1
|
Tan X, Xiang Y, Shi J, Chen L, Yu D. Targeting NTCP for liver disease treatment: A promising strategy. J Pharm Anal 2024; 14:100979. [PMID: 39310850 PMCID: PMC11415714 DOI: 10.1016/j.jpha.2024.100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 09/25/2024] Open
Abstract
The sodium taurocholate co-transporting polypeptide (NTCP), a bile acids transporter, has been identified as a new therapeutic target for the treatment of liver disease. This paper thoroughly investigates the function of NTCP for regulating bile acid regulation, its correlation with hepatitis B and D infections, and its association with various liver diseases. Additionally, in this review we examine recent breakthroughs in creating NTCP inhibitors and their prospective applications in liver disease treatment. While this review emphasizes the promising potential of targeting NTCP, it concurrently underscores the need for broader and more detailed research to fully understand the long-term implications and potential side effects associated with NTCP inhibition.
Collapse
Affiliation(s)
- Xin Tan
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yu Xiang
- College of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China
| | - Jianyou Shi
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lu Chen
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Guanghan People's Hospital, Guanghan, Sichuan, 618300, China
| | - Dongke Yu
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| |
Collapse
|
2
|
Arrigoni R, Ballini A, Jirillo E, Santacroce L. Current View on Major Natural Compounds Endowed with Antibacterial and Antiviral Effects. Antibiotics (Basel) 2024; 13:603. [PMID: 39061285 PMCID: PMC11274329 DOI: 10.3390/antibiotics13070603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Nowadays, infectious diseases of bacterial and viral origins represent a serious medical problem worldwide. In fact, the development of antibiotic resistance is responsible for the emergence of bacterial strains that are refractory even to new classes of antibiotics. Furthermore, the recent COVID-19 pandemic suggests that new viruses can emerge and spread all over the world. The increase in infectious diseases depends on multiple factors, including malnutrition, massive migration of population from developing to industrialized areas, and alteration of the human microbiota. Alternative treatments to conventional antibiotics and antiviral drugs have intensively been explored. In this regard, plants and marine organisms represent an immense source of products, such as polyphenols, alkaloids, lanthipeptides, and terpenoids, which possess antibacterial and antiviral activities. Their main mechanisms of action involve modifications of bacterial cell membranes, with the formation of pores, the release of cellular content, and the inhibition of bacterial adherence to host cells, as well as of the efflux pump. Natural antivirals can interfere with viral replication and spreading, protecting the host with the enhanced production of interferon. Of note, these antivirals are not free of side effects, and their administration to humans needs more research in terms of safety. Preclinical research with natural antibacterial and antiviral compounds confirms their effects against bacteria and viruses, but there are still only a few clinical trials. Therefore, their full exploitation and more intensive clinical studies represent the next steps to be pursued in this area of medicine.
Collapse
Affiliation(s)
- Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70124 Bari, Italy
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
3
|
Iyer K, Yan Z, Ross SR. Entry inhibitors as arenavirus antivirals. Front Microbiol 2024; 15:1382953. [PMID: 38650890 PMCID: PMC11033450 DOI: 10.3389/fmicb.2024.1382953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Arenaviruses belonging to the Arenaviridae family, genus mammarenavirus, are enveloped, single-stranded RNA viruses primarily found in rodent species, that cause severe hemorrhagic fever in humans. With high mortality rates and limited treatment options, the search for effective antivirals is imperative. Current treatments, notably ribavirin and other nucleoside inhibitors, are only partially effective and have significant side effects. The high lethality and lack of treatment, coupled with the absence of vaccines for all but Junín virus, has led to the classification of these viruses as Category A pathogens by the Centers for Disease Control (CDC). This review focuses on entry inhibitors as potential therapeutics against mammarenaviruses, which include both New World and Old World arenaviruses. Various entry inhibition strategies, including small molecule inhibitors and neutralizing antibodies, have been explored through high throughput screening, genome-wide studies, and drug repurposing. Notable progress has been made in identifying molecules that target receptor binding, internalization, or fusion steps. Despite promising preclinical results, the translation of entry inhibitors to approved human therapeutics has faced challenges. Many have only been tested in in vitro or animal models, and a number of candidates showed efficacy only against specific arenaviruses, limiting their broader applicability. The widespread existence of arenaviruses in various rodent species and their potential for their zoonotic transmission also underscores the need for rapid development and deployment of successful pan-arenavirus therapeutics. The diverse pool of candidate molecules in the pipeline provides hope for the eventual discovery of a broadly effective arenavirus antiviral.
Collapse
Affiliation(s)
| | | | - Susan R. Ross
- Department of Microbiology and Immunology, University of Illinois, College of Medicine, Chicago, IL, United States
| |
Collapse
|
4
|
Ma X, Li Y, Zhu H, Lu K, Huang Y, Li X, Han S, Ding H, Sun S. ENPP1 inhibits the transcription activity of the hepatitis B virus pregenomic promoter by upregulating the acetylation of LMNB1. Arch Virol 2024; 169:36. [PMID: 38265511 DOI: 10.1007/s00705-023-05949-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 12/09/2023] [Indexed: 01/25/2024]
Abstract
Current therapies for hepatitis B virus (HBV) infection can slow disease progression but cannot cure the infection, as it is difficult to eliminate or permanently silence HBV covalently closed circular DNA (cccDNA). The interaction between host factors and cccDNA is essential for their formation, stability, and transcriptional activity. Here, we focused on the regulatory role of the host factor ENPP1 and its interacting transcription factor LMNB1 in HBV replication and transcription to better understand the network of host factors that regulate HBV, which may facilitate the development of new antiviral drugs. Overexpression of ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) in Huh7 cells decreased HBV pregenomic RNA (pgRNA) and hepatitis B core antigen (HBcAg) expression levels, whereas knockdown of ENPP1 increased them. A series of HBV promoter and mutant plasmids were constructed, and a luciferase reporter assay showed that overexpression of ENPP1 caused inhibition of the HBV promoter and its mutants. A DNA pull-down assay showed that lamin B1 (LMNB1), but not ENPP1, interacts directly with the HBV enhancer II/ basic core promoter (EnhII/BCP). ZDOCK and PyMOL software were used to predict the interaction of ENPP1 with LMNB1. Overexpression of LMNB1 inhibited the activity of the HBV promoter and its mutant. The acetylation levels at the amino acids 111K, 261K, and 483K of LMNB1 were reduced compared to the control, and an LMNB1 acetylation mutant containing 111R, 261Q, 261R, 483Q, and 483R showed increased promoter activity. In summary, ENPP1 together with LMNB1 increased the acetylation level at 111K and 261K, and LMNB1 inhibited the activity of HBV promoter and downregulated the expression of pregenomic RNA and HBcAg. Our follow-up studies will investigate the expression, clinical significance, and relevance of ENPP1 and LMNB1 in HBV patient tissues, explore the effect of LMNB1 on post-transcriptional progression, and examine whether ENPP1 can reduce cccDNA levels in the nucleus.
Collapse
Affiliation(s)
- Xinping Ma
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
- The department of infectious diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yuan Li
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital Affiliated of Henan University of Traditional Chinese Medicine, Zhengzhou, 450003, Henan, China
| | - Huihui Zhu
- Department of Gastroenterology, School of Clinical Medicine, Henan Provincial People's Hospital, Henan University, Zhengzhou, 450003, Henan, China
| | - Kai Lu
- Xinxiang Medical University, Xinxiang, 453000, Henan, China
| | - Yingli Huang
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Xiaofang Li
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Shuangyin Han
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Hui Ding
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China.
| | - Suofeng Sun
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
5
|
Sharma A, Sharma T, Bhaskar R, Ola M, Sharma A, Sharma PC. Promising Potential of Curcumin and Related Compounds for Antiviral Drug Discovery. Med Chem 2024; 20:597-612. [PMID: 38571348 DOI: 10.2174/0115734064277371240325105016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
Viruses are acellular, microscopic, and mobile particles containing genetic particles, either DNA/RNA strands as nucleoproteins, responsible for 69,53,743 deaths till the year 2023. Curcumin and related compounds are among the areas of pivotal interest for researchers because of their versatile pharmacological profile. Chemically known as diferuloylmethane, which is a main constituent of turmeric along with demethoxycurcumin and bisdemethoxycurcumin, they have a broad spectrum of antiviral activity against viruses such as human immunodeficiency virus, herpes simplex virus, influenza virus (Avian influenza) and Hepatitis C virus HIV. The possible role of curcumin as an antiviral agent may be attributed to the activation of the 20S proteasome, a cellular machinery responsible for degrading unfolded or misfolded proteins in a ubiquitin-independent manner. It shows suppression of HBV entry at various infection stages by inhibiting cccDNA replication by inhibiting the Wnt/β-catenin signaling pathway to attenuate IAV-induced myocarditis.
