1
|
Hsu CY, Mustafa MA, Moath Omar T, Taher SG, Ubaid M, Gilmanova NS, Nasrat Abdulraheem M, Saadh MJ, Athab AH, Mirzaei R, Karampoor S. Gut instinct: harnessing the power of probiotics to tame pathogenic signaling pathways in ulcerative colitis. Front Med (Lausanne) 2024; 11:1396789. [PMID: 39323474 PMCID: PMC11422783 DOI: 10.3389/fmed.2024.1396789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) marked by persistent inflammation of the mucosal lining of the large intestine, leading to debilitating symptoms and reduced quality of life. Emerging evidence suggests that an imbalance of the gut microbiota plays a crucial role in UC pathogenesis, and various signaling pathways are implicated in the dysregulated immune response. Probiotics are live microorganisms that confer health benefits to the host, have attracted significant attention for their potential to restore gut microbial balance and ameliorate inflammation in UC. Recent studies have elucidated the mechanisms by which probiotics modulate these signaling pathways, often by producing anti-inflammatory molecules and promoting regulatory immune cell function. For example, probiotics can inhibit the nuclear factor-κB (NF-κB) pathway by stabilizing Inhibitor of kappa B alpha (IκBα), dampening the production of proinflammatory cytokines. Similarly, probiotics can modulate the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway, suppressing the activation of STAT1 and STAT3 and thus reducing the inflammatory response. A better understanding of the underlying mechanisms of probiotics in modulating pathogenic signaling pathways in UC will pave the way for developing more effective probiotic-based therapies. In this review, we explore the mechanistic role of probiotics in the attenuation of pathogenic signaling pathways, including NF-κB, JAK/STAT, mitogen-activated protein kinases (MAPKs), Wnt/β-catenin, the nucleotide-binding domain (NOD)-, leucine-rich repeat (LRR)- and pyrin domain-containing protein 3 (NLRP3) inflammasome, Toll-like receptors (TLRs), interleukin-23 (IL-23)/IL-17 signaling pathway in UC.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, United States
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Baghdad, Iraq
- Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Samarra, Iraq
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Mosul, Iraq
| | - Sada Gh Taher
- Department of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Ubaid
- Department of MTL, Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Nataliya S Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | - Aya H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Massironi S, Furfaro F, Bencardino S, Allocca M, Danese S. Immunity in digestive diseases: new drugs for inflammatory bowel disease treatment-insights from Phase II and III trials. J Gastroenterol 2024; 59:761-787. [PMID: 38980426 PMCID: PMC11339122 DOI: 10.1007/s00535-024-02130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Inflammatory bowel disease (IBD), encompassing Crohn's disease (CD) and ulcerative colitis (UC), continues to challenge treatment paradigms. Advancements in therapeutic options have been have been driven by Phase 2 and 3 clinical trials of new drug classes, particularly sphingosine-1-phosphate (S1P) modulators and interleukin-23 (IL-23) inhibitors. METHODS This review synthesizes findings from Phase 2 and 3 clinical trials conducted up to early 2024, focusing on the impact of S1P modulators and IL-23 inhibitors on IBD management. Drugs such as ozanimod, etrasimod, risankizumab, mirikizumab, guselkumab, and brasikumab were evaluated for their efficacy and safety profiles. RESULTS S1P modulators, such as ozanimod and etrasimod, effectively regulate immune cell trafficking to reduce inflammation and several trials highlight their clinical effectiveness in both inducing and maintaining remission in IBD, highlighting its long-term safety and sustained therapeutic effects. Additionally, IL-23 inhibitors including risankizumab, mirikizumab, and guselkumab, which disrupt key inflammatory cytokine pathways, have already shown significant effectiveness in inducing and maintaining remission in both CD and UC, with favorable safety profiles across multiple studies, suggesting their potential as critical components in managing IBD. CONCLUSIONS The clinical trials indicate that both S1P modulators and IL-23 inhibitors offer promising therapeutic benefits and maintain strong safety profiles, positioning them as potential cornerstone treatments for IBD. Despite these advancements, further exploration into long-term safety and the development of personalized treatment strategies is essential for maximizing clinical outcomes.
Collapse
Affiliation(s)
- Sara Massironi
- Division of Gastroenterology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 3, Monza, Italy.
| | - Federica Furfaro
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Milan, Italy
| | - Sarah Bencardino
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Mariangela Allocca
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Milan, Italy
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
3
|
Friedrich S, Chua L, Adams DH, Crandall W, Zhang XC. Mirikizumab Exposure-Response Relationships in Patients with Moderately-to-Severely Active Ulcerative Colitis in Randomized Phase II and III Studies. Clin Pharmacol Ther 2024; 116:435-447. [PMID: 38797892 DOI: 10.1002/cpt.3305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/24/2024] [Indexed: 05/29/2024]
Abstract
Mirikizumab is a humanized anti-interleukin-23p19 monoclonal antibody being developed for ulcerative colitis (UC) and Crohn's disease. We characterized the relationship of mirikizumab systemic exposure with efficacy and safety end points in patients with UC using phase II (NCT02589665) and III (NCT03518086, NCT03524092) trial data. Exposure-response models were developed for clinical remission, clinical response, endoscopic remission, and change in modified Mayo score following induction (50-1,000 mg i.v. every 4 weeks) and maintenance (200 mg s.c. every 4 or 12 weeks) treatment. These models evaluated observed and pharmacokinetic model-predicted mirikizumab exposures as the exposure measure. Key safety event rates were compared across mirikizumab exposure quartiles in the phase III trial. Mirikizumab efficacy in patients with UC showed an apparent positive association with systemic exposure following both induction and maintenance. However, further analysis found this relationship to be overstated by the presence of confounding factors that were not among the tested patient covariates. While prior biologic experience and baseline disease severity showed statistically significant influences on estimated placebo effect, no patient factors affected the mirikizumab effect parameters in any of the phase III exposure-response models. There was no apparent mirikizumab concentration relationship with any adverse event of special interest. When the phase II and III data and confounding are considered together, efficacy was unlikely to be strongly affected by variation in exposures across individual patients at the phase III dose. Together with the previously demonstrated mirikizumab exposure insensitivity to patient factors, these findings indicate that mirikizumab dose adjustment to patient characteristics is not required.
Collapse
MESH Headings
- Humans
- Colitis, Ulcerative/drug therapy
- Dose-Response Relationship, Drug
- Male
- Severity of Illness Index
- Female
- Adult
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal/administration & dosage
- Treatment Outcome
- Middle Aged
- Gastrointestinal Agents/adverse effects
- Gastrointestinal Agents/pharmacokinetics
- Gastrointestinal Agents/therapeutic use
- Gastrointestinal Agents/administration & dosage
- Interleukin-23 Subunit p19/antagonists & inhibitors
- Remission Induction
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/administration & dosage
Collapse
Affiliation(s)
| | - Laiyi Chua
- Eli Lilly Singapore, Singapore, Singapore
| | | | | | | |
Collapse
|
4
|
Wang M, He X. Mendelian randomization analysis reveals causal associations of inflammatory bowel disease with Spondylarthritis. Gene 2024; 902:148170. [PMID: 38237812 DOI: 10.1016/j.gene.2024.148170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/28/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
OBJECTIVE Inflammatory bowel disease (IBD) is strongly associated with Spondylarthritis (SpA), but the causal relationship remains unclear. This study explores the causal associations between IBD (Crohn's disease [CD] and ulcerative colitis [UC]) and several common subtypes of SpA (Ankylosing Spondylitis [AS], Psoriatic Arthritis [PsA], and Reactive Arthritis [ReA]), using bidirectional two-sample Mendelian randomization (TSMR). METHODS The causal effects of genetically predicted IBD on AS, PsA, and ReA were firstly investigated in this forward study. The causal effects from AS, PsA, and ReA on IBD were analyzed in the reverse MR. Inverse variance weighted, weighted median, and MR-Egger were applied in the MR analyses. The pleiotropic effects, heterogeneity, and leave-one-out sensitivity analysis were also evaluated. RESULTS The forward MR analysis demonstrated that IBD increased risk for AS (OR:1.278; P = 1.273 × 10-5), PsA (OR:1.192; P = 1.690 × 10-5), and ReA (OR:1.106; P = 1.524 × 10-3). Among them, CD increased risk of AS (OR:1.196; P = 3.424 × 10-4), PsA (OR:1.101; P = 1.537 × 10-3), ReA (OR:1.079; P = 6.321 × 10-3) whereas UC increased risk of AS (OR:1.166; P = 2.727 × 10-2), PsA (OR:1.110; P = 1.944 × 10-2), and ReA (OR:1.091; P = 1.768 × 10-2). The reverse-direction MR disclosed no notable association; neither was any evidence of pleiotropy detected. CONCLUSION Our study verifies a causal effect of IBD to AS, PsA as well as ReA, but not vice versa. This might bring new insights for the management of IBD and SpA in clinical practice.
Collapse
Affiliation(s)
- Min Wang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Rheumatology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Xiaojin He
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Rheumatology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
5
|
Alarcón-Sánchez MA, Guerrero-Velázquez C, Becerra-Ruiz JS, Rodríguez-Montaño R, Avetisyan A, Heboyan A. IL-23/IL-17 axis levels in gingival crevicular fluid of subjects with periodontal disease: a systematic review. BMC Oral Health 2024; 24:302. [PMID: 38431633 PMCID: PMC10909298 DOI: 10.1186/s12903-024-04077-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND The IL-23/IL-17 axis plays an important role in the immunopathogenesis of periodontal disease. A systematic review was conducted to synthesize all research reporting on the levels of the IL-23/IL-17 axis in gingival crevicular fluid (GCF) from subjects with gingivits, and periodontitis, compared to healthy controls. METHODS The protocol followed the PRISMA, and Cochrane guidelines, and was registered with the Open Science Framework (OSF): https://doi.org/10.17605/OSF.IO/7495V . A search was conducted in the electronic databases PubMed/MEDLINE, Scopus, Google Schoolar, and Cochrane from November 15th, 2005, to May 10th, 2023. The quality of the studies was assessed using the JBI tool for cross-sectional studies. RESULTS The search strategy provided a total of 2,098 articles, of which 12 investigations met the inclusion criteria. The total number of patients studied was 537, of which 337 represented the case group (subjects with gingivitis, and chronic periodontitis), and 200 represented the control group (periodontally healthy subjects). The ages of the patients ranged from 20 to 50 years, with a mean (SD) of 36,6 ± 4,2, of which 47% were men, and 53% were women. 75% of the investigations collected GCF samples with absorbent paper strips, and analyzed cytokine IL-17 levels individually. In addition, qualitative analysis revealed that there are differences between IL-23/IL-17 axis levels in subjects with chronic periodontitis, gingivitis and healthy controls. CONCLUSIONS Thus, IL-23/IL-17 axis levels could be used in the future as a diagnostic tool to distinguish between periodontal diseases.
Collapse
Affiliation(s)
- Mario Alberto Alarcón-Sánchez
- Biomedical Science, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo de los Bravo, Guerrero 39090, Mexico
| | - Celia Guerrero-Velázquez
- Research Institute of Dentistry, Department of Integrated Dentistry Clinics, University of Guadalajara (CUCS-UdeG), 950 Sierra Mojada, Guadalajara 44340, Jalisco, Mexico.
| | - Julieta Sarai Becerra-Ruiz
- Institute of Research of Bioscience, University Center of Los Altos, University of Guadalajara, Tepatitlán de Morelos 47600, Jalisco, Mexico
| | - Ruth Rodríguez-Montaño
- Department of Health and Illness as an Individual and Collective Process, University Center of Tlajomulco, University of Guadalajara (CUTLAJO-UdeG), Tlajomulco, Santa Fé Highway Km 3.5 No. 595, Lomas de Tejeda, Tlajomulco de Zuñiga 45641, Jalisco, Mexico
| | - Anna Avetisyan
- Department of Therapeutic Stomatology, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Str. Koryun 2, Yerevan, 0025, Armenia
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India.
