1
|
Liu L, Xu H, Wang J, Wang H, Ren S, Huang Q, Zhang M, Zhou H, Yang C, Jia L, Huang Y, Zhang H, Tao Y, Li Y, Min Y. Trimethylamine-N-oxide (TMAO) and basic fibroblast growth factor (bFGF) are possibly involved in corticosteroid resistance in adult patients with immune thrombocytopenia. Thromb Res 2024; 233:25-36. [PMID: 37988847 DOI: 10.1016/j.thromres.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023]
Abstract
PURPOSE Immune thrombocytopenia (ITP) is an autoimmune disease characterized by accelerated platelet clearance. Gut dysbiosis was associated with its pathogenesis, but the underlying mechanisms have not been fully elucidated. Patients with ITP exhibit varying degrees of responsiveness to corticosteroid treatment. Therefore, prognostic indexes for corticosteroid responsiveness in ITP could offer valuable guidance for clinical practices. METHODS The present study examined the signature of six types of gut-microbiota metabolites and forty-eight types of cytokines, chemokines, and growth factors and their clinical significance in patients with ITP. RESULTS Both patients with good and poor corticosteroid responsiveness exhibited significantly elevated/suppressed secretion of twenty-two cyto(chemo)kins/growth factors in comparison to healthy controls. Additionally, patients with ITP demonstrated a significant decrease in plasma levels of trimethylamine-N-oxide (TMAO), which was found to be negatively correlated to circulating platelet counts, and positively correlated with Interleukin (IL)-1β and IL-18. Notably, patients who exhibited poor response to corticosteroid treatment displayed elevated levels of TMAO and basic fibroblast growth factor (bFGF) in comparison to responders. Additionally, we found that the amalgamation of TMAO, bFGF and interleukin (IL)-13 could serve as a valuable prognostic tool for predicting CS responsiveness. CONCLUSION Patients with ITP were characterized overall by an imbalanced secretion of cyto(cheo)kins/growth factors and inadequate levels of TMAO. The varying degrees of responsiveness to corticosteroid treatment can be attributed to different profiles of basic FGF and TMAO that might be related to overburdened oxidative stress and inflammasome overactivation, and ultimately mediate corticosteroid resistance.
Collapse
Affiliation(s)
- Lei Liu
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Huifang Xu
- Department of Clinical Medicine, Jining Medical University, Jining, China; Department of Pediatric Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Jian Wang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Haiyan Wang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Saisai Ren
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Qian Huang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Mingyan Zhang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Hui Zhou
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Chunyan Yang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Lu Jia
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yu Huang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Hao Zhang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yanling Tao
- Department of Pediatric Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Ying Li
- Department of Pediatric Hematology, Affiliated Hospital of Jining Medical University, Jining, China.
| | - Yanan Min
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China; Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
2
|
Kommareddy A, Vagha JD, Meshram RJ. Navigating the Landscape of Hydrocortisone Administration in Septic Shock: Current Concepts and Future Directions. Cureus 2023; 15:e49870. [PMID: 38169849 PMCID: PMC10758589 DOI: 10.7759/cureus.49870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
Sepsis remains a formidable challenge in critical care medicine, often culminating in a life-threatening condition known as septic shock. This review article navigates the intricate landscape of hydrocortisone administration in septic shock management, delving into historical perspectives, current evidence, controversies, mechanisms of action, practical considerations, and the importance of precision medicine. Hydrocortisone's role as an adjunctive therapy is explored, highlighting its potential to stabilize hemodynamics, mitigate the inflammatory response, and improve patient outcomes. However, debates persist regarding patient selection, dosing regimens, safety profiles, and long-term consequences. The future of septic shock management lies in emerging therapies, precision medicine approaches, biomarker discovery, and targeted interventions. Moving forward, exploring novel therapeutic avenues, understanding patient-specific responses, and uncovering potential biomarkers will be crucial in advancing septic shock treatment strategies. Clinical guidelines provide a foundation, but individualized patient care, interdisciplinary collaboration, and ongoing research are essential to optimize treatment strategies. This article underscores the call for continued research and evidence-based practice as we strive to enhance the care of septic shock patients and pursue improved outcomes in this critical condition. Embracing future developments in the field will enable us to adapt and refine our approach, ultimately contributing to the advancement of septic shock management.
Collapse
Affiliation(s)
- Anirudh Kommareddy
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Jayant D Vagha
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Revat J Meshram
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
3
|
Khantakova JN, Mutovina A, Ayriyants KA, Bondar NP. Th17 Cells, Glucocorticoid Resistance, and Depression. Cells 2023; 12:2749. [PMID: 38067176 PMCID: PMC10706111 DOI: 10.3390/cells12232749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Depression is a severe mental disorder that disrupts mood and social behavior and is one of the most common neuropsychological symptoms of other somatic diseases. During the study of the disease, a number of theories were put forward (monoamine, inflammatory, vascular theories, etc.), but none of those theories fully explain the pathogenesis of the disease. Steroid resistance is a characteristic feature of depression and can affect not only brain cells but also immune cells. T-helper cells 17 type (Th17) are known for their resistance to the inhibitory effects of glucocorticoids. Unlike the inhibitory effect on other subpopulations of T-helper cells, glucocorticoids can enhance the differentiation of Th17 lymphocytes, their migration to the inflammation, and the production of IL-17A, IL-21, and IL-23 in GC-resistant disease. According to the latest data, in depression, especially the treatment-resistant type, the number of Th17 cells in the blood and the production of IL-17A is increased, which correlates with the severity of the disease. However, there is still a significant gap in knowledge regarding the exact mechanisms by which Th17 cells can influence neuroinflammation in depression. In this review, we discuss the mutual effect of glucocorticoid resistance and Th17 lymphocytes on the pathogenesis of depression.
Collapse
Affiliation(s)
- Julia N. Khantakova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia; (K.A.A.); (N.P.B.)
| | - Anastasia Mutovina
- Department of Natural Sciences, Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia;
| | - Kseniya A. Ayriyants
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia; (K.A.A.); (N.P.B.)
| | - Natalia P. Bondar
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia; (K.A.A.); (N.P.B.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia;
| |
Collapse
|
4
|
Spina R, Ropars A, Bouazzi S, Dadi S, Lemiere P, Dupire F, Khiralla A, Yagi S, Frippiat JP, Laurain-Mattar D. Screening of Anti-Inflammatory Activity and Metabolomics Analysis of Endophytic Fungal Extracts; Identification and Characterization of Perylenequinones and Terpenoids from the Interesting Active Alternaria Endophyte. Molecules 2023; 28:6531. [PMID: 37764307 PMCID: PMC10534442 DOI: 10.3390/molecules28186531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Patients suffering from inflammatory chronic diseases are classically treated with anti-inflammatory drugs but unfortunately are highly susceptible to becoming resistant to their treatment. Finding new drugs is therefore crucial and urgent and research on endophytic fungi is a promising way forward. Endophytic fungi are microorganisms that colonize healthy plants and live within their intercellular tissues. They are able to produce a large variety of secondary metabolites while allowing their host to stay healthy. A number of these molecules are endowed with antioxidant or antimicrobial as well as cytotoxic properties, making them very interesting/promising in the field of human therapy. The aim of our study was to investigate whether extracts from five endophytic fungi isolated from plants are endowed with anti-inflammatory activity. Extracts of the endophytic fungi Alternaria alternata from Calotropis procera leaves and Aspergillus terreus from Trigonella foenum-graecum seeds were able to counteract the lipopolysaccharide (LPS) pro-inflammatory effect on THP-1 cells differentiated into macrophages. Moreover, they were able to induce an anti-inflammatory state, rendering them less sensitive to the LPS pro-inflammatory stimulus. Taken together, these results show that these both endophytic fungi could be interesting alternatives to conventional anti-inflammatory drugs. To gain more detailed knowledge of their chemical richness, phytochemical analysis of the ethyl acetate extracts of the five endophytic fungi studied was performed using HPTLC, GC-MS and LC-MS with the Global Natural Products Social (GNPS) platform and the MolNetEnhancer tool. A large family of metabolites (carboxylic acids and derivatives, steroid derivatives, alkaloids, hydroxyanthraquinones, valerolactones and perylenequinones) were detected. The purification of endophytic fungus extract of Alternaria alternate, which diminished TNF-α production of 66% at 20 µg/mL, incubated one hour before LPS addition, led to the characterization of eight pure compounds. These molecules are altertoxins I, II, III, tricycloalternarenes 3a, 1b, 2b, anthranilic acid, and o-acetamidobenzoic acid. In the future, all these pure compounds will be evaluated for their anti-inflammatory activity, while altertoxin II has been shown in the literature as the most active mycotoxin in terms of anti-inflammatory activity.
Collapse
Affiliation(s)
- Rosella Spina
- Université de Lorraine, INRAE, LAE, F-54000 Nancy, France;
| | - Armelle Ropars
- Université de Lorraine, SIMPA, F-54000 Nancy, France; (A.R.); (J.-P.F.)
| | - Sihem Bouazzi
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (S.B.); (S.D.); (P.L.); (F.D.)
| | - Safa Dadi
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (S.B.); (S.D.); (P.L.); (F.D.)
| | - Pascal Lemiere
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (S.B.); (S.D.); (P.L.); (F.D.)
| | - François Dupire
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (S.B.); (S.D.); (P.L.); (F.D.)
| | - Afra Khiralla
- Botany Department, Faculty of Sciences and Technologies, Shendi University, Shendi 11111, Sudan;
| | - Sakina Yagi
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum 11115, Sudan;
| | - Jean-Pol Frippiat
- Université de Lorraine, SIMPA, F-54000 Nancy, France; (A.R.); (J.-P.F.)
| | | |
Collapse
|
5
|
Duan S, Yang Y, Cao Y, Chen P, Liang C, Zhang Y. Symptoms of anxiety and depression associated with steroid efficacy and clinical outcomes in patients with inflammatory bowel disease. Front Psychiatry 2023; 14:1029467. [PMID: 37547213 PMCID: PMC10400767 DOI: 10.3389/fpsyt.2023.1029467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Background Anxiety and depression symptoms are very common in patients with inflammatory bowel disease (IBD). We aimed to explore the impact of anxiety and depression on the efficacy of medications, as well as IBD-related poor outcomes. Method This was a prospective longitudinal observational study. Hospital Anxiety and Depression Scale was used to assess anxiety and depression symptoms. Logistic regression analyses were used to assess the association between anxiety/depression and the response to different medications. Kaplan-Meier survival analysis and Cox regression model were applied to analyze the relationship between anxiety/depression and IBD-related poor outcomes, which were defined as urgent IBD-related hospitalization, IBD-related surgery, or death. Results A total of 325 IBD patients were enrolled, 118 of whom were treated with corticosteroids, 88 with azathioprine/6-mercaptopurine (AZA/6-MP), and 147 with anti-TNF agents. Anxiety/depression symptoms were found to be significantly related to steroid resistance, but independent of AZA/6-MP and anti-TNF agents nonresponse. There was a significant association between anxiety/depression symptoms and IBD-related poor outcomes. Coexisting with anxiety/depression symptoms was an independent influencing factor of steroid resistance and IBD-related poor outcomes. Conclusion IBD patients with anxiety/depression symptoms were at a higher risk of developing steroid resistance and IBD-related poor outcomes. Future studies are needed to explore whether interventions for anxiety and depression will improve their response to medications and change their prognosis.
Collapse
|
6
|
Turolo S, Edefonti A, Syren ML, Montini G. Pharmacogenomics of Old and New Immunosuppressive Drugs for Precision Medicine in Kidney Transplantation. J Clin Med 2023; 12:4454. [PMID: 37445489 DOI: 10.3390/jcm12134454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Kidney transplantation is the preferred therapeutic option for end-stage kidney disease, but, despite major therapeutic advancements, allograft rejection continues to endanger graft survival. Every patient is unique due to his or her clinical history, drug metabolism, genetic background, and epigenetics. For this reason, examples of "personalized medicine" and "precision medicine" have steadily increased in recent decades. The final target of precision medicine is to maximize drug efficacy and minimize toxicity for each individual patient. Immunosuppressive drugs, in the setting of kidney transplantation, require a precise dosage to avoid either adverse events (overdosage) or a lack of efficacy (underdosage). In this review, we will explore the knowledge regarding the pharmacogenomics of the main immunosuppressive medications currently utilized in kidney transplantation. We will focus on clinically relevant pharmacogenomic data, that is, the polymorphisms of the genes that metabolize immunosuppressive drugs.