Collapse
Affiliation(s)
- Archana Sharma
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Twinkle Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Rajveer Bhaskar
- Department of Quality Assurance, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, India
| | - Monika Ola
- Department of Pharmaceutics, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, India
| | - Alok Sharma
- Department of Pharmaceutical Technology, MIET, Meerut, 250005, India
| | - Prabodh Chander Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| |
Collapse
|
6
|
Abdelwahed AH, Heineman BD, Wu GY. Novel Approaches to Inhibition of HBsAg Expression from cccDNA and Chromosomal Integrants: A Review. J Clin Transl Hepatol 2023; 11:1485-1497. [PMID: 38161502 PMCID: PMC10752814 DOI: 10.14218/jcth.2023.00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/19/2023] [Accepted: 08/16/2023] [Indexed: 01/03/2024] Open
Abstract
Hepatitis B virus (HBV) is a widely prevalent liver infection that can cause acute or chronic hepatitis. Although current treatment modalities are highly effective in the suppression of viral levels, they cannot eliminate the virus or achieve definitive cure. This is a consequence of the complex nature of HBV-host interactions. Major challenges to achieving sustained viral suppression include the presence of a high viral burden from the HBV DNA and hepatitis B surface antigen (HBsAg), the presence of reservoirs for HBV replication and antigen production, and the HBV-impaired innate and adaptive immune response of the host. Those therapeutic methods include cell entry inhibitors, HBsAg inhibitors, gene editing approaches, immune-targeting therapies and direct inhibitors of covalently closed circular DNA (cccDNA). Novel approaches that target these key mechanisms are now being studied in preclinical and clinical phases. In this review article, we provide a comprehensive review on mechanisms by which HBV escapes elimination from current treatments, and highlight new agents to achieve a definitive HBV cure.
Collapse
Affiliation(s)
- Ahmed H. Abdelwahed
- Department of Medicine, Division of Gastroenterology-Hepatology, University of Connecticut Health Center, Farmington, CT, USA
| | - Brent D. Heineman
- Department of Medicine, Division of Gastroenterology-Hepatology, University of Connecticut Health Center, Farmington, CT, USA
| | - George Y. Wu
- Department of Medicine, Division of Gastroenterology-Hepatology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
7
|
Ge F, Yang Y, Bai Z, Si L, Wang X, Yu J, Xiao X, Liu Y, Ren Z. The role of Traditional Chinese medicine in anti-HBV: background, progress, and challenges. Chin Med 2023; 18:159. [PMID: 38042824 PMCID: PMC10693092 DOI: 10.1186/s13020-023-00861-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/12/2023] [Indexed: 12/04/2023] Open
Abstract
Chronic hepatitis B (CHB) remains a major world's most serious public health issues. Despite the remarkable effect of nucleos(t)ide analogues (NAs) in inhibiting hepatitis B virus (HBV) deoxyribonucleic acid (DNA) as the first-line drug, there are several limitations still, such as poor antigen inhibition, drug resistance, low-level viremia, restricting patients' functional cure. Due to the constraints of NAs, traditional medicines, such as traditional Chinese medicine (TCM), have become more prevalently used and researched in the clinical treatment of CHB as complementary alternative therapies. As a consequence, the review focuses on the background based on HBV's life cycle as well as the NAs' limitations, progress based on direct and indirect pathway of targeting HBV of TCM, and challenges of TCM. We found TCMs play an increasingly important role in anti-HBV. In a direct antiviral way, they regulate HBV infection, replication, assembly, and other aspects of the HBV life cycle. As for indirect way, TCMs can exert anti-HBV effects through targeting the host, including immune regulation, apoptosis, autophagy, oxidative stress, etc. Especially, TCMs have the advantages of strong antigenic inhibition compared to NAs. Specifically, we can combine the benefits of TCMs in strong HBV antigen inhibition with the benefits of NAs in targeted antiviral effects, in order to find a suitable combination of "TCM + NAs" to contribute to Chinese knowledge of the realisation of the "global elimination of HBV by 2030" goal of the World Health Organization.
Collapse
Affiliation(s)
- Feilin Ge
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Yang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400010, China
| | - Zhaofang Bai
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Lanlan Si
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Xuemei Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jia Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaohe Xiao
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Yan Liu
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
8
|
Wei J, Deng X, Dai W, Xie L, Zhang G, Fan X, Li X, Jin Z, Xiao Q, Chen T. Desmethoxycurcumin aids IFNα's anti-HBV activity by antagonising CRYAB reduction and stabilising IFNAR1 protein. J Drug Target 2023; 31:976-985. [PMID: 37851377 DOI: 10.1080/1061186x.2023.2273200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
The eradication of chronic hepatitis B (CHB) caused by hepatitis B virus (HBV) infection is a crucial goal in clinical practice. Enhancing the anti-HBV activity of interferon type I (IFNI) is a key strategy for achieving a functional cure for CHB. In this study, we investigated the effect of combined treatment with IFNα and Desmethoxycurcumin (DMC) on HBV replication in HepG2 cells and explored the underlying mechanism. Our results indicated IFNα alone was ineffective in completely inhibiting HBV replication, which was attributed to the virus-induced down-regulation of IFNI receptor 1 (IFNAR1) protein. However, the addition of a low dose of DMC significantly synergized with IFNα, leading to notable enhancement of IFNα anti-HBV activity. This effect was achieved by stabilising the IFNAR1 protein. Further investigation revealed that low dose DMC effectively blocked the ubiquitination-mediated degradation of IFNAR1, which was accomplished by rescuing the protein levels of alphaB-crystallin (CRYAB) and orchestrating the interaction between CRYAB and the E3 ubiquitin ligase, β-Trcp. Importantly, over-expression of CRYAB was found to favour the antiviral activity of IFNα against HBV replication. In conclusion, our study demonstrates that low-dose DMC enhanced the anti-HBV activity of IFNα by counteracting the reduction of CRYAB and stabilising the IFNAR1 protein.
