B, Ying T, Li J, Cheng L, Liu J, Huang Y. Gemcitabine‑fucoxanthin combination in human pancreatic cancer cells. Biomed Rep 2023; 19:46. [PMID: 37324167 PMCID: PMC10265583 DOI: 10.3892/br.2023.1629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023] Open
Abstract
Gemcitabine is a chemotherapeutic agent for pancreatic cancer treatment. It has also been demonstrated to inhibit human pancreatic cancer cell lines, MIA PaCa-2 and PANC-1. The aim of the present study was to investigate the suppressive effect of fucoxanthin, a marine carotenoid, in combination with gemcitabine on pancreatic cancer cells. MTT assays and cell cycle analysis using flow cytometry were performed to study the mechanism of action. The results revealed that combining a low dose of fucoxanthin with gemcitabine enhanced the cell viability of human embryonic kidney cells, 293, while a high dose of fucoxanthin enhanced the inhibitory effect of gemcitabine on the cell viability of this cell line. In addition, the enhanced effect of fucoxanthin on the inhibitory effect of gemcitabine on PANC-1 cells was significant (P<0.01). Fucoxanthin combined with gemcitabine also exerted significant enhancement of the anti-proliferation effect in MIA PaCa-2 cells in a concentration dependent manner (P<0.05), compared with gemcitabine treatment alone. In conclusion, fucoxanthin improved the cytotoxicity of gemcitabine on human pancreatic cancer cells at concentrations that were not cytotoxic to non-cancer cells. Thus, fucoxanthin has the potential to be used as an adjunct in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Jun Lu
- College of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P.R. China
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518071, P.R. China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Xiaowu Jenifer Wu
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Amira Hassouna
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo 11956, Egypt
| | - Kelvin Sheng Wang
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Yan Li
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Tao Feng
- College of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P.R. China
| | - Yu Zhao
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Minfeng Jin
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Baohong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| | - Lufeng Cheng
- Department of Pharmacology, College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Johnson Liu
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yue Huang
- Shanghai Business School, Fengxian, Shanghai 201499, P.R. China
| |
Collapse
|
4
|
Surface functionalization of graphene nanosheet with poly (L-histidine) and its application in drug delivery: covalent vs non-covalent approaches. Sci Rep 2022; 12:19046. [PMID: 36351935 PMCID: PMC9646737 DOI: 10.1038/s41598-022-21619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
Nowadays, nanomaterials are increasingly being used as drug carriers in the treatment of different types of cancers. As a result, these applications make them attractive to researchers dealing with diagnosis and biomarkers discovery of the disease. In this study, the adsorption behavior of gemcitabine (GMC) on graphene nanosheet (GNS), in the presence and absence of Poly (L-histidine) (PLH) polymer is discussed using molecular dynamics (MD) simulation. The MD results revealed an increase in the efficiency and targeting of the drug when the polymer is covalently attached to the graphene substrate. In addition, the metadynamics simulation to investigate the effects of PLH on the adsorption capacity of the GNS, and explore the adsorption/desorption process of GMC on pristine and PLH- grafted GNS is performed. The metadynamics calculations showed that the amount of free energy of the drug in acidic conditions is higher (- 281.26 kJ/mol) than the free energy in neutral conditions (- 346.24 kJ/mol). Consequently, the PLH polymer may not only help drug adsorption but can also help in drug desorption in lower pH environments. Based on these findings, it can be said that covalent polymer bonding not only can help in the formation of a targeted drug delivery system but also can increase the adsorption capacity of the substrate.
Collapse
|
5
|
Voisin T, Nicole P, Gratio V, Chassac A, Mansour D, Rebours V, Couvelard A, Couvineau A. The Orexin-A/OX1R System Induces Cell Death in Pancreatic Cancer Cells Resistant to Gemcitabine and Nab-Paclitaxel Treatment. Front Oncol 2022; 12:904327. [PMID: 35747788 PMCID: PMC9209740 DOI: 10.3389/fonc.2022.904327] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/13/2022] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents the fourth cause of cancer-associated death in the West. This type of cancer has a very poor prognosis notably due to the development of chemoresistance when treatments including gemcitabine and Abraxane (Nab-paclitaxel) were prescribed. The identification of new treatment circumventing this chemoresistance represents a key challenge. Previous studies demonstrated that the activation of orexin receptor type 1 (OX1R), which was ectopically expressed in PDAC, by its natural ligand named orexin-A (OxA), led to anti-tumoral effect resulting in the activation of mitochondrial pro-apoptotic mechanism. Here, we demonstrated that OxA inhibited the pancreatic cancer cell (AsPC-1) growth and inhibited the tumor volume in preclinical models as effectively as gemcitabine and Nab-paclitaxel. Moreover, the combination therapy including OxA plus gemcitabine or OxA plus Nab-paclitaxel was additive on the inhibition of cancer cell growth and tumor development. More importantly, the treatment by OxA of chemoresistant tumors to gemcitabine or Nab-paclitaxel obtained by successive xenografts in mice revealed that OxA was able to induce a strong inhibition of tumor development, whereas no OxA resistance was identified in tumors. The OX1R/OxA system might be an innovative and powerful alternative treatment of chemoresistant PDAC.
Collapse
Affiliation(s)
- Thierry Voisin
- INSERM UMR1149/Inflammation Research Center (CRI), Université Paris Cité, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale Contre le Cancer”, DHU UNITY, Paris, France
| | - Pascal Nicole
- INSERM UMR1149/Inflammation Research Center (CRI), Université Paris Cité, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale Contre le Cancer”, DHU UNITY, Paris, France
| | - Valérie Gratio
- INSERM UMR1149/Inflammation Research Center (CRI), Université Paris Cité, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale Contre le Cancer”, DHU UNITY, Paris, France
| | - Anaïs Chassac
- Department of Pathology, Bichat Hospital, Université Paris Cité, Paris, France
| | - Dounia Mansour
- Department of Pathology, Bichat Hospital, Université Paris Cité, Paris, France
| | - Vinciane Rebours
- INSERM UMR1149/Inflammation Research Center (CRI), Université Paris Cité, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale Contre le Cancer”, DHU UNITY, Paris, France
- Department of Pancreatology, Beaujon Hospital, Université Paris Cité, Clichy, France
| | - Anne Couvelard
- INSERM UMR1149/Inflammation Research Center (CRI), Université Paris Cité, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale Contre le Cancer”, DHU UNITY, Paris, France
- Department of Pathology, Bichat Hospital, Université Paris Cité, Paris, France
| | - Alain Couvineau
- INSERM UMR1149/Inflammation Research Center (CRI), Université Paris Cité, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale Contre le Cancer”, DHU UNITY, Paris, France
- *Correspondence: Alain Couvineau,
| |
Collapse
|
6
|
Kawasaki S, Ohtsuka H, Sato Y, Douchi D, Sato M, Ariake K, Masuda K, Fukase K, Mizuma M, Nakagawa K, Hayashi H, Morikawa T, Motoi F, Unno M. Silencing of LRRFIP1 enhances the sensitivity of gemcitabine in pancreatic cancer cells by activating JNK/c-Jun signaling. Pancreatology 2021; 21:771-778. [PMID: 33707114 DOI: 10.1016/j.pan.2021.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The epithelial-mesenchymal transition (EMT) in cancer cells has been shown to closely associate with the survival and drug resistance of cancer cells. We recently provided evidence that Wnt signal activator leucine-rich repeat in flightless-1-interacting protein 1 (LRRFIP1) regulates EMT in pancreatic cancer. LRRFIP1 silencing inhibits the translocation of β-catenin to the nucleus, which led to reverse EMT in cancer cells. It was suggested that LRRFIP1 was implicated in gemcitabine sensitivity by regulating EMT signaling. METHODS Gemcitabine chemosensitivity was investigated in LRRFIP1-knockdown pancreatic cancer cells (PANC-1 and MIA Paca-2). In addition, the effects of LRRFIP1 knockdown on JNK/SAPK (stress activated-protein kinase) signaling and apoptosis were evaluated. RESULTS LRRFIP1 silencing accelerates gemcitabine-induced caspase activity and cell death in pancreatic cancer cells. It was also revealed that gemcitabine-induced phosphorylation of c-Jun N-terminal kinase (JNK) and c-Jun were increased in LRRFIP1 knockdown cells. The activation of JNK/c-Jun in LRRFIP1-knockdown cells was significantly diminished by the inhibition of Rac activity. It was confirmed that the acquisition of gemcitabine sensitivity by LRRFIP1 silencing largely depends on the stimulation of JNK/SAPK (stress activated-protein kinase) signaling. CONCLUSIONS Our findings suggest that reversing EMT and transient activation of JNK might be essential for the gemcitabine sensitivity in LRRFIP1 knockdown pancreatic cancer cells. Our discoveries highlight the potential role of LRRFIP1 in the chemosensitivity related to the regulation of EMT signaling.