Collapse
Affiliation(s)
- Stefano Turolo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pediatric Nephrology, Dialysis and Transplant Unit, 20122 Milan, Italy
| | - Alberto Edefonti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pediatric Nephrology, Dialysis and Transplant Unit, 20122 Milan, Italy
| | - Marie Luise Syren
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Giovanni Montini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pediatric Nephrology, Dialysis and Transplant Unit, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|
7
|
Padoan A, Musso G, Contran N, Basso D. Inflammation, Autoinflammation and Autoimmunity in Inflammatory Bowel Diseases. Curr Issues Mol Biol 2023; 45:5534-5557. [PMID: 37504266 PMCID: PMC10378236 DOI: 10.3390/cimb45070350] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
In this review, the role of innate and adaptive immunity in the pathogenesis of inflammatory bowel diseases (IBD) is reported. In IBD, an altered innate immunity is often found, with increased Th17 and decreased Treg cells infiltrating the intestinal mucosa. An associated increase in inflammatory cytokines, such as IL-1 and TNF-α, and a decrease in anti-inflammatory cytokines, such as IL-10, concur in favoring the persistent inflammation of the gut mucosa. Autoinflammation is highlighted with insights in the role of inflammasomes, which activation by exogenous or endogenous triggers might be favored by mutations of NOD and NLRP proteins. Autoimmunity mechanisms also take place in IBD pathogenesis and in this context of a persistent immune stimulation by bacterial antigens and antigens derived from intestinal cells degradation, the adaptive immune response takes place and results in antibodies and autoantibodies production, a frequent finding in these diseases. Inflammation, autoinflammation and autoimmunity concur in altering the mucus layer and enhancing intestinal permeability, which sustains the vicious cycle of further mucosal inflammation.
Collapse
Affiliation(s)
- Andrea Padoan
- Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Giulia Musso
- Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Nicole Contran
- Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Daniela Basso
- Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| |
Collapse
|
8
|
Nascimento M, Teixeira ES, Dal' Bó IF, Peres KC, Rabi LT, Cury AN, Cançado NA, Miklos ABPP, Schwengber F, Bufalo NE, Ward LS. NR3C1 rs6198 Variant May Be Involved in the Relationship of Graves' Disease with Stressful Events. Biomedicines 2023; 11:biomedicines11041155. [PMID: 37189773 DOI: 10.3390/biomedicines11041155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/28/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Although stressful events are known to trigger Graves' disease (GD), the mechanisms involved in this process are not well understood. The NR3C1 gene, encoding for the glucocorticoid receptor (GR), presents single nucleotide polymorphisms (SNPs) that are associated with stress-related diseases. To investigate the relationship between NR3C1 SNPs, GD susceptibility, and clinical features, we studied 792 individuals, including 384 patients, among which 209 presented with Graves' orbitopathy (GO), and 408 paired healthy controls. Stressful life events were evaluated in a subset of 59 patients and 66 controls using the IES-R self-report questionnaire. SNPs rs104893913, rs104893909, and rs104893911 appeared at low frequencies and presented similar profiles in patients and controls. However, variant forms of rs6198 were rarer in GD patients, suggesting a protective effect. Stressful events were more common in patients than controls, and were reported to have clearly occurred immediately before the onset of GD symptoms in 23 cases. However, no association was found between these events and rs6198 genotypes or GD/GO characteristics. We suggest that the NR3C1 rs6198 polymorphism may be an important protective factor against GD, but its relationship with stressful events needs further investigation.
Collapse
Affiliation(s)
- Matheus Nascimento
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, SP, Brazil
| | - Elisângela Souza Teixeira
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, SP, Brazil
| | - Izabela Fernanda Dal' Bó
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, SP, Brazil
| | - Karina Colombera Peres
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, SP, Brazil
| | - Larissa Teodoro Rabi
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, SP, Brazil
- Department of Biomedicine, Nossa Senhora do Patrocínio University Center (CEUNSP), Itu 13300-200, SP, Brazil
- Institute of Health Sciences, Paulista University (UNIP), Campinas 13043-900, SP, Brazil
| | - Adriano Namo Cury
- Unit of Endocrinology and Metabolism, Santa Casa de Misericórdia de São Paulo, São Paulo 01221-010, SP, Brazil
- Discipline of Endocrinology, School of Medical Sciences of Santa Casa de São Paulo (FCMSC-SP), Sao Paulo 01221-010, SP, Brazil
| | - Natália Amaral Cançado
- Unit of Endocrinology and Metabolism, Santa Casa de Misericórdia de São Paulo, São Paulo 01221-010, SP, Brazil
- Discipline of Endocrinology, School of Medical Sciences of Santa Casa de São Paulo (FCMSC-SP), Sao Paulo 01221-010, SP, Brazil
| | - Ana Beatriz Pinotti Pedro Miklos
- Endocrinology and Metabology Service of the Institute of Medical Assistance to State Civil Servants (IAMSPE), São Paulo 04029-000, SP, Brazil
| | - Fernando Schwengber
- Endocrinology and Metabology Service of the Institute of Medical Assistance to State Civil Servants (IAMSPE), São Paulo 04029-000, SP, Brazil
| | - Natássia Elena Bufalo
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, SP, Brazil
- Department of Medicine, Max Planck University Center, Indaiatuba 13343-060, SP, Brazil
- Department of Medicine, São Leopoldo Mandic and Research Center, Campinas 13045-755, SP, Brazil
| | - Laura Sterian Ward
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, SP, Brazil
| |
Collapse
|
9
|
Characterization of Biological Properties of Individual Phenolamides and Phenolamide-Enriched Leaf Tomato Extracts. Molecules 2023; 28:molecules28041552. [PMID: 36838541 PMCID: PMC9966281 DOI: 10.3390/molecules28041552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Resistance to conventional treatments renders urgent the discovery of new therapeutic molecules. Plant specialized metabolites such as phenolamides, a subclass of phenolic compounds, whose accumulation in tomato plants is mediated by the biotic and abiotic environment, constitute a source of natural molecules endowed with potential antioxidant, antimicrobial as well as anti-inflammatory properties. The aim of our study was to investigate whether three major phenolamides found in Tuta absoluta-infested tomato leaves exhibit antimicrobial, cytotoxic and/or anti-inflammatory properties. One of them, N1,N5,N14-tris(dihydrocaffeoyl)spermine, was specifically synthesized for this study. The three phenolamides showed low to moderate antibacterial activities but were able to counteract the LPS pro-inflammatory effect on THP-1 cells differentiated into macrophages. Extracts made from healthy but not T. absoluta-infested tomato leaf extracts were also able to reduce inflammation using the same cellular approach. Taken together, these results show that phenolamides from tomato leaves could be interesting alternatives to conventional drugs.
Collapse
|
10
|
Luo J, Wang Y, Dong X, Wang W, Mu Y, Sun Y, Zhang F, Miao Y. miR-642a-5p increases glucocorticoid sensitivity by suppressing the TLR4 signalling pathway in THP-1 cells. Biochem Biophys Rep 2022; 32:101356. [PMID: 36186733 PMCID: PMC9519937 DOI: 10.1016/j.bbrep.2022.101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
The incidence rate of ulcerative colitis (UC) is increasing annually, and glucocorticoid (GC) resistance (GCR) is a common cause of UC-induced remission failure. Our previous studies have shown that the expression of miR-642a-5p is downregulated in UC with GCR, suggesting that miR-642a-5p may be related to the GC response. Therefore, we investigated the mechanism by which miR-642a-5p regulates the GC response in THP-1 cells. We found that after treatment with miR-642a-5p mimics and DEX, the expression levels of glucocorticoid receptor (GR) in the nucleus and NF-κB p65 and p50 in the cytoplasm were increased (P < 0.05). miR-642a-5p mimics transfected into THP-1 cells could synergize with dexamethasone (DEX) to reduce lipopolysaccharide (LPS)-induced inflammatory factor levels such as TNF-α, IL-1β, IL-6 and IL-12 (P < 0.05). Bioinformatics analysis and luciferase reporter assays confirmed that TLR4 is a target gene of miR-642a-5p. miR-642a-5p mimic pretreatment enhanced the inhibitory effect of DEX on TLR4 induced by LPS and inhibited the expression of TLR4 on the cell surface (P < 0.05). Additionally, miR-642a-5p further prevented the nuclear import of NF-κB P65 and inhibited the phosphorylation of ERK, p38 and JNK. These results suggest that miR-642a-5p can inhibit the inflammation by suppressing the TLR4 signalling pathway in THP-1 cells. It also highlights the TLR4 signalling pathway as a potential therapeutic target in anti-inflammation. miR-642a-5p can inhibit the TLR4 signalling pathway induced by LPS and increase the glucocorticoid sensitivity in THP-1 cells.
Collapse
|
11
|
Bruscoli S, Puzzovio PG, Zaimi M, Tiligada K, Levi-Schaffer F, Riccardi C. Glucocorticoids and COVID-19. Pharmacol Res 2022; 185:106511. [PMID: 36243331 PMCID: PMC9556882 DOI: 10.1016/j.phrs.2022.106511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 12/15/2022]
Abstract
Coronavirus Disease 19 (COVID-19) is associated with high morbidity and mortality rates globally, representing the greatest health and economic challenge today. Several drugs are currently approved for the treatment of COVID-19. Among these, glucocorticoids (GCs) have received particular attention due to their anti-inflammatory and immunosuppressive effects. In fact, GC are widely used in current clinical practice to treat inflammatory, allergic and autoimmune diseases. Major mechanisms of GC action include inhibition of innate and adaptive immune activity. In particular, an important role is played by the inhibition of pro-inflammatory cytokines and chemokines, and the induction of proteins with anti-inflammatory activity. Overall, as indicated by various national and international regulatory agencies, GCs are recommended for the treatment of COVID-19 in patients requiring oxygen therapy, with or without mechanical ventilation. Regarding the use of GCs for the COVID-19 treatment of non-hospitalized patients at an early stage of the disease, many controversial studies have been reported and regulatory agencies have not recommended their use. The decision to start GC therapy should be based not only on the severity of COVID-19 disease, but also on careful considerations of the benefit/risk profile in individual patients, including monitoring of adverse events. In this review we summarize the effects of GCs on the major cellular and molecular components of the inflammatory/immune system, the benefits and the adverse common reactions in the treatment of inflammatory/autoimmune diseases, as well as in the management of COVID-19.
Collapse
Affiliation(s)
- Stefano Bruscoli
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Pier Giorgio Puzzovio
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maria Zaimi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Tiligada
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Carlo Riccardi
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy.
| |
Collapse
|
12
|
Functional and Structural Impact of Deleterious Missense Single Nucleotide Polymorphisms in the NR3C1, CYP3A5, and TNF-α Genes: An In Silico Analysis. Biomolecules 2022; 12:biom12091307. [PMID: 36139147 PMCID: PMC9496109 DOI: 10.3390/biom12091307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Human diseases are generally influenced by SNPs (single nucleotide polymorphisms). The mutations in amino acid residues generated by deleterious SNPs contribute to the structural and functional diversity of the encoded protein. Tumor necrosis factor-α (TNF-α), Glucocorticoid receptor gene (NR3C1), and Cytochrome P450 3A5 (CYP3A5) play a key role in glucocorticoid resistance susceptibility in humans. Possible causative mutations could be used as therapeutic targets and diagnostic markers for glucocorticoid resistance. This study evaluated the missense SNPs of TNF-α, NR3C1, and CYP3A5 to predict their impact on amino acid changes, protein interaction, and functional stability. The protein sequence of dbSNP was obtained and used online in silico method to screen deleterious mutants for the in silico analysis. In the coding regions of TNF-α, NR3C1, and CYP3A5, 14 deleterious mutations were discovered. The protein functional and stability changes in the amino acid between native and mutant energy were identified by analyzing the changes in the hydrogen bonding of these mutants from native, which were all measured using Swiss PDB and PyMOL. F446S and R439K had the highest root-mean-square deviation (RMSD) values among the 14 deleterious mutants. Additionally, the conserved region of amino acid protein interaction was analyzed. This study could aid in the discovery of new detrimental mutations in TNF-α, NR3C1, and CYP3A5, as well as the development of long-term therapy for corticosteroid resistance in several inflammatory diseases. However, more research into the deleterious mutations of the TNF-α, NR3C1, and CYP3A5 genes is needed to determine their role in corticosteroid resistance.