Collapse
Affiliation(s)
- Jinlai Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xichuan Deng
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
| | - Wenying Dai
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
| | - Lingxin Xie
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
| | - Guangyuan Zhang
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
| | - Xinyue Fan
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
| | - Xinyue Li
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
| | - Zhixing Jin
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
| | - Qin Xiao
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Tingting Chen
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Zhuang AQ, Chen Y, Chen SM, Liu WC, Li Y, Zhang WJ, Wu YH. Current Status and Challenges in Anti-Hepatitis B Virus Agents Based on Inactivation/Inhibition or Elimination of Hepatitis B Virus Covalently Closed Circular DNA. Viruses 2023; 15:2315. [PMID: 38140556 PMCID: PMC10747957 DOI: 10.3390/v15122315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
There has been over half a century since the discovery of hepatitis B virus (HBV) to now, but approximately 300 million patients with chronic hepatitis B (CHB) still live in the world, resulting in about one million deaths every year. Although currently approved antivirals (e.g., nucleoside analogues) are effective at reducing HBV replication, they have almost no impact on the existing HBV covalently closed circular DNA (cccDNA) reservoir. HBV cccDNA is a critical obstacle to the complete elimination of the virus via antiviral therapy. The true cure of HBV infection requires the eradication of viral cccDNA from HBV-infected cells; thus, the development of new agents directly or indirectly targeting HBV cccDNA is urgently needed due to the limitations of current available drugs against HBV infection. In this regard, it is the major focus of current anti-HBV research worldwide via different mechanisms to either inactivate/inhibit (functional cure) or eliminate (complete cure) HBV cccDNA. Therefore, this review discussed and summarized recent advances and challenges in efforts to inactivate/silence or eliminate viral cccDNA using anti-HBV agents from different sources, such as small molecules (including epigenetic drugs) and polypeptides/proteins, and siRNA or gene-editing approaches targeting/attenuating HBV cccDNA via different mechanisms, as well as future directions that may be considered in efforts to truly cure chronic HBV infection. In conclusion, no breakthrough has been made yet in attenuating HBV cccDNA, although a number of candidates have advanced into the phase of clinical trials. Furthermore, the overwhelming majority of the candidates function to indirectly target HBV cccDNA. No outstanding candidate directly targets HBV cccDNA. Relatively speaking, CCC_R08 and nitazoxanide may be some of the most promising agents to clear HBV infection in small molecule compounds. Additionally, CRISPR-Cas9 systems can directly target HBV cccDNA for decay and demonstrate significant anti-HBV activity. Consequently, gene-editing approaches targeting HBV cccDNA may be one of the most promising means to achieve the core goal of anti-HBV therapeutic strategies. In short, more basic studies on HBV infection need to be carried out to overcome these challenges.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi-Hang Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Department of Pharmacy, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
10
|
Gabbianelli R, Shahar E, de Simone G, Rucci C, Bordoni L, Feliziani G, Zhao F, Ferrati M, Maggi F, Spinozzi E, Mahajna J. Plant-Derived Epi-Nutraceuticals as Potential Broad-Spectrum Anti-Viral Agents. Nutrients 2023; 15:4719. [PMID: 38004113 PMCID: PMC10675658 DOI: 10.3390/nu15224719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Although the COVID-19 pandemic appears to be diminishing, the emergence of SARS-CoV-2 variants represents a threat to humans due to their inherent transmissibility, immunological evasion, virulence, and invulnerability to existing therapies. The COVID-19 pandemic affected more than 500 million people and caused over 6 million deaths. Vaccines are essential, but in circumstances in which vaccination is not accessible or in individuals with compromised immune systems, drugs can provide additional protection. Targeting host signaling pathways is recommended due to their genomic stability and resistance barriers. Moreover, targeting host factors allows us to develop compounds that are effective against different viral variants as well as against newly emerging virus strains. In recent years, the globe has experienced climate change, which may contribute to the emergence and spread of infectious diseases through a variety of factors. Warmer temperatures and changing precipitation patterns can increase the geographic range of disease-carrying vectors, increasing the risk of diseases spreading to new areas. Climate change may also affect vector behavior, leading to a longer breeding season and more breeding sites for disease vectors. Climate change may also disrupt ecosystems, bringing humans closer to wildlife that transmits zoonotic diseases. All the above factors may accelerate the emergence of new viral epidemics. Plant-derived products, which have been used in traditional medicine for treating pathological conditions, offer structurally novel therapeutic compounds, including those with anti-viral activity. In addition, plant-derived bioactive substances might serve as the ideal basis for developing sustainable/efficient/cost-effective anti-viral alternatives. Interest in herbal antiviral products has increased. More than 50% of approved drugs originate from herbal sources. Plant-derived compounds offer diverse structures and bioactive molecules that are candidates for new drug development. Combining these therapies with conventional drugs could improve patient outcomes. Epigenetics modifications in the genome can affect gene expression without altering DNA sequences. Host cells can use epigenetic gene regulation as a mechanism to silence incoming viral DNA molecules, while viruses recruit cellular epitranscriptomic (covalent modifications of RNAs) modifiers to increase the translational efficiency and transcript stability of viral transcripts to enhance viral gene expression and replication. Moreover, viruses manipulate host cells' epigenetic machinery to ensure productive viral infections. Environmental factors, such as natural products, may influence epigenetic modifications. In this review, we explore the potential of plant-derived substances as epigenetic modifiers for broad-spectrum anti-viral activity, reviewing their modulation processes and anti-viral effects on DNA and RNA viruses, as well as addressing future research objectives in this rapidly emerging field.
Collapse
Affiliation(s)
- Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Ehud Shahar
- Department of Nutrition and Natural Products, Migal—Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 1220800, Israel
| | - Gaia de Simone
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Chiara Rucci
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Giulia Feliziani
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Fanrui Zhao
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Marta Ferrati
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Eleonora Spinozzi
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Jamal Mahajna
- Department of Nutrition and Natural Products, Migal—Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 1220800, Israel
| |
Collapse
|
11
|
Meng X, Wang X, Zhu X, Zhang R, Zhang Z, Sun Y. Quantitative analysis of acetylation in peste des petits ruminants virus-infected Vero cells. Virol J 2023; 20:227. [PMID: 37817180 PMCID: PMC10563215 DOI: 10.1186/s12985-023-02200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/04/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Peste des petits ruminants virus (PPRV) is a highly contagious pathogen that strongly influences the productivity of small ruminants worldwide. Acetylation is an important post-translational modification involved in regulation of multiple biological functions. However, the extent and function of acetylation in host cells during PPRV infection remains unknown. METHODS Dimethylation-labeling-based quantitative proteomic analysis of the acetylome of PPRV-infected Vero cells was performed. RESULTS In total, 1068 proteins with 2641 modification sites were detected in response to PPRV infection, of which 304 differentially acetylated proteins (DAcPs) with 410 acetylated sites were identified (fold change < 0.83 or > 1.2 and P < 0.05), including 109 up-regulated and 195 down-regulated proteins. Gene Ontology (GO) classification indicated that DAcPs were mostly located in the cytoplasm (43%) and participated in cellular and metabolic processes related to binding and catalytic activity. Functional enrichment indicated that the DAcPs were involved in the minichromosome maintenance complex, unfolded protein binding, helicase activity. Only protein processing in endoplasmic reticulum pathway was enriched. A protein-protein interaction (PPI) network of the identified proteins further indicated that a various chaperone and ribosome processes were modulated by acetylation. CONCLUSIONS To the best of our knowledge, this is the first study on acetylome in PPRV-infected host cell. Our findings establish an important baseline for future study on the roles of acetylation in the host response to PPRV replication and provide novel insights for understanding the molecular pathological mechanism of PPRV infection.
Collapse
Affiliation(s)
- Xuelian Meng
- State Key Laboratory for Animal Disease Control and Preventiony, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou, 730046, China.
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Preventiony, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou, 730046, China
| | - Xueliang Zhu
- State Key Laboratory for Animal Disease Control and Preventiony, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou, 730046, China
| | - Rui Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| | - Zhidong Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China.
| | - Yuefeng Sun
- State Key Laboratory for Animal Disease Control and Preventiony, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou, 730046, China
| |
Collapse
|
12
|
He P, Zhang P, Fang Y, Han N, Yang W, Xia Z, Zhu Y, Zhang Z, Shen J. The role of HBV cccDNA in occult hepatitis B virus infection. Mol Cell Biochem 2023; 478:2297-2307. [PMID: 36735210 DOI: 10.1007/s11010-023-04660-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023]
Abstract
Occult hepatitis B virus (HBV) infection (OBI) refers to the presence of replication-competent HBV DNA in the liver, with or without HBV DNA in the blood, in individuals who tested negative for HBV surface antigen (HBsAg). In this peculiar phase of HBV infection, the covalently closed circular DNA (cccDNA) is in a low state of replication. Several advances have been made toward clarifying the mechanisms involved in such a suppression of viral activity, which seems to be mainly related to the host's immune control and epigenetic factors. Although the underlying mechanisms describing the genesis of OBI are not completely known, the presence of viral cccDNA, which remains in a low state of replication due to the host's strong immune suppression of HBV replication and gene expression, appears to be the causative factor. Through this review, we have provided an updated account on the role of HBV cccDNA in regulating OBI. We have comprehensively described the HBV cell cycle, cccDNA kinetics, current regulatory mechanisms, and the therapeutic methods of cccDNA in OBI-related diseases.