Collapse
Affiliation(s)
- Shuhei Kawasaki
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Hideo Ohtsuka
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan.
| | - Yoshihiro Sato
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Daisuke Douchi
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Masaki Sato
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Kyohei Ariake
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Kunihiro Masuda
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Koji Fukase
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Masamichi Mizuma
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Kei Nakagawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Hiroki Hayashi
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Takanori Morikawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Fuyuhiko Motoi
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| |
Collapse
|
7
|
Waldherr L, Seitanidou M, Jakešová M, Handl V, Honeder S, Nowakowska M, Tomin T, Karami Rad M, Schmidt T, Distl J, Birner‐Gruenberger R, von Campe G, Schäfer U, Berggren M, Rinner B, Asslaber M, Ghaffari‐Tabrizi‐Wizsy N, Patz S, Simon DT, Schindl R. Targeted Chemotherapy of Glioblastoma Spheroids with an Iontronic Pump. ADVANCED MATERIALS TECHNOLOGIES 2021; 6:2001302. [PMID: 34195355 PMCID: PMC8218220 DOI: 10.1002/admt.202001302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/15/2021] [Indexed: 05/13/2023]
Abstract
Successful treatment of glioblastoma multiforme (GBM), the most lethal tumor of the brain, is presently hampered by (i) the limits of safe surgical resection and (ii) "shielding" of residual tumor cells from promising chemotherapeutic drugs such as Gemcitabine (Gem) by the blood brain barrier (BBB). Here, the vastly greater GBM cell-killing potency of Gem compared to the gold standard temozolomide is confirmed, moreover, it shows neuronal cells to be at least 104-fold less sensitive to Gem than GBM cells. The study also demonstrates the potential of an electronically-driven organic ion pump ("GemIP") to achieve controlled, targeted Gem delivery to GBM cells. Thus, GemIP-mediated Gem delivery is confirmed to be temporally and electrically controllable with pmol min-1 precision and electric addressing is linked to the efficient killing of GBM cell monolayers. Most strikingly, GemIP-mediated GEM delivery leads to the overt disintegration of targeted GBM tumor spheroids. Electrically-driven chemotherapy, here exemplified, has the potential to radically improve the efficacy of GBM adjuvant chemotherapy by enabling exquisitely-targeted and controllable delivery of drugs irrespective of whether these can cross the BBB.
Collapse
Affiliation(s)
- Linda Waldherr
- Gottfried Schatz Research Center – BiophysicsMedical University of GrazGraz8010Austria
| | - Maria Seitanidou
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Marie Jakešová
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Verena Handl
- Department of NeurosurgeryMedical University of GrazGraz8010Austria
| | - Sophie Honeder
- Diagnostic and Research Institute of PathologyMedical University of GrazGraz8010Austria
| | - Marta Nowakowska
- Department of NeurosurgeryMedical University of GrazGraz8010Austria
| | - Tamara Tomin
- Diagnostic and Research Institute of PathologyMedical University of GrazGraz8010Austria
- Institute of Chemical Technologies and AnalyticsTechnische Universität WienVienna1060Austria
| | - Meysam Karami Rad
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Tony Schmidt
- Gottfried Schatz Research Center – BiophysicsMedical University of GrazGraz8010Austria
| | - Joachim Distl
- Gottfried Schatz Research Center – BiophysicsMedical University of GrazGraz8010Austria
| | - Ruth Birner‐Gruenberger
- Diagnostic and Research Institute of PathologyMedical University of GrazGraz8010Austria
- Institute of Chemical Technologies and AnalyticsTechnische Universität WienVienna1060Austria
| | - Gord von Campe
- Department of NeurosurgeryMedical University of GrazGraz8010Austria
| | - Ute Schäfer
- Department of NeurosurgeryMedical University of GrazGraz8010Austria
| | - Magnus Berggren
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Beate Rinner
- Division of Biomedical ResearchMedical University of GrazGraz8036Austria
| | - Martin Asslaber
- Diagnostic and Research Institute of PathologyMedical University of GrazGraz8010Austria
| | | | - Silke Patz
- Department of NeurosurgeryMedical University of GrazGraz8010Austria
| | - Daniel T. Simon
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Rainer Schindl
- Gottfried Schatz Research Center – BiophysicsMedical University of GrazGraz8010Austria
| |
Collapse
|
8
|
Combating pancreatic cancer chemoresistance by triggering multiple cell death pathways. Pancreatology 2021; 21:522-529. [PMID: 33516629 DOI: 10.1016/j.pan.2021.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer is the fourth most common cause of cancer-associated death in western countries, where the incidence and number of deaths are increasing every year. Intrinsic or acquired resistance of tumor cells to chemotherapy agents is the major reason for failure of traditional cancer treatment. Several factors are implicated in this impressive resistance; however, of these, it is important to highlight the extensive cellular heterogeneity of these tumors. This heterogeneity is linked to a wide range of sensitivity that different clones in the same tumor display to chemotherapeutic agents. Accordingly, recent findings in this field have discovered new therapeutic targets in order to develop new combinatory treatments, as well as to induce several cell death pathways and reduce therapy-threshold and likelihood of future resistance. Accordingly, recent research has focused on targeting mitochondria, an organelle with key roles regulating cell death signaling pathways, such as apoptosis, necroptosis, autophagy, ferroptosis, or parthanatos. These findings - identifying new compounds, alone or in combination, that can target pancreatic ductal adenocarcinoma cell resistance - could be the key to future treatments.
Collapse
|
9
|
Moradnia H, Raissi H, Shahabi M. The performance of the single-walled carbon nanotube covalently modified with polyethylene glycol to delivery of Gemcitabine anticancer drug in the aqueous environment. J Biomol Struct Dyn 2020; 39:881-888. [DOI: 10.1080/07391102.2020.1719204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Heidar Raissi
- Chemistry Department, University of Birjand, Birjand, Iran
| | - Mahnaz Shahabi
- Chemistry Department, University of Birjand, Birjand, Iran
| |
Collapse
|
10
|
Therapeutic preferability of gemcitabine for ARID1A-deficient ovarian clear cell carcinoma. Gynecol Oncol 2019; 155:489-498. [DOI: 10.1016/j.ygyno.2019.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/29/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022]
|
11
|
Kramer B, Haan LD, Vermeer M, Olivier T, Hankemeier T, Vulto P, Joore J, Lanz HL. Interstitial Flow Recapitulates Gemcitabine Chemoresistance in A 3D Microfluidic Pancreatic Ductal Adenocarcinoma Model by Induction of Multidrug Resistance Proteins. Int J Mol Sci 2019; 20:ijms20184647. [PMID: 31546820 PMCID: PMC6770899 DOI: 10.3390/ijms20184647] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most lethal cancers due to a high chemoresistance and poor vascularization, which results in an ineffective systemic therapy. PDAC is characterized by a high intratumoral pressure, which is not captured by current 2D and 3D in vitro models. Here, we demonstrated a 3D microfluidic interstitial flow model to mimic the intratumoral pressure in PDAC. We found that subjecting the S2-028 PDAC cell line to interstitial flow inhibits the proliferation, while maintaining a high viability. We observed increased gemcitabine chemoresistance, with an almost nine-fold higher EC50 as compared to a monolayer culture (31 nM versus 277 nM), and an alleviated expression and function of the multidrug resistance protein (MRP) family. In conclusion, we developed a 3D cell culture modality for studying intratissue pressure and flow that exhibits more predictive capabilities than conventional 2D cell culture and is less time-consuming, and more scalable and accessible than animal models. This increase in microphysiological relevance might support improved efficiency in the drug development pipeline.