Collapse
|
13
|
Regulation of the Intestinal Extra-Adrenal Steroidogenic Pathway Component LRH-1 by Glucocorticoids in Ulcerative Colitis. Cells 2022; 11:cells11121905. [PMID: 35741034 PMCID: PMC9221003 DOI: 10.3390/cells11121905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) and can be treated with glucocorticoids (GC), although some patients are unresponsive to this therapy. The transcription factor LRH-1/NR5A2 is critical to intestinal cortisol production (intestinal steroidogenesis), being reduced in UC patients. However, the relationship between LRH-1 expression and distribution with altered corticosteroid responses is unknown. To address this, we categorized UC patients by their steroid response. Here, we found that steroid-dependent and refractory patients presented reduced glucocorticoid receptor (GR)-mediated intestinal steroidogenesis compared to healthy individuals and responder patients, possibly related to increased colonic mucosa GR isoform beta (GRβ) content and cytoplasmic LRH-1 levels in epithelial and lamina propria cells. Interestingly, an intestinal epithelium-specific GR-induced knockout (GRiKO) dextran sodium sulfate (DSS)-colitis mice model presented decreased epithelial LRH-1 expression, whilst it increased in the lamina propria compared to DSS-treated control mice. Mechanistically, GR directly induced NR5A2 gene expression in CCD841CoN cells and human colonic organoids. Furthermore, GR bound to two glucocorticoid-response elements within the NR5A2 promoter in dexamethasone-stimulated CCD841CoN cells. We conclude that GR contributes to intestinal steroidogenesis by inducing LRH-1 in epithelial cells, suggesting LRH-1 as a potential marker for glucocorticoid-impaired response in UC. However, further studies with a larger patient cohort will be necessary to confirm role of LRH-1 as a therapeutic biomarker.
Collapse
|
14
|
Chen Z, Hao W, Gao C, Zhou Y, Zhang C, Zhang J, Wang R, Wang Y, Wang S. A polyphenol-assisted IL-10 mRNA delivery system for ulcerative colitis. Acta Pharm Sin B 2022; 12:3367-3382. [PMID: 35967288 PMCID: PMC9366313 DOI: 10.1016/j.apsb.2022.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
With the development of synthesis technology, modified messenger RNA (mRNA) has emerged as a novel category of therapeutic agents for a broad of diseases. However, effective intracellular delivery of mRNA remains challenging, especially for its sensitivity to enzymatic degradation. Here, we propose a polyphenol-assisted handy delivery strategy for efficient in vivo delivery of IL-10 mRNA. IL-10 mRNA binds to polyphenol ellagic acid through supramolecular binding to yield a negatively charged core, followed by complexing with linear polyetherimide and coating with bilirubin-modified hyaluronic acid to obtain a layer-by-layer nanostructure. The nanostructure specifically up-regulated the level of IL-10, effectively inhibited the expression of inflammatory factors, promoted mucosal repair, protected colonic epithelial cells against apoptosis, and exerted potent therapeutic efficacy in dextran sulfate sodium salt-induced acute and chronic murine models of colitis. The designed delivery system without systemic toxicity has the potential to facilitate the development of a promising platform for mRNA delivery in ulcerative colitis treatment.
Collapse
Affiliation(s)
- Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macau 999078, China
| | - Wei Hao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macau 999078, China
| | - Caifang Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yangyang Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Chen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macau 999078, China
- Corresponding authors. Tel./fax: +853 88228559 (Shengpeng Wang), +853 88224691 (Yitao Wang).
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macau 999078, China
- Corresponding authors. Tel./fax: +853 88228559 (Shengpeng Wang), +853 88224691 (Yitao Wang).
| |
Collapse
|
15
|
Chang JY, Cheon JH. Pharmacogenetics-based personalized treatment in patients with inflammatory bowel disease: A review. PRECISION AND FUTURE MEDICINE 2021. [DOI: 10.23838/pfm.2021.00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The development of treatment options has revolutionized the prognosis of inflammatory bowel disease (IBD). However, a particular group of patients still experience therapeutic failure or drug side effects. Although the high inter-patient variability in therapy is associated with clinical factors, including age, disease behavior, and disease duration, they attribute only a small proportion of inter-individual variability. Thus, pharmacogenetics evaluating associations between specific genetic variations and drug responses or side effects have focused on optimizing therapeutic efficacy and minimizing toxicity in IBD treatment. Thiopurine S-methyltransferase (TPMT) and nudix hydrolase 15 (NUDT15) are well-established predictive markers of thiopurine-induced myelosuppression. Low TPMT activity is related to increased 6-thioguanine nucleotide levels, subsequently leading to myelotoxicity. NUDT15 variants are strongly associated with thiopurine-induced early leukopenia in Asians, with a lower incidence of TPMT-deficient allele. The Korean Association for the Study of Intestinal Diseases guidelines recommend pretreatment determination of NUDT15 genotypes, especially in East Asians, and NUDT15 R139C measurement has been approved for clinical use since 2019. Several studies have attempted to identify powerful genetic markers for personalized medicine. In this article, we review the identified pharmacogenetics of currently available drugs, focusing on 5-aminosalicylic acid, glucocorticosteroids, thiopurines, and anti-tumor necrosis factor-alpha agents.
Collapse
|
16
|
Motavalli R, Majidi T, Pourlak T, Abediazar S, Shoja MM, Zununi Vahed S, Etemadi J. The clinical significance of the glucocorticoid receptors: Genetics and epigenetics. J Steroid Biochem Mol Biol 2021; 213:105952. [PMID: 34274458 DOI: 10.1016/j.jsbmb.2021.105952] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 12/14/2022]
Abstract
The impacts of glucocorticoids (GCs) are mainly mediated by a nuclear receptor (GR) existing in almost every tissue. The GR regulates a wide range of physiological functions, including inflammation, cell metabolism, and differentiation playing a major role in cellular responses to GCs and stress. Therefore, the dysregulation or disruption of GR can cause deficiencies in the adaptation to stress and the preservation of homeostasis. The number of GR polymorphisms associated with different diseases has been mounting per year. Tackling these clinical complications obliges a comprehensive understanding of the molecular network action of GCs at the level of the GR structure and its signaling pathways. Beyond genetic variation in the GR gene, epigenetic changes can enhance our understanding of causal factors involved in the development of diseases and identifying biomarkers. In this review, we highlight the relationships of GC receptor gene polymorphisms and epigenetics with different diseases.
Collapse
Affiliation(s)
- Roza Motavalli
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taraneh Majidi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tala Pourlak
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Abediazar
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali M Shoja
- Clinical Academy of Teaching and Learning, Ross University School of Medicine, Miramar, FL, USA
| | | | - Jalal Etemadi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Sevilla LM, Jiménez-Panizo A, Alegre-Martí A, Estébanez-Perpiñá E, Caelles C, Pérez P. Glucocorticoid Resistance: Interference between the Glucocorticoid Receptor and the MAPK Signalling Pathways. Int J Mol Sci 2021; 22:10049. [PMID: 34576214 PMCID: PMC8465023 DOI: 10.3390/ijms221810049] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
Endogenous glucocorticoids (GCs) are steroid hormones that signal in virtually all cell types to modulate tissue homeostasis throughout life. Also, synthetic GC derivatives (pharmacological GCs) constitute the first-line treatment in many chronic inflammatory conditions with unquestionable therapeutic benefits despite the associated adverse effects. GC actions are principally mediated through the GC receptor (GR), a ligand-dependent transcription factor. Despite the ubiquitous expression of GR, imbalances in GC signalling affect tissues differently, and with variable degrees of severity through mechanisms that are not completely deciphered. Congenital or acquired GC hypersensitivity or resistance syndromes can impact responsiveness to endogenous or pharmacological GCs, causing disease or inadequate therapeutic outcomes, respectively. Acquired GC resistance is defined as loss of efficacy or desensitization over time, and arises as a consequence of chronic inflammation, affecting around 30% of GC-treated patients. It represents an important limitation in the management of chronic inflammatory diseases and cancer, and can be due to impairment of multiple mechanisms along the GC signalling pathway. Among them, activation of the mitogen-activated protein kinases (MAPKs) and/or alterations in expression of their regulators, the dual-specific phosphatases (DUSPs), have been identified as common mechanisms of GC resistance. While many of the anti-inflammatory actions of GCs rely on GR-mediated inhibition of MAPKs and/or induction of DUSPs, the GC anti-inflammatory capacity is decreased or lost in conditions of excessive MAPK activation, contributing to disease susceptibility in tissue- and disease- specific manners. Here, we discuss potential strategies to modulate GC responsiveness, with the dual goal of overcoming GC resistance and minimizing the onset and severity of unwanted adverse effects while maintaining therapeutic potential.
Collapse
Affiliation(s)
- Lisa M. Sevilla
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain;
| | - Alba Jiménez-Panizo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain; (A.J.-P.); (A.A.-M.); (E.E.-P.)
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
| | - Andrea Alegre-Martí
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain; (A.J.-P.); (A.A.-M.); (E.E.-P.)
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
| | - Eva Estébanez-Perpiñá
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain; (A.J.-P.); (A.A.-M.); (E.E.-P.)
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
| | - Carme Caelles
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona (UB), 08028 Barcelona, Spain
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain;
| |
Collapse
|
18
|
Demir I, Pehlivan S, Okan V, Sahin HH, Durusoy SS, Serin I, Oyaci Y, Pehlivan M. Effect of the uncoupling protein-2 (UCP-2) and nuclear receptor subfamily 3 group C member 1 (NR3C1) genes on treatment efficacy and survival in patients with multiple myeloma: a single-center study. BMC Res Notes 2021; 14:346. [PMID: 34481515 PMCID: PMC8418283 DOI: 10.1186/s13104-021-05758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/23/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Studies on the genetic background of patients with multiple myeloma (MM) have been increasing; two important factors considered in such works are uncoupling protein-2 (UCP-2) and nuclear receptor subfamily 3 group C member 1 (NR3C1). We aim to reveal the association of MM with NR3C1 and UCP-2 gene polymorphisms. In this prospective study, 200 patients diagnosed between January 2009 and 2018 and 200 healthy individuals were included. For patients who had undergone autologous stem cell transplantation and control subjects, we statistically compared the CC, GC, and GG genotypes and the C and G alleles of the NR3C1 gene, as well as the AA, AG, and GG genotypes and the A and G alleles of the UCP-2 gene. RESULTS While the AA genotype was significantly more common in the MM group (p = 0.001), the GG genotype was significantly more common in the control group (p = 0.016). Overall survival was found to be significantly shorter in patients with the UCP-2 GG genotype (p = 0.034). It was also found that having the GG genotype of the UCP-2 gene was a 2.48-fold risk factor for mortality. The fact that overall survival is significantly shorter in MM patients with the UCP-2 GG genotype and its definition as a risk factor for mortality have been put forward for the first time in the literature.
Collapse
Affiliation(s)
- Ilknur Demir
- Department of Internal Medicine, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Sacide Pehlivan
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Vahap Okan
- Department of Hematology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | | | - Salih Sertaç Durusoy
- Department of Hematology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Istemi Serin
- Department of Hematology, University of Health Sciences, Istanbul Training and Research Hospital, Org. Nafiz Gurman Cad., Fatih, 34098, Istanbul, Turkey.
| | - Yasemin Oyaci
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mustafa Pehlivan
- Department of Hematology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey.,Department of Hematology, University of Health Sciences, Istanbul Training and Research Hospital, Org. Nafiz Gurman Cad., Fatih, 34098, Istanbul, Turkey
| |
Collapse
|
19
|
Lucafò M, Bramuzzo M, Selvestrel D, Da Lozzo P, Decorti G, Stocco G. Gender May Influence the Immunosuppressive Actions of Prednisone in Young Patients With Inflammatory Bowel Disease. Front Immunol 2021; 12:673068. [PMID: 34054855 PMCID: PMC8158435 DOI: 10.3389/fimmu.2021.673068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022] Open
Abstract
Although the use of glucocorticoids (GC) is well established, the therapeutic response to these agents often shows important interindividual differences, in particular among young patients with inflammatory bowel diseases (IBD). Currently, GC resistance or dependence cannot be predicted by clinical or laboratory findings. The aim of this study was to investigate the association of gender and age with GC efficacy and with the expression of Glucocorticoid-Induced Leucine Zipper (GILZ). One hundred thirty patients (mean age at enrolment 12.6 years, 53 Crohn’s disease, 70 males) were enrolled in this retrospective study. IBD patients with active disease despite prednisone at a daily dose of up to 2 mg/kg over a period of 4 weeks were defined as steroid resistant. Patients who initially responded but relapsed upon dose reduction were considered steroid-dependent. Total RNA was extracted from biopsies of 14 patients (9 males) and the levels of GILZ mRNA were evaluated by real-time PCR. Association between clinical response to prednisone and the considered demographic variables was evaluated using logistic regression models. After 4 weeks of treatment, 112 patients were responders to prednisone and 18 were resistant; at this time-point, resistant patients were older than responders (p=0.032). After 12 weeks, 42, 71 and 12 patients were sensitive, dependent and resistant respectively; at this time-point, females were more prone than males to develop prednisone dependence vs a good response (p=0.028) while age had no effect. Age was associated with response both at 4 and 12 weeks in the subgroups of females: resistant patients were older than sensitive ones at 4 weeks (p=0.02). Likewise, at 12 weeks of therapy, dependent patients resulted older than sensitive ones (p=0.05). No association of age with prednisone response was found in males. In a subgroup of 14 patients (5 females), GILZ mRNA expression in intestinal biopsies was higher in males (p=0.0031). Patients with unfavorable response (7) presented lower GILZ expression at disease onset in comparison to the responder group (p=0.017). Older females with IBD have a higher incidence of prednisone unfavorable response and reduced intestinal expression of the GC pharmacodynamic marker GILZ.