Collapse
Affiliation(s)
- Pei He
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, People's Republic of China
- Anhui Public Health Clinical Center, Hefei, 230012, People's Republic of China
- Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
| | - Peixin Zhang
- Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yaping Fang
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Ning Han
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Wensu Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, People's Republic of China
- Anhui Public Health Clinical Center, Hefei, 230012, People's Republic of China
| | - Zhaoxin Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, People's Republic of China
- Anhui Public Health Clinical Center, Hefei, 230012, People's Republic of China
| | - Yi Zhu
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, People's Republic of China
- Anhui Public Health Clinical Center, Hefei, 230012, People's Republic of China
| | - Zhenhua Zhang
- Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China.
| | - Jilu Shen
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, People's Republic of China.
- Anhui Public Health Clinical Center, Hefei, 230012, People's Republic of China.
| |
Collapse
|
13
|
Ren EC, Zhuo NZ, Goh ZY, Bonne I, Malleret B, Ko HL. cccDNA-Targeted Drug Screen Reveals a Class of Antihistamines as Suppressors of HBV Genome Levels. Biomolecules 2023; 13:1438. [PMID: 37892121 PMCID: PMC10604930 DOI: 10.3390/biom13101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic infection with hepatitis B virus (HBV) is incurable, as the current therapeutics cannot eliminate its persistent genomic material, cccDNA. Screening systems for cccDNA-targeting therapeutics are unavailable, as low copies of cccDNA in vitro complicate detection. To address this, cccDNA copies were massively increased to levels detectable via automated plate readers. This was achieved via continuous infection in a contact-free co-culture of an HBV generator (clone F881), which stably produced clinically relevant amounts of HBV, and HBV acceptors selected to carry high cccDNA loads. cccDNA-targeted therapeutics were then identified via reduced cccDNA-specific fluorescence, taking differences in the cell numbers and viability into account. Amongst the drugs tested, the H1 antihistamine Bilastine, HBVCP inhibitors and, surprisingly, current HBV therapeutics downregulated the cccDNA significantly, reflecting the assay's accuracy and sensitivity in identifying drugs that induce subtle changes in cccDNA levels, which take years to manifest in vivo. Bilastine was the only therapeutic that did not reduce HBV production from F881, indicating it to be a novel direct suppressor of cccDNA levels. When further assessed, only the structurally similar antihistamines Pitolisant and Nizatidine suppressed cccDNA levels when other H1 antihistamines could not. Taken together, our rapid fluorescence cccDNA-targeted drug screen successfully identified a class of molecules with the potential to treat hepatitis B.
Collapse
Affiliation(s)
- Ee Chee Ren
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, #03-06, Singapore 138648, Singapore; (N.Z.Z.); (Z.Y.G.); (B.M.)
- Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Block MD4, Level 3, Singapore 117545, Singapore;
| | - Nicole Ziyi Zhuo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, #03-06, Singapore 138648, Singapore; (N.Z.Z.); (Z.Y.G.); (B.M.)
| | - Zhi Yi Goh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, #03-06, Singapore 138648, Singapore; (N.Z.Z.); (Z.Y.G.); (B.M.)
- Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Block MD4, Level 3, Singapore 117545, Singapore;
| | - Isabelle Bonne
- Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Block MD4, Level 3, Singapore 117545, Singapore;
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, MD1, Tahir Foundation Building, #B1-01, 12 Science Drive 2, Singapore 117549, Singapore
- Immunology Programme, Life Sciences Institute, Center for Life Sciences, National University of Singapore, #05-02, 28 Medical Drive, Singapore 117456, Singapore
| | - Benoît Malleret
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, #03-06, Singapore 138648, Singapore; (N.Z.Z.); (Z.Y.G.); (B.M.)
- Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Block MD4, Level 3, Singapore 117545, Singapore;
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, MD1, Tahir Foundation Building, #B1-01, 12 Science Drive 2, Singapore 117549, Singapore
| | - Hui Ling Ko
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, #03-06, Singapore 138648, Singapore; (N.Z.Z.); (Z.Y.G.); (B.M.)
| |
Collapse
|
14
|
Wang Z, Cai X, Ren Z, Shao Y, Xu Y, Fu L, Zhu Y. Piceatannol as an Antiviral Inhibitor of PRV Infection In Vitro and In Vivo. Animals (Basel) 2023; 13:2376. [PMID: 37508153 PMCID: PMC10375968 DOI: 10.3390/ani13142376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Pseudorabies virus (PRV) belongs to the family Herpesviridae. PRV has a wide host range and can cause cytopathic effects (CPEs) in PK-15 cells. Therefore, PRV was used as a model to study the antiviral activity of piceatannol. The results showed that piceatannol could restrain PRV multiplication in PK-15 cells in a dose-dependent manner. The 50% inhibitory concentration (IC50) was 0.0307 mg/mL, and the selectivity index (SI, CC50/IC50) was 3.68. Piceatannol could exert an anti-PRV effect by reducing the transcription level of viral genes, inhibiting PRV-induced apoptosis and elevating the levels of IL-4, TNF-α and IFN-γ in the serum of mice. Animal experiments showed that piceatannol could delay the onset of disease, reduce the viral load in the brain and kidney and reduce the pathological changes in the tissues and organs of the mice to improve the survival rate of the mice (14.3%). Therefore, the anti-PRV activity of piceatannol in vivo and in vitro was systematically evaluated in this study to provide scientific data for developing a new alternative measure for controlling PRV infection.
Collapse
Affiliation(s)
- Zhiying Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Xiaojing Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Zhiyuan Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Yi Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Yongkang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Lian Fu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Yan Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| |
Collapse
|
15
|
Feng L, Lu WH, Li QY, Zhang HY, Xu LR, Zang WQ, Guo WT, Li YF, Zheng WJ, Geng YX, Li Q, Liu YH. Curcuma Longa Induces the Transcription Factor FOXP3 to Downregulate Human Chemokine CCR5 Expression and Inhibit HIV-1 Infection. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1189-1209. [PMID: 37314412 DOI: 10.1142/s0192415x23500544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
HIV mutations occur frequently despite the substantial success of combination antiretroviral therapy, which significantly impairs HIV progression. Failure to develop specific vaccines, the occurrence of drug-resistant strains, and the high incidence of adverse effects due to combination antiviral therapy regimens call for novel and safer antivirals. Natural products are an important source of new anti-infective agents. For instance, curcumin inhibits HIV and inflammation in cell culture assays. Curcumin, the principal constituent of the dried rhizomes of Curcuma longa L. (turmeric), is known as a strong anti-oxidant and anti-inflammatory agent with different pharmacological effects. This work aims to assess curcumin's inhibitory effects on HIV in vitro and to explore the underpinning mechanism, focusing on CCR5 and the transcription factor forkhead box protein P3 (FOXP3). First, curcumin and the RT inhibitor zidovudine (AZT) were evaluated for their inhibitory properties. HIV-1 pseudovirus infectivity was determined by green fluorescence and luciferase activity measurements in HEK293T cells. AZT was used as a positive control that inhibited HIV-1 pseudoviruses dose-dependently, with IC50 values in the nanomolar range. Then, a molecular docking analysis was carried out to assess the binding affinities of curcumin for CCR5 and HIV-1 RNase H/RT. The anti-HIV activity assay showed that curcumin inhibited HIV-1 infection, and the molecular docking analysis revealed equilibrium dissociation constants of [Formula: see text]9.8[Formula: see text]kcal/mol and [Formula: see text]9.3[Formula: see text]kcal/mol between curcumin and CCR5 and HIV-1 RNase H/RT, respectively. To examine curcumin's anti-HIV effect and its mechanism in vitro, cell cytotoxicity, transcriptome sequencing, and CCR5 and FOXP3 amounts were assessed at different concentrations of curcumin. In addition, human CCR5 promoter deletion constructs and the FOXP3 expression plasmid pRP-FOXP3 (with an EGFP tag) were generated. Whether FOXP3 DNA binding to the CCR5 promoter was blunted by curcumin was examined using transfection assays employing truncated CCR5 gene promoter constructs, a luciferase reporter assay, and a chromatin immunoprecipitation (ChIP) assay. Furthermore, micromolar concentrations of curcumin inactivated the nuclear transcription factor FOXP3, which resulted in decreased expression of CCR5 in Jurkat cells. Moreover, curcumin inhibited PI3K-AKT activation and its downstream target FOXP3. These findings provide mechanistic evidence encouraging further assessment of curcumin as a dietary agent used to reduce the virulence of CCR5-tropic HIV-1. Curcumin-mediated FOXP3 degradation was also reflected in its functions, namely, CCR5 promoter transactivation and HIV-1 virion production. Furthermore, curcumin inhibition of CCR5 and HIV-1 might constitute a potential therapeutic strategy for reducing HIV progression.