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Str. Koryun 2, Yerevan, 0025, Armenia.
- Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences, North Karegar St, Tehran, Iran.
| |
Collapse
|
6
|
Metwaly A, Haller D. The TNF∆ARE Model of Crohn's Disease-like Ileitis. Inflamm Bowel Dis 2024; 30:132-145. [PMID: 37756666 DOI: 10.1093/ibd/izad205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Indexed: 09/29/2023]
Abstract
Crohn's disease (CD) is one of the 2 main phenotypes of inflammatory bowel diseases (IBDs); CD ischaracterized by a discontinuous, spontaneously recurring, transmural immunopathology that largely affects the terminal ileum. Crohn's disease exhibits both a relapsing and progressive course, and its prevalence is on the rise globally, mirroring the trends of industrialization. While the precise pathogenesis of CD remains unknown, various factors including immune cell dysregulation, microbial dysbiosis, genetic susceptibility, and environmental factors have been implicated in disease etiology. Animal models, particularly ileitis mouse models, have provided valuable tools for studying the specific mechanisms underlying CD, allowing longitudinal assessment and sampling in interventional preclinical studies. Furthermore, animal models assess to evaluate the distinct role that bacterial and dietary antigens play in causing inflammation, using germ-free animals, involving the introduction of individual bacteria (monoassociation studies), and experimenting with well-defined dietary components. An ideal animal model for studying IBD, specifically CD, should exhibit an inherent intestinal condition that arises spontaneously and closely mimics the distinct transmural inflammation observed in the human disease, particularly in the terminal ileum. We have recently characterized the impact of disease-relevant, noninfectious microbiota and specific bacteria in a mouse model that replicates CD-like ileitis, capturing the intricate nature of human CD, namely the TNF∆ARE mouse model. Using germ-free mice, we studied the impact of different diets on the expansion of disease-relevant pathobionts and on the severity of inflammation. In this review article, we review some of the currently available ileitis mouse models and discuss in detail the TNF∆ARE model of CD-like Ileitis.
Collapse
Affiliation(s)
- Amira Metwaly
- Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany
- ZIEL Institute for Food and Health, Technical University of Munich, Freising, Germany
| |
Collapse
|
7
|
Vebr M, Pomahačová R, Sýkora J, Schwarz J. A Narrative Review of Cytokine Networks: Pathophysiological and Therapeutic Implications for Inflammatory Bowel Disease Pathogenesis. Biomedicines 2023; 11:3229. [PMID: 38137450 PMCID: PMC10740682 DOI: 10.3390/biomedicines11123229] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a lifelong inflammatory immune mediated disorder, encompassing Crohn's disease (CD) and ulcerative colitis (UC); however, the cause and specific pathogenesis of IBD is yet incompletely understood. Multiple cytokines produced by different immune cell types results in complex functional networks that constitute a highly regulated messaging network of signaling pathways. Applying biological mechanisms underlying IBD at the single omic level, technologies and genetic engineering enable the quantification of the pattern of released cytokines and new insights into the cytokine landscape of IBD. We focus on the existing literature dealing with the biology of pro- or anti-inflammatory cytokines and interactions that facilitate cell-based modulation of the immune system for IBD inflammation. We summarize the main roles of substantial cytokines in IBD related to homeostatic tissue functions and the remodeling of cytokine networks in IBD, which may be specifically valuable for successful cytokine-targeted therapies via marketed products. Cytokines and their receptors are validated targets for multiple therapeutic areas, we review the current strategies for therapeutic intervention and developing cytokine-targeted therapies. New biologics have shown efficacy in the last few decades for the management of IBD; unfortunately, many patients are nonresponsive or develop therapy resistance over time, creating a need for novel therapeutics. Thus, the treatment options for IBD beyond the immune-modifying anti-TNF agents or combination therapies are expanding rapidly. Further studies are needed to fully understand the immune response, networks of cytokines, and the direct pathogenetic relevance regarding individually tailored, safe and efficient targeted-biotherapeutics.
Collapse
Affiliation(s)
- Marek Vebr
- Departments of Pediatrics, Faculty Hospital, Faculty of Medicine in Pilsen, Charles University of Prague, 323 00 Pilsen, Czech Republic; (R.P.); (J.S.); (J.S.)
| | | | | | | |
Collapse
|
8
|
Fan Q, Dai W, Li M, Wang T, Li X, Deng Z, Li W, Li M. Inhibition of α2,6-sialyltransferase relieves symptoms of ulcerative colitis by regulating Th17 cells polarization. Int Immunopharmacol 2023; 125:111130. [PMID: 37897948 DOI: 10.1016/j.intimp.2023.111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/08/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Ulcerative colitis (UC) is a chronic, relapsing inflammatory disease that affects human intestines. Immune imbalance is one of the important factors inducing UC. After the activation of CD4+ T cells, pro-inflammatory cytokines are produced to induce colonic inflammation. α2,6-Sialylation, catalyzed by α2,6-sialyltransferase (ST6GAL1), affects the proliferation, activation, and T cell receptor (TCR) signaling of CD4+ T cells, but its role in CD4+ T cell polarization, regulation of Th17 / Treg balance, and its role in UC are still unclear. We found the number of CD4+ T and Th17 cells increased in colonic tissue with UC. The level of α2,6-sialylation of CD4+ T cells in patients with UC was significantly increased. De-α2,6-sialylation significantly reduced the symptoms of UC in rats. ST6GAL1 gene knockout inhibited the polarization of CD4+ T cells to Th17 cells, and promoted the polarization of CD4+ T cells to Treg cells. ST6GAL1 knockout significantly inhibited the IL-17 signaling pathway in CD4+ T cells and inhibited the secretion of pro-inflammatory cytokine IL-17a. ST6GAL1 and IL-17a are highly expressed in patients with UC, and there is a positive correlation between them. In conclusion, reduced α2,6-sialylation inhibits the polarization of CD4+ T cells to Th17 cells, inhibits IL-17a signaling pathway and reduces the level of pro-inflammatory cytokine IL-17a to alleviate the symptoms of UC, which is a potential novel target for the clinical treatment of UC.
Collapse
Affiliation(s)
- Qingjie Fan
- College of Basic Medical Science, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning 116044, China
| | - Wenjie Dai
- Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University, No. 156, Wansui Street, Dalian, Liaoning 116044, China
| | - Mechou Li
- College of Basic Medical Science, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning 116044, China
| | - Tiantong Wang
- College of Basic Medical Science, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning 116044, China
| | - Xinran Li
- College of Basic Medical Science, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning 116044, China
| | - Zhaobin Deng
- Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University, No. 156, Wansui Street, Dalian, Liaoning 116044, China.
| | - Wenzhe Li
- Department of Thoracic Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China.
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning 116044, China.
| |
Collapse
|
9
|
Sienkiewicz M, Sroka K, Binienda A, Jurk D, Fichna J. A new face of old cells: An overview about the role of senescence and telomeres in inflammatory bowel diseases. Ageing Res Rev 2023; 91:102083. [PMID: 37802318 DOI: 10.1016/j.arr.2023.102083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
Cellular senescence is a pivotal factor contributing to aging and the pathophysiology of age-related diseases. Despite the presence of inflammation and abnormal immune system function in both inflammatory bowel diseases (IBD) and senescence, the relationship between the two remains largely unexplored. Therefore, our study aimed to investigate the intricate connection between cellular senescence, telomeres, and IBD. The review highlights the presence of senescence markers, particularly p16 and p21, in IBD patients, suggesting their potential association with disease progression and mucosal inflammation. We emphasize the critical role of macrophages in eliminating senescent cells and how disturbance in effective clearance may contribute to persistent senescence and inflammation in IBD. Additionally, we shed light on the involvement of telomeres in IBD, as their dysfunction impairs enterocyte function and disrupts colonic barrier integrity, potentially exacerbating the pathogenesis of the disease. Targeting senescence and telomere dysfunctions holds promise for the development of innovative therapeutic approaches to mitigate intestinal inflammation and alleviate symptoms in IBD patients. By unraveling the precise role of senescence in IBD, we can pave the way for the discovery of novel therapeutic interventions that effectively address the underlying mechanisms of intestinal inflammation, offering hope for improved management and treatment of IBD patients.
Collapse
Affiliation(s)
- Michał Sienkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Kamila Sroka
- Department of Family Medicine and Public Health, University of Opole, Opole, Poland
| | - Agata Binienda
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Diana Jurk
- Robert and Arlene Kogod Center On Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
10
|
Shahbazi R, Yasavoli-Sharahi H, Mallet JF, Sharifzad F, Alsadi N, Cuenin C, Cahais V, Chung FFL, Herceg Z, Matar C. Novel Probiotic Bacterium Rouxiella badensis subsp. acadiensis (Canan SV-53) Modulates Gut Immunity through Epigenetic Mechanisms. Microorganisms 2023; 11:2456. [PMID: 37894114 PMCID: PMC10609533 DOI: 10.3390/microorganisms11102456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Gut immune system homeostasis is crucial to overall host health. Immune disturbance at the gut level may lead to systemic and distant sites' immune dysfunction. Probiotics and prebiotics consumption have been shown to improve gut microbiota composition and function and enhance gut immunity. In the current study, the immunomodulatory and anti-inflammatory effects of viable and heat-inactivated forms of the novel probiotic bacterium Rouxiella badensis subsp. acadiensis (Canan SV-53), as well as the prebiotic protocatechuic acid (PCA) derived from the fermentation of blueberry juice by SV-53, were examined. To this end, female Balb/c mice received probiotic (viable or heat-inactivated), prebiotic, or a mixture of viable probiotic and prebiotic in drinking water for three weeks. To better decipher the immunomodulatory effects of biotics intake, gut microbiota, gut mucosal immunity, T helper-17 (Th17) cell-related cytokines, and epigenetic modulation of Th17 cells were studied. In mice receiving viable SV-53 and PCA, a significant increase was noted in serum IgA levels and the number of IgA-producing B cells in the ileum. A significant reduction was observed in the concentrations of proinflammatory cytokines, including interleukin (IL)-17A, IL-6, and IL-23, and expression of two proinflammatory miRNAs, miR-223 and miR425, in treated groups. In addition, heat-inactivated SV-53 exerted immunomodulatory properties by elevating the IgA concentration in the serum and reducing IL-6 and IL-23 levels in the ileum. DNA methylation analysis revealed the role of heat-inactivated SV-53 in the epigenetic regulation of genes related to Th17 and IL-17 production and function, including Il6, Il17rc, Il9, Il11, Akt1, Ikbkg, Sgk1, Cblb, and Smad4. Taken together, these findings may reflect the potential role of the novel probiotic bacterium SV-53 and prebiotic PCA in improving gut immunity and homeostasis. Further studies are required to ascertain the beneficial effects of this novel bacterium in the inflammatory state.
Collapse
Affiliation(s)
- Roghayeh Shahbazi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Hamed Yasavoli-Sharahi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jean-François Mallet
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Farzaneh Sharifzad
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Cyrille Cuenin
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France
| | - Vincent Cahais
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France
| | - Felicia Fei-Lei Chung
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
11
|
Yao J, Song Y, Yu X, Lin Z. Interaction between N 6-methyladenosine modification and the tumor microenvironment in colorectal cancer. Mol Med 2023; 29:129. [PMID: 37737134 PMCID: PMC10515252 DOI: 10.1186/s10020-023-00726-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
The incidence and mortality of colorectal cancer (CRC) are rapidly increasing worldwide. Recently, there has been significant attention given to N6-methyladenosine (m6A), the most common mRNA modification, especially for its effects on CRC development. It is important to note that the progression of CRC would be greatly hindered without the tumor microenvironment (TME). The interaction between CRC cells and their surroundings can activate and influence complex signaling mechanisms of epigenetic changes to affect the survival of tumor cells with a malignant phenotype. Additionally, the TME is influenced by m6A regulatory factors, impacting the progression and prognosis of CRC. In this review, we describe the interactions and specific mechanisms between m6A modification and the metabolic, hypoxia, inflammatory, and immune microenvironments of CRC. Furthermore, we summarize the therapeutic role that m6A modification can play in the CRC microenvironment, and discuss the current status, limitations, and potential future directions in this field. This review aims to provide new insights into the molecular targets and theoretical foundations for the treatment of CRC.