Collapse
Affiliation(s)
- Marianna Lucafò
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Matteo Bramuzzo
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | | | - Prisca Da Lozzo
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Giuliana Decorti
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
20
|
Corticosteroid enhances epithelial barrier function in intestinal organoids derived from patients with Crohn's disease. J Mol Med (Berl) 2021; 99:805-815. [PMID: 33575854 PMCID: PMC8164603 DOI: 10.1007/s00109-021-02045-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
Abstract Corticosteroids (CS), first-line therapeutics for Crohn’s disease (CD) with moderate or severe disease activity, were found to restore intestinal permeability in CD patients, whereas the underlying molecular events are still largely unknown. This study aimed to investigate the effect and mechanisms of CS prednisolone on epithelial barrier using CD patient-derived intestinal organoids. 3D intestinal organoids were generated from colon biopsies of inactive CD patients. To mimic the inflammatory microenvironment, a mixture of cytokines containing TNF-α, IFN-γ, and IL-1β were added to the organoid culture with or without pre-incubation of prednisolone or mifepristone. Epithelial permeability of the organoids was assessed by FITC-D4 flux from the basal to luminal compartment using confocal microscopy. Expression of junctional components were analyzed by qRT-PCR, immunofluorescence staining, and western blot. Activity of signaling pathways were analyzed using western blot. Exposure of the cytokines significantly disrupted epithelial barrier of the intestinal organoids, which was partially restored by prednisolone. On the molecular level, the cytokine mixture resulted in a significant reduction in E-cadherin and ILDR-1, an increase in CLDN-2, MLCK, and STAT1 phosphorylation, whereas prednisolone ameliorated the abovementioned effects induced by the cytokine mixture. This study demonstrates that prednisolone confers a direct effect in tightening the epithelial barrier, identifies novel junctional targets regulated by prednisolone, and underscores intestinal barrier restoration as a potential mechanism that contributes to the clinical efficacy of prednisolone in CD patients. Key messages Prednisolone confers a direct preventive effect against cytokine-induced barrier dysfunction. Prednisolone regulates the expression of CLDN-2, E-cadherin, and ILDR-1. The effect of prednisolone is GR-, MLCK-, and STAT1-dependent.
Supplementary Information The online version contains supplementary material available at 10.1007/s00109-021-02045-7.
Collapse
|
21
|
Treveil A, Sudhakar P, Matthews ZJ, Wrzesiński T, Jones EJ, Brooks J, Ölbei M, Hautefort I, Hall LJ, Carding SR, Mayer U, Powell PP, Wileman T, Di Palma F, Haerty W, Korcsmáros T. Regulatory network analysis of Paneth cell and goblet cell enriched gut organoids using transcriptomics approaches. Mol Omics 2021; 16:39-58. [PMID: 31819932 DOI: 10.1039/c9mo00130a] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The epithelial lining of the small intestine consists of multiple cell types, including Paneth cells and goblet cells, that work in cohort to maintain gut health. 3D in vitro cultures of human primary epithelial cells, called organoids, have become a key model to study the functions of Paneth cells and goblet cells in normal and diseased conditions. Advances in these models include the ability to skew differentiation to particular lineages, providing a useful tool to study cell type specific function/dysfunction in the context of the epithelium. Here, we use comprehensive profiling of mRNA, microRNA and long non-coding RNA expression to confirm that Paneth cell and goblet cell enrichment of murine small intestinal organoids (enteroids) establishes a physiologically accurate model. We employ network analysis to infer the regulatory landscape altered by skewing differentiation, and using knowledge of cell type specific markers, we predict key regulators of cell type specific functions: Cebpa, Jun, Nr1d1 and Rxra specific to Paneth cells, Gfi1b and Myc specific for goblet cells and Ets1, Nr3c1 and Vdr shared between them. Links identified between these regulators and cellular phenotypes of inflammatory bowel disease (IBD) suggest that global regulatory rewiring during or after differentiation of Paneth cells and goblet cells could contribute to IBD aetiology. Future application of cell type enriched enteroids combined with the presented computational workflow can be used to disentangle multifactorial mechanisms of these cell types and propose regulators whose pharmacological targeting could be advantageous in treating IBD patients with Crohn's disease or ulcerative colitis.
Collapse
Affiliation(s)
- A Treveil
- Earlham Institute, Norwich Research Park, Norwich, Norfolk NR4 7UZ, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Skrzypczak-Zielinska M, Gabryel M, Marszalek D, Dobrowolska A, Slomski R. NGS study of glucocorticoid response genes in inflammatory bowel disease patients. Arch Med Sci 2021; 17:417-433. [PMID: 33747278 PMCID: PMC7959014 DOI: 10.5114/aoms.2019.84470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/03/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Despite intensive research and a long history of glucocorticoids being applied in various clinical areas, they still generate a challenge for personalized medicine by causing resistance or dependence in nearly 50% of patients treated. The objective of the present study was to determine the genetic predictors of variable reactions in inflammatory bowel disease patients to glucocorticoid therapy. Therefore, based on the current knowledge on how glucocorticoids act, we have compiled a panel of 21 genes for variant analysis: NR3C1, NLRP1, IPO13, FKBP5, HSPA4, ABCB1, STIP1, HSP90AA1, IL-1A, IL-1B, IL-2, IL-4, CXCL8, IL-10, NFKBIA, JUN, MIF, TNF, MAPK14, CYP3A4, and CYP3A5. MATERIAL AND METHODS These genes were analyzed using the amplicon next-generation sequencing method in a group of 139 diagnosed and clinically characterized inflammatory bowel disease patients with a confirmed glucocorticoid response. RESULTS Analysis of all the targeted DNA sequences for the whole patient group indicated 121 different functional variants. After association analyses of 31 selected variants, the polymorphism c.1088A>G in the NR3C1 gene was linked with glucocorticoid resistance (p = 0.002), variant c.241+6A>G of the FKBP5 gene with glucocorticoid sensitivity (p = 0.040), and deletion c.306-7delT in the MAPK14 gene with an adverse therapeutic effect (dependency and resistance, p = 0.041) in ulcerative colitis patients. In Crohn's disease, the change c.2685+49T>C of the ABCB1 gene related to glucocorticoid resistance (p = 0.034). CONCLUSIONS Among the 21 analyzed genes, four (NR3C1, FKBP5, MAPK14, and ABCB1) revealed a significant impact on the glucocorticoid treatment response, which could result in valuable pharmacogenetic biomarkers after being confirmed in other populations and in functional studies.
Collapse
Affiliation(s)
| | - Marcin Gabryel
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Daria Marszalek
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Ryszard Slomski
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
23
|
Khedri M, Samei A, Fasihi-Ramandi M, Taheri RA. The immunopathobiology of T cells in stress condition: a review. Cell Stress Chaperones 2020; 25:743-752. [PMID: 32319022 PMCID: PMC7479667 DOI: 10.1007/s12192-020-01105-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
Several factors impact the immune responses such as the chemical nature of antigens, the physiologic and metabolic condition of the responsive cells, the site of antigen recognition, and neuroendocrine and pharmacological received agents. Incompatibility of host immune responses to the entrapped antigens leads to an immune pathological manner instead of an immune protection which results in the disharmony of the immune effective factors. Besides the fact that stress is one of the most common effective factors in human life, it also contributed to the protection, suppression, and pathology of the immune system. In this review article, the direct and indirect effects of the stress on the function of T cells and the contributed mechanism of action will be discussed.
Collapse
Affiliation(s)
- Mostafa Khedri
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Azam Samei
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Lucafò M, Franzin M, Decorti G, Stocco G. A patent review of anticancer glucocorticoid receptor modulators (2014-present). Expert Opin Ther Pat 2020; 30:313-324. [PMID: 32148111 DOI: 10.1080/13543776.2020.1740206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Introduction: Natural and synthetic glucocorticoids are widely employed in different diseases, among which are hematological and solid tumors. Their use is however associated with a number of serious side effects and by the occurrence of resistance. With the aim of separating their gene transactivating effect, more linked to side effects, from transrepressive properties, associated with therapeutic efficacy, a number of selective glucocorticoid modulators have been identified.Areas covered: This review summarizes the patent applications from 2014 to present in the field of selective glucocorticoid receptor modulators employed in cancer therapy. Only few patents have been identified, that concern the identification of new molecules or the method of use of already patented compounds. In addition, a discussion of the mechanism of action of these compounds is included.Expert opinion: Only a very limited number of patents have been applied that concern selective glucocorticoid receptor modulators and their use in cancer. Biological information is scarce for most of these patents; more research is necessary in this field in particular concerning clinical data in order to understand whether it is actually possible to improve the efficacy and therapeutic index of these compounds in cancer therapy.
Collapse
Affiliation(s)
- Marianna Lucafò
- Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
| | - Martina Franzin
- PhD Course in Reproductive and Developmental Sciences, University of Trieste, Trieste, Italy
| | - Giuliana Decorti
- Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
25
|
Scherholz ML, Schlesinger N, Androulakis IP. Chronopharmacology of glucocorticoids. Adv Drug Deliv Rev 2019; 151-152:245-261. [PMID: 30797955 DOI: 10.1016/j.addr.2019.02.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/24/2018] [Accepted: 02/13/2019] [Indexed: 12/30/2022]
Abstract
Glucocorticoids influence a wide array of metabolic, anti-inflammatory, immunosuppressive, and cognitive signaling processes, playing an important role in homeostasis and preservation of normal organ function. Synthesis is regulated by the hypothalamic-pituitary-adrenal (HPA) axis of which cortisol is the primary glucocorticoid in humans. Synthetic glucocorticoids are important pharmacological agents that augment the anti-inflammatory and immunosuppressive properties of endogenous cortisol and are widely used for the treatment of asthma, Crohn's disease, and rheumatoid arthritis, amongst other chronic conditions. The homeostatic activity of cortisol is disrupted by the administration of synthetic glucocorticoids and so there is interest in developing treatment options that minimize HPA axis disturbance while maintaining the pharmacological effects. Studies suggest that optimizing drug administration time can achieve this goal. The present review provides an overview of endogenous glucocorticoid activity and recent advances in treatment options that have further improved patient safety and efficacy with an emphasis on chronopharmacology.
Collapse
|
26
|
Ahmed A, Schmidt C, Brunner T. Extra-Adrenal Glucocorticoid Synthesis in the Intestinal Mucosa: Between Immune Homeostasis and Immune Escape. Front Immunol 2019; 10:1438. [PMID: 31316505 PMCID: PMC6611402 DOI: 10.3389/fimmu.2019.01438] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids (GCs) are steroid hormones predominantly produced in the adrenal glands in response to physiological cues and stress. Adrenal GCs mediate potent anti-inflammatory and immunosuppressive functions. Accumulating evidence in the past two decades has demonstrated other extra-adrenal organs and tissues capable of synthesizing GCs. This review discusses the role and regulation of GC synthesis in the intestinal epithelium in the regulation of normal immune homeostasis, inflammatory diseases of the intestinal mucosa, and the development of intestinal tumors.
Collapse
Affiliation(s)
- Asma Ahmed
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Pharmacology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Christian Schmidt
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
27
|
Smutny T, Barvik I, Veleta T, Pavek P, Soukup T. Genetic Predispositions of Glucocorticoid Resistance and Therapeutic Outcomes in Polymyalgia Rheumatica and Giant Cell Arteritis. J Clin Med 2019; 8:jcm8050582. [PMID: 31035618 PMCID: PMC6572549 DOI: 10.3390/jcm8050582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/04/2022] Open
Abstract
Polymyalgia rheumatica (PMR) and giant cell arteritis (GCA) are closely related chronic inflammatory diseases. Glucocorticoids (GCs) are first-choice drugs for PMR and GCA, although some patients show poor responsiveness to the initial GC regimen or experience flares after GC tapering. To date, no valid biomarkers have been found to predict which patients are at most risk for developing GC resistance. In this review, we summarize PMR- and GCA-related gene polymorphisms and we associate these gene variants with GC resistance and therapeutic outcomes. A limited number of GC resistance associated-polymorphisms have been published so far, mostly related to HLA-DRB1*04 allele. Other genes such ICAM-1, TLR4 and 9, VEGF, and INFG may play a role, although discrepancies are often found among different populations. We conclude that more studies are required to identify reliable biomarkers of GC resistance. Such biomarkers could help distinguish non-responders from responders to GC treatment, with concomitant consequences for therapeutic strategy.