Collapse
Affiliation(s)
- Bart Kramer
- Mimetas BV, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands.
| | - Luuk de Haan
- Mimetas BV, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | | | - Thomas Olivier
- Mimetas BV, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands.
| | - Thomas Hankemeier
- Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Paul Vulto
- Mimetas BV, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands.
| | - Jos Joore
- Mimetas BV, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands.
| | | |
Collapse
|
12
|
El Hassouni B, Li Petri G, Liu DSK, Cascioferro S, Parrino B, Hassan W, Diana P, Ali A, Frampton AE, Giovannetti E. Pharmacogenetics of treatments for pancreatic cancer. Expert Opin Drug Metab Toxicol 2019; 15:437-447. [PMID: 31100206 DOI: 10.1080/17425255.2019.1620731] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Despite clinical efforts, pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis. The scarcity of effective therapies can be reflected by the lack of reliable biomarkers to adapt anticancer drugs prescription to tumors' and patients' features. Areas covered: Pharmacogenetics should provide the way to select patients who may benefit from a specific therapy that best matches individual and tumor genetic profile, but it has not yet led to gains in outcome. This review describes PDAC pharmacogenetics findings, critically reappraising studies on polymorphisms and -omics profiles correlated to response to gemcitabine, FOLFIRINOX, and nab-paclitaxel combinations, as well as limitations of targeted therapies. Further, we question whether personalized approaches will benefit patients to any significant degree, supporting the need of new strategies within well-designed trials and validated genomic tests for treatment decision-making. Expert opinion: A major challenge in PDAC is the identification of subgroups of patients who will benefit from treatments. Minimally-invasive tests to analyze biomarkers of drug sensitivity/toxicity should be developed alongside anticancer treatments. However, progress might fall below expectations because of tumor heterogeneity and clonal evolution. Whole-genome sequencing and liquid biopsies, as well as prospective validation in selected cohorts, should overcome the limitations of traditional pharmacogenetic approaches.
Collapse
Affiliation(s)
- Btissame El Hassouni
- a Department of Medical Oncology , Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc) , Amsterdam , The Netherlands
| | - Giovanna Li Petri
- a Department of Medical Oncology , Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc) , Amsterdam , The Netherlands.,b Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche , Università degli Studi di Palermo , Palermo , Italy
| | - Daniel S K Liu
- c Department of Surgery and Cancer , Imperial College , London , UK
| | - Stella Cascioferro
- b Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche , Università degli Studi di Palermo , Palermo , Italy
| | - Barbara Parrino
- b Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche , Università degli Studi di Palermo , Palermo , Italy
| | - Waqar Hassan
- a Department of Medical Oncology , Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc) , Amsterdam , The Netherlands
| | - Patrizia Diana
- b Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche , Università degli Studi di Palermo , Palermo , Italy
| | - Asif Ali
- d Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences , University of Glasgow , Glasgow UK.,e Institute of Basic Medical Sciences , Khyber Medical University , Peshawar , Pakistan
| | - Adam E Frampton
- c Department of Surgery and Cancer , Imperial College , London , UK
| | - Elisa Giovannetti
- a Department of Medical Oncology , Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc) , Amsterdam , The Netherlands.,f Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza , Pisa , Italy
| |
Collapse
|
13
|
Laskowska AK, Puszko AK, Sosnowski P, Różycki K, Kosson P, Matalińska J, Durlik M, Misicka A. Opioid Tripeptides Hybridized with trans-1-Cinnamylpiperazine as Proliferation Inhibitors of Pancreatic Cancer Cells in Two- and Three-Dimensional in vitro Models. ChemMedChem 2017; 12:1637-1644. [PMID: 28834399 DOI: 10.1002/cmdc.201700453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Indexed: 01/08/2023]
Abstract
According to the World Health Organization, the mortality rate among patients with pancreatic cancer will increase in the upcoming years. Gemcitabine is the first choice for treatment of pancreatic malignancy, but increasing resistance to this drug is decreasing its overall efficacy. Studies on new therapies that target metabolic pathways, growth factor inhibitors, and tumor stroma or tumor stem cells are currently underway in many research groups. Herein we report the bioactive properties (cytotoxicity and hemolytic activity) of synthetic peptidomimetics containing an opioid tripeptide fragment (Tyr-R1 -R2 -; where R1 is d-Ala or d-Thr, and R2 is Phe or Trp) hybridized with trans-1-cinnamylpiperazine. These compounds are stable in plasma up to 96 h and exhibit low hemotoxicity and good inhibitory effects on cancer cell growth in two- and three-dimensional in vitro models of pancreatic cancer.
Collapse
Affiliation(s)
- Anna K Laskowska
- Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Anna K Puszko
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Piotr Sosnowski
- Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Krzysztof Różycki
- Laboratory of Chemical Synthesis, CePT, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Piotr Kosson
- Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland.,Toxicology Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Joanna Matalińska
- Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Marek Durlik
- Department of Surgical Research and Transplantology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland.,Department of Gastroenterology and Transplantology, Central Clinical Hospital of the Ministry of the Internal Affairs in Warsaw, Wołoska 137, 02-507, Warsaw, Poland
| | - Aleksandra Misicka
- Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland.,Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| |
Collapse
|
14
|
Yuan YG, Peng QL, Gurunathan S. Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment. Int J Nanomedicine 2017; 12:6487-6502. [PMID: 28919750 PMCID: PMC5592960 DOI: 10.2147/ijn.s135482] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Gemcitabine (GEM) is widely used as an anticancer agent in several types of solid tumors. Silver nanoparticles (AgNPs) possess unique cytotoxic features and can induce apoptosis in a variety of cancer cells. In this study, we investigated whether the combination of GEM and AgNPs can exert synergistic cytotoxic effects in the human ovarian cancer cell line A2780. Methods We synthesized AgNPs using resveratrol as a reducing and stabilizing agent. The synthesized nanomaterials were characterized using various analytical techniques. The anticancer effects of a combined treatment with GEM and AgNPs were evaluated using a series of cellular assays. The expression of pro- and antiapoptotic genes was measured using real-time reverse transcription polymerase chain reaction. Apoptosis was confirmed by TUNEL assay. Results In this study, combined treatment with GEM and AgNPs significantly inhibited viability and proliferation in A2780 cells. Moreover, the levels of apoptosis in cells treated with a combination of GEM and AgNPs were significantly higher compared with those in cells treated with GEM or AgNPs alone. Our data suggest that GEM and AgNPs exhibit potent apoptotic activity in human ovarian cancer cells. Combined treatment with GEM and AgNPs showed a significantly higher cytotoxic effect in ovarian cancer cells compared with that induced by either of these agents alone. Conclusion Our study demonstrated that the interaction between GEM and AgNPs was cytotoxic in ovarian cancer cells. Combined treatment with GEM and AgNPs caused increased cytotoxicity and apoptosis in A2780 cells. This treatment may have therapeutic potential as targeted therapy for the treatment of ovarian cancer. To our knowledge, this study could provide evidence that AgNPs can enhance responsiveness to GEM in ovarian cancer cells and that AgNPs can potentially be used as chemosensitizing agents in ovarian cancer therapy.