Collapse
Affiliation(s)
- Jiali Yao
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yeke Song
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiaoping Yu
- Health Management Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zhijie Lin
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Key Laboratory of Experimental and Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
12
|
Jason LA, Gaglio CL, Furst J, Islam M, Sorenson M, Conroy KE, Katz BZ. Cytokine network analysis in a community-based pediatric sample of patients with myalgic encephalomyelitis/chronic fatigue syndrome. Chronic Illn 2023; 19:571-580. [PMID: 35570777 PMCID: PMC9666669 DOI: 10.1177/17423953221101606] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Studies have demonstrated immune dysfunction in adolescents with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS); however, evidence is varied. The current study used network analysis to examine relationships between cytokines among a sample of pediatric participants with ME/CFS. METHODS 10,119 youth aged 5-17 in the Chicagoland area were screened for ME/CFS; 111 subjects and controls were brought in for a physician examination and completed a blood draw. Youth were classified as controls (Cs, N = 43), ME/CFS (N = 23) or severe (S-ME/CFS, N = 45). Patterns of plasma cytokine networks were analyzed. RESULTS All participant groups displayed a primary network of interconnected cytokines. In the ME/CFS group, inflammatory cytokines IL-12p70, IL-17A, and IFN-γ were connected and included in the primary membership, suggesting activation of inflammatory mechanisms. The S-ME/CFS group demonstrated a strong relationship between IL-17A and IL-23, a connection associated with chronic inflammation. The relationships of IL-6 and IL-8 in ME/CFS and S-ME/CFS participants also differed from Cs. Together, these results indicate pro-inflammatory responses in our illness populations. DISCUSSION Our data imply biological differences between our three participant groups, with ME/CFS and S-ME/CFS participants demonstrating an inflammatory profile. Examining co-expression of cytokines may aid in the identification of a biomarker for pediatric ME/CFS.
Collapse
Affiliation(s)
- Leonard A. Jason
- Center for Community Research, DePaul University, Chicago, IL, USA
| | | | - Jacob Furst
- College of Computing and Digital Media, DePaul University, Chicago, IL, USA
| | - Mohammed Islam
- Department of Psychology, Chicago State University, Chicago, IL, USA
| | - Matthew Sorenson
- College of Nursing, Texas A&M University, College Station, TX, USA
| | - Karl E. Conroy
- Center for Community Research, DePaul University, Chicago, IL, USA
| | - Ben Z. Katz
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
13
|
Vujovic A, Isakovic AM, Misirlic-Dencic S, Juloski J, Mirkovic M, Cirkovic A, Djelic M, Milošević I. IL-23/IL-17 Axis in Chronic Hepatitis C and Non-Alcoholic Steatohepatitis-New Insight into Immunohepatotoxicity of Different Chronic Liver Diseases. Int J Mol Sci 2023; 24:12483. [PMID: 37569857 PMCID: PMC10419971 DOI: 10.3390/ijms241512483] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Considering the relevance of the research of pathogenesis of different liver diseases, we investigated the possible activity of the IL-23/IL-17 axis on the immunohepatotoxicity of two etiologically different chronic liver diseases. A total of 36 chronic hepatitis C (CHC) patients, 16 with (CHC-SF) and 20 without significant fibrosis (CHC-NSF), 19 patients with non-alcoholic steatohepatitis (NASH), and 20 healthy controls (CG) were recruited. Anthropometric, biochemical, and immunological cytokines (IL-6, IL-10, IL-17 and IL-23) tests were performed in accordance with standard procedure. Our analysis revealed that a higher concentration of plasma IL-23 was associated with NASH (p = 0.005), and a higher concentration of plasma IL-17A but a lower concentration of plasma IL-10 was associated with CHC in comparison with CG. A lower concentration of plasma IL-10 was specific for CHC-NSF, while a higher concentration of plasma IL-17A was specific for CHC-SF in comparison with CG. CHC-NSF and CHC-SF groups were distinguished from NASH according to a lower concentration of plasma IL-17A. Liver tissue levels of IL-17A and IL-23 in CHC-NSF were significantly lower in comparison with NASH, regardless of the same stage of the liver fibrosis, whereas only IL-17A tissue levels showed a difference between the CHC-NSF and CHC-SF groups, namely, a lower concentration in CHC-NSF in comparison with CHC-SF. In CHC-SF and NASH liver tissue, IL17-A and IL-23 were significantly higher in comparison with plasma. Diagnostic accuracy analysis showed significance only in the concentration of plasma cytokines. Plasma IL-6, IL-17A and IL-23 could be possible markers that could differentiate CHC patients from controls. Plasma IL-23 could be considered a possible biomarker of CHC-NSF patients in comparison with controls, while plasma IL-6 and IL-17-A could be biomarkers of CHC-SF patients in comparison with controls. The most sophisticated difference was between the CHC-SF and CHC-NSF groups in the plasma levels of IL-10, which could make this cytokine a useful biomarker of liver fibrosis.
Collapse
Affiliation(s)
- Ankica Vujovic
- Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, 11 000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Andjelka M. Isakovic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11 000 Belgrade, Serbia; (A.M.I.); (S.M.-D.)
- Center of Excellence for Redox Medicine, 11 000 Belgrade, Serbia
| | - Sonja Misirlic-Dencic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11 000 Belgrade, Serbia; (A.M.I.); (S.M.-D.)
- Center of Excellence for Redox Medicine, 11 000 Belgrade, Serbia
| | - Jovan Juloski
- Faculty of Medicine, University of Belgrade, 11 000 Belgrade, Serbia;
- Zvezdara Medical University Center, Surgery Clinic “Nikola Spasic”, 11 000 Belgrade, Serbia
| | - Milan Mirkovic
- Institute for Orthopedic Surgery “Banjica”, 11 000 Belgrade, Serbia;
| | - Andja Cirkovic
- Department of Medical Statistics, Faculty of Medicine, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Marina Djelic
- Institute of Medical Physiology, Faculty of Medicine, University of Belgrade, 11 000 Belgrade, Serbia
| | - Ivana Milošević
- Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, 11 000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11 000 Belgrade, Serbia;
| |
Collapse
|
14
|
Rivas-Arancibia S, Miranda-Martínez A, Rodríguez-Martínez E, Hernández-Orozco E, Valdés-Fuentes M, De la Rosa-Sierra R. Ozone Environmental Pollution: Relationship between the Intestine and Neurodegenerative Diseases. Antioxidants (Basel) 2023; 12:1323. [PMID: 37507863 PMCID: PMC10376557 DOI: 10.3390/antiox12071323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Repeated exposure to environmental ozone causes a chronic state of oxidative stress. This state is present in chronic degenerative diseases and induces a loss of control of the inflammatory response. Redox system dysfunction and failures in control of inflammatory responses are involved in a vicious circle that maintains and increases the degenerative process. The intestine also responds to secondary reactive species formed by exposure to ozone doses, generating noxious stimuli that increase degenerative damage. This review aims to elucidate how environmental pollution, mainly by ozone, induces a state of chronic oxidative stress with the loss of regulation of the inflammatory response, both in the intestine and in the brain, where the functionality of both structures is altered and plays a determining role in some neurodegenerative and chronic degenerative diseases. For this purpose, we searched for information on sites such as the Cochrane Library Database, PubMed, Scopus, and Medscape. Reviewing the data published, we can conclude that environmental pollutants are a severe health problem. Ozone pollution has different pathways of action, both molecular and systemic, and participates in neurodegenerative diseases such as Parkinson's and Alzheimer's disease as well in bowel diseases as Inflammatory Bowel Disease, Crohn's Disease, and Irritable Bowel Syndrome.
Collapse
Affiliation(s)
- Selva Rivas-Arancibia
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alfredo Miranda-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Erika Rodríguez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Eduardo Hernández-Orozco
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Marlen Valdés-Fuentes
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Roberto De la Rosa-Sierra
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
15
|
Ooi QX, Kristoffersson A, Korell J, Flack M, L. Plan E, Weber B. Bounded integer model-based analysis of psoriasis area and severity index in patients with moderate-to-severe plaque psoriasis receiving BI 730357. CPT Pharmacometrics Syst Pharmacol 2023; 12:758-769. [PMID: 36919398 PMCID: PMC10272300 DOI: 10.1002/psp4.12948] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
BI 730357 is investigated as an oral treatment of plaque psoriasis. We analyzed the impact of three dosage regimens on the Psoriasis Area and Severity Index (PASI) response with modeling based on phase I and II data from 109 healthy subjects and 274 patients with moderate-to-severe plaque psoriasis. The pharmacokinetics (PK) was characterized by a two-compartment model with dual absorption paths and a first-order elimination. Higher baseline C-reactive protein was associated with lower clearance and patients generally had lower clearance compared with healthy subjects. A bounded integer PK/pharmacodynamic model characterized the effect on the observed PASI. The maximum drug effect was largest for patients with no prior biologic use, smaller for patients with prior use of non-interleukin-17 inhibitors, and smallest for patients with prior interleukin-17 inhibitor use. The models allowed robust simulation of large patient populations, predicting a plateau in PASI outcomes for BI 730357 exposure above 2000 nmol/L.
Collapse
Affiliation(s)
| | | | - Julia Korell
- Boehringer Ingelheim Pharmaceuticals, Inc.RidgefieldConnecticutUSA
| | - Mary Flack
- Boehringer Ingelheim Pharmaceuticals, Inc.RidgefieldConnecticutUSA
| | | | - Benjamin Weber
- Boehringer Ingelheim Pharmaceuticals, Inc.RidgefieldConnecticutUSA
| |
Collapse
|
16
|
Wang J, Macoritto M, Guay H, Davis JW, Levesque MC, Cao X. The Clinical Response of Upadacitinib and Risankizumab Is Associated With Reduced Inflammatory Bowel Disease Anti-TNF-α Inadequate Response Mechanisms. Inflamm Bowel Dis 2022; 29:771-782. [PMID: 36515243 DOI: 10.1093/ibd/izac246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Janus kinase (JAK) 1 inhibitor upadacitinib and IL-23 inhibitor risankizumab are efficacious in inflammatory bowel disease (IBD) patients who are antitumor necrosis factor (anti-TNF)-α inadequate responders (TNF-IRs). We aimed to understand the mechanisms mediating the response of upadacitinib and risankizumab. METHODS Eight tissue transcriptomic data sets from IBD patients treated with anti-TNF-α therapies along with single-cell RNAseq data from ulcerative colitis were integrated to identify TNF-IR mechanisms. The RNAseq colon tissue data from clinical studies of TNF-IR Crohn's disease patients treated with upadacitinib or risankizumab were used to identify TNF-IR mechanisms that were favorably modified by upadacitinib and risankizumab. RESULTS We found 7 TNF-IR upregulated modules related to innate/adaptive immune responses, interferon signaling, and tissue remodeling and 6 TNF-IR upregulated cell types related to inflammatory fibroblasts, postcapillary venules, inflammatory monocytes, macrophages, dendritic cells, and cycling B cells. Upadacitinib was associated with a significant decrease in the expression of most TNF-IR upregulated modules in JAK1 responders (JAK1-R); in contrast, there was no change in these modules among TNF-IR patients treated with a placebo or among JAK1 inadequate responders (JAK1-IR). In addition, 4 of the 6 TNF-IR upregulated cell types were significantly decreased after upadacitinib treatment in JAK1-R but not among subjects treated with a placebo or among JAK1-IR patients. We observed similar findings from colon biopsy samples from TNF-IR patients treated with risankizumab. CONCLUSIONS Collectively, these data suggest that upadacitinib and risankizumab affect TNF-IR upregulated mechanisms, which may account for their clinical response among TNF-IR IBD patients.