Collapse
Affiliation(s)
- Tomas Smutny
- Department of Pharmacology and Toxicology, Centre for Drug Development, Faculty of Pharmacy in Hradec Kralove, Charles University, 500 05 Hradec Kralove, Czech Republic.
| | - Ivan Barvik
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, 121 16 Prague, Czech Republic.
| | - Tomas Veleta
- Department of Emergency Medicine, University Hospital in Hradec Kralove, 500 05 Hradec Kralove, Czech Republic.
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Centre for Drug Development, Faculty of Pharmacy in Hradec Kralove, Charles University, 500 05 Hradec Kralove, Czech Republic.
| | - Tomas Soukup
- Division of Rheumatology, 2nd Department of Internal Medicine⁻Gastroenterology, Faculty of Medicine in Hradec Kralove, Charles University and University Hospital in Hradec Kralove, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
28
|
Schijvens AM, Ter Heine R, de Wildt SN, Schreuder MF. Pharmacology and pharmacogenetics of prednisone and prednisolone in patients with nephrotic syndrome. Pediatr Nephrol 2019; 34:389-403. [PMID: 29549463 PMCID: PMC6349812 DOI: 10.1007/s00467-018-3929-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/19/2018] [Accepted: 02/19/2018] [Indexed: 01/29/2023]
Abstract
Nephrotic syndrome is one of the most common glomerular disorders in childhood. Glucocorticoids have been the cornerstone of the treatment of childhood nephrotic syndrome for several decades, as the majority of children achieves complete remission after prednisone or prednisolone treatment. Currently, treatment guidelines for the first manifestation and relapse of nephrotic syndrome are mostly standardized, while large inter-individual variation is present in the clinical course of disease and side effects of glucocorticoid treatment. This review describes the mechanisms of glucocorticoid action and clinical pharmacokinetics and pharmacodynamics of prednisone and prednisolone in nephrotic syndrome patients. However, these mechanisms do not account for the large inter-individual variability in the response to glucocorticoid treatment. Previous research has shown that genetic factors can have a major influence on the pharmacokinetic and dynamic profile of the individual patient. Therefore, pharmacogenetics may have a promising role in personalized medicine for patients with nephrotic syndrome. Currently, little is known about the impact of genetic polymorphisms on glucocorticoid response and steroid-related toxicities in children with nephrotic syndrome. Although the evidence is limited, the data summarized in this study do suggest a role for pharmacogenetics to improve individualization of glucocorticoid therapy. Therefore, studies in larger cohorts with nephrotic syndrome patients are necessary to draw final conclusions about the influence of genetic polymorphisms on the glucocorticoid response and steroid-related toxicities to ultimately implement pharmacogenetics in clinical practice.
Collapse
Affiliation(s)
- Anne M Schijvens
- Department of Pediatric Nephrology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, 804, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Rob Ter Heine
- Department of Pharmacy, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, 804, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
29
|
Ferrara G, Petrillo MG, Giani T, Marrani E, Filippeschi C, Oranges T, Simonini G, Cimaz R. Clinical Use and Molecular Action of Corticosteroids in the Pediatric Age. Int J Mol Sci 2019; 20:ijms20020444. [PMID: 30669566 PMCID: PMC6359239 DOI: 10.3390/ijms20020444] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/19/2022] Open
Abstract
Corticosteroids are the mainstay of therapy for many pediatric disorders and sometimes are life-saving. Both endogenous and synthetic derivatives diffuse across the cell membrane and, by binding to their cognate glucocorticoid receptor, modulate a variety of physiological functions, such as glucose metabolism, immune homeostasis, organ development, and the endocrine system. However, despite their proved and known efficacy, corticosteroids show a lot of side effects, among which growth retardation is of particular concern and specific for pediatric age. The aim of this review is to discuss the mechanism of action of corticosteroids, and how their genomic effects have both beneficial and adverse consequences. We will focus on the use of corticosteroids in different pediatric subspecialties and most common diseases, analyzing the most recent evidence.
Collapse
Affiliation(s)
| | - Maria Grazia Petrillo
- Signal Transduction laboratory, NIEHS, NIH, Department of Health and Human Services, Research Triangle Park, Durham, NC 27709, USA.
| | - Teresa Giani
- Pediatric Rheumatology, Anna Meyer Children University Hospital, 50139 Florence, Italy.
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy.
| | | | - Cesare Filippeschi
- Department of Dermatology, Anna Meyer Children's University Hospital, 50139 Florence, Italy.
| | - Teresa Oranges
- Department of Dermatology, Anna Meyer Children's University Hospital, 50139 Florence, Italy.
| | - Gabriele Simonini
- Pediatric Rheumatology, Anna Meyer Children University Hospital, 50139 Florence, Italy.
| | - Rolando Cimaz
- Pediatric Rheumatology, Anna Meyer Children University Hospital, 50139 Florence, Italy.
| |
Collapse
|
30
|
Lucafò M, Franca R, Selvestrel D, Curci D, Pugnetti L, Decorti G, Stocco G. Pharmacogenetics of treatments for inflammatory bowel disease. Expert Opin Drug Metab Toxicol 2018; 14:1209-1223. [PMID: 30465611 DOI: 10.1080/17425255.2018.1551876] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Inflammatory bowel disease is a chronic inflammation of the gut whose pathogenesis is still unclear. Although no curative therapy is currently available, a number of drugs are used in induction and maintenance therapy; however, for most of these drugs, a high inter-individual variability in response is observed. Among the factors of this variability, genetics plays an important role. Areas covered: This review summarizes the results of pharmacogenetic studies, considering the most important drugs used and in particular aminosalycilates, glucocorticoids, thiopurines, monoclonal antibodies and thalidomide. Most studies used a candidate gene approach, even if significant breakthroughs have been obtained recently from applying genome-wide studies. When available, also investigations considering epigenetics and pharmacogenetic dosing guidelines have been included. Expert opinion: Only for thiopurines, genetic markers identified as predictors of efficacy or adverse events have allowed the development of dosing guidelines. For the other drugs, encouraging results are available and great expectations rely on the study of epigenetics and integration with pharmacokinetic information, especially useful for biologics. However, to improve therapy of IBD patients with these drugs, for implementation in the clinics of pharmacogenetics, informatic clinical decision support systems and training about pharmacogenetics of health providers are needed.
Collapse
Affiliation(s)
- Marianna Lucafò
- a Experimental and Clinical Pharmacology Unit , National Cancer Institute - Centro di Riferimento Oncologico , Aviano , Italy.,b Institute for Maternal and Child Health IRCCS Burlo Garofolo , Diagnostics Department Trieste , Italy
| | - Raffaella Franca
- b Institute for Maternal and Child Health IRCCS Burlo Garofolo , Diagnostics Department Trieste , Italy.,c Department of Medical, Surgical and Health Sciences , University of Trieste , Trieste , Italy
| | - Davide Selvestrel
- d PhD School in Science of Reproduction and Development , University of Trieste , Trieste , Italy
| | - Debora Curci
- d PhD School in Science of Reproduction and Development , University of Trieste , Trieste , Italy
| | - Letizia Pugnetti
- d PhD School in Science of Reproduction and Development , University of Trieste , Trieste , Italy
| | - Giuliana Decorti
- b Institute for Maternal and Child Health IRCCS Burlo Garofolo , Diagnostics Department Trieste , Italy.,c Department of Medical, Surgical and Health Sciences , University of Trieste , Trieste , Italy
| | - Gabriele Stocco
- e Department of Life Sciences , University of Trieste , Trieste , Italy
| |
Collapse
|
31
|
Hemperly A, Sandborn WJ, Vande Casteele N. Clinical Pharmacology in Adult and Pediatric Inflammatory Bowel Disease. Inflamm Bowel Dis 2018; 24:2527-2542. [PMID: 29788338 PMCID: PMC11187819 DOI: 10.1093/ibd/izy189] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Indexed: 12/14/2022]
Abstract
This review describes the clinical pharmacology of the major drugs used for the treatment of patients with inflammatory bowel disease (IBD). Pharmacokinetics, drug metabolism, mechanism of action, efficacy, and safety profile are discussed. Some small molecules were developed to act systemically (eg, ozanimod) or locally (eg, aminosalicylates) and thus have disparate pharmacokinetic properties. In addition, locally acting compounds have been optimized to mitigate systemic exposure-eg, budesonide, which undergoes extensive first-pass metabolism-thereby reducing systemic bioavailability and side effects. Other small molecules such as thiopurines are precursors of their active metabolites and differences in genotype or phenotype of metabolizing enzymes may affect efficacy and safety, requiring therapeutic drug monitoring (TDM). Monoclonal antibodies (MAs) are large molecules administered parenterally, and their pharmacokinetics may be influenced not only by the general immunoglobulin (Ig) G metabolism and recycling pathways but also by antigen properties such as antigen distribution and antigen concentration. In addition, antibody structure, host factors, concurrent medications, and immunogenicity may contribute to the substantial inter- and intrapatient variability in drug exposure and response observed for MAs. Current guidelines recommend reactive TDM of tumor necrosis factor antagonists at the time of loss of response. Evidence for proactive TDM and for the role of TDM for biologics with a different mechanism of action is emerging. Although small molecules offer potential benefits over biologics with oral administration and lack of immunogenicity, there may be risk for more systemic side effects due to off-target binding. Understanding drug metabolism, pharmacokinetic characteristics, and mechanism of action are important in selecting the right drug at the right time at the right dose for patients with IBD.10.1093/ibd/izy189_video1izy189.video15786062223001.
Collapse
Affiliation(s)
- Amy Hemperly
- Department of Pediatric Gastroenterology, La Jolla, California
| | - William J Sandborn
- Department of Medicine, Division of Gastroenterology, University of California San Diego, La Jolla, California
| | - Niels Vande Casteele
- Department of Pediatric Gastroenterology, La Jolla, California
- Department of Medicine, Division of Gastroenterology, University of California San Diego, La Jolla, California
| |
Collapse
|
32
|
Miyake MM, Nocera A, Miyake MM. P-glycoprotein and chronic rhinosinusitis. World J Otorhinolaryngol Head Neck Surg 2018; 4:169-174. [PMID: 30506047 PMCID: PMC6251952 DOI: 10.1016/j.wjorl.2018.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 11/13/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is a heterogeneous definition that includes different disease states that usually are associated with abnormal inflammatory responses. Besides being prevalent, the mechanisms involved in its pathogenesis are not clear and there are few therapeutic options with tolerable side effects. P-glycoprotein (P-gp) is an efflux pump responsible of extruding xenobiotics and cellular metabolites from multiple cell types. It has been widely studied in the cancer field, due to its ability to confer resistance to chemotherapy. It also promotes Type 2 helper T-cell polarizing cytokine secretion in CRS and may represent a potential target to differentiate subtypes of CRS and personalize treatment. This state-of-the-art review explores current knowledge on the participation of P-gp in the pathogenesis of CRS, the P-gp inhibition as a novel targeted therapeutic strategy and the exosomal P-gp test, a non-invasive biomarker that can represent an important advance in the field of rhinology.
Collapse
Affiliation(s)
- Marcel M Miyake
- Department of Otolaryngology, Santa Casa de Sao Paulo School of Medical Sciences, RuaDoutorCesário Motta Júnior, 61 - Vila Buarque, São Paulo, SP, 01221-020, Brazil
| | - Angela Nocera
- Department of Otolaryngology, Division of Rhinology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles St, Boston, MA, 02114, USA
| | - Michelle M Miyake
- Department of Otolaryngology, Santa Casa de Sao Paulo School of Medical Sciences, RuaDoutorCesário Motta Júnior, 61 - Vila Buarque, São Paulo, SP, 01221-020, Brazil
| |
Collapse
|
33
|
De Iudicibus S, Lucafò M, Vitulo N, Martelossi S, Zimbello R, De Pascale F, Forcato C, Naviglio S, Di Silvestre A, Gerdol M, Stocco G, Valle G, Ventura A, Bramuzzo M, Decorti G. High-Throughput Sequencing of microRNAs in Glucocorticoid Sensitive Paediatric Inflammatory Bowel Disease Patients. Int J Mol Sci 2018; 19:ijms19051399. [PMID: 29738455 PMCID: PMC5983624 DOI: 10.3390/ijms19051399] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 01/02/2023] Open
Abstract
The aim of this research was the identification of novel pharmacogenomic biomarkers for better understanding the complex gene regulation mechanisms underpinning glucocorticoid (GC) action in paediatric inflammatory bowel disease (IBD). This goal was achieved by evaluating high-throughput microRNA (miRNA) profiles during GC treatment, integrated with the assessment of expression changes in GC receptor (GR) heterocomplex genes. Furthermore, we tested the hypothesis that differentially expressed miRNAs could be directly regulated by GCs through investigating the presence of GC responsive elements (GREs) in their gene promoters. Ten IBD paediatric patients responding to GCs were enrolled. Peripheral blood was obtained at diagnosis (T0) and after four weeks of steroid treatment (T4). MicroRNA profiles were analyzed using next generation sequencing, and selected significantly differentially expressed miRNAs were validated by quantitative reverse transcription-polymerase chain reaction. In detail, 18 miRNAs were differentially expressed from T0 to T4, 16 of which were upregulated and 2 of which were downregulated. Out of these, three miRNAs (miR-144, miR-142, and miR-96) could putatively recognize the 3’UTR of the GR gene and three miRNAs (miR-363, miR-96, miR-142) contained GREs sequences, thereby potentially enabling direct regulation by the GR. In conclusion, we identified miRNAs differently expressed during GC treatment and miRNAs which could be directly regulated by GCs in blood cells of young IBD patients. These results could represent a first step towards their translation as pharmacogenomic biomarkers.