Collapse
Affiliation(s)
- Yu-Guo Yuan
- College of Veterinary Medicine/Animal Science and Technology/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Qiu-Ling Peng
- College of Chemistry and Bioengineering, Yichun University, Yichun, Jiangxi, People's Republic of China
| | - Sangiliyandi Gurunathan
- Department of Stem cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Cisplatin resistance in non-small cell lung cancer cells is associated with an abrogation of cisplatin-induced G2/M cell cycle arrest. PLoS One 2017; 12:e0181081. [PMID: 28746345 PMCID: PMC5528889 DOI: 10.1371/journal.pone.0181081] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/26/2017] [Indexed: 12/21/2022] Open
Abstract
The efficacy of cisplatin-based chemotherapy in cancer is limited by the occurrence of innate and acquired drug resistance. In order to better understand the mechanisms underlying acquired cisplatin resistance, we have compared the adenocarcinoma-derived non-small cell lung cancer (NSCLC) cell line A549 and its cisplatin-resistant sub-line A549rCDDP2000 with regard to cisplatin resistance mechanisms including cellular platinum accumulation, DNA-adduct formation, cell cycle alterations, apoptosis induction and activation of key players of DNA damage response. In A549rCDDP2000 cells, a cisplatin-induced G2/M cell cycle arrest was lacking and apoptosis was reduced compared to A549 cells, although equitoxic cisplatin concentrations resulted in comparable platinum-DNA adduct levels. These differences were accompanied by changes in the expression of proteins involved in DNA damage response. In A549 cells, cisplatin exposure led to a significantly higher expression of genes coding for proteins mediating G2/M arrest and apoptosis (mouse double minute 2 homolog (MDM2), xeroderma pigmentosum complementation group C (XPC), stress inducible protein (SIP) and p21) compared to resistant cells. This was underlined by significantly higher protein levels of phosphorylated Ataxia telangiectasia mutated (pAtm) and p53 in A549 cells compared to their respective untreated control. The results were compiled in a preliminary model of resistance-associated signaling alterations. In conclusion, these findings suggest that acquired resistance of NSCLC cells against cisplatin is the consequence of altered signaling leading to reduced G2/M cell cycle arrest and apoptosis.
Collapse
|
16
|
Mikamori M, Yamada D, Eguchi H, Hasegawa S, Kishimoto T, Tomimaru Y, Asaoka T, Noda T, Wada H, Kawamoto K, Gotoh K, Takeda Y, Tanemura M, Mori M, Doki Y. MicroRNA-155 Controls Exosome Synthesis and Promotes Gemcitabine Resistance in Pancreatic Ductal Adenocarcinoma. Sci Rep 2017; 7:42339. [PMID: 28198398 PMCID: PMC5309735 DOI: 10.1038/srep42339] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/09/2017] [Indexed: 12/21/2022] Open
Abstract
The cancer drug gemcitabine (GEM) is a key drug for treating pancreatic ductal adenocarcinoma (PDAC), but PDAC cells develop chemoresistance after long-term administration. Since the tolerance was immediately spread to every PDAC tissue in a patient, it is assumed that some certain efficient mechanisms underlay in the development of chemoresistance. Changes in the levels of particular microRNAs or alterations in intercellular communication play a dominant role in chemoresistance development, and recent data also suggest that exosomes play an important role in this process. In this study, we revealed that the loop conferred chemoresistance in PDAC cells. The loop was as follows; 1, The long-term exposure of GEM increased miR-155 expression in PDAC cells. 2, The increase of miR-155 induced two different functions; exosome secretion and chemoresistance ability via facilitating the anti-apoptotic activity. 3, Exosome deliver the miR-155 into the other PDAC cells and induce the following function. The target therapy to miR-155 or the exosome secretion effectively attenuated the chemoresistance, and these results were validated with both clinical samples and in vivo experiments. This mechanism represents a novel therapeutic target in GEM treatment to PDAC.
Collapse
Affiliation(s)
- Manabu Mikamori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Shinichiro Hasegawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Tomoya Kishimoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Wada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Koichi Kawamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Yutaka Takeda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
- Department of Surgery, Kansai Rosai Hospital, Inabasou 3-1-69, Amagasaki, Hyogo, 660-8511, Japan
| | - Masahiro Tanemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
- Department of Surgery, Osaka Police Hospital, Tennoji-ku Kitayamacho 10-31, Osaka, 543-0035, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
17
|
Curaxin CBL0137 eradicates drug resistant cancer stem cells and potentiates efficacy of gemcitabine in preclinical models of pancreatic cancer. Oncotarget 2015; 5:11038-53. [PMID: 25402820 PMCID: PMC4294371 DOI: 10.18632/oncotarget.2701] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/06/2014] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) continues to be one of the deadliest cancers due to the absence of effective treatment. Curaxins are a class of small molecules with anti-cancer activity demonstrated in different models of cancer in mice. The lead curaxin compound, CBL0137, recently entered Phase I clinical trials. Curaxins modulate several important signaling pathways involved in the pathogenesis of PDA through inhibition of chromatin remodeling complex FACT. FACT is overexpressed in multiple types of tumor, with one of the highest rate of overexpression in PDA (59%). In this study, the efficacy of CBL0137 alone or in combination with current standard of care, gemcitabine, was tested against different models of PDA in vitro and in mouse models. It was found that CBL0137 alone is a potent inducer of apoptosis in pancreatic cancer cell lines and is toxic not only for proliferating bulk tumor cells, but also for pancreatic cancer stem cells. In mice, CBL0137 was effective against several PDA models, including orthotopic gemcitabine resistant PANC-1 model and patient derived xenografts, in which CBL0137 anti-tumor effect correlated with overexpression of FACT. Moreover, we observed synergy of CBL0137 with gemcitabine which may be explained by the ability of CBL0137 to inhibit several transcriptional programs induced by gemcitabine, including NF-kappaB response and expression of ribonucleotide reductase, one of the targets of gemcitabine in cells. This data suggest testing of CBL0137 efficacy in Phase II trial in PDA patients alone and in combination with gemcitabine.
Collapse
|
18
|
Saadi H, Seillier M, Carrier A. The stress protein TP53INP1 plays a tumor suppressive role by regulating metabolic homeostasis. Biochimie 2015. [PMID: 26225460 DOI: 10.1016/j.biochi.2015.07.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the recent years, we have provided evidence that Tumor Protein 53-Induced Nuclear Protein 1 (TP53INP1) is a key stress protein with antioxidant-associated tumor suppressive function. The TP53INP1 gene, which is highly conserved in mammals, is over-expressed during stress responses including inflammation. This gene encodes two protein isoforms with nuclear or cytoplasmic subcellular localization depending on the context. TP53INP1 contributes to stress responses, thus preventing stress-induced dysfunctions leading to pathologies such as cancer. Two major mechanisms by which TP53INP1 functions have been unveiled. First, in the nucleus, TP53INP1 was shown to regulate the transcriptional activity of p53 and p73 by direct interaction, and to mediate the antioxidant activity of p53. Second, independently of p53, TP53INP1 contributes to autophagy and more particularly mitophagy through direct interaction with molecular actors of autophagy. TP53INP1 is thus required for the homeostasis of the mitochondrial compartment, and is therefore involved in the regulation of energetic metabolism. Finally, the antioxidant function of TP53INP1 stems from the control of mitochondrial reactive oxygen species production. In conclusion, TP53INP1 is a multifaceted protein endowed with multiple functions, including metabolic regulation, as is its main functional partner p53.