Collapse
Affiliation(s)
- Long Feng
- Department of Pathogenic Organism Biology, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| | - Wu-Hao Lu
- Department of Otolaryngology Head and Neck Surgery, The First Affliated Hospital, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China
| | - Qing-Ya Li
- Department of Pathogenic Organism Biology, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| | - Hai-Yan Zhang
- Department of Pathogenic Organism Biology, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| | - Li-Ran Xu
- Department of Pathogenic Organism Biology, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| | - Wen-Qiao Zang
- Department of Immunology & Microbiology, Basic Medical College, Zhengzhou University, Zhengzhou, Henan Province 450001, P. R. China
| | - Wen-Tao Guo
- Department of Immunology & Microbiology, Guangdong Medical University, Dongguan, Guangdong Province 523808, P. R. China
| | - Yan-Fang Li
- Department of Pathogenic Organism Biology, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| | - Wen-Jin Zheng
- Department of Pathogenic Organism Biology, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| | - Yu-Xuan Geng
- Department of Pathogenic Organism Biology, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| | - Qing Li
- Department of Pathogenic Organism Biology, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| | - Yu-Han Liu
- Department of Pathogenic Organism Biology, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| |
Collapse
|
16
|
Boora S, Sharma V, Kaushik S, Bhupatiraju AV, Singh S, Kaushik S. Hepatitis B virus-induced hepatocellular carcinoma: a persistent global problem. Braz J Microbiol 2023; 54:679-689. [PMID: 37059940 PMCID: PMC10235410 DOI: 10.1007/s42770-023-00970-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/05/2023] [Indexed: 04/16/2023] Open
Abstract
Hepatitis B virus (HBV) infections are highly prevalent globally, representing a serious public health problem. The diverse modes of transmission and the burden of the chronic carrier population pose challenges to the effective management of HBV. Vaccination is the most effective preventive measure available in the current scenario. Still, HBV is one of the significant health issues in various parts of the globe due to non-response to vaccines, the high number of concealed carriers, and the lack of access and awareness. Universal vaccination programs must be scaled up in neonates, especially in the developing parts of the world, to prevent new HBV infections. Novel treatments like combinational therapy, gene silencing, and new antivirals must be available for effective management. The prolonged infection of HBV, direct and indirect, can promote the growth of hepatocellular carcinoma (HCC). The present review emphasizes the problems and probable solutions for better managing HBV infections, causal risk factors of HCC, and mechanisms of HCC.
Collapse
Affiliation(s)
- Sanjit Boora
- Centre for Biotechnology, Maharshi Dayanand University, 124001, Haryana, Rohtak, India
| | - Vikrant Sharma
- Centre for Biotechnology, Maharshi Dayanand University, 124001, Haryana, Rohtak, India
| | | | | | - Sandeep Singh
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Samander Kaushik
- Centre for Biotechnology, Maharshi Dayanand University, 124001, Haryana, Rohtak, India.
| |
Collapse
|
17
|
Qin T, Chen X, Meng J, Guo Q, Xu S, Hou S, Yuan Z, Zhang W. The role of curcumin in the liver-gut system diseases: from mechanisms to clinical therapeutic perspective. Crit Rev Food Sci Nutr 2023; 64:8822-8851. [PMID: 37096460 DOI: 10.1080/10408398.2023.2204349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Natural products have provided abundant sources of lead compounds for new drug discovery and development over the past centuries. Curcumin is a lipophilic polyphenol isolated from turmeric, a plant used in traditional Asian medicine for centuries. Despite the low oral bioavailability, curcumin exhibits profound medicinal value in various diseases, especially liver and gut diseases, bringing an interest in the paradox of its low bioavailability but high bioactivity. Several latest studies suggest that curcumin's health benefits may rely on its positive gastrointestinal effects rather than its poor bioavailability solely. Microbial antigens, metabolites, and bile acids regulate metabolism and immune responses in the intestine and liver, suggesting the possibility that the liver-gut axis bidirectional crosstalk controls gastrointestinal health and diseases. Accordingly, these pieces of evidence have evoked great interest in the curcumin-mediated crosstalk among liver-gut system diseases. The present study discussed the beneficial effects of curcumin against common liver and gut diseases and explored the underlying molecular targets, as well as collected evidence from human clinical studies. Moreover, this study summarized the roles of curcumin in complex metabolic interactions in liver and intestine diseases supporting the application of curcumin in the liver-gut system as a potential therapeutic option, which opens an avenue for clinical use in the future.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xiuying Chen
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiahui Meng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Shan Xu
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Shanshan Hou
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Ziqiao Yuan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
18
|
Pan Y, Xia H, He Y, Zeng S, Shen Z, Huang W. The progress of molecules and strategies for the treatment of HBV infection. Front Cell Infect Microbiol 2023; 13:1128807. [PMID: 37009498 PMCID: PMC10053227 DOI: 10.3389/fcimb.2023.1128807] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/03/2023] [Indexed: 03/17/2023] Open
Abstract
Hepatitis B virus infections have always been associated with high levels of mortality. In 2019, hepatitis B virus (HBV)-related diseases resulted in approximately 555,000 deaths globally. In view of its high lethality, the treatment of HBV infections has always presented a huge challenge. The World Health Organization (WHO) came up with ambitious targets for the elimination of hepatitis B as a major public health threat by 2030. To accomplish this goal, one of the WHO's strategies is to develop curative treatments for HBV infections. Current treatments in a clinical setting included 1 year of pegylated interferon alpha (PEG-IFNα) and long-term nucleoside analogues (NAs). Although both treatments have demonstrated outstanding antiviral effects, it has been difficult to develop a cure for HBV. The reason for this is that covalently closed circular DNA (cccDNA), integrated HBV DNA, the high viral burden, and the impaired host immune responses all hinder the development of a cure for HBV. To overcome these problems, there are clinical trials on a number of antiviral molecules being carried out, all -showing promising results so far. In this review, we summarize the functions and mechanisms of action of various synthetic molecules, natural products, traditional Chinese herbal medicines, as clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR/Cas)-based systems, zinc finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), all of which could destroy the stability of the HBV life cycle. In addition, we discuss the functions of immune modulators, which can enhance or activate the host immune system, as well some representative natural products with anti-HBV effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenhai Huang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Wu YQ, Tong T. Curcumae Rhizoma: A botanical drug against infectious diseases. Front Pharmacol 2023; 13:1015098. [PMID: 36703758 PMCID: PMC9871392 DOI: 10.3389/fphar.2022.1015098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Curcumae Rhizoma is the dry rhizome coming from Curcuma longa L. which grow widely in tropical south and southwest Asia. It has been used to treat conditions such as dermatoses, infections, stress, and depression. Moreover, in China, Curcumae Rhizoma and its active constituents have been made into different pharmaceutical preparations. Growing evidence suggests that these preparations can exert antioxidant, anti-inflammatory, and anti-cancer effects, which may play crucial roles in the treatment of various diseases, including cancer, infectious-, autoimmune-, neurological-, and cardiovascular diseases, as well as diabetes. The anti-infective effect of Curcumae Rhizoma has become a popular field of research around the world, including for the treatment of COVID-19, influenza virus, hepatitis B virus, human immunodeficiency virus, and human papilloma virus, among others. In this paper, the basic characteristics of Curcumae Rhizoma and its active constituents are briefly introduced, and we also give an overview on their applications and mechanisms in infectious diseases.