Collapse
Affiliation(s)
- Sara De Iudicibus
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", 34127 Trieste, Italy.
| | - Marianna Lucafò
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Nicola Vitulo
- Department of Biotechnology, University of Verona, 37100 Verona, Italy.
| | - Stefano Martelossi
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", 34127 Trieste, Italy.
| | - Rosanna Zimbello
- CRIBI Biotechnology Centre, University of Padua, 35100 Padua, Italy.
| | - Fabio De Pascale
- CRIBI Biotechnology Centre, University of Padua, 35100 Padua, Italy.
| | - Claudio Forcato
- CRIBI Biotechnology Centre, University of Padua, 35100 Padua, Italy.
| | - Samuele Naviglio
- PhD School in Science of Reproduction and Development, University of Trieste, 34127 Trieste, Italy.
| | - Alessia Di Silvestre
- PhD School in Science of Reproduction and Development, University of Trieste, 34127 Trieste, Italy.
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Giorgio Valle
- CRIBI Biotechnology Centre, University of Padua, 35100 Padua, Italy.
| | - Alessandro Ventura
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", 34127 Trieste, Italy.
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Matteo Bramuzzo
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", 34127 Trieste, Italy.
| | - Giuliana Decorti
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", 34127 Trieste, Italy.
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
| |
Collapse
|
34
|
Different Gene Expressions of Alpha and Beta Glucocorticoid Receptors in Asthmatics. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:790-800. [PMID: 29881435 PMCID: PMC5985195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The response to glucocorticoids (GCs) therapy classifies severe refractory asthma (SRA) and mild asthma, so the glucocorticoid receptors (GCRs) gene expression may be involved in SRA pathogenesis. Thus, it is aimed to compare the expression levels of two GCR isoforms (GCRα and GCRβ) in SRA, mild asthmatics, and healthy controls. Total RNA was isolated from the peripheral blood mononuclear lymphocytes of 13 SRA patients, 14 mild asthma patients and 30 healthy volunteers. The expression levels of GCR isoforms were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR). The expression level of GCR isoforms did not show any significant difference between the cases/control groups. However, the relative expression analysis between asthma/control, SRA/control and SRA/asthma groups was in the order of 0.933, 0.768 and 0.823 for GCRα and 0.697, 1.014 and 1.454 for GCRβ, respectively. Also, the expression fold change of GCRα/GCRβ in asthma, SRA and control groups was 786.88, 445.72 and 588.13, respectively. The GCRα and GCRβ isoforms did not show any correlation in SRA; but they had significant correlation in both healthy volunteers (r = 0.490, P = 0.007) and mild asthmatics (r = 0.786, P = 0.001). Also, the GCRα expression level had significant inverse correlation with age in SRA (r = -0.709, P = 0.007). Glucocorticoid receptors are related to, but not directly responsible for GC resistance. Since the GCRα/GCRβ expression ratio decreased in SRA, studies are needed to assess its value in diagnosing GC resistance.
Collapse
|
35
|
Izadi F, Soheilifar MH. Exploring Potential Biomarkers Underlying Pathogenesis of Alzheimer's Disease by Differential Co-expression Analysis. Avicenna J Med Biotechnol 2018; 10:233-241. [PMID: 30555656 PMCID: PMC6252023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Alzheimer's Disease (AD) is the most common form of dementia in the elderly. Due to the facts that biological causes of AD are complex in addition to increasing rates of AD worldwide, a deeper understanding of AD etiology is required for AD treatment and diagnosis. METHODS To identify molecular pathological alterations in AD brains, GSE36980 series containing microarray data samples from temporal cortex, frontal cortex and hippocampus were downloaded from Gene Expression Omnibus (GEO) database and valid gene symbols were subjected to building a gene co-expression network by a bioinformatics tool known as differential regulation from differential co-expression (DCGL) software package. Then, a network-driven integrative analysis was performed to find significant genes and underlying biological terms. RESULTS A total of 17088 unique genes were parsed into three independent differential co-expression networks. As a result, a small number of differentially co-regulated genes mostly in frontal and hippocampus lobs were detected as potential biomarkers related to AD brains. Ultimately differentially co-regulated genes were enriched in biological terms including response to lipid and fatty acid and pathways mainly signaling pathway such as G-protein signaling pathway and glutamate receptor groups II and III. By conducting co-expression analysis, our study identified multiple genes that may play an important role in the pathogenesis of AD. CONCLUSION The study aimed to provide a systematic understanding of the potential relationships among these genes and it is hoped that it could aid in AD biomarker discovery.
Collapse
Affiliation(s)
- Fereshteh Izadi
- Department of Genetics, Evolution and Environment, Darwin Building, University College London (UCL), London, UK,Corresponding author: Fereshteh Izadi, PhD, Department of Genetics, Evolution and Environment, Darwin Building, University College London (UCL), Gower Street, London WC1E 6BT, UK, Tel: +44 7846280861, E-mail:
| | | |
Collapse
|
36
|
Muñoz-Carrillo JL, Muñoz-López JL, Muñoz-Escobedo JJ, Maldonado-Tapia C, Gutiérrez-Coronado O, Contreras-Cordero JF, Moreno-García MA. Therapeutic Effects of Resiniferatoxin Related with Immunological Responses for Intestinal Inflammation in Trichinellosis. THE KOREAN JOURNAL OF PARASITOLOGY 2017; 55:587-599. [PMID: 29320813 PMCID: PMC5776891 DOI: 10.3347/kjp.2017.55.6.587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/22/2017] [Accepted: 11/12/2017] [Indexed: 01/06/2023]
Abstract
The immune response against Trichinella spiralis at the intestinal level depends on the CD4+ T cells, which can both suppress or promote the inflammatory response through the synthesis of diverse cytokines. During the intestinal phase, the immune response is mixed (Th1/Th2) with the initial predominance of the Th1 response and the subsequent domination of Th2 response, which favor the development of intestinal pathology. In this context, the glucocorticoids (GC) are the pharmacotherapy for the intestinal inflammatory response in trichinellosis. However, its therapeutic use is limited, since studies have shown that treatment with GC suppresses the host immune system, favoring T. spiralis infection. In the search for novel pharmacological strategies that inhibit the Th1 immune response (proinflammatory) and assist the host against T. spiralis infection, recent studies showed that resiniferatoxin (RTX) had anti-inflammatory activity, which decreased the serum levels of IL-12, INF-γ, IL-1β, TNF-α, NO, and PGE2, as well the number of eosinophils in the blood, associated with decreased intestinal pathology and muscle parasite burden. These researches demonstrate that RTX is capable to inhibit the production of Th1 cytokines, contributing to the defense against T. spiralis infection, which places it as a new potential drug modulator of the immune response.
Collapse
Affiliation(s)
- José Luis Muñoz-Carrillo
- Laboratory of Cell Biology and Microbiology, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas, Zacatecas, México.,Laboratory of Immunology and Virology, Faculty of Biological Sciences, Autonomous University of Nuevo Leon, San Nicolás de los Garza, Nuevo León, México
| | | | | | - Claudia Maldonado-Tapia
- Laboratory of Cell Biology and Microbiology, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas, Zacatecas, México
| | - Oscar Gutiérrez-Coronado
- Laboratory of Immunology, Department of Earth and Life Sciences, University Center of Los Lagos, University of Guadalajara, Lagos de Moreno, Jalisco, México
| | - Juan Francisco Contreras-Cordero
- Laboratory of Immunology and Virology, Faculty of Biological Sciences, Autonomous University of Nuevo Leon, San Nicolás de los Garza, Nuevo León, México
| | - María Alejandra Moreno-García
- Laboratory of Cell Biology and Microbiology, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas, Zacatecas, México
| |
Collapse
|
37
|
Ibrahim A, Dahlqvist P, Olsson T, Lundgren D, Werner M, Suhr OB, Karling P. The clinical course after glucocorticoid treatment in patients with inflammatory bowel disease is linked to suppression of the hypothalamic-pituitary-adrenal axis: a retrospective observational study. Therap Adv Gastroenterol 2017; 10:829-836. [PMID: 29147134 PMCID: PMC5673015 DOI: 10.1177/1756283x17730748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/05/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Adrenal insufficiency (AI) secondary to treatment with glucocorticoids (GCs) is common in patients with inflammatory bowel disease (IBD), but little is known about the relationship between AI and the clinical course in IBD. The aim of the study was to compare the clinical course in IBD patients with normal adrenal function versus patients with subnormal adrenal function. METHODS A retrospective observational study on 63 patients with IBD who had performed a low-dose short Synacthen test (LDSST) (1 μg) immediately (1-7 days) after a standard course of GCs. A subnormal LDSST was defined as serum cortisol <550 nmol/L. Outcomes were time to next flare and fecal calprotectin levels. RESULTS Sixty-three percent (n = 40) of the IBD patients had a subnormal LDSST. Patients who were steroid-free (n = 41) after the LDSST were observed for 3 years. Patients with a peak serum cortisol <400 nmol/L immediately after GC treatment had significantly longer time until the next flare-up of their IBD and tended to use a lower cumulative prednisolone dose during the study period in comparison to the other subgroups. Fecal calprotectin levels were significantly lower in patients with a peak s-cortisol <550 nmol/L versus patients with peak s-cortisol ⩾550 nmol/L (median 336 µg/g (IQR 521) versus 955 µg/g (IQR 1867); p = 0.012). CONCLUSIONS GC-induced AI is common in patients with IBD and is associated with lower disease activity. This suggests a link between responsiveness to GC treatment and suppression of the hypothalamic-pituitary-adrenal axis in IBD.
Collapse
Affiliation(s)
- Aghil Ibrahim
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Per Dahlqvist
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Tommy Olsson
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - David Lundgren
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Mårten Werner
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Ole B. Suhr
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | | |
Collapse
|
38
|
Donor Genotype and Intragraft Expression of CYP3A5 Reflect the Response to Steroid Treatment During Acute Renal Allograft Rejection. Transplantation 2017; 101:2017-2025. [PMID: 27926596 DOI: 10.1097/tp.0000000000001584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Glucocorticoid (GC)-refractory acute rejection (AR) is a risk factor for inferior renal allograft outcome. We investigated genetic predisposition to the response to steroid treatment of acute allograft rejection. METHODS Single nucleotide polymorphisms of genes involved in GC signaling (GR, GLCCI1) and drug metabolism and transport (CYP3A5, ABCB1, and PXR) were analyzed in kidney transplant recipients (1995-2005, Leiden cohort, n = 153) treated with methylprednisolone. Significant associations were verified in a second cohort (Berlin cohort, n = 66). RESULTS Patients who received a CYP3A5*1 allele expressing allograft had a lower risk of resistance to methylprednisolone during AR (odds ratio, 0.29; 95% confidence interval, 0.11-0.79; P = 0.016 in combined cohorts analysis). No differences were observed for GC signaling or other drug metabolism/transport-related genes. Both before transplantation (n = 69) and at time of AR (n = 88), tissue CYP3A5 mRNA expression was significantly higher in CYP3A5*1 allele expressing donor kidneys than in CYP3A5*3/*3 allografts (P < 0.00001). Moreover, steroid-responsive patients (n = 64) expressed significantly higher intragraft CYP3A5 mRNA levels compared to steroid-refractory patients (n = 42) in AR (P = 0.006). CONCLUSIONS CYP3A5 protein expression was detected in tubular epithelial cells and inflammatory cells within the grafts. Our findings show that steroid resistance during AR is associated with donor genotype and intragraft expression levels of CYP3A5.