Collapse
Affiliation(s)
- Houda Saadi
- Inserm, U1068, CRCM, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille Université, UM 105, Marseille, F-13284, France; CNRS, UMR7258, CRCM, Marseille, F-13009, France
| | - Marion Seillier
- Inserm, U1068, CRCM, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille Université, UM 105, Marseille, F-13284, France; CNRS, UMR7258, CRCM, Marseille, F-13009, France
| | - Alice Carrier
- Inserm, U1068, CRCM, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille Université, UM 105, Marseille, F-13284, France; CNRS, UMR7258, CRCM, Marseille, F-13009, France.
| |
Collapse
|
19
|
Ying X, Jing L, Ma S, Li Q, Luo X, Pan Z, Feng Y, Feng P. GSK3β mediates pancreatic cancer cell invasion in vitro via the CXCR4/MMP-2 Pathway. Cancer Cell Int 2015. [PMID: 26213494 PMCID: PMC4513390 DOI: 10.1186/s12935-015-0216-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Glycogen synthase kinase-3β (GSK3β) expression and activity are upregulated in pancreatic cancer tissues. In our previous study, we found that stromal cell-derived factor-1/ chemokine receptor C-X-C motif chemokine receptor 4 (SDF-1α/CXCR4) upregulated matrix metalloproteinase 2 (MMP-2) and promoted invasion in PANC1 and SW-1990 pancreatic cancer cells by activating p38 mitogen-activated protein kinase (p38 MAPK). Additionally, inhibition of GSK3β reduced MMP-2 secretion. METHODS To investigate the molecular mechanism of GSK3β in pancreatic cancer tissues, we created stable PANC1 cells up-regulation of GSK3β by transfecting GSK3β overexpression plasmid, and down-regulation of GSK3β using two different types of RNA interference. RESULTS Western blotting showed that overexpression of GSK3β up-regulated CXCR4 and MMP-2 expression; suppression of GSK3β down-regulated CXCR4 and MMP-2 protein expression. Up-regulation of MMP2 induced by overexpression of GSK3β was blocked by inhibition of CXCR4. Overexpression of GSK3β promoted PANC1 cell invasion, and down-regulation of GSK3β suppressed PANC1 cell invasion in the transwell invasion assays. However, inhibition of CXCR4 using shRNA attenuated the ability of GSK3β to promote PANC1 cell invasion. CONCLUSIONS This study demonstrated that GSK3β promotes PANC1 cell invasion via the CXCR4/MMP-2 pathway.
Collapse
Affiliation(s)
- Xu Ying
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300 People's Republic of China
| | - Li Jing
- Department of Hepatology, Huai'an Fourth People's Hospital, No.128, Yan an East Road, Qing pu District, Huai'an, Jiangsu 223300 People's Republic of China
| | - Shijie Ma
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300 People's Republic of China
| | - Qianjun Li
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300 People's Republic of China
| | - Xiaoling Luo
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300 People's Republic of China
| | - Zhenguo Pan
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300 People's Republic of China
| | - Yanling Feng
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300 People's Republic of China
| | - Pan Feng
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300 People's Republic of China
| |
Collapse
|
20
|
Jin K, Luo G, Xiao Z, Liu Z, Liu C, Ji S, Xu J, Liu L, Long J, Ni Q, Yu X. Noncoding RNAs as potential biomarkers to predict the outcome in pancreatic cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:1247-55. [PMID: 25750521 PMCID: PMC4348055 DOI: 10.2147/dddt.s77597] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a common digestive system cancer, is highly malignant and has a poor disease outcome. Currently, all available examination and detection methods cannot accurately predict the clinical outcome. Therefore, it is extremely important to identify novel molecular biomarkers for personalized medication and to significantly improve the overall outcome. The “noncoding RNAs” (ncRNAs) are a group of RNAs that do not code for proteins, and they are categorized as structural RNAs and regulatory RNAs. It has been shown that microRNAs and long ncRNAs function as regulatory RNAs to affect the progression of various diseases. Many studies have confirmed a role for ncRNAs in the progression of PDAC during the last few years. Because of the significant role of ncRNAs in PDAC, ncRNA profiling may be used to predict PDAC outcome with high accuracy. This review comprehensively analyzes the value of ncRNAs as potential biomarkers to predict the outcome in PDAC and the possible mechanisms thereof.
Collapse
Affiliation(s)
- Kaizhou Jin
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China ; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China ; Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Guopei Luo
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China ; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China ; Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Zhiwen Xiao
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China ; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China ; Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Zuqiang Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China ; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China ; Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Chen Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China ; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China ; Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Shunrong Ji
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China ; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China ; Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Jin Xu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China ; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China ; Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Liang Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China ; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China ; Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Jiang Long
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China ; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China ; Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Quanxing Ni
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China ; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China ; Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Xianjun Yu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China ; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China ; Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
21
|
Glenister R, McDaniel K, Francis H, Venter J, Jensen K, Dusio G, Gaudio E, Glaser S, Meng F, Alpini G. Therapeutic actions of melatonin on gastrointestinal cancer development and progression. TRANSLATIONAL GASTROINTESTINAL CANCER 2013; 2. [PMID: 24312749 PMCID: PMC3848957 DOI: 10.3978/j.issn.2224-4778.2012.08.03] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Melatonin exerts a multitude of physiological functions including the regulation of the sleep cycle and circadian rhythm. Although the synthesis of melatonin in the pineal gland is regulated by changes in the light/dark cycle, the release of melatonin in the gastrointestinal tract is related to food consumption. Melatonin regulates antioxidative processes and it improves T-helper cell response by stimulating the production of specific cytokines. Melatonin is directly involved in preventing tumor initiation, promotion, and progression in a variety of cancers of the gastrointestinal tract including colorectal cancer, cholangiocarcinoma, hepatocarcinoma, and pancreatic carcinoma. This paper is a review of the literature regarding melatonin in the gastrointestinal tract and as a potential therapy for gastrointestinal cancers.
Collapse
Affiliation(s)
| | | | - Heather Francis
- Division of Research and Education, Scott & White
- Research, Central Texas Veterans Health Care System
- Scott & White Digestive Disease Research Center, Scott & White
- Department of Medicine, Division Gastroenterology, Texas A & M Health Science Center, College of Medicine, Temple, TX 76504, USA
| | - Julie Venter
- Department of Medicine, Division Gastroenterology, Texas A & M Health Science Center, College of Medicine, Temple, TX 76504, USA
| | - Kendal Jensen
- Department of Medicine, Division Gastroenterology, Texas A & M Health Science Center, College of Medicine, Temple, TX 76504, USA
| | | | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, “La Sapienza”, Rome, Italy
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System
- Scott & White Digestive Disease Research Center, Scott & White
- Department of Medicine, Division Gastroenterology, Texas A & M Health Science Center, College of Medicine, Temple, TX 76504, USA
| | - Fanyin Meng
- Division of Research and Education, Scott & White
- Research, Central Texas Veterans Health Care System
- Scott & White Digestive Disease Research Center, Scott & White
- Department of Medicine, Division Gastroenterology, Texas A & M Health Science Center, College of Medicine, Temple, TX 76504, USA
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System
- Scott & White Digestive Disease Research Center, Scott & White
- Department of Medicine, Division Gastroenterology, Texas A & M Health Science Center, College of Medicine, Temple, TX 76504, USA
| |
Collapse
|
22
|
Nakaya N, Ishigaki Y, Nakajima H, Murakami M, Shimasaki T, Takata T, Ozaki M, Dusetti NJ, Iovanna JL, Motoo Y. Meaning of tumor protein 53-induced nuclear protein 1 in the molecular mechanism of gemcitabine sensitivity. Mol Clin Oncol 2012; 1:100-104. [PMID: 24649130 DOI: 10.3892/mco.2012.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/10/2012] [Indexed: 01/05/2023] Open
Abstract
Stress proteins of the pancreas, such as tumor protein 53-induced nuclear protein 1 (TP53INP1), are important factors in the invasion and metastasis of pancreatic cancer. TP53INP1 is a pro-apoptotic factor and is transcriptionally regulated in p53-dependent and -independent manners. A previous study proved that gemcitabine induces TP53INP1 expression in pancreatic cancer cells and the pancreatic cancer cell line (PANC-1). The present study aimed to clarify the association between TP53INP1 and gemcitabine sensitivity. The expression of TP53INP1 and its related factors, such as cell growth and cell cycle status in TP53INP1-knockout mouse embryonic fibroblasts [TP53INP1-/--mouse embryonic fibroblasts (MEFs)] to those in wild-type counterparts (TP53INP1+/+-MEFs) were compared. Flow cytometric analysis demonstrated no difference of the checkpoint function in TP53INP1-/--MEFs and TP53INP1+/+-MEFs when exposed to 10 ng/ml of gemcitabine. No significant difference was found in the level of p53 expression in the cell types, although the base level and gemcitabine-induced expression of p21 were significantly decreased in TP53INP1-/--MEFs, compared to those in wild-type counterparts. Results showed that gemcitabine induced the p21 expression in TP53INP1+/+-MEFs, although not in TP53INP1-/--MEFs. However, their respective cell-cycle checkpoints were not different. Therefore, TP53INP1 was found to be associated with drug sensitivity through control of the cell cycle.