Collapse
Affiliation(s)
- Jing Wang
- Genomic Research Center, AbbVie Inc, Cambridge, MA, 02139, USA
| | | | - Heath Guay
- AbbVie Bioresearch Center, Worcester, MA, 01605, USA
| | - Justin W Davis
- Genomic Research Center, AbbVie Inc, North Chicago, IL, 60064, USA
| | | | - Xiaohong Cao
- Genomic Research Center, AbbVie Inc, Cambridge, MA, 02139, USA
| |
Collapse
|
17
|
Zhang Y, Feng X, Lin H, Chen X, He P, Wang Y, Chu Q. Tieguanyin extracts ameliorated DSS-induced mouse colitis by suppressing inflammation and regulating intestinal microbiota. Food Funct 2022; 13:13040-13051. [PMID: 36453715 DOI: 10.1039/d2fo02781j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Previous studies have shown that a typical kind of oolong tea, Tieguanyin, has multiple health benefits, while there is no research investigating its effects on inflammatory bowel disease (IBD). In this study, we aimed to explore the alleviation effects of Tieguanyin water (TWE) and ethanol (TES) extracts on IBD. Physiological activity status, colitis severity (disease activity index (DAI), colon and spleen weight), inflammatory cytokines (interleukin (IL)-4, interferon-γ (IFN-γ), IL-17, transforming growth factor-β (TGF-β), and IL-10) and microbiota composition were measured in experimental colitis mice induced by dextran sulfate sodium (DSS). TWE and TES exerted remarkable protective effects against experimental colitis, showing decreased colitis severity and improved colon morphology. TES also suppressed colonic inflammation via downregulation of pro-inflammatory cytokines (IL-4, IFN-γ, IL-17, and TGF-β) and upregulation of the anti-inflammatory cytokine IL-10. In addition, TWE and TES treatment caused significant alterations in the gut microbiota. Oolong tea extract treatment reduced the community abundance of pernicious bacteria Escherichia-Shigella from 21.6% (DSS) to 0.9% (TES) and 1.2% (TWE), and elevated that of probiotics Lachnospiraceae_NK4A136_group from 2.2% to 15.2% (TES) and 11.9% (TWE). Therefore, TWE and TES both remarkably ameliorated DSS-induced colitis, which suggested oolong extracts could be a candidate for IBD treatment.
Collapse
Affiliation(s)
- Yuxi Zhang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China. .,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Xinyu Feng
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China. .,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.,Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Haiyu Lin
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China. .,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Xue Chen
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China. .,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Puming He
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China. .,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Yuefei Wang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China. .,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Qiang Chu
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China. .,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| |
Collapse
|
18
|
Vaghari-Tabari M, Alemi F, Zokaei M, Moein S, Qujeq D, Yousefi B, Farzami P, Hosseininasab SS. Polyphenols and inflammatory bowel disease: Natural products with therapeutic effects? Crit Rev Food Sci Nutr 2022; 64:4155-4178. [PMID: 36345891 DOI: 10.1080/10408398.2022.2139222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inflammatory bowel disease (IBD) is a long-life disease with periods of recurrence and relief. Oxidative stress plays an important role in the pathogenesis of this disease. Recent years' studies in the field of IBD treatment mostly have focused on targeting cytokines and immune cell trafficking using antibodies and inhibitors, altering the composition of intestinal bacteria in the line of attenuation of inflammation using probiotics and prebiotics, and attenuating oxidative stress through antioxidant supplementation. Studies in animal models of IBD have shown that some polyphenolic compounds including curcumin, quercetin, resveratrol, naringenin, and epigallocatechin-3-gallate can affect almost all of the above aspects and are useful compounds in the treatment of IBD. Clinical studies performed on IBD patients have also confirmed the findings of animal model studies and have shown that supplementation with some of the above-mentioned polyphenolic compounds has positive effects in reducing disease clinical and endoscopic activity, inducing and maintaining remission, and improving quality of life. In this review article, in addition to a detailed reviewing the effects of the above-mentioned polyphenolic compounds on the events involved in the pathogenesis of IBD, the results of these clinical studies will also be reviewed.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Zokaei
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Payam Farzami
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
19
|
Zhang Z, Cui Y, Liu S, Huang J, Liu Y, Zhou Y, Zhu Z. Short-term treatment with zingerone ameliorates dextran sulfate sodium-induced mouse experimental colitis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4873-4882. [PMID: 35246845 DOI: 10.1002/jsfa.11850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/12/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is a relapsing and chronic inflammatory disease of the gastrointestinal tract, which seriously threatens human health. Zingerone (ZO) has been proven to be effective for many diseases. The purpose of this study is to investigate the protective effects and potential mechanisms of ZO extracted from ginger on dextran sulfate sodium (DSS)-induced mouse ulcerative colitis (UC). RESULTS The results showed that ZO alleviated the weight loss of UC model mice, reduced the disease activity index scores, and inhibited the shortening of colon length. ZO also improved DSS-induced pathological changes in colon tissue and inhibited the secretion of pro-inflammatory cytokines in colon and mesenteric lymph nodes. Further mechanism analysis found that ZO inhibited DSS-induced nuclear factor-κB pathway activation, and regulated peroxisome proliferator-activated receptor γ (PPARγ) expression. To further explore whether PPARγ was involved in the anti-UC effect of ZO, PPARγ inhibitor GW9662 was used. Although ZO also showed a protective effect on GW9662-treated colitis mice, the protective role was significantly weakened. Importantly, the administration of GW9662 significantly aggravated UC compared with the ZO + DSS group. In addition, we preliminarily found that ZO had the effects of inhibiting DSS-induced oxidative stress, maintaining intestinal barrier, and inhibiting the content of LPS and the population of Escherichia coli. CONCLUSIONS These results indicated that supplementation with ZO might be a new dietary strategy for the treatment of UC. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zecai Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, China
- Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing, China
| | - Yueqi Cui
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, China
| | - Siyu Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, China
| | - Jiang Huang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, China
| | - Yu Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, China
- Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing, China
| | - Yulong Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, China
- Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing, China
| | - Zhanbo Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Technology Innovation Center for Bovine Disease Control and Prevention, Daqing, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, China
- Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing, China
| |
Collapse
|
20
|
Levin NA, Rashighi M. Psoriasis and hidradenitis suppurativa are associated with inflammatory bowel disease: a growing body of evidence. Br J Dermatol 2022; 187:631-632. [PMID: 35975655 DOI: 10.1111/bjd.21808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nikki A Levin
- Department of Dermatology, University of Massachusetts Chan School of Medicine, Worcester, MA, USA
| | - Mehdi Rashighi
- Department of Dermatology, University of Massachusetts Chan School of Medicine, Worcester, MA, USA
| |
Collapse
|
21
|
Shou X, Wang Y, Zhang X, Zhang Y, Yang Y, Duan C, Yang Y, Jia Q, Yuan G, Shi J, Shi S, Cui H, Hu Y. Network Pharmacology and Molecular Docking Analysis on Molecular Mechanism of Qingzi Zhitong Decoction in the Treatment of Ulcerative Colitis. Front Pharmacol 2022; 13:727608. [PMID: 35237152 PMCID: PMC8883437 DOI: 10.3389/fphar.2022.727608] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis (UC) is a disease with complex pathological mechanisms. We explored the potential molecular mechanisms behind the therapeutic functions of Qingzi Zhitong decoction (QZZTD) in the treatment of UC by network pharmacology and molecular docking. QZZTD is a formula of Chinese traditional medicine consisting of 10 herbs. The potential active ingredients of QZZTD and their target genes were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database, and UC-related target genes were obtained from GeneCards and OMIM databases. A total of 138 co-identified target genes were obtained by plotting the intersection target Venn diagram, and then the STRING database and Cytoscape software were used to establish protein-protein interaction networks and herb-ingredient-target networks. Four key active compounds and nine key proteins were identified. Then, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that the biological functions of potential target genes were associated with DNA transcription, signaling receptor and ligand activity, cytokine activity, cellular autophagy, and antioxidant pathways, with related pathways involving the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway, advanced glycosylation end product (AGE)-RAGE signaling pathway, tumor necrosis factor (TNF) signaling pathway, and IL-17 signaling pathway. Moreover, the binding activities of key target genes and essential active compounds of Chinese herbal medicines in QZZTD were further validated by molecular docking. This demonstrated that quercetin, luteolin, hyndarin, and beta-sitosterol had good binding to eight key proteins, and Akt1 was the target protein with the best binding activity, suggesting that Akt1 could be the essential mediator responsible for signaling transduction after QZZTD administration. The rat experiment verified that QZZTD inhibited PI3K-Akt pathway activation and reduced inflammation in UC. In conclusion, our study suggested four potential key active components, including quercetin, were identified in QZZTD, which could interact with Akt1 and modulate the activation of the PI3K-Akt pathway. The other three pathways may also be involved in the signaling transduction induced by QZZTD in the treatment of UC.
Collapse
Affiliation(s)
- Xintian Shou
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Yumeng Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Xuesong Zhang
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Yanju Zhang
- National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yan Yang
- National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Chenglin Duan
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Yihan Yang
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Qiulei Jia
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Guozhen Yuan
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Jingjing Shi
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Shuqing Shi
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Hanming Cui
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Yuanhui Hu
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| |
Collapse
|
22
|
Tan J, Li Z, Liu L, Liu H, Xue J. IL‐17 in intervertebral disc degeneration: mechanistic insights and therapeutic implications. Cell Biol Int 2022; 46:535-547. [PMID: 35066966 DOI: 10.1002/cbin.11767] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jing‐Hua Tan
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Ze‐Peng Li
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Lu‐Lu Liu
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Hao Liu
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Jing‐Bo Xue
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| |
Collapse
|
23
|
Lu J, Wang Z, Maimaiti M, Hui W, Abudourexiti A, Gao F. Identification of diagnostic signatures in ulcerative colitis patients via bioinformatic analysis integrated with machine learning. Hum Cell 2022; 35:179-188. [PMID: 34731452 DOI: 10.1007/s13577-021-00641-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023]
Abstract
Ulcerative colitis (UC) is an immune-related disorder with enhanced prevalence globally. Early diagnosis is critical for the effective treatment of UC. However, it still lacks specific diagnostic signatures. The aim of our study was to explore efficient signatures and construct the diagnostic model for UC. Microarray data of GSE87473 and GSE48634, which were obtained from tissue biopsy samples, were downloaded from the Gene Expression Omnibus (GEO), and differently expressed genes (DEGs), GO, and KEGG analyses were performed. We constructed the PPI network via STRING database. The immune infiltration of the samples was evaluated using CIBERSORT methods combined with the LM22 feature matrix. The logistic regression model was constructed, with the expression of selected genes as the predictor variable, and the UC occurrence as the responsive variable. As a result, a total of 126 DEGs between the UC patients and normal counterparts were identified. The GO and KEGG analysis revealed that multiple biological processes, such as antimicrobial humoral immune response mediated by antimicrobial peptide and IL-17 signaling pathway, were enriched. The infiltration of eight immune cell types (B cells naive, Dendritic.cells.activated, Macrophages.M0, Macrophages.M2, Mast.cells.resting, Neutrophils, Plasma.cells, and T.cells.follicular.helper) was significantly different between patients with UC and normal counterparts. The top 50 most significant DEGs were selected for the construction of the PPI network. The average AUC of the logistic regression model in the fivefold cross-validation was 0.8497 in the training set, GSE87473. The AUC of another independent verification set of GSE48634 from the GEO database was 0.7208. In conclusion, we identified potential hub genes, including REG3A, REG1A, DEFA6, REG1B, and DEFA5, which might be significantly associated with UC progression. The logistic regression model based on the five genes could reliably diagnose UC patients.