Collapse
|
39
|
Dubois-Camacho K, Ottum PA, Franco-Muñoz D, De la Fuente M, Torres-Riquelme A, Díaz-Jiménez D, Olivares-Morales M, Astudillo G, Quera R, Hermoso MA. Glucocorticosteroid therapy in inflammatory bowel diseases: From clinical practice to molecular biology. World J Gastroenterol 2017; 23:6628-6638. [PMID: 29085208 PMCID: PMC5643284 DOI: 10.3748/wjg.v23.i36.6628] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 05/25/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBDs), such as ulcerative colitis and Crohn’s disease, are chronic pathologies associated with a deregulated immune response in the intestinal mucosa, and they are triggered by environmental factors in genetically susceptible individuals. Exogenous glucocorticoids (GCs) are widely used as anti-inflammatory therapy in IBDs. In the past, patients with moderate or severe states of inflammation received GCs as a first line therapy with an important effectiveness in terms of reduction of the disease activity and the induction of remission. However, this treatment often results in detrimental side effects. This downside drove the development of second generation GCs and more precise (non-systemic) drug-delivery methods. Recent clinical trials show that most of these new treatments have similar effectiveness to first generation GCs with fewer adverse effects. The remaining challenge in successful treatment of IBDs concerns the refractoriness and dependency that some patients encounter during GCs treatment. A deeper understanding of the molecular mechanisms underlying GC response is key to personalizing drug choice for IBDs patients to optimize their response to treatment. In this review, we examine the clinical characteristics of treatment with GCs, followed by an in depth analysis of the proposed molecular mechanisms involved in its resistance and dependence associated with IBDs. This thorough analysis of current clinical and biomedical literature may help guide physicians in determining a course of treatment for IBDs patients and identifies important areas needing further study.
Collapse
Affiliation(s)
- Karen Dubois-Camacho
- Innate Immunity Laboratory, Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Payton A Ottum
- Neuroimmunology Laboratory, Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Daniel Franco-Muñoz
- Innate Immunity Laboratory, Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Marjorie De la Fuente
- Innate Immunity Laboratory, Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Division of Research, Clínica Las Condes, Santiago 7591046, Chile
| | - Alejandro Torres-Riquelme
- Innate Immunity Laboratory, Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - David Díaz-Jiménez
- Innate Immunity Laboratory, Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Mauricio Olivares-Morales
- Innate Immunity Laboratory, Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Gonzalo Astudillo
- Innate Immunity Laboratory, Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Rodrigo Quera
- Gastroenterology Department, Inflammatory Bowel Disease Program, Clínica Las Condes, Santiago 7591046, Chile
| | - Marcela A Hermoso
- Innate Immunity Laboratory, Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
40
|
Lucafò M, Di Silvestre A, Romano M, Avian A, Antonelli R, Martelossi S, Naviglio S, Tommasini A, Stocco G, Ventura A, Decorti G, De Iudicibus S. Role of the Long Non-Coding RNA Growth Arrest-Specific 5 in Glucocorticoid Response in Children with Inflammatory Bowel Disease. Basic Clin Pharmacol Toxicol 2017; 122:87-93. [PMID: 28722800 DOI: 10.1111/bcpt.12851] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/06/2017] [Indexed: 12/27/2022]
Abstract
Glucocorticoids (GCs) are widely employed in inflammatory, autoimmune and neoplastic diseases, and, despite the introduction of novel therapies, remain the first-line treatment for inducing remission in inflammatory bowel disease (IBD). Given the high incidence of suboptimal response, associated with a significant number of side-effects, that are particularly severe in paediatric patients, the identification of subjects that are most likely to respond poorly to GCs is extremely important. Recent evidence suggests that the long non-coding RNA (lncRNA) GAS5 could be a potential marker of GC resistance. To address this issue, we evaluated the association between the lncRNA GAS5 and the efficacy of steroids, in terms of inhibition of proliferation, in two cell lines derived from colon and ovarian cancers, to confirm the sensitivity and specificity of these lncRNAs. These cells showed a different sensitivity to GCs and revealed differential expression of GAS5 after treatment. GAS5 was up-regulated in GC-resistant cells and accumulated more in the cytoplasm compared to the nucleus in response to the drug. The functions of GAS5 were assessed by silencing, and we found that GAS5 knock-down reduced the proliferation during GC treatment. Furthermore, for the first time, we measured GAS5 levels in 19 paediatric IBD patients at diagnosis and after the first cycle of GCs, and we demonstrated an up-regulation of the lncRNA in patients with unfavourable steroid response. Our preliminary results indicate that GAS5 could be considered a novel pharmacogenomic marker useful for the personalization of GC therapy.
Collapse
Affiliation(s)
- Marianna Lucafò
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Alessia Di Silvestre
- PhD School in Science of Reproduction and Development, University of Trieste, Trieste, Italy
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alice Avian
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Roberta Antonelli
- Department of Neurosciences, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Stefano Martelossi
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Samuele Naviglio
- PhD School in Science of Reproduction and Development, University of Trieste, Trieste, Italy
| | - Alberto Tommasini
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alessandro Ventura
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Giuliana Decorti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Sara De Iudicibus
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| |
Collapse
|
41
|
Lucafò M, Bravin V, Tommasini A, Martelossi S, Rabach I, Ventura A, Decorti G, De Iudicibus S. Differential expression of GAS5 in rapamycin-induced reversion of glucocorticoid resistance. Clin Exp Pharmacol Physiol 2017; 43:602-5. [PMID: 27001230 DOI: 10.1111/1440-1681.12572] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 01/24/2023]
Abstract
This study evaluates the association between the long noncoding RNA GAS5 levels and the anti-proliferative effect of the glucocorticoid (GC) methylprednisolone (MP) alone and in combination with rapamycin in peripheral blood mononuclear cells (PBMCs) obtained from healthy donors. The effect of MP, rapamycin, and MP plus rapamycin was determined in 17 healthy donors by labelling metabolically active cells with [methyl-3H] thymidine and the expression levels of GAS5 gene were evaluated by real-time RT-PCR TaqMan analysis. We confirmed a role for GAS5 in modulating GC response: poor responders presented higher levels of GAS5 in comparison with good responders. Interestingly, when PBMCs were treated with the combination of rapamycin plus MP, the high levels of GAS5 observed for each drug in the MP poor responders group decreased in comparison with rapamycin (P value = 0.0134) or MP alone (P value = 0.0193). GAS5 is involved in GC resistance and co-treatment of rapamycin with GCs restores GC effectiveness in poor responders through the downregulation of the long noncoding RNA. GAS5 could be considered a biomarker to personalize therapy and a novel therapeutic target useful for the development of new pharmacological approaches to restore GC sensitivity.
Collapse
Affiliation(s)
- Marianna Lucafò
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Vanessa Bravin
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alberto Tommasini
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Stefano Martelossi
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Ingrid Rabach
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Alessandro Ventura
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Giuliana Decorti
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Sara De Iudicibus
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| |
Collapse
|
42
|
Kitoh R, Nishio SY, Usami SI. Prognostic impact of gene polymorphisms in patients with idiopathic sudden sensorineural hearing loss. Acta Otolaryngol 2017; 137:S24-S29. [PMID: 28366034 DOI: 10.1080/00016489.2017.1296971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To investigate whether genetic polymorphisms (single-nucleotide polymorphism [SNPs]) have a prognostic influence on hearing recovery after standardized corticosteroid therapy. METHODS A total of 192 gene samples from idiopathic sudden sensorineural hearing loss (SSNHL) patients registered in the Intractable Inner Ear Disease Gene Bank were enrolled and, as the candidate genes, 16 SNPs from 13 genes were selected for this study. Fischer's exact test was used to compare allele frequencies in each SNP between the patients with good hearing recovery and patients with poor hearing recovery. RESULTS The SNPs of the GSR gene (rs2251780 and rs3779647) and NOS3 gene (rs1799983) were associated with treatment outcome (p < .05). Furthermore, there was a marginal correlation between the SNP of the NR3C1 gene (rs4912910) and treatment outcome (p = .05). CONCLUSIONS The results of this study indicate that the analysis of genetic factors might make it possible to predict the treatment outcome, at least in part, in patients with idiopathic SSNHL.
Collapse
Affiliation(s)
- Ryosuke Kitoh
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shin-Ya Nishio
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shin-Ichi Usami
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
43
|
Muls N, Nasr Z, Dang HA, Sindic C, van Pesch V. IL-22, GM-CSF and IL-17 in peripheral CD4+ T cell subpopulations during multiple sclerosis relapses and remission. Impact of corticosteroid therapy. PLoS One 2017; 12:e0173780. [PMID: 28301515 PMCID: PMC5354390 DOI: 10.1371/journal.pone.0173780] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/27/2017] [Indexed: 01/06/2023] Open
Abstract
Multiple sclerosis (MS) is thought to be a Th17-mediated dysimmune disease of the central nervous system. However, recent publications have questioned the pathogenicity of IL-17 per se and rather suggest the implication of other Th17-related inflammatory mediators. Therefore, we studied the expression of GM-CSF, IL-22, IL-24, IL-26 and CD39 in peripheral blood mononuclear cells (PBMCs) from MS patients during relapses, remission and following corticosteroid treatment. We performed qPCR to measure mRNA levels from ex vivo or in vitro-stimulated PBMCs. Cytokine levels were determined by ELISA. We used flow cytometry to assess GM-CSF+, IL-22+ and CD39+ cells in relationship to IL-17+ CD4+ T cells. Our results showed that IL-22 mRNA and IL-22+CD4+ lymphocytes are increased in circulating cells of relapsing MS patients compared to remitting patients while GM-CSF was unchanged. We have further shown that 12.9, 39 and 12.4% of Th17 cells from MS patients during relapses expressed IL-22, GM-CSF and CD39 respectively. No changes in these proportions were found in stable MS patients. However, the majority of GM-CSF+ or IL-22+ T cells did not co-express IL-17. GM-CSF mRNA, but not IL-22 mRNA, was dramatically decreased ex vivo by ivMP. Our results contribute to a better characterisation of Th17, Th22 and ThGM-CSF cells in the setting of MS and according to disease activity.
Collapse
Affiliation(s)
- Nathalie Muls
- Unité de Neurochimie, Institute of Neuroscience, Avenue Mounier, 53 (BP B1.53.03), Université catholique de Louvain, Brussels, Belgium
| | - Zakia Nasr
- Unité de Neurochimie, Institute of Neuroscience, Avenue Mounier, 53 (BP B1.53.03), Université catholique de Louvain, Brussels, Belgium
| | - Hong Anh Dang
- Unité de Neurochimie, Institute of Neuroscience, Avenue Mounier, 53 (BP B1.53.03), Université catholique de Louvain, Brussels, Belgium
| | - Christian Sindic
- Unité de Neurochimie, Institute of Neuroscience, Avenue Mounier, 53 (BP B1.53.03), Université catholique de Louvain, Brussels, Belgium
| | - Vincent van Pesch
- Unité de Neurochimie, Institute of Neuroscience, Avenue Mounier, 53 (BP B1.53.03), Université catholique de Louvain, Brussels, Belgium
- Cliniques Universitaires Saint-Luc, Neurology Department, avenue Hippocrate, 10. Brussels Belgium
| |
Collapse
|
44
|
Banuelos J, Cao Y, Shin SC, Lu NZ. Immunopathology alters Th17 cell glucocorticoid sensitivity. Allergy 2017; 72:331-341. [PMID: 27646878 PMCID: PMC5315659 DOI: 10.1111/all.13051] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2016] [Indexed: 12/14/2022]
Abstract
Th17 cells contribute to several inflammatory conditions and increasing evidence supports that Th17 cells are glucocorticoid resistant. However, Th17 cells in psoriasis and related diseases are glucocorticoid sensitive. We compare glucocorticoid sensitive and resistant immunological diseases and suggest that several aspects in Th17-related diseases alter glucocorticoid sensitivity of Th17 cells. We identify molecular pathways that are implicated in glucocorticoid sensitivity of Th17 cells in the literature, as this information is useful for developing approaches to overcome glucocorticoid-resistant immunopathology.