Collapse
Affiliation(s)
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa
| | - Hideo Nakajima
- Department of Medical Oncology ; Department of Oncology, Ageo Central General Hospital, Ageo, Saitama, Japan
| | - Manabu Murakami
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa
| | | | - Takanobu Takata
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa
| | - Mamoru Ozaki
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa
| | | | | | | |
Collapse
|
23
|
Wei Q, Li YX, Liu M, Li X, Tang H. MiR-17-5p targets TP53INP1 and regulates cell proliferation and apoptosis of cervical cancer cells. IUBMB Life 2012; 64:697-704. [PMID: 22730212 DOI: 10.1002/iub.1051] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/08/2012] [Accepted: 04/25/2012] [Indexed: 12/12/2022]
Abstract
MicroRNAs are a class of small endogenous noncoding RNAs that function as post-transcriptional regulators. Tumor protein p53-induced nuclear protein 1 (TP53INP1) is a p53 target gene and is a major player in the stress response. Here, we identified TP53INP1 as a target of miR-17-5p. miR-17-5p suppressed cell growth and promoted apoptosis of cervical cancer cells, whereas the effects of TP53INP1 were opposite, and ectopic expression of TP53INP1 counteracted the suppression of cell growth caused by miR-17-5p. The same correlations between miR-17-5p and TP53INP1 were observed in cervical cancer tissues. Together, these results indicated that miR-17-5p functions as a tumor suppressor in cervical cancer cells by targeting TP53INP1.
Collapse
Affiliation(s)
- Qian Wei
- Tianjin Life Science Research Center and Department of Microbiology, Basic Medical School, Tianjin Medical University, Tianjin, China
| | | | | | | | | |
Collapse
|
24
|
Shimasaki T, Ishigaki Y, Nakamura Y, Takata T, Nakaya N, Nakajima H, Sato I, Zhao X, Kitano A, Kawakami K, Tanaka T, Takegami T, Tomosugi N, Minamoto T, Motoo Y. Glycogen synthase kinase 3β inhibition sensitizes pancreatic cancer cells to gemcitabine. J Gastroenterol 2012; 47:321-33. [PMID: 22041920 DOI: 10.1007/s00535-011-0484-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 09/16/2011] [Indexed: 02/04/2023]
Abstract
BACKGROUND Pancreatic cancer is obstinate and resistant to gemcitabine, a standard chemotherapeutic agent for the disease. We previously showed a therapeutic effect of glycogen synthase kinase-3β (GSK3β) inhibition against gastrointestinal cancer and glioblastoma. Here, we investigated the effect of GSK3β inhibition on pancreatic cancer cell sensitivity to gemcitabine and the underlying molecular mechanism. METHODS Expression, phosphorylation, and activity of GSK3β in pancreatic cancer cells (PANC-1) were examined by Western immunoblotting and in vitro kinase assay. The combined effect of gemcitabine and a GSK3β inhibitor (AR-A014418) against PANC-1 cells was examined by isobologram and PANC-1 xenografts in mice. Changes in gene expression in PANC-1 cells following GSK3β inhibition were studied by cDNA microarray and reverse transcription (RT)-PCR. RESULTS PANC-1 cells showed increased GSK3β expression, phosphorylation at tyrosine 216 (active form), and activity compared with non-neoplastic HEK293 cells. Administration of AR-A014418 at pharmacological doses attenuated proliferation of PANC-1 cells and xenografts, and significantly sensitized them to gemcitabine. Isobologram analysis determined that the combined effect was synergistic. DNA microarray analysis detected GSK3β inhibition-associated changes in gene expression in gemcitabine-treated PANC-1 cells. Among these changes, RT-PCR and Western blotting showed that expression of tumor protein 53-induced nuclear protein 1, a gene regulating cell death and DNA repair, was increased by gemcitabine treatment and substantially decreased by GSK3β inhibition. CONCLUSIONS The results indicate that GSK3β inhibition sensitizes pancreatic cancer cells to gemcitabine with altered expression of genes involved in DNA repair. This study provides insight into the molecular mechanism of gemcitabine resistance and thus a new strategy for pancreatic cancer chemotherapy.
Collapse
Affiliation(s)
- Takeo Shimasaki
- Department of Medical Oncology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yee NS, Zhou W, Lee M, Yee RK. Targeted silencing of TRPM7 ion channel induces replicative senescence and produces enhanced cytotoxicity with gemcitabine in pancreatic adenocarcinoma. Cancer Lett 2011; 318:99-105. [PMID: 22166235 DOI: 10.1016/j.canlet.2011.12.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 11/29/2011] [Accepted: 12/05/2011] [Indexed: 12/26/2022]
Abstract
The transient receptor potential TRPM7 ion channel is required for cellular proliferation in pancreatic epithelia and adenocarcinoma. To elucidate the mechanism that mediates the function of TRPM7, we examined its role in survival of pancreatic cancer cells. RNA interference-mediated silencing of TRPM7 did not induce apoptotic cell death. TRPM7-deficient cells underwent replicative senescence with up-regulation of p16(CDKN2A) and WRN mRNA. The combination of anti-TRPM7 siRNA and gemcitabine produced enhanced cytotoxicity as compared to gemcitabine alone. Thus, TRPM7 is required for preventing senescence, and modulation of TRPM7 expression may help improve treatment response of pancreatic cancer by combining with apoptosis-inducing agents.