Collapse
|
20
|
Anti-hepatitis B virus activity of food nutrients and potential mechanisms of action. Ann Hepatol 2022:100766. [PMID: 36179798 DOI: 10.1016/j.aohep.2022.100766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/21/2022] [Indexed: 02/04/2023]
Abstract
Hepatitis B virus (HBV) is endemic in many parts of the world and is a significant cause of chronic liver damage and hepatocellular carcinoma. HBV therapeutics vary according to the disease stage. The best therapeutic option for patients with end-stage liver disease is liver transplantation, while for chronic patients, HBV infection is commonly managed using antivirals (nucleos(t)ides analogs or interferons). However, due to the accessibility issues and the high cost of antivirals, most HBV patients do not have access to treatment. These complications have led researchers to reconsider treatment approaches, such as nutritional therapy. This review summarizes the nutrients reported to have antiviral activity against HBV and their possible mechanism of action. Recent studies suggest resveratrol, vitamin E, lactoferrin, selenium, curcumin, luteolin-7-O-glucoside, moringa extracts, chlorogenic acid, and epigallocatechin-3-gallate may be beneficial for patients with hepatitis B. The anti-HBV effect of most of these nutrients has been analyzed in vitro and in animal models. Different antiviral and hepatoprotective mechanisms have been proposed for these nutrients, such as the activation of antioxidant and anti-inflammatory pathways, regulation of metabolic homeostasis, epigenetic control, activation of the p53 gene, inhibition of oncogenes, inhibition of virus entry, and induction of autophagosomes. In conclusion, scientific evidence indicates that HBV replication, transcription, and expression of viral antigens can be affected directly by nutrients. In the future, these nutrients may be considered to develop appropriate nutritional management for patients with hepatitis B.
Collapse
|
21
|
Chen S, Zhang L, Chen Y, Fu L. Inhibiting Sodium Taurocholate Cotransporting Polypeptide in HBV-Related Diseases: From Biological Function to Therapeutic Potential. J Med Chem 2022; 65:12546-12561. [DOI: 10.1021/acs.jmedchem.2c01097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Siwei Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yi Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
22
|
Saputro AH, Artarini AA, Tjahjono DH, Damayanti S. The long and stumble way to find potential active compounds from plants for defeating hepatitis B and C: review. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e85160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hepatitis is a liver illness caused by virus such as hepatitis A virus, hepatitis B virus and hepatitis C virus. Hepatitis B and C are considerably more usual and induce more cirrhosis and dead worldwide than hepatitis A. Although drugs that are currently often used in the medication of hepatitis B and C, the finding of recent drug from various resources including herbal has been intensively developed. Therefore, the purpose of this review is to consider the possibility of plant’s compounds as anti-HBV and anti-HCV. From the results of a review of several articles, several plant’s compound have shown effectiveness againts HBV and HCV by in silico, in vitro and in vivo studies. In conclusion, several plant’s active compounds are possibility to be developed as anti-hepatitis B and C.
Collapse
|
23
|
Bhat S, Kazim SN. HBV cccDNA-A Culprit and Stumbling Block for the Hepatitis B Virus Infection: Its Presence in Hepatocytes Perplexed the Possible Mission for a Functional Cure. ACS OMEGA 2022; 7:24066-24081. [PMID: 35874215 PMCID: PMC9301636 DOI: 10.1021/acsomega.2c02216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Hepatitis B virus infection (HBV) is still a big health problem across the globe. It has been linked to the development of liver cirrhosis and hepatocellular carcinoma and can trigger different types of liver damage. Existing medicines are unable to disable covalently closed circular DNA (cccDNA), which may result in HBV persistence and recurrence. The current therapeutic goal is to achieve a functional cure, which means HBV-DNA no longer exists when treatment stops and the absence of HBsAg seroclearance. However, due to the presence of integrated HBV DNA and cccDNA functional treatment is now regarded to be difficult. In order to uncover pathways for potential therapeutic targets and identify medicines that could result in large rates of functional cure, a thorough understanding of the virus' biology is required. The proteins of the virus and episomal cccDNA are thought to be critical for the management and support of the HBV replication cycle as they interact directly with the host proteome to establish the best atmosphere for the virus while evading immune detection. The breakthroughs of host dependence factors, cccDNA transcription, epigenetic regulation, and immune-mediated breakdown have all produced significant progress in our understanding of cccDNA biology during the past decade. There are some strategies where cccDNA can be targeted either in a direct or indirect way and are presently at the point of discovery or preclinical or early clinical advancement. Editing of genomes, techniques targeting host dependence factors or epigenetic gene maintenance, nucleocapsid modulators, miRNA, siRNA, virion secretory inhibitors, and immune-mediated degradation are only a few examples. Though cccDNA approaches for direct targeting are still in the early stages of development, the assembly of capsid modulators and immune-reliant treatments have made it to the clinic. Clinical trials are currently being conducted to determine their efficiency and safety in patients, as well as their effect on viral cccDNA. The influence of recent breakthroughs in the development of new treatment techniques on cccDNA biology is also summarized in this review.
Collapse
Affiliation(s)
- Sajad
Ahmad Bhat
- Jamia Millia Islamia Central University, Centre for Interdisciplinary Research in Basic Sciences, New Delhi 110025, India
| | - Syed Naqui Kazim
- Jamia Millia Islamia Central University, Centre for Interdisciplinary Research in Basic Sciences, New Delhi 110025, India
| |
Collapse
|
24
|
Liu S, Liu J, He L, Liu L, Cheng B, Zhou F, Cao D, He Y. A Comprehensive Review on the Benefits and Problems of Curcumin with Respect to Human Health. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144400. [PMID: 35889273 PMCID: PMC9319031 DOI: 10.3390/molecules27144400] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/03/2022]
Abstract
Curcumin is the most important active component in turmeric extracts. Curcumin, a natural monomer from plants has received a considerable attention as a dietary supplement, exhibiting evident activity in a wide range of human pathological conditions. In general, curcumin is beneficial to human health, demonstrating pharmacological activities of anti-inflammation and antioxidation, as well as antitumor and immune regulation activities. Curcumin also presents therapeutic potential in neurodegenerative, cardiovascular and cerebrovascular diseases. In this review article, we summarize the advancements made in recent years with respect to curcumin as a biologically active agent in malignant tumors, Alzheimer’s disease (AD), hematological diseases and viral infectious diseases. We also focus on problems associated with curcumin from basic research to clinical translation, such as its low solubility, leading to poor bioavailability, as well as the controversy surrounding the association between curcumin purity and effect. Through a review and summary of the clinical research on curcumin and case reports of adverse effects, we found that the clinical transformation of curcumin is not successful, and excessive intake of curcumin may have adverse effects on the kidneys, heart, liver, blood and immune system, which leads us to warn that curcumin has a long way to go from basic research to application transformation.
Collapse
Affiliation(s)
- Siyu Liu
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China; (S.L.); (J.L.); (L.L.); (F.Z.)
| | - Jie Liu
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China; (S.L.); (J.L.); (L.L.); (F.Z.)
| | - Lan He
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410007, China; (L.H.); (B.C.)
| | - Liu Liu
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China; (S.L.); (J.L.); (L.L.); (F.Z.)
| | - Bo Cheng
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410007, China; (L.H.); (B.C.)
| | - Fangliang Zhou
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China; (S.L.); (J.L.); (L.L.); (F.Z.)
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Deliang Cao
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China; (S.L.); (J.L.); (L.L.); (F.Z.)
- Correspondence: (D.C.); (Y.H.)
| | - Yingchun He
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China; (S.L.); (J.L.); (L.L.); (F.Z.)