Collapse
Affiliation(s)
- J. Banuelos
- Division of Allergy-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Y. Cao
- Division of Allergy-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - S. C. Shin
- Division of Allergy-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - N. Z. Lu
- Division of Allergy-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
45
|
Fry CS, Nayeem SZ, Dillon EL, Sarkar PS, Tumurbaatar B, Urban RJ, Wright TJ, Sheffield-Moore M, Tilton RG, Choudhary S. Glucocorticoids increase skeletal muscle NF-κB inducing kinase (NIK): links to muscle atrophy. Physiol Rep 2016; 4:e13014. [PMID: 27905294 PMCID: PMC5112493 DOI: 10.14814/phy2.13014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 09/28/2016] [Accepted: 10/02/2016] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids (GC) are a frontline therapy for numerous acute and chronic diseases because of their demonstrated efficacy at reducing systemic inflammation. An unintended side effect of GC therapy is the stimulation of skeletal muscle atrophy. Pathophysiological mechanisms responsible for GC-induced skeletal muscle atrophy have been extensively investigated, and the ability to treat patients with GC without unintended muscle atrophy has yet to be realized. We have reported that a single, standard-of-care dose of Methylprednisolone increases in vivo expression of NF-κB-inducing kinase (NIK), an important upstream regulatory kinase controlling NF-κB activation, along with other key muscle catabolic regulators such as Atrogin-1 and MuRF1 that induce skeletal muscle proteolysis. Here, we provide experimental evidence that overexpressing NIK by intramuscular injection of recombinant human NIK via adenoviral vector in mouse tibialis anterior muscle induces a 30% decrease in the average fiber cross-sectional area that is associated with increases in mRNA expression of skeletal muscle atrophy biomarkers MuRF1, Atrogin-1, myostatin and Gadd45. A single injection of GC induced NIK mRNA and protein within 2 h, with the increased NIK localized to nuclear and sarcolemmal locations within muscle fibers. Daily GC injections induced skeletal muscle fore limb weakness as early as 3 days with similar atrophy of muscle fibers as observed with NIK overexpression. NIK overexpression in primary human skeletal muscle myotubes increased skeletal muscle atrophy biomarkers, while NIK knockdown significantly attenuated GC-induced increases in NIK and Atrogin-1. These results suggest that NIK may be a novel, previously unrecognized mediator of GC-induced skeletal muscle atrophy.
Collapse
Affiliation(s)
- Christopher S Fry
- Department of Nutrition and Metabolism, The University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Syed Z Nayeem
- Department of Internal Medicine, Division of Endocrinology, The University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Edgar L Dillon
- Department of Internal Medicine, Division of Endocrinology, The University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Partha S Sarkar
- Department of Neurology, The University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Batbayar Tumurbaatar
- Department of Internal Medicine, Division of Endocrinology, The University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Randall J Urban
- Department of Internal Medicine, Division of Endocrinology, The University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Traver J Wright
- Department of Internal Medicine, Division of Endocrinology, The University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Melinda Sheffield-Moore
- Department of Internal Medicine, Division of Endocrinology, The University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Ronald G Tilton
- Department of Internal Medicine, Division of Endocrinology, The University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Sanjeev Choudhary
- Department of Internal Medicine, Division of Endocrinology, The University of Texas Medical Branch (UTMB), Galveston, Texas
| |
Collapse
|
46
|
Nebesio TD, Renbarger JL, Nabhan ZM, Ross SE, Slaven JE, Li L, Walvoord EC, Eugster EA. Differential effects of hydrocortisone, prednisone, and dexamethasone on hormonal and pharmacokinetic profiles: a pilot study in children with congenital adrenal hyperplasia. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2016; 2016:17. [PMID: 27688786 PMCID: PMC5036261 DOI: 10.1186/s13633-016-0035-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/02/2016] [Indexed: 12/04/2022]
Abstract
Background Little is known about the comparative effects of different glucocorticoids on the adrenal and growth hormone (GH) axes in children with congenital adrenal hyperplasia (CAH). We sought to compare the effects of hydrocortisone (HC), prednisone (PDN), and dexamethasone (DEX) in children with classic CAH and to investigate a potential role of pharmacogenetics. Methods Subjects were randomly assigned to three sequential 6-week courses of HC, PDN, and DEX, each followed by evaluation of adrenal hormones, IGF-1, GH, and body mass index (BMI). Single nucleotide polymorphism (SNP) analysis of genes in the glucocorticoid pathway was also performed. Results Nine prepubertal subjects aged 8.1 ± 2.3 years completed the study. Mean ACTH, androstenedione, and 17-hydroxyprogesterone (17-OHP) values were lower following the DEX arm of the study than after subjects received HC (p ≤ 0.016) or PDN (p ≤ 0.002). 17-OHP was also lower after HC than PDN (p < 0.001). There was no difference in IGF-1, GH, or change in BMI. SNP analysis revealed significant associations between hormone concentrations, pharmacokinetic parameters, and variants in several glucocorticoid pathway genes (ABCB1, NR3C1, IP013, GLCCI1). Conclusions DEX resulted in marked adrenal suppression suggesting that its potency relative to hydrocortisone and prednisone was underestimated. SNPs conferred significant differences in responses between subjects. Although preliminary, these pilot data suggest that incorporating pharmacogenetics has the potential to eventually lead to targeted therapy in children with CAH.
Collapse
Affiliation(s)
- Todd D Nebesio
- Department of Pediatrics, Division of Pediatric Endocrinology/Diabetology, Indiana University School of Medicine, 705 Riley Hospital Drive, Room 5960, Indianapolis, IN 46202 USA
| | - Jamie L Renbarger
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN USA ; Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Zeina M Nabhan
- Department of Pediatrics, Division of Pediatric Endocrinology/Diabetology, Indiana University School of Medicine, 705 Riley Hospital Drive, Room 5960, Indianapolis, IN 46202 USA
| | - Sydney E Ross
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN USA
| | - James E Slaven
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Lang Li
- Department of Medical and Molecular Genetics, Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Emily C Walvoord
- Department of Pediatrics, Division of Pediatric Endocrinology/Diabetology, Indiana University School of Medicine, 705 Riley Hospital Drive, Room 5960, Indianapolis, IN 46202 USA
| | - Erica A Eugster
- Department of Pediatrics, Division of Pediatric Endocrinology/Diabetology, Indiana University School of Medicine, 705 Riley Hospital Drive, Room 5960, Indianapolis, IN 46202 USA
| |
Collapse
|
47
|
Rekers NV, de Fijter J, Claas FH, Eikmans M. Mechanisms and risk assessment of steroid resistance in acute kidney transplant rejection. Transpl Immunol 2016; 38:3-14. [DOI: 10.1016/j.trim.2016.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 07/28/2016] [Indexed: 12/15/2022]
|
48
|
Keskin O, Uluca Ü, Birben E, Coşkun Y, Ozkars MY, Keskin M, Kucukosmanoglu E, Kalayci O. Genetic associations of the response to inhaled corticosteroids in children during an asthma exacerbation. Pediatr Allergy Immunol 2016; 27:507-13. [PMID: 27003716 DOI: 10.1111/pai.12566] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Genetic associations of the response to inhaled corticosteroids (ICSs) during an asthma exacerbation are unknown. OBJECTIVE To evaluate the role of genetic variants in the therapeutic response to high-dose ICS in children with moderate-to-severe asthma exacerbations. METHODS Eighty-two children (56 boys/26 girls, mean age 9.6 ± 3.2 years) with moderate-severe asthma exacerbation were genotyped for eight single-nucleotide polymorphisms that were a priori associated with ICS response in chronic asthma treatment: glucocorticosteroid receptor (NR3C1) rs41423247; corticotrophin-releasing hormone receptor1 (CRHR1) rs242939, rs242941, and rs1876828; T-box 21 (TBX21) rs2240017; glucocorticoid-induced transcript 1 (GLCCl1); and T gene rs3099266 and rs2305089. Children were treated with a single high-dose (4000 μg) fluticasone propionate given by a nebulizer followed by 1000 μg/day of inhaled fluticasone propionate for 6 days. Primary outcome measure was the improvement in FEV1 at 4 h. RESULTS Mean FEV1 was 71.7 ± 14.2% at presentation. Overall, fluticasone treatment resulted in a significant improvement in asthma score and FEV1 (p < 0.0001 for both). Children with the GG genotype at NR3C1 rs41423247 (n = 26) had a higher improvement in FEV1 [24.2% (interquartile range 11.5-36.3)] compared to those with CG+CC (n = 19), [7.9% (interquartile range 6.1-24.6) (p = 0.006)]. CONCLUSION Homozygosity for the G allele at rs41423247 of the glucocorticosteroid receptor (NR3C1) gene is associated with a higher improvement in FEV1 at 4 h in children with moderate-to-severe asthma exacerbation treated with high-dose ICS. This observation may have important clinical implications especially for children who use systemic steroids frequently for recurrent asthma exacerbations.
Collapse
Affiliation(s)
- Ozlem Keskin
- Pediatric Allergy and Immunology Department, Gaziantep University School of Medicine, Gaziantep, Turkey
| | - Ünal Uluca
- Department of Pediatrics, Gaziantep University School of Medicine, Gaziantep, Turkey
| | - Esra Birben
- Pediatric Allergy and Asthma Unit, Hacettepe University School of Medicine, Ankara, Turkey
| | - Yavuz Coşkun
- Department of Pediatrics, Gaziantep University School of Medicine, Gaziantep, Turkey
| | - Mehmet Yasar Ozkars
- Pediatric Allergy and Immunology Department, Gaziantep University School of Medicine, Gaziantep, Turkey
| | - Mehmet Keskin
- Department of Pediatrics, Gaziantep University School of Medicine, Gaziantep, Turkey
| | - Ercan Kucukosmanoglu
- Pediatric Allergy and Immunology Department, Gaziantep University School of Medicine, Gaziantep, Turkey
| | - Omer Kalayci
- Pediatric Allergy and Asthma Unit, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
49
|
Panek M, Pietras T, Fabijan A, Zioło J, Wieteska Ł, Małachowska B, Fendler W, Szemraj J, Kuna P. The NR3C1 Glucocorticoid Receptor Gene Polymorphisms May Modulate the TGF-beta mRNA Expression in Asthma Patients. Inflammation 2016; 38:1479-92. [PMID: 25649164 DOI: 10.1007/s10753-015-0123-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Glucocorticosteroids (GCs) are basic drugs in therapy of a number of diseases, including chronic diseases of the respiratory system. They are the most important anti-inflammatory drugs in the treatment of asthma. GCs after binding to the glucocorticoid receptor (GR) form the complex (transcription factor), which acts on promoter and regulatory parts of genes enhancing the expression of anti-inflammatory proteins and decreasing the proinflammatory protein synthesis, including numerous cytokines mediating inflammation in the course of asthma. Non-sensitivity or resistance to GCs favours an increase in the TGF-β expression. This cytokine plays a central role in asthma inducing fibroblast differentiation and extracellular matrix synthesis. TGF-β isoforms, 1, 2 and 3, are located on chromosome 19q13, 1q41 and 14q24, respectively. GCs reduce TGF-β 1 and TGF-β 2 production and significantly decrease the expression of upregulated TGF-β 1 and TGF-β 2 mRNA induced by exogenous TGF-β. In asthma, TGF-β may play a role in the development of the peribronchiolar and subepithelial fibrosis, which contributes to a significant clinical exacerbation of asthma. Therefore, it is possible that NR3C1 glucocorticoid receptor gene polymorphisms could exert varied effects on the TGF-β mRNA expression and fibrotic process in lungs of asthmatic patients. The aim of the study was to evaluate the impact of polymorphic forms (Tth111I, BclI, ER22/23EK, N363S) of the NR3C1 gene on the level of the TGF-β 1 mRNA expression. A total of 173 patients with asthma and 163 healthy volunteers participated in the study. Genotyping of Tth111I, BclI, ER22/23EK, and N363S polymorphisms of the NR3C1 gene was performed by using PCR-HRM and PCR-RFLP techniques. TGF-β mRNA was assessed by real time RT-PCR. Tth111I SNP significantly (p = 0.0115) correlated with the TGF-β 1 mRNA expression level. The significance of AA and GG genotypes of Tth111I SNP in increasing and decreasing the level of the TGF-β 1 mRNA expression was demonstrated. Both BclI SNP and ER22/23EK SNP did not affect the expression level of the cytokine analysed. The N363S SNP AA genotype of NR3C1 gene statistically significantly influenced the increase in the level of the TGF-β 1 mRNA expression. Thus, SNPs of NR3C1 gene play an important regulatory function in the bronchi of patients suffering from asthma. In the case of the occurrence of Tth111I and N363S polymorphic forms of the gene studied, a reduced ability of GCs to inhibit the TGF-β 1 expression can be observed.
Collapse
Affiliation(s)
- Michał Panek
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 22 Kopcinskiego Str, 90-153, Lodz, Poland,
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kurago ZB. Etiology and pathogenesis of oral lichen planus: an overview. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 122:72-80. [PMID: 27260276 DOI: 10.1016/j.oooo.2016.03.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 03/02/2016] [Accepted: 03/09/2016] [Indexed: 02/07/2023]
Abstract
Oral lichen planus is a noninfectious, chronic inflammatory condition that involves the oral mucosal stratified squamous epithelium and the underlying lamina propria and may be accompanied by skin lesions. This overview describes the current understanding of the immunopathologic mechanisms implicated in oral lichen planus.
Collapse
Affiliation(s)
- Zoya B Kurago
- Associate Professor, Departments of Oral Health and Diagnostic Sciences and Oral Biology, Augusta University Dental College of Georgia; Department of Pathology, Augusta University Medical College of Georgia; Augusta University Cancer Center, Augusta, GA, USA.
| |
Collapse
|