Collapse
Affiliation(s)
- Nelson S Yee
- Division of Hematology-Oncology, Department of Medicine, Penn State College of Medicine, Pennsylvania State University, 500 University Drive, Hershey, PA 17033, USA.
| | | | | | | |
Collapse
|
26
|
Jiang Y, DiVittore NA, Kaiser JM, Shanmugavelandy SS, Fritz JL, Heakal Y, Tagaram HRS, Cheng H, Cabot MC, Staveley-O'Carroll KF, Tran MA, Fox TE, Barth BM, Kester M. Combinatorial therapies improve the therapeutic efficacy of nanoliposomal ceramide for pancreatic cancer. Cancer Biol Ther 2011; 12:574-85. [PMID: 21795855 DOI: 10.4161/cbt.12.7.15971] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Poor prognosis cancers, such as pancreatic cancer, represent inherent challenges for ceramide-based nanotherapeutics due to metabolic pathways, which neutralize ceramide to less toxic or pro-oncogenic metabolites. We have recently developed a novel 80 nanometer diameter liposomal formulation that incorporates 30 molar percent C6-ceramide, a bioactive lipid that is pro-apoptotic to many cancer cells, but not to normal cells. In this manuscript, we evaluated the efficacy of combining nanoliposomal C6-ceramide (Lip-C6) with either gemcitabine or an inhibitor of glucosylceramide synthase. We first assessed the biological effect of Lip-C6 in PANC-1 cells, a gemcitabine-resistant human pancreatic cancer cell line, and found that low doses alone did not induce cell toxicity. However, cytotoxicity was achieved by combining Lip-C6 with either non-toxic sub-therapeutic concentrations of gemcitabine or with the glucosylceramide synthase inhibitor D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP). Furthermore, these combinations with Lip-C6 cooperatively inhibited PANC-1 tumor growth in vivo. Mechanistically, Lip-C6 inhibited pro-survival Akt and Erk signaling, whereas the nucleoside analog gemcitabine did not. Furthermore, by including PDMP within the nanoliposomes, which halted ceramide neutralization as evidenced by LC-MS3, the cytotoxic effects of Lip-C6 were enhanced. Collectively, we have demonstrated that nanoliposomal ceramide can be an effective anti-pancreatic cancer therapeutic in combination with gemcitabine or an inhibitor of ceramide neutralization.
Collapse
Affiliation(s)
- Yixing Jiang
- Department of Medicine, Penn State College of Medicine; Hershey, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Human SMG-1 is involved in gemcitabine-induced primary microRNA-155/BIC up-regulation in human pancreatic cancer PANC-1 cells. Pancreas 2011; 40:55-60. [PMID: 20871480 DOI: 10.1097/mpa.0b013e3181e89f74] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Human primary microRNA-155/B-cell integration cluster (BIC) transcript is the precursor of microRNA-155. The overexpression of them has been widely observed in the progression of various types of tumors. Our objective was to investigate the effect of anticancer agents on the expression of BIC and possible signal pathways that involved in. METHODS Quantitative real-time reverse transcriptase polymerase chain reaction was used to measure the expression of BIC. Chemical inhibitors against c-Jun N-terminal kinase 1, mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2, protein kinase C, checkpoint kinase 1, and phosphatidylinositol 3 kinase (PI3K) were used for the evaluation of involved signal pathways. RNA interference was used to knock down the expression of ataxia-telangiectasia mutated, ataxia-telangiectasia and Rad3 related, and suppressor of morphogenesis in genitalia-1 (SMG-1), and Western blot was carried out to evaluate the knockdown effect. RESULTS B-cell integration cluster expression was induced by a representative anti-pancreatic cancer drug, gemcitabine, in human pancreatic cancer PANC-1 cells. The mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 and c-Jun N-terminal kinase inhibitors, but not the checkpoint kinase 1 and protein kinase C inhibitors, suppressed the up-regulation of BIC. B-cell integration cluster up-regulation was also significantly inhibited by the PI3K inhibitor wortmannin. RNA interference studies showed that wortmannin-sensitive SMG-1 but not ataxia-telangiectasia mutated or ataxia-telangiectasia and Rad3 related was involved in the up-regulation. CONCLUSIONS Our results show that multiple pathways can be involved in the up-regulation of BIC. Furthermore, we demonstrate for the first time that PI3K SMG-1 is required for gemcitabine-induced up-regulation of BIC transcript.
Collapse
|
28
|
Leja-Szpak A, Jaworek J, Pierzchalski P, Reiter RJ. Melatonin induces pro-apoptotic signaling pathway in human pancreatic carcinoma cells (PANC-1). J Pineal Res 2010; 49:248-55. [PMID: 20626591 DOI: 10.1111/j.1600-079x.2010.00789.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Pancreatic cancer is a highly lethal disease with a poor prognosis for long-term survival rate at all stages of invasiveness. It responds poorly to radio- and chemotherapy because the tumor cells are resistant to apoptosis. Melatonin has been reported to inhibit pancreatic cancer growth in experimental studies in animals but the effect of melatonin on cultured human pancreatic carcinoma cells has not been tested. Moreover, we have recently shown that melatonin stimulates production of two major anti-apoptotic heat shock proteins, HSP27 and HSP 90, in pancreatic carcinoma cells. This study investigated the changes in intrinsic pathway of apoptosis at the mitochondrial level and cascade of caspases in human pancreatic carcinoma cells (PANC-1) cells subjected to melatonin and/or luzindole. Melatonin (10⁻⁸ -10⁻¹² m), the nonselective melatonin receptor antagonist, luzindole (10⁻⁸ -10⁻¹² m) or a combination of both agents were added to PANC-1 cell cultures. Cells were harvested, and the cytoplasmic proteins were isolated after 24 and 48 hr of incubation and analyzed employing co-immunoprecipitation and western blot. Administration of melatonin to the PANC-1 cells resulted in the stimulation of Bcl-2/Bax and caspase-9 proteins levels. The strongest signal of these pro-apoptotic factors was observed at the low concentration (10⁻¹² m) of melatonin. Pretreatment with luzindole alone and prior to the addition of melatonin reversed the stimulatory effect of this indoloamine on Bcl-2/Bax and caspase-9 proteins expression in PANC-1 cells. This is the first study to demonstrate a pro-apoptotic effect of low (physiological) concentration of melatonin on the pancreatic carcinoma cells. In conclusion, melatonin induced pro-apoptotic pathways in human pancreatic carcinoma, probably by interaction with the Mel-1 A/B receptors.
Collapse
Affiliation(s)
- Anna Leja-Szpak
- Faculty of Health Sciences, Department of Medical Physiology, Jagiellonian University School of Medicine, Krakow, Poland
| | | | | | | |
Collapse
|
29
|
Vandana M, Sahoo SK. Long circulation and cytotoxicity of PEGylated gemcitabine and its potential for the treatment of pancreatic cancer. Biomaterials 2010; 31:9340-56. [PMID: 20851464 DOI: 10.1016/j.biomaterials.2010.08.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/05/2010] [Indexed: 12/18/2022]
Abstract
Gemcitabine [2', 2'-difluoro-2'-deoxycytidine (dFdC)] is a low molecular weight, deoxycytidine analog inhibiting cellular DNA synthesis. Currently, it is the frontline drug approved by Food and Drug Administration (FDA) for the treatment of pancreatic cancer. However, efforts to use gemcitabine as an anti-cancer agent have been limited by its short circulation time and rapid metabolism that reflects in low tumor uptake and intracellular action. Polymer-drug conjugates, in this regard have spawned an approach to improve the cytotoxicity efficiency and bioavailability of gemcitabine by chemical modification. The present study describes the synthesis of a water soluble formulation of PEGylated gemcitabine characterized by FT IR, (1)H NMR and RP-HPLC chromatography. The PEGylated gemcitabine has a prolonged circulation time in plasma as studied in an animal model. This eventually caused a marked improvement in the cytotoxicity and apoptosis-inducing activity in pancreatic cancer cell lines (MIA PaCa 2 and PANC 1). Hence, these findings demonstrate the PEGylated gemcitabine is a desirable approach for therapy by intravenous administration. Successful clinical application of this approach can significantly contribute to the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Mallaredy Vandana
- Laboratory of Nanomedicine, Institute of Life Sciences, Nalco Square, Chandrasekarpur, Bhubaneswar, Orissa, India
| | | |
Collapse
|
30
|
Taïeb D, Giusiano S, Sebag F, Marcy M, de Micco C, Palazzo FF, Dusetti NJ, Iovanna JL, Henry JF, Garcia S, Taranger-Charpin C. Tumor protein p53-induced nuclear protein (TP53INP1) expression in medullary thyroid carcinoma: a molecular guide to the optimal extent of surgery? World J Surg 2010; 34:830-5. [PMID: 20145930 DOI: 10.1007/s00268-010-0395-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Medullary thyroid cancer (MTC) is characterized by early regional lymph node metastasis, the presence of which represents a critical obstacle to cure. At present no molecular markers have been successfully integrated into the clinical care of sporadic MTC. The present study was designed to evaluate TP53INP1 expression in MTC and to assess its ability to guide the surgeon to the optimal extent of surgery performed with curative intent. METHODS Thirty-eight patients with sporadic MTC were evaluated. TP53INP1 immunoexpression was studied on embedded paraffin material and on cytological smears. RESULTS TP53INP1 was expressed in normal C cells, in C-cell hyperplasia, and in 57.9% of MTC. It was possible to identify two groups of MTC according to the proportion of TP53INP1 expressing tumor cells: group 1 from 0% to <50% and group 2 from 50% to 100% of positive cells. Patients with a decreased expression of TP53INP1 (group 1) had a lower rate of nodal metastasis (18.8% versus 63.4% in group 2; P = 0.009), with only minimal lymph node involvement per N1 patient (2.7% of positive lymph nodes versus 22.9%; P < 0.001) and better outcomes (100% of biochemical cure versus 55.5%; P < 0.001). Patients with distant metastases were only observed in group 2. Cytological samples exhibit similar results to their embedded counterparts. CONCLUSIONS TP53INP1 immunoexpression appears to be a clinical predictor of lymph node metastasis in MTC. The evaluation of TP53INP1 expression may guide the extent of lymph node dissection in the clinically node-negative neck. These findings require prospective validation.