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha 410208, China
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
- Correspondence: (D.C.); (Y.H.)
| |
Collapse
|
25
|
Bianca C, Sidhartha E, Tiribelli C, El-Khobar KE, Sukowati CHC. Role of hepatitis B virus in development of hepatocellular carcinoma: Focus on covalently closed circular DNA. World J Hepatol 2022; 14:866-884. [PMID: 35721287 PMCID: PMC9157711 DOI: 10.4254/wjh.v14.i5.866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with hepatitis B virus (HBV) remains a major global health problem, especially in developing countries. It may lead to prolonged liver damage, fibrosis, cirrhosis, and hepatocellular carcinoma. Persistent chronic HBV infection is related to host immune response and the stability of the covalently closed circular DNA (cccDNA) in human hepatocytes. In addition to being essential for viral transcription and replication, cccDNA is also suspected to play a role in persistent HBV infections or hepatitis relapses since cccDNA is very stable in non-dividing human hepatocytes. Understanding the pathogenicity and oncogenicity of HBV components would be essential in the development of new diagnostic tools and treatment strategies. This review summarizes the role and molecular mechanisms of HBV cccDNA in hepatocyte transformation and hepatocarcinogenesis and current efforts to its detection and targeting.
Collapse
Affiliation(s)
- Claryssa Bianca
- Department of Biomedicine, Indonesia International Institute for Life Sciences, Jakarta 13210, Indonesia
| | - Elizabeth Sidhartha
- Department of Biomedicine, Indonesia International Institute for Life Sciences, Jakarta 13210, Indonesia
| | - Claudio Tiribelli
- Centro Studi Fegato, Fondazione Italiana Fegato ONLUS, Trieste 34149, Italy
| | - Korri Elvanita El-Khobar
- Eijkman Center for Molecular Biology, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
| | - Caecilia H C Sukowati
- Centro Studi Fegato, Fondazione Italiana Fegato ONLUS, Trieste 34149, Italy
- Eijkman Center for Molecular Biology, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
| |
Collapse
|
26
|
Song W, Chen X, Dai C, Lin D, Pang X, Zhang D, Liu G, Jin Y, Lin J. Comparative Study of Preparation, Evaluation, and Pharmacokinetics in Beagle Dogs of Curcumin β-Cyclodextrin Inclusion Complex, Curcumin Solid Dispersion, and Curcumin Phospholipid Complex. Molecules 2022; 27:2998. [PMID: 35566349 PMCID: PMC9102399 DOI: 10.3390/molecules27092998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Curcumin is a natural acidic polyphenol extracted from turmeric with a wide range of biological and pharmacological effects. However, the application of curcumin for animal production and human life is limited by a low oral bioavailability. In this study, natural curcumin was prepared for the curcumin β-cyclodextrin inclusion complex (CUR-β-CD), curcumin solid dispersion (CUR-PEG-6000), and curcumin phospholipid complex (CUR-HSPC) using co-precipitation, melting, and solvent methods, respectively. Curcumin complex formations were monitored using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) techniques via the shifts in the microscopic structure, molecular structure, and crystalline state. Subsequently, twenty-four female beagle dogs were randomly divided into four groups to receive unmodified curcumin and three other curcumin preparations. The validated UPLC-MS assay was successfully applied to pharmacokinetic and bioavailability studies of curcumin in beagle dog plasma, which were collected after dosing at 0 min (predose), 5 min, 15 min, 30 min, 40 min, 50 min, 1.5 h, 3 h, 4.5 h, 5.5 h, 6 h, 6.5 h, 9 h, and 24 h. The relative bioavailabilities of CUR-β-CD, CUR-PEG-6000, and CUR-HSPC were 231.94%, 272.37%, and 196.42%, respectively. This confirmed that CUR-β-CD, CUR-HSPC, and especially CUR-PEG-6000 could effectively improve the bioavailability of curcumin.
Collapse
Affiliation(s)
- Wanrong Song
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (W.S.); (C.D.); (D.L.); (D.Z.); (G.L.)
| | - Xizhao Chen
- Beijing Anheal Laboratories Co., Ltd., Beijing 100094, China; (X.C.); (X.P.)
| | - Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (W.S.); (C.D.); (D.L.); (D.Z.); (G.L.)
| | - Degui Lin
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (W.S.); (C.D.); (D.L.); (D.Z.); (G.L.)
| | - Xuelin Pang
- Beijing Anheal Laboratories Co., Ltd., Beijing 100094, China; (X.C.); (X.P.)
| | - Di Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (W.S.); (C.D.); (D.L.); (D.Z.); (G.L.)
| | - Gang Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (W.S.); (C.D.); (D.L.); (D.Z.); (G.L.)
| | - Yipeng Jin
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (W.S.); (C.D.); (D.L.); (D.Z.); (G.L.)
| | - Jiahao Lin
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (W.S.); (C.D.); (D.L.); (D.Z.); (G.L.)
- Center of Research and Innovation of Chinese Traditional Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
27
|
CAO MX, WANG XR, HU WY, YIN D, REN CZ, CHEN SY, YU ML, WEI YY, HU TJ. Regulatory effect of Panax notoginseng saponins on the oxidative stress and histone acetylation induced by porcine circovirus type 2. J Vet Med Sci 2022; 84:600-609. [PMID: 35125373 PMCID: PMC9096040 DOI: 10.1292/jvms.21-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 01/14/2022] [Indexed: 11/22/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) exists widely in swine populations worldwide, and healthy PCV2 virus carriers have enhanced the severity of the infection, which is becoming more difficult to control. This study investigated the regulatory effect of Panax notoginseng saponins (PNS) on the oxidative stress and histone acetylation modification induced by PCV2 in vitro and in mice. In vitro, PNS significantly increased the scavenging capacities of superoxide anion radicals (O2•-) and hydroxyl radicals (•OH) and reduced the content of hydrogen peroxide (H2O2) induced by PCV2 in porcine alveolar macrophages (3D4/2). In addition, PNS decreased the protein expression level of histone H4 acetylation (Ac-H4) by increasing the activity of histone deacetylase (HDAC) in PCV2-infected 3D4/2 cells. In vivo, PNS enhanced the scavenging capacities of •OH and O2•- and reduced the content of H2O2 in the spleens of PCV2-infected mice. PNS also reduced the protein expression level of histone H3 acetylation (Ac-H3) by reducing the activity of histone acetylase (HAT) and increasing the activity of HDAC in the spleens of PCV2-infected mice. PCV2 infection activated oxidative stress and histone acetylation in vitro and in mice, but PNS ameliorated this oxidative stress. The research can provide experimental basis for exploring the antioxidant effect and the regulation of histone acetylation of PNS on PCV2-infected 3D4/2 cells and mice in vitro and in vivo, and provide new ideas for the treatment of PCV2 infection.