Collapse
Affiliation(s)
- Jiajie Lu
- Xinjiang Medical University, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
| | - Zhiyuan Wang
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
| | - Munila Maimaiti
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
| | - Wenjia Hui
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
| | - Adilai Abudourexiti
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
| | - Feng Gao
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
24
|
Cheng WX, Ren Y, Lu MM, Xu LL, Gao JG, Chen D, Kalyani FS, Lv ZY, Chen CX, Ji F, Lin HN, Jin X. Palmitoylation in Crohn’s disease: Current status and future directions. World J Gastroenterol 2021; 27:8201-8215. [PMID: 35068865 PMCID: PMC8717020 DOI: 10.3748/wjg.v27.i48.8201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/08/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
S-palmitoylation is one of the most common post-translational modifications in nature; however, its importance has been overlooked for decades. Crohn’s disease (CD), a subtype of inflammatory bowel disease (IBD), is an autoimmune disease characterized by chronic inflammation involving the entire gastrointestinal tract. Bowel damage and subsequent disabilities caused by CD are a growing global health issue. Well-acknowledged risk factors for CD include genetic susceptibility, environmental factors, such as a westernized lifestyle, and altered gut microbiota. However, the pathophysiological mechanisms of this disorder are not yet comprehensively understood. With the rapidly increasing global prevalence of CD and the evident role of S-palmitoylation in CD, as recently reported, there is a need to investigate the relationship between CD and S-palmitoylation. In this review, we summarize the concept, detection, and function of S-palmitoylation as well as its potential effects on CD, and provide novel insights into the pathogenesis and treatment of CD.
Collapse
Affiliation(s)
- Wei-Xin Cheng
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yue Ren
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Miao-Miao Lu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Ling-Ling Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jian-Guo Gao
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Dong Chen
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Farhin Shaheed Kalyani
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zi-Yan Lv
- Wenzhou Medical University Renji College, Wenzhou 325035, Zhejiang Province, China
| | - Chun-Xiao Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - He-Ning Lin
- Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, United States
| | - Xi Jin
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
25
|
Yuan YY, Liu YJ, Fan H. New progress in research of Th17 cells and related cytokines in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2021; 29:1402-1409. [DOI: 10.11569/wcjd.v29.i24.1402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic non-specific intestinal inflammatory disease. IBD is an immune disease, and there is no cure for it at present. Intestinal immunity is the research focus of IBD. Focusing on Th17 cells and related cytokines, this article reviews the updated research on IBD, including its etiology, its relationship with adaptive immunity, and its relationship with Th17 cells. We also introduce Th17 cells and related cytokines, and their research in IBD. Finally, we point out the future research direction of Th17 cells in IBD.
Collapse
Affiliation(s)
- Yu-Yi Yuan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Yu-Jin Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
26
|
Cai Z, Zhu T, Liu F, Zhuang Z, Zhao L. Co-pathogens in Periodontitis and Inflammatory Bowel Disease. Front Med (Lausanne) 2021; 8:723719. [PMID: 34616755 PMCID: PMC8488124 DOI: 10.3389/fmed.2021.723719] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/27/2021] [Indexed: 02/05/2023] Open
Abstract
Localized inflammatory lesions in one area of the body may affect other distant organs through various modes of transmission thus initiating secondary inflammatory infections. Periodontal disease (PD) and inflammatory bowel disease (IBD) have been shown to coexist. Periodontitis is a multifactorial inflammatory disease, and dental plaque is considered to be the initial risk factor. Individuals with genetic susceptibility are more likely to develop periodontitis when exposed to external stimuli. IBD is affected by host genetics, immunoregulation, daily diet, and the gut microbiota, and its risk factors appear to be shared with those of PD. However, the key etiologies of both diseases remain unclear, thus hindering the exploration of possible links between IBD and PD. Recent studies and systematic reviews have focused on evidence-based statistics of the prevalence and clinical manifestations of both diseases, but discussions of the microbial etiological correlation between periodontitis and intestinal inflammation are scarce. Here, we summarize the potential common pathogenic microorganisms that may serve as bridges between the two diseases. Studies have shown that invasive microorganisms such as Porphyromonas gingivalis, Fusobacterium nucleatum, Klebsiella spp. and Campylobacter spp. play key roles in the comorbidity of PD and IBD.
Collapse
Affiliation(s)
- Zhengwen Cai
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Tao Zhu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Fengshuo Liu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Zixuan Zhuang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Zhao
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Youssef ME, Abd El-Fattah EE, Abdelhamid AM, Eissa H, El-Ahwany E, Amin NA, Hetta HF, Mahmoud MH, Batiha GES, Gobba N, Ahmed Gaafar AG, Saber S. Interference With the AMPKα/mTOR/NLRP3 Signaling and the IL-23/IL-17 Axis Effectively Protects Against the Dextran Sulfate Sodium Intoxication in Rats: A New Paradigm in Empagliflozin and Metformin Reprofiling for the Management of Ulcerative Colitis. Front Pharmacol 2021; 12:719984. [PMID: 34489707 PMCID: PMC8417441 DOI: 10.3389/fphar.2021.719984] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
Empagliflozin and metformin are widely used for the treatment of type 2 diabetes. These drugs showed marked anti-inflammatory effects in different animal models via enhancing AMPK activity. Yet, the protective anti-inflammatory effects of their combination against ulcerative colitis have not been previously investigated. The current study aimed to explore the potential of empagliflozin/metformin combination to mitigate the DSS-induced rat colitis model. The modulating effects of empagliflozin and metformin on the AMPK/mTOR/NLRP3 axis and T cell polarization were delineated. In this study, distal colons were examined for macroscopic and microscopic pathological alterations. ELISA, qRT-PCR, and immunohistochemistry techniques were applied to detect proteins and cytokines involved in AMPK/mTOR/NLRP3 axis and T Cell polarization. Oral administration of empagliflozin (10 mg/kg/day) and metformin (200 mg/kg/day) combination alleviated colitis as revealed by the reduced disease activity index, macroscopic damage index, colon weight/length ratio, and histopathologic scoring values. Interestingly, empagliflozin/metformin combination significantly enhanced AMPK phosphorylation and depressed mTOR and NLRP3 expression leading to a subsequent reduction in caspase-1 cleavage and inhibition of several inflammatory cytokines, including IL-1β, and IL-18. Reduced mTOR expression and reduced IL-6 levels led to a reduction in Th17 cell polarization and maintenance. Together, the current study reveals that the protective effects of empagliflozin and metformin against DSS-induced colitis are fundamentally mediated via enhancing AMPK phosphorylation. Since adult humans with diabetes mellitus are at greater risk for developing inflammatory bowel diseases, clinical application of empagliflozin/metformin combination represents a novel therapeutic approach for treating diabetic patients with ulcerative colitis.
Collapse
Affiliation(s)
- Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Eslam E Abd El-Fattah
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Amir M Abdelhamid
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Hanan Eissa
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman El-Ahwany
- Department of Immunology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Noha A Amin
- Department of Hematology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt.,Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Mohamed H Mahmoud
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Naglaa Gobba
- Department of Pharmacology and Toxicology, College of Pharmacy, Misr University for Science and Technology, 6th of October City, Egypt
| | - Ahmed Gaafar Ahmed Gaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Port-Said University, Port-Said, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
28
|
Kim JH, Shin CY, Jang SW, Kim DS, Lee W, Kim HG, Kim HR. Anti-inflammatory effects of DA-9601, an extract of Artemisia asiatica, on aceclofenac-induced acute enteritis. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:439-448. [PMID: 34448461 PMCID: PMC8405443 DOI: 10.4196/kjpp.2021.25.5.439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/16/2021] [Accepted: 05/06/2021] [Indexed: 11/15/2022]
Abstract
DA-9601 is an extract obtained from Artemisia asiatica, which has been reported to have anti-inflammatory effects on gastrointestinal lesions; however, its possible anti-inflammatory effects on the small intestine have not been studied yet. Therefore, in this study, we investigated the protective effects of DA-9601 against the ACF-induced small intestinal inflammation. Inflammation of the small intestine was confirmed by histological studies and the changes in the CD4+ T cell fraction induced by the inflammation-related cytokines, and the inflammatory reactions were analyzed. Multifocal discrete small necrotic ulcers with intervening normal mucosa were frequently observed after treatment with ACF. The expression of IL-6, IL-17, and TNF-α genes was increased in the ACF group; however, it was found to have been significantly decreased in the DA-9601 treated group. In addition, DA-9601 significantly decreased the levels of proinflammatory mediators such as IL-1β, GM-CSF, IFN-γ, and TNF-α; the anti-inflammatory cytokine IL-10, on the other hand, was observed to have increased. It is known that inflammatory mediators related to T cell imbalance and dysfunction continuously activate the inflammatory response, causing chronic tissue damage. The fractions of IFN-γ+ Th1 cells, IL-4+ Th2 cells, IL-9+ Th9 cells, IL-17+ Th17 cells, and Foxp3+ Treg cells were significantly decreased upon DA-9601 treatment. These data suggest that the inflammatory response induced by ACF is reduced by DA-9601 via lowering of the expression of genes encoding the inflammatory cytokines and the concentration of inflammatory mediators. Furthermore, DA-9601 inhibited the acute inflammatory response mediated by T cells, resulting in an improvement in ACF-induced enteritis.
Collapse
Affiliation(s)
- Ju Hwan Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Korea
| | - Chang Yell Shin
- Research Institute of Dong-A ST Co., Ltd., Yongin 17073, Korea
| | - Sun Woo Jang
- Research Institute of Dong-A ST Co., Ltd., Yongin 17073, Korea
| | - Dong-Seok Kim
- Department of Biochemistry, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Wonae Lee
- Department of Pathology, College of Medicine, Dankook University, Cheonan 31116, Korea
| | - Hyung-Gun Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Korea.,NeuroVis Inc., Cheonan 31035, Korea
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
29
|
Hyun CK. Molecular and Pathophysiological Links between Metabolic Disorders and Inflammatory Bowel Diseases. Int J Mol Sci 2021; 22:ijms22179139. [PMID: 34502047 PMCID: PMC8430512 DOI: 10.3390/ijms22179139] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023] Open
Abstract
Despite considerable epidemiological evidence indicating comorbidity between metabolic disorders, such as obesity, type 2 diabetes, and non-alcoholic fatty liver disease, and inflammatory bowel diseases (IBD), such as Crohn’s disease and ulcerative colitis, as well as common pathophysiological features shared by these two categories of diseases, the relationship between their pathogenesis at molecular levels are not well described. Intestinal barrier dysfunction is a characteristic pathological feature of IBD, which also plays causal roles in the pathogenesis of chronic inflammatory metabolic disorders. Increased intestinal permeability is associated with a pro-inflammatory response of the intestinal immune system, possibly leading to the development of both diseases. In addition, dysregulated interactions between the gut microbiota and the host immunity have been found to contribute to immune-mediated disorders including the two diseases. In connection with disrupted gut microbial composition, alterations in gut microbiota-derived metabolites have also been shown to be closely related to the pathogeneses of both diseases. Focusing on these prominent pathophysiological features observed in both metabolic disorders and IBD, this review highlights and summarizes the molecular risk factors that may link between the pathogeneses of the two diseases, which is aimed at providing a comprehensive understanding of molecular mechanisms underlying their comorbidity.
Collapse
Affiliation(s)
- Chang-Kee Hyun
- School of Life Science, Handong Global University, Pohang 37554, Gyungbuk, Korea
| |
Collapse
|
30
|
Muhammad K, Ayoub MA, Iratni R. Vascular Inflammation in Cardiovascular Disease: Is Immune System Protective or Bystander? Curr Pharm Des 2021; 27:2141-2150. [PMID: 33461451 DOI: 10.2174/1381612827666210118121952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/15/2020] [Indexed: 11/22/2022]
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death worldwide. Chronic atherosclerosis induced vascular inflammation and perturbation of lipid metabolism is believed to be a major cause of CVD. Interplay of innate and adaptive Immune system has been interwined with various risk factors associated with the initiation and progression of atherosclerosis in CVD. A large body of evidence indicates a correlation between immunity and atherosclerosis. Retention of plasma lipoproteins in arterial subendothelial wall triggers the T helper type 1 (Th1) cells and monocyte-derived macrophages to form atherosclerotic plaques. In the present review, we will discuss the pathogenesis of CVD in relation to atherosclerosis with a particular focus on pro-atherogenic role of immune cells. Recent findings have also suggested anti-atherogenic roles of different B cell subsets. Therapeutic approaches to target atherosclerosis risk factors have reduced the mortality, but a need exists for the novel therapies to treat arterial vascular inflammation. These insights into the immune pathogenesis of atherosclerosis can lead to new targeted therapeutics to abate cardiovascular mortality and morbidity.