Collapse
Affiliation(s)
- D Taïeb
- INSERM U624 Stress Cellulaire, Parc Scientifique et Technologique de Luminy, Case 915, 13288, Marseille, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Huang XY, Wang HC, Yuan Z, Li A, He ML, Ai KX, Zheng Q, Qin HL. Gemcitabine combined with gum mastic causes potent growth inhibition and apoptosis of pancreatic cancer cells. Acta Pharmacol Sin 2010; 31:741-5. [PMID: 20523344 DOI: 10.1038/aps.2010.54] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AIM To investigate the antiproliferative and apoptotic effects of gemcitabine combined with gum mastic and the underlying mechanisms in human pancreatic cancer cell lines. METHODS Cell proliferation and apoptosis were examined using the methyl thiazolyl tetrazolium (MTT) assay and propidium iodine staining, respectively. The expression of Bcl-2, Bax, NF-kappaB p65 subunit, and IkappaBalpha protein was measured using Western blotting. RESULTS Gemcitabine 0.01-100 microg/mL inhibited cell proliferation and induced apoptosis in both pancreatic cancer BxPC-3 and COLO 357 cells. Gum mastic 40 microg/mL significantly potentiated the antiproliferative and apoptotic effects of gemcitabine 10 microg/mL after 72-h treatment. When cells were treated with gemcitabine in combination with gum mastic, the IkappaBalpha level was increased, whereas NF-kappaB activation was blocked; the expression of Bax protein was substantially increased, but Bcl-2 protein was down-regulated. CONCLUSION Gemcitabine combined with gum mastic causes potent apoptosis in pancreatic cancer cells. The combination may be an effective therapeutic strategy for pancreatic cancer.
Collapse
|
32
|
Zheng SJ, Zheng SP, Huang FY, Jiao CL, Wu RL. Synergistic anti-tumor effect of recombinant chicken fibroblast growth factor receptor-1-mediated anti-angiogenesis and low-dose gemcitabine in a mouse colon adenocarcinoma model. World J Gastroenterol 2007; 13:2484-9. [PMID: 17552033 PMCID: PMC4146768 DOI: 10.3748/wjg.v13.i17.2484] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate whether the combination of recom-binant chicken fibroblast growth factor receptor -1 (FGFR-1) protein vaccine (cFR-1) combined with low-dose gemcitabine would improve anti-tumor efficacy in a mouse CT26 colon adenocarcinoma (CT26) model.
METHODS: The CT26 model was established in BABL/c mice. Seven days after tumor cell injection, mice were randomly divided into four groups: combination therapy, cFR-1 alone, gemcitabine alone, and normal saline groups. Tumor growth, survival rate of tumor-bearing mice, and systemic toxicity were observed. The presence of anti-tumor auto-antibodies was detected by Western blot analysis and enzyme-linked immunospot assay, microvessel density (MVD) of the tumors and tumor cell proliferation were detected by Immunohistochemistry staining, and tumor cell apoptosis was detected by TdT-mediated biotinylated-dUTP nick end label staining.
RESULTS: The combination therapy results in apparent decreases in tumor volume, microvessel density and tumor cell proliferation, and an increase in apoptosis without obvious side-effects as compared with either therapy alone or normal control groups. Also, both auto-antibodies and the antibody-producing B cells against mouse FGFR-1 were detected in mice immunized with cFR-1 vaccine alone or with combination therapy, but not in non-immunized mice. In addition, the deposition of auto-antibodies on endothelial cells from mice immunized with cFR-1 was observed by immunofluorescent stain-ing, but not on endothelial cells from control groups. Synergistic indexes of tumor volume, MVD, cell apoptosis and proliferation in the combination therapy group were 1.71 vs 1.15 vs 1.11 and 1.04, respectively, 31 d after tumor cell injection.
CONCLUSION: The combination of cFR-1-mediated anti-angiogenesis and low-dose gemcitabine synergistically enhances the anti-tumor activity without overt toxicity in mice.
Collapse
Affiliation(s)
- Shao-Jiang Zheng
- Department of Pathology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | | | | | | | | |
Collapse
|
33
|
Gommeaux J, Cano C, Garcia S, Gironella M, Pietri S, Culcasi M, Pébusque MJ, Malissen B, Dusetti N, Iovanna J, Carrier A. Colitis and colitis-associated cancer are exacerbated in mice deficient for tumor protein 53-induced nuclear protein 1. Mol Cell Biol 2007; 27:2215-28. [PMID: 17242209 PMCID: PMC1820489 DOI: 10.1128/mcb.01454-06] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Tumor protein 53-induced nuclear protein 1 (TP53INP1) is an antiproliferative and proapoptotic protein involved in cell stress response. To address its physiological roles in colorectal cancer and colitis, we generated and tested the susceptibility of Trp53inp1-deficient mice to the development of colorectal tumors induced by injection of the carcinogen azoxymethane followed by dextran sulfate sodium (DSS)-induced chronic colitis. Trp53inp1-deficient mice showed an increased incidence and multiplicity of tumors compared to those of wild-type (WT) mice. Furthermore, acute colitis induced by DSS treatment was more severe in Trp53inp1-deficient mice than in WT mice. Treatment with the antioxidant N-acetylcysteine prevented colitis and colitis-associated tumorigenesis more efficiently in WT mice than in Trp53inp1-deficient mice, suggesting a higher oxidative load in the latter. Consistently, we demonstrated by electron spin resonance and spin trapping that colons derived from deficient mice produced more free radicals than those of the WT during colitis and that the basal blood level of the antioxidant ascorbate was decreased in Trp53inp1-deficient mice. Collectively, these results indicate that the oxidative load is higher in Trp53inp1-deficient mice than in WT mice, generating a more-severe DSS-induced colitis, which favors development of colorectal tumors in Trp53inp1-deficient mice. Therefore, TP53INP1 is a potential target for the prevention of colorectal cancer in patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Julien Gommeaux
- INSERM, U624 Stress cellulaire, 13288 Marseille Cedex 9, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|