Collapse
Affiliation(s)
- Khalid Muhammad
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed A Ayoub
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
31
|
Duan L, Cheng S, Li L, Liu Y, Wang D, Liu G. Natural Anti-Inflammatory Compounds as Drug Candidates for Inflammatory Bowel Disease. Front Pharmacol 2021; 12:684486. [PMID: 34335253 PMCID: PMC8316996 DOI: 10.3389/fphar.2021.684486] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) represents chronic recurrent intestinal inflammation resulting from various factors. Crohn’s disease (CD) and ulcerative colitis (UC) have been identified as the two major types of IBD. Currently, most of the drugs for IBD used commonly in the clinic have adverse reactions, and only a few drugs present long-lasting treatment effects. Moreover, issues of drug resistance and disease recurrence are frequent and difficult to resolve. Together, these issues cause difficulties in treating patients with IBD. Therefore, the development of novel therapeutic agents for the prevention and treatment of IBD is of significance. In this context, research on natural compounds exhibiting anti-inflammatory activity could be a novel approach to developing effective therapeutic strategies for IBD. Phytochemicals such as astragalus polysaccharide (APS), quercetin, limonin, ginsenoside Rd, luteolin, kaempferol, and icariin are reported to be effective in IBD treatment. In brief, natural compounds with anti-inflammatory activities are considered important candidate drugs for IBD treatment. The present review discusses the potential of certain natural compounds and their synthetic derivatives in the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Linshan Duan
- School of Pharmaceutical Sciences Xiamen University, Xiamen, China
| | - Shuyu Cheng
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, China
| | - Long Li
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Yanling Liu
- School of Pharmaceutical Sciences Xiamen University, Xiamen, China
| | - Dan Wang
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, China
| | - Guoyan Liu
- School of Pharmaceutical Sciences Xiamen University, Xiamen, China.,Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, China.,Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
32
|
Targeting JAK/STAT signaling pathways in treatment of inflammatory bowel disease. Inflamm Res 2021; 70:753-764. [PMID: 34212215 DOI: 10.1007/s00011-021-01482-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 01/05/2023] Open
Abstract
Janus kinase/signal transduction and transcriptional activator (JAK/STAT) signaling pathway is a transport hub for cytokine secretion and exerts its effects. The activation of JAK/STAT signaling pathway is essential for the regulation of inflammatory responses. Inappropriate activation or deletion of JAK/STAT signaling pathway is the initiator of the inflammatory response. JAK/STAT signaling pathway has been demonstrated to be involved in the process of innate and adaptive immune response to inflammatory bowel disease (IBD). In this review, we discuss the role of the JAK/STAT signaling pathway in the regulation of different cells in IBD, as well as new findings on the involvement of the JAK/STAT signaling pathway in the regulation of the intestinal immune response. The current status of JAK inhibitors in the treatment of IBD is summarized as well. This review highlights natural remedies that can serve as potential JAK inhibitors. These phytochemicals may be useful in the identification of precursor compounds in the process of designing and developing novel JAK inhibitors.
Collapse
|
33
|
Maillard A, Pastor D, Merat R. Anti-PD-1-Induced Hidradenitis Suppurativa. Dermatopathology (Basel) 2021; 8:37-39. [PMID: 33668724 PMCID: PMC8008319 DOI: 10.3390/dermatopathology8010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 11/23/2022] Open
Abstract
Mucocutaneous adverse events are commonly observed under immune checkpoint inhibitors (ICIs) therapy. Here, we report the case of a 43-year-old male patient with a stage IIIC melanoma disease who developed hidradenitis suppurativa (HS) three months after the beginning of an anti-PD-1 (nivolumab) adjuvant therapy. The patient had no comorbidities other than obesity and severe acne during adolescence. After an unsuccessful course of lymecycline while he was still treated with nivolumab, he gradually improved under zinc gluconate therapy and, more importantly, after nivolumab cessation. HS is a recurrent follicular inflammatory disease in the apocrine gland-bearing areas of the body often associated with obesity, metabolic syndrome, tobacco smoking, inflammatory bowel diseases, psoriasis, and arthritis. In our patient, the latency period between drug initiation and onset of HS symptoms and the improvement after immunotherapy discontinuation, argued strongly in favor of an anti-PD-1-induced HS. Anti-PD-1 therapies often trigger T cells-mediated adverse events that mimic Th17-mediated inflammatory and neutrophilic diseases. We suggest that HS, as other pustular skin reactions and ICIs-induced neutrophilic colitis, can be part of the anti-PD-1 mucocutaneous adverse event spectrum.
Collapse
|
34
|
Farsi F, Ebrahimi-Daryani N, Golab F, Akbari A, Janani L, Karimi MY, Irandoost P, Alamdari NM, Agah S, Vafa M. A randomized controlled trial on the coloprotective effect of coenzyme Q10 on immune-inflammatory cytokines, oxidative status, antimicrobial peptides, and microRNA-146a expression in patients with mild-to-moderate ulcerative colitis. Eur J Nutr 2021; 60:3397-3410. [PMID: 33620550 DOI: 10.1007/s00394-021-02514-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 02/05/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Coenzyme Q10 (CoQ10), having potent antioxidant and anti-inflammatory pharmacological properties, has recently been shown to be a safe and promising agent in maintaining remission of ulcerative colitis (UC). This trial was, therefore, designed to determine CoQ10 efficacy on inflammation and antioxidant status, antimicrobial peptides, and microRNA-146a expression in UC patients. METHODS In this randomized double-blind controlled trial, 88 mild-to-moderate UC patients were randomly allocated to receive CoQ10 (200 mg/day) or placebo (rice flour) for 2 months. At the baseline and at an 8-week follow-up, serum levels of Nrf2, cathelicidin LL-37, β-defensin 2, IL-10, IL-17, NF-κB p65 activity in peripheral blood mononuclear cells (PBMCs), simple clinical colitis activity index questionnaire (SCCAIQ), and quality of life (IBDQ-32 score), as well as an expression rate of microRNA-146a were measured. RESULTS A significant reduction was detected in the serum IL-17 level, activity of NF-κB p65 in PBMCs, and also SCCAI score in the CoQ10 group compared to the placebo group, whereas IL-10 serum concentrations and IBDQ-32 score of the CoQ10 group considerably increased versus the control group; the changes of these variables were also significantly different within and between groups at the end of the study. Furthermore, CoQ10 remarkably increased serum levels of cathelicidin LL-37. A significant change in serum cathelicidin LL-37 levels was also observed between the two groups. No statistical difference, however, was seen between the two groups in terms of the serum levels of Nrf2 and β-defensin 2 and the relative expression of microRNA-146a. CONCLUSIONS Our results indicate that CoQ10 supplementation, along with drug therapy, appears to be an efficient reducer of inflammation in patients with mild-to-moderate UC at a remission phase. TRIAL REGISTRATION The research has also been registered at the Iranian Registry of Clinical Trials (IRCT): IRCT20090822002365N17.
Collapse
Affiliation(s)
- Farnaz Farsi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Janani
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Pardis Irandoost
- Student Research Committee, Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Naimeh Mesri Alamdari
- Student Research Committee, Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Mikami A, Ogita T, Namai F, Shigemori S, Sato T, Shimosato T. Oral Administration of Flavonifractor plautii, a Bacteria Increased With Green Tea Consumption, Promotes Recovery From Acute Colitis in Mice via Suppression of IL-17. Front Nutr 2021; 7:610946. [PMID: 33614691 PMCID: PMC7890079 DOI: 10.3389/fnut.2020.610946] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Flavonifractor plautii (FP) has been reported to participate in the metabolism of catechins in the human gut. However, there is limited information on the immune regulatory effects of this bacterium. We confirmed that the administration of green tea increases the abundance of FP in the gut microbiota and investigated the effect of FP in a mouse colitis model. Mice were orally administered FP for 10 consecutive days; colonic inflammation was evaluated daily on the basis of stool consistency, gross rectal bleeding, and body weight. In the dextran sodium sulfate model, FP-exposed animals exhibited lower levels of inflammation and strong inhibition of interleukin (IL)-17 signaling. Moreover, lipoteichoic acid from FP was identified as the active component mediating IL-17 suppression. Thus, oral administration of FP appears to modulate gut inflammation and represents a viable and inexpensive oral microbial therapeutic.
Collapse
Affiliation(s)
- Ayane Mikami
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Tasuku Ogita
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Fu Namai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Suguru Shigemori
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Takashi Sato
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Takeshi Shimosato
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| |
Collapse
|
36
|
Słowińska-Solnica K, Pawlica-Gosiewska D, Gawlik K, Owczarek D, Cibor D, Pocztar H, Mach T, Solnica B. Serum inflammatory markers in the diagnosis and assessment of Crohn's disease activity. Arch Med Sci 2021; 17:252-257. [PMID: 33488879 PMCID: PMC7811324 DOI: 10.5114/aoms/130842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The aim of our study was to evaluate the diagnostic characteristics of selected inflammatory markers and the results of multiplication of their concentrations in the diagnosis and assessment of Crohn's disease (CD) activity. METHODS We studied 49 patients with CD and 31 healthy controls. The CD patients were assigned to subgroups with active and inactive disease based on the Crohn's Disease Activity Index score. Serum interleukins and C-reactive protein (CRP) were measured using immunoassays. RESULTS Serum CRP and interleukins: IL-6, IL-17A, IL-23 were significantly higher in the CD group than in controls, with the best diagnostic performance for IL-23. Only serum IL-6 and CRP were significantly higher in active than in inactive disease, with the better performance of CRP. Multiplication results did not perform better than individual multipliers. CONCLUSIONS Serum CRP may be useful in the assessment of CD activity and there is a need for introduction of IL-23 for the CD diagnosis.
Collapse
Affiliation(s)
| | | | - Katarzyna Gawlik
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - Danuta Owczarek
- Department of Gastroenterology and Hepatology, Jagiellonian University Medical College, Krakow, Poland
- Department of Gastroenterology and Hepatology, University Hospital, Krakow, Poland
| | - Dorota Cibor
- Department of Gastroenterology and Hepatology, Jagiellonian University Medical College, Krakow, Poland
- Department of Gastroenterology and Hepatology, University Hospital, Krakow, Poland
| | - Halina Pocztar
- Department of Gastroenterology and Hepatology, Jagiellonian University Medical College, Krakow, Poland
- Department of Gastroenterology and Hepatology, University Hospital, Krakow, Poland
| | - Tomasz Mach
- Department of Gastroenterology and Hepatology, Jagiellonian University Medical College, Krakow, Poland
- Department of Gastroenterology and Hepatology, University Hospital, Krakow, Poland
| | - Bogdan Solnica
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
37
|
Burn Injury Induces Intestinal Inflammatory Response Mediated by Th17 in Burn-Primed Endotoxemic Mice. Int Surg 2020. [DOI: 10.9738/intsurg-d-18-00014.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective
This study aimed to elucidate the mechanism underlying the susceptibility to infection-related acute lung injury by focusing on the role of gut mucosal T-helper (Th) 17 cells that preferentially produce IL-17 with probiotics in a burn-primed endotoxemic mice model.
Methods
Mice were subjected to a 15% total body surface area third-degree burn. Survival from lethal lipopolysaccharide (LPS) administration (3 mg/kg) on 11th day post-burn was assessed in mice fed by chow with or without 1.2% Lactobacillus powder after burn injury. Lamina propria mononuclear cells were enzymatically isolated from the ileum removed on 11th day post-burn and incubated along with 1 μg/mL LPS or 10 μg/mL anti-CD3 antibody for 24 hours; subsequently, the following 7 cytokines were analyzed in the supernatant: IFN-γ, TNF-α, IL-2, IL-4, IL-6, IL-10, and IL-17.
Results
Lactobacillus treatment post-burn injury markedly improved survival after lethal endotoxemia in burn-primed mice (64.3% versus 21.4%, P = 0.03). The production of proinflammatory cytokines such as TNF-α, IL-6, and IL-17 by lamina propria mononuclear T-lymphocytes and macrophages including Th17 response was augmented by burn injury but decreased with Lactobacillus treatment after burn injury.
Conclusions
Th17- and Th17-mediated inflammatory responses in the gut mucosa may play a vital role, which could be attenuated by Lactobacillus treatment, in survival of lethal endotoxemia in burn-primed mice.
Collapse
|
38
|
Zobeiri M, Momtaz S, Parvizi F, Tewari D, Farzaei MH, Nabavi SM. Targeting Mitogen-Activated Protein Kinases by Natural Products: A Novel Therapeutic Approach for Inflammatory Bowel Diseases. Curr Pharm Biotechnol 2020; 21:1342-1353. [PMID: 31840607 DOI: 10.2174/1389201021666191216122555] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/01/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022]
Abstract
An increase in the prevalence of Inflammatory Bowel Diseases (IBD) as a multifactorial intestinal chronic inflammation as well as the absence of a certain cure, has created an innovative era in the management of IBD by molecule/pathway-based anti-inflammatory approaches. There are credible documentations that demonstrate Mitogen-Activated Protein Kinases (MAPK) acts as IBD regulator. Upon the activation of MAPK signalling pathway, the transcription and expression of various encoding inflammatory molecules implicated in IBD are altered, thereby exacerbating the inflammation development. The current pharmacological management of IBD, including drug and biological therapies are expensive, possess temporary relief and some adverse effects. In this context, a variety of dietary fruits or medicinal herbs have received worldwide attention versus the development of IBD. Infact, natural ingredients, such as Flavaglines, Fisetin, Myricitrin, Cardamonin, Curcumin, Octacosanol and Mangiferin possess protective and therapeutic effects against IBD via modulation of different segments of MAPK signaling pathway. This review paper calls attention to the role of MAPK signaling triggered by natural products in the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Mehdi Zobeiri
- Internal Medicine Department, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran,Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Parvizi
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Devesh Tewari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144 411, India
| | - Mohammad H Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed M Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Li C, Cui L, Li S, Li M, Miao X. Long non-coding RNA Mirt2 interacts with long non-coding RNA IFNG-AS1 to regulate ulcerative colitis. Exp Ther Med 2020; 20:32. [PMID: 32952623 DOI: 10.3892/etm.2020.9159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 01/09/2020] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) Mirt2 and interferon-γ antisense RNA I (IFNG-AS1) play opposing roles in lipopolysaccharide (LPS)-induced inflammation, a key initiator of ulcerative colitis (UC). The present study aimed to analyze the potential interaction between Mirt2 and IFNG-AS1 in UC. Levels of IFNG-AS1 and Mirt2 in plasma samples from UC patients were measured using reverse transcription-quantitative PCR. Receiver operating characteristic curves were used to evaluate the diagnostic values of IFNG-AS1 and Mirt2 fr UC. The role of Mirt2 and IFNG-AS1 in colonic epithelial cell apoptosis was analyzed by cell apoptosis assay. In patients with UC, Mirt2 and IFNG-AS1 exhibited an inverse correlation, in which Mirt2 was downregulated while IFNG-AS1 was upregulated. Altered expression of IFNG-AS1 and Mirt2 separated patients with UC from healthy controls. In colonic epithelial cells, lipopolysaccharide treatment led to the downregulation of Mirt2 and the upregulation of IFNG-AS1. Furthermore, overexpression of Mirt2 in colonic epithelial cells resulted in downregulation of IFNG-AS1, and vice versa. Overexpression of Mirt2 led to a decreased rate of colonic epithelial cell apoptosis, while overexpression of IFNG-AS1 led to an increased rate of apoptosis. Moreover, IFNG-AS1 overexpression attenuated the effects of Mirt2 overexpression. Therefore, Mirt2 may interact with IFNG-AS1 during UC to participate in colonic epithelial cell apoptosis.
Collapse
Affiliation(s)
- Chenyang Li
- Department of Gastroenterology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Lujia Cui
- Department of Gastroenterology, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Siqiong Li
- Department of Gastroenterology, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Minrui Li
- Department of Gastroenterology, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Xinpu Miao
- Department of Gastroenterology, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| |
Collapse
|
40
|
Higaki A, Mahmoud AUM, Paradis P, Schiffrin EL. Role of interleukin-23/interleukin-17 axis in T-cell-mediated actions in hypertension. Cardiovasc Res 2020; 117:1274-1283. [PMID: 32870976 DOI: 10.1093/cvr/cvaa257] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/01/2020] [Accepted: 08/25/2020] [Indexed: 12/25/2022] Open
Abstract
Current knowledge suggests that hypertension is in part mediated by immune mechanisms. Both interleukin (IL)-23 and IL-17 are up-regulated in several experimental hypertensive rodent models, as well as in hypertensive humans in observational studies. Recent preclinical studies have shown that either IL-23 or IL-17A treatment induce blood pressure elevation. However, the IL-23/IL-17 axis has not been a major therapeutic target in hypertension, unlike in other autoimmune diseases. In this review, we summarize current knowledge on the role of these cytokines in immune mechanisms contributing to hypertension, and discuss the potential of IL-23/IL-17-targeted therapy for treatment of hypertension.
Collapse
Affiliation(s)
| | | | | | - Ernesto L Schiffrin
- Lady Davis Institute for Medical Research.,Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte-Ste-Catherine Road, Montreal, Quebec H3T 1E2, Canada
| |
Collapse
|
41
|
Leccese G, Bibi A, Mazza S, Facciotti F, Caprioli F, Landini P, Paroni M. Probiotic Lactobacillus and Bifidobacterium Strains Counteract Adherent-Invasive Escherichia coli (AIEC) Virulence and Hamper IL-23/Th17 Axis in Ulcerative Colitis, but Not in Crohn's Disease. Cells 2020; 9:cells9081824. [PMID: 32752244 PMCID: PMC7464949 DOI: 10.3390/cells9081824] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Hypersecretion of proinflammatory cytokines and dysregulated activation of the IL-23/Th17 axis in response to intestinal microbiota dysbiosis are key factors in the pathogenesis of inflammatory bowel diseases (IBD). In this work, we studied how Lactobacillus and Bifidobacterium strains affect AIEC-LF82 virulence mechanisms and the consequent inflammatory response linked to the CCR6–CCL20 and IL-23/Th17 axes in Crohn’s disease (CD) and ulcerative colitis (UC) patients. All Lactobacillus and Bifidobacterium strains significantly reduced the LF82 adhesion and persistence within HT29 intestinal epithelial cells, inhibiting IL-8 secretion while not affecting the CCR6–CCL20 axis. Moreover, they significantly reduced LF82 survival within macrophages and dendritic cells, reducing the secretion of polarizing cytokines related to the IL-23/Th17 axis, both in healthy donors (HD) and UC patients. In CD patients, however, only B. breve Bbr8 strain was able to slightly reduce the LF82 persistence within dendritic cells, thus hampering the IL-23/Th17 axis. In addition, probiotic strains were able to modulate the AIEC-induced inflammation in HD, reducing TNF-α and increasing IL-10 secretion by macrophages, but failed to do so in IBD patients. Interestingly, the probiotic strains studied in this work were all able to interfere with the IL-23/Th17 axis in UC patients, but not in CD patients. The different interaction mechanisms of probiotic strains with innate immune cells from UC and CD patients compared to HD suggest that testing on CD-derived immune cells may be pivotal for the identification of novel probiotic strains that could be effective also for CD patients.
Collapse
Affiliation(s)
- Gabriella Leccese
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (G.L.); (A.B.); (P.L.)
| | - Alessia Bibi
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (G.L.); (A.B.); (P.L.)
| | - Stefano Mazza
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.M.); (F.C.)
| | - Federica Facciotti
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy;
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.M.); (F.C.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20135 Milan, Italy
| | - Paolo Landini
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (G.L.); (A.B.); (P.L.)
| | - Moira Paroni
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (G.L.); (A.B.); (P.L.)
- Correspondence:
| |
Collapse
|
42
|
Guo J, Wang LY, Wu J, Xu LF, Sun M. The JAK2 inhibitor AG490 regulates the Treg/Th17 balance and alleviates DSS-induced intestinal damage in IBD rats. Clin Exp Pharmacol Physiol 2020; 47:1374-1381. [PMID: 32215928 DOI: 10.1111/1440-1681.13311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 01/26/2023]
Abstract
The pathogenesis of inflammatory bowel disease (IBD) remains unclear, and it is currently believed that an imbalance in regulatory T (Treg) cells/T helper 17 cells (Th17 cells) is related to the occurrence and development of IBD. Recently, the JAK2 inhibitor AG490 has been used in animal models such as rheumatoid arthritis and bronchial asthma models and shown to exert immunoregulatory functions that improve disorder in the Treg/Th17 cell balance. This study aimed to evaluate the effect of AG490 on the intestinal inflammatory process in an IBD rat model. A dextran sulfate sodium (DSS)-induced IBD rat model was established, and disease activity index (DAI) scores were calculated. The histopathological damage score was determined by haematoxylin-eosin (H&E) staining. Treg/Th17 cells in the spleen were detected by flow cytometry. The levels of interleukin (IL)-10, IL-6 and IL-17A were detected by enzyme-linked immunosorbent assay (ELISA). AG490 attenuated DSS-induced IBD injury by regulating the Treg/Th17 balance and related cytokine secretion to reduce the DAI and colonic tissue damage. Thus, AG490 may be a new method for effective treatment of IBD.
Collapse
Affiliation(s)
- Jing Guo
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li-Yun Wang
- Department of Neonatology, The First People's Hospital of Lianyungang/The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Jie Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ling-Fen Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mei Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
43
|
Krawiec P, Pac-Kożuchowska E. Serum interleukin 17A and interleukin 17F in children with inflammatory bowel disease. Sci Rep 2020; 10:12617. [PMID: 32724117 PMCID: PMC7387488 DOI: 10.1038/s41598-020-69567-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
Interleukin 17A (IL-17A) and interleukin 17F (IL-17F) appear to play important role in pathogenesis of some autoimmune diseases. However, their role in inflammatory bowel disease (IBD) has not been yet fully elucidated. We aimed to determine serum IL-17A and IL-17F in children with IBD and to assess their association with IBD activity. Recruited children underwent blood tests including complete blood count, C-reactive protein, erythrocyte sedimentation rate, IL-17A and IL-17F and stool sampling for calprotectin. The study group comprised 68 children with IBD, including 43 with ulcerative colitis and 25 with Crohn’s disease. Control group included 20 healthy children. IL-17A was significantly increased in children with IBD (median: 10.95 pg/ml; range: 0.65–200.54 pg/ml) compared to controls (median: 4.09 pg/ml; range: 0.67–26.20 pg/ml) (p = 0.002). IL-17A was significantly increased in patients with active phase of ulcerative colitis (median: 14.58 pg/ml; range: 0.65–200.54 pg/ml) compared to those in ulcerative colitis remission (median: 8.13 pg/ml; range: 1.61–58.56 pg/ml) (p = 0.04). There were no significant differences in IL-17A among patients with active and inactive Crohn’s disease (p = 0.18). IL-17F did not differ significantly between children with IBD (median: 15.11 pg/ml; range: 0.09–189.84 pg/ml) and controls (median: 11.56 pg/ml; range: 0.19–32.49 pg/ml) (p = 0.33). Our study suggests that interleukin 17A may diverse active phase from remission only in ulcerative colitis but not in Crohn’s disease.
Collapse
Affiliation(s)
- Paulina Krawiec
- Department of Paediatrics and Gastroenterology, Medical University of Lublin, Al. Racławickie 1, 20-059, Lublin, Poland.
| | - Elżbieta Pac-Kożuchowska
- Department of Paediatrics and Gastroenterology, Medical University of Lublin, Al. Racławickie 1, 20-059, Lublin, Poland
| |
Collapse
|
44
|
Mariana N, Asadul Isl A, Hatta M, Fransiscus H. IL23 mRNA Expression in Hirschsprung-Associated Enterocolitis. JOURNAL OF MEDICAL SCIENCES 2020. [DOI: 10.3923/jms.2020.39.43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
45
|
Ricciuto A, Sherman PM, Laxer RM. Gut microbiota in chronic inflammatory disorders: A focus on pediatric inflammatory bowel diseases and juvenile idiopathic arthritis. Clin Immunol 2020; 215:108415. [DOI: 10.1016/j.clim.2020.108415] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022]
|
46
|
Nie J, Zhao Q. Lnc-ITSN1-2, Derived From RNA Sequencing, Correlates With Increased Disease Risk, Activity and Promotes CD4 + T Cell Activation, Proliferation and Th1/Th17 Cell Differentiation by Serving as a ceRNA for IL-23R via Sponging miR-125a in Inflammatory Bowel Disease. Front Immunol 2020; 11:852. [PMID: 32547537 PMCID: PMC7271921 DOI: 10.3389/fimmu.2020.00852] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Background: This study aimed to investigate long-non-coding RNA (lncRNA) expression profiles and the correlation of lnc-ITSN1-2 expression with disease risk, activity and inflammation, and its influence on CD4+ T cell activation, proliferation, and differentiation of inflammatory bowel disease (IBD). Methods: LncRNA expression profiles were detected in intestinal mucosa samples from six IBD patients and six healthy controls (HCs). Intestinal mucosa and PBMC lnc-ITSN1-2, IL-23R, and inflammatory cytokines were measured in 120 IBD patients [60 Crohn's disease (CD) and 60 ulcerative colitis (UC)] and 30 HCs. Effect of lnc-ITSN1-2 on IBD CD4+ T cell activation, proliferation, and differentiation was determined and its regulatory interaction with miR-125a and IL-23R was detected. Results: Three-hundred-and-nine upregulated and 310 downregulated lncRNAs were identified in IBD patients by RNA-Sequencing, which were enriched in regulating immune and inflammation related pathways. Large-sample qPCR validation disclosed that both intestinal mucosa and PBMC lnc-ITSN1-2 expressions were increased in IBD patients compared to HCs, and presented with good predictive values for IBD risk, especially for active disease conditions, and they positively correlated with disease activity, inflammation cytokines, and IL-23R in IBD patients. Lnc-ITSN1-2 was decreased after infliximab treatment in active-CD patients. Furthermore, lnc-ITSN1-2 promoted IBD CD4+ T cell activation and proliferation, and stimulated Th1/Th17 cell differentiation. Multiple rescue experiments disclosed that lnc-ITSN1-2 functioned in IBD CD4+ T cells via targeting miR-125a, then positively regulating IL-23R. Luciferase Reporter assay observed that lnc-ITSN1-2 bound miR-125a, and miR-125a bound IL-23R. Conclusion: Lnc-ITSN1-2 correlates with increased disease risk, activity, and inflammatory cytokines of IBD, and promotes IBD CD4+ T cell activation, proliferation, and Th1/Th17 cell differentiation by serving as a competing endogenous RNA for IL-23R via sponging miR-125a.
Collapse
Affiliation(s)
- Jiayan Nie
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, China
| |
Collapse
|
47
|
Kuai Y, Liu H, Liu D, Liu Y, Sun Y, Xie J, Sun J, Fang Y, Pan H, Han W. An ultralow dose of the NADPH oxidase inhibitor diphenyleneiodonium (DPI) is an economical and effective therapeutic agent for the treatment of colitis-associated colorectal cancer. Am J Cancer Res 2020; 10:6743-6757. [PMID: 32550901 PMCID: PMC7295061 DOI: 10.7150/thno.43938] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/11/2020] [Indexed: 12/31/2022] Open
Abstract
Long-term inflammatory stimulation is considered one of the most important causes of colorectal cancer. Diphenyleneiodonium (DPI), an NADPH oxidase inhibitor, can inhibit a variety of inflammatory responses. However, the systemic toxicity of DPI limits its clinical application. Whether DPI can inhibit colitis-associated colorectal cancer (CAC) at ultralow concentrations remains unknown. Methods: CAC was induced by azoxymethane (AOM) injection followed by treatment with dextran sulfate sodium (DSS), and DPI was intraperitoneally injected (i.p.) in the first cycle for 21 days. Colon tissue was collected and analyzed by western blotting. Immune cell infiltration and macrophage polarization were examined by immunohistochemistry, immunofluorescence, or real-time polymerase-chain reaction (PCR). Reactive oxygen species (ROS) production was measured by flow cytometry. Results: Ultralow dose DPI significantly ameliorated the DSS-induced colitis and attenuated the colon tumorigenesis in the mouse model of AOM/ DSS-induced CAC. Mechanistically, an ultralow dose of DPI inhibited the production of pro-inflammatory cytokines, (tumor necrosis factor (TNF)-α and interleukin (IL)-6), reduced the macrophage infiltration and classical polarization, and induced the ROS generation. These effects were found to be related to the inhibition of the phosphorylation of signal transducer and activator of transcription 3 (STAT3), mitogen-activated protein kinase (MAPK), and nuclear factor kappa B (NF -κB). Conclusion: The present study revealed that an ultralow dose of DPI, with no significant systemic toxicity involved, may be an effective way to prevent the occurrence and development of CAC.
Collapse
|
48
|
González-Moret R, Cebolla A, Cortés X, Baños RM, Navarrete J, de la Rubia JE, Lisón JF, Soria JM. The effect of a mindfulness-based therapy on different biomarkers among patients with inflammatory bowel disease: a randomised controlled trial. Sci Rep 2020; 10:6071. [PMID: 32269278 PMCID: PMC7142151 DOI: 10.1038/s41598-020-63168-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Mindfulness-based interventions have shown some efficacy in decreasing stress levels and improving quality of life. However, so far, only a few studies have studied this type of intervention among patients with inflammatory bowel disease and none of them have studied their effects on inflammatory biomarkers. This current study was a two-armed, single-centre, randomised (2:1 ratio) controlled trial used to evaluate the effects of a mindfulness-based intervention (n = 37) compared to standard medical therapy (n = 20) in patients with Crohn’s disease or ulcerative colitis. The mindfulness intervention blended four internet-based therapy modules with four face-to-face support sessions. The outcomes we assessed were faecal calprotectin (primary outcome), C-reactive protein, and cortisol levels measured in hair samples at several timepoints. The between-group analysis highlighted significant decreases in faecal calprotectin and in C-reactive protein levels in the mindfulness-based intervention group compared to the standard medical therapy group at the six-month follow-up (faecal calprotectin: −367, [95% CI: −705, −29], P = 0.03; C-reactive protein: −2.82, [95% CI: −5.70, 0.08], P = 0.05), with moderate to large effect sizes (faecal calprotectin: ηp2 = 0.085; C-reactive protein: ηp2 = 0.066). We concluded that mindfulness-based therapy administered as part of standard clinical practice effectively improves inflammatory biomarkers in patients diagnosed with inflammatory bowel disease.
Collapse
Affiliation(s)
- Rafael González-Moret
- Department of Nursing, Universidad Cardenal Herrera-CEU, CEU Universities, Castellon, Spain
| | - Ausias Cebolla
- Department of Personality, Evaluation, and psychological treatments, Universidad de Valencia, Valencia, Spain.,Obesity and Nutrition Pathophysiology CIBER (CB06/03), Instituto Carlos III, Madrid, Spain
| | - Xavier Cortés
- Internal Medicine Service, Digestive Medicine Section, Hospital Universitario de Sagunto, Valencia, Spain
| | - Rosa M Baños
- Department of Personality, Evaluation, and psychological treatments, Universidad de Valencia, Valencia, Spain.,Obesity and Nutrition Pathophysiology CIBER (CB06/03), Instituto Carlos III, Madrid, Spain
| | - Jaime Navarrete
- Department of Personality, Evaluation, and psychological treatments, Universidad de Valencia, Valencia, Spain
| | | | - Juan Francisco Lisón
- Institute of Biomedical Sciences, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain.,Odisesas Institute, Universidad CEU Cardenal Herrera-CEU Universities, Valencia, Spain.,Department of Medicine, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain.,Obesity and Nutrition Pathophysiology CIBER (CB06/03), Instituto Carlos III, Madrid, Spain
| | - José Miguel Soria
- Department of Biomedical Sciences, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain. .,Institute of Biomedical Sciences, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain. .,Odisesas Institute, Universidad CEU Cardenal Herrera-CEU Universities, Valencia, Spain.
| |
Collapse
|
49
|
Grän F, Kerstan A, Serfling E, Goebeler M, Muhammad K. Current Developments in the Immunology of Psoriasis. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:97-110. [PMID: 32226340 PMCID: PMC7087066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Psoriasis is a frequent inflammatory skin disease. Fundamental research on the pathogenesis of psoriasis has substantially increased our understanding of skin immunology, which has helped to introduce innovative and highly effective therapies. Psoriasis is a largely T lymphocyte-mediated disease in which activation of innate immune cells and pathogenic T cells result in skin inflammation and hyperproliferation of keratinocytes. B cells have thus far largely been neglected regarding their role for the pathogenesis of psoriasis. However, recent data shed light on their role in inflammatory skin diseases. Interestingly, interleukin (IL)-10-producing regulatory B cells have been assumed to ameliorate psoriasis. In this review, we will discuss the development of disease, pathogenicity, and current developments in therapeutic options. We describe different roles of T cells, B cells, and cytokines for the immunopathology and disease course of psoriasis.
Collapse
Affiliation(s)
- Franziska Grän
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Kerstan
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Edgar Serfling
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Khalid Muhammad
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Würzburg, Germany,Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates,To whom all correspondence should be addressed: K. Muhammad, Tel: +971 3 713 6517, Fax: +971 3 713 4927;
| |
Collapse
|
50
|
Gao YL, Shao LH, Dong LH, Chang PY. Gut commensal bacteria, Paneth cells and their relations to radiation enteropathy. World J Stem Cells 2020; 12:188-202. [PMID: 32266051 PMCID: PMC7118286 DOI: 10.4252/wjsc.v12.i3.188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/12/2019] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
In steady state, the intestinal epithelium forms an important part of the gut barrier to defend against luminal bacterial attack. However, the intestinal epithelium is compromised by ionizing irradiation due to its inherent self-renewing capacity. In this process, small intestinal bacterial overgrowth is a critical event that reciprocally alters the immune milieu. In other words, intestinal bacterial dysbiosis induces inflammation in response to intestinal injuries, thus influencing the repair process of irradiated lesions. In fact, it is accepted that commensal bacteria can generally enhance the host radiation sensitivity. To address the determination of radiation sensitivity, we hypothesize that Paneth cells press a critical “button” because these cells are central to intestinal health and disease by using their peptides, which are responsible for controlling stem cell development in the small intestine and luminal bacterial diversity. Herein, the most important question is whether Paneth cells alter their secretion profiles in the situation of ionizing irradiation. On this basis, the tolerance of Paneth cells to ionizing radiation and related mechanisms by which radiation affects Paneth cell survival and death will be discussed in this review. We hope that the relevant results will be helpful in developing new approaches against radiation enteropathy.
Collapse
Affiliation(s)
- Yan-Li Gao
- Department of Pediatric Ultrasound, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Hong Shao
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Hua Dong
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Peng-Yu Chang
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| |
Collapse
|