Collapse
Affiliation(s)
- Mi-Xia CAO
- College of Animal Science and Technology, Guangxi
University, Nanning, China
| | - Xin-Rui WANG
- College of Animal Science and Technology, Guangxi
University, Nanning, China
| | - Wen-Yue HU
- School of Life Sciences and Biotechnology, Shanghai Jiao
Tong University, Shanghai, China
| | - Dan YIN
- College of Animal Science and Technology, Guangxi
University, Nanning, China
| | - Chun-Zhi REN
- College of Animal Science and Technology, Guangxi
University, Nanning, China
| | - Si-Yu CHEN
- Guangdong Provincial Key Laboratory of Animal Molecular
Design and Precise Breeding, College of Life Science and Engineering, Foshan University,
Foshan, China
| | - Mei-Ling YU
- College of Animal Science and Technology, Guangxi
University, Nanning, China
| | - Ying-Yi WEI
- College of Animal Science and Technology, Guangxi
University, Nanning, China
| | - Ting-Jun HU
- College of Animal Science and Technology, Guangxi
University, Nanning, China
| |
Collapse
|
28
|
Enwemeka CS, Bumah VV, Castel JC, Suess SL. Pulsed blue light, saliva and curcumin significantly inactivate human coronavirus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 227:112378. [PMID: 35085988 PMCID: PMC8713422 DOI: 10.1016/j.jphotobiol.2021.112378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/06/2021] [Accepted: 12/23/2021] [Indexed: 12/19/2022]
Abstract
In a recent study, we showed that pulsed blue light (PBL) inactivates as much as 52.3% of human beta coronavirus HCoV-OC43, a surrogate of SARS-CoV-2, and one of the major strains of viruses responsible for the annual epidemic of the common cold. Since curcumin and saliva are similarly antiviral and curcumin acts as blue light photosensitizer, we used Qubit fluorometry and WarmStart RT-LAMP assays to study the effect of combining 405 nm, 410 nm, 425 nm or 450 nm wavelengths of PBL with curcumin, saliva or a combination of curcumin and saliva against human beta coronavirus HCoV-OC43. The results showed that PBL, curcumin and saliva independently and collectively inactivate HCoV-OC43. Without saliva or curcumin supplementation 21.6 J/cm2 PBL reduced HCoV-OC43 RNA concentration a maximum of 32.8% (log10 = 2.13). Saliva supplementation alone inactivated the virus, reducing its RNA concentration by 61% (log10 = 2.23); with irradiation the reduction was as much as 79.1%. Curcumin supplementation alone decreased viral RNA 71.1%, and a maximum of 87.8% with irradiation. The combination of saliva and curcumin reduced viral RNA to 83.1% and decreased the RNA up to 90.2% with irradiation. The reduced levels could not be detected with qPCR. These findings show that PBL in the range of 405 nm to 450 nm wavelength is antiviral against human coronavirus HCoV-OC43, a surrogate of the COVID-19 virus. Further, it shows that with curcumin as a photosensitizer, it is possible to photodynamically inactivate the virus beyond qPCR detectable level using PBL. Since HCoV-OC43 is of the same beta coronavirus family as SARS-CoV-2, has the same genomic size, and is often used as its surrogate, these findings heighten the prospect of similarly inactivating novel coronavirus SARS-CoV-2, the virus responsible for COVID-19 pandemic.
Collapse
Affiliation(s)
- Chukuka S Enwemeka
- College of Health and Human Services, San Diego State University, San Diego, CA, USA; James Hope University, Lagos, Nigeria; Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa.
| | - Violet V Bumah
- College of Health and Human Services, San Diego State University, San Diego, CA, USA; Department of Chemistry and Biochemistry, College of Sciences, San Diego State University, San Diego, CA, USA
| | | | - Samantha L Suess
- Department of Biology, College of Sciences, San Diego State University, San Diego, CA, USA
| |
Collapse
|
29
|
Zhang X, Wang Y, Yang G. Research progress in hepatitis B virus covalently closed circular DNA. Cancer Biol Med 2021; 19:j.issn.2095-3941.2021.0454. [PMID: 34931766 PMCID: PMC9088183 DOI: 10.20892/j.issn.2095-3941.2021.0454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/16/2021] [Indexed: 11/28/2022] Open
Abstract
Hepatitis B virus (HBV) infections are a global public health issue. HBV covalently closed circular DNA (cccDNA), the template for the transcription of viral RNAs, is a key factor in the HBV replication cycle. Notably, many host factors involved in HBV cccDNA epigenetic modulation promote the development of hepatocellular carcinoma (HCC). The HBV cccDNA minichromosome is a clinical obstacle that cannot be efficiently eliminated. In this review, we provide an update on the advances in research on HBV cccDNA and further discuss factors affecting the modulation of HBV cccDNA. Hepatitis B virus X protein (HBx) contributes to HBV cccDNA transcription and the development of hepatocarcinogenesis through modulating host epigenetic regulatory factors, thus linking the cccDNA to hepatocarcinogenesis. The measurable serological biomarkers of continued transcription of cccDNA, the effects of anti-HBV drugs on cccDNA, and potential therapeutic strategies targeting cccDNA are discussed in detail. Thus, this review describes new insights into HBV cccDNA mechanisms and therapeutic strategies for cleaning cccDNA, which will benefit patients with liver diseases.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Gastrointestinal Cancer Biology, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yufei Wang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guang Yang
- Department of Gastrointestinal Cancer Biology, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
30
|
Antiviral Therapeutic Potential of Curcumin: An Update. Molecules 2021; 26:molecules26226994. [PMID: 34834089 PMCID: PMC8617637 DOI: 10.3390/molecules26226994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/10/2023] Open
Abstract
The treatment of viral disease has become a medical challenge because of the increasing incidence and prevalence of human viral pathogens, as well as the lack of viable treatment alternatives, including plant-derived strategies. This review attempts to investigate the trends of research on in vitro antiviral effects of curcumin against different classes of human viral pathogens worldwide. Various electronic databases, including PubMed, Scopus, Web of Science, and Google Scholar were searched for published English articles evaluating the anti-viral activity of curcumin. Data were then extracted and analyzed. The forty-three studies (published from 1993 to 2020) that were identified contain data for 24 different viruses. The 50% cytotoxic concentration (CC50), 50% effective/inhibitory concentration (EC50/IC50), and stimulation index (SI) parameters showed that curcumin had antiviral activity against viruses causing diseases in humans. Data presented in this review highlight the potential antiviral applications of curcumin and open new avenues for further experiments on the clinical applications of curcumin and its derivatives.
Collapse
|
31
|
Linn YH, Ei WW, Myint LMM, Lwin KM. Anti-hepatitis B activities of Myanmar medicinal plants: a narrative review of current evidence. Virusdisease 2021; 32:446-466. [PMID: 34631974 DOI: 10.1007/s13337-021-00714-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/12/2021] [Indexed: 11/28/2022] Open
Abstract
Hepatitis B is one of the major burdens for health services and is the leading cause of morbidity and mortality from cirrhosis of liver and hepatocellular carcinoma. Current treatment strategies using nucleos(t)ide analogue reverse-transcriptase inhibitors or interferons are targeted for the long-term suppression of hepatitis B DNA. However, functional cure of hepatitis B infection (HBsAg clearance) was difficult to attain with such treatments. Therefore, new treatment strategies or innovative treatments are urgently needed. The new treatments should focus on the potential therapeutic targets such as covalently closed circular DNA which may be important for the HBsAg clearance. Plant based medicines have been used in different traditional medicine practices and these natural products/compounds serve as a good source of information or clues for use in drug discovery and design. Many natural products were found to be effective against hepatitis B virus and some even have better therapeutic activities than currently used compounds. This review summarizes the current evidence of Myanmar medicinal plants in basic and clinical research which shows promising potential for the development of novel therapeutic agents for the treatment of hepatitis B.
Collapse
Affiliation(s)
- Ye Htut Linn
- FAME Pharmaceuticals Industry Co., Ltd., No. 20, Mingyi Mahar Min Gaung Road, Industrial Zone (3), Hlaing Thar Yar City of Industry, Yangon, 11401 Myanmar
| | - Win Win Ei
- FAME Pharmaceuticals Industry Co., Ltd., No. 20, Mingyi Mahar Min Gaung Road, Industrial Zone (3), Hlaing Thar Yar City of Industry, Yangon, 11401 Myanmar
| | - Lwin Mon Mon Myint
- FAME Pharmaceuticals Industry Co., Ltd., No. 20, Mingyi Mahar Min Gaung Road, Industrial Zone (3), Hlaing Thar Yar City of Industry, Yangon, 11401 Myanmar
| | - Khin Maung Lwin
- FAME Pharmaceuticals Industry Co., Ltd., No. 20, Mingyi Mahar Min Gaung Road, Industrial Zone (3), Hlaing Thar Yar City of Industry, Yangon, 11401 Myanmar
| |
Collapse
|
32
|
Singh R, Goel S, Bourgeade P, Aleya L, Tewari D. Ayurveda Rasayana as antivirals and immunomodulators: potential applications in COVID-19. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55925-55951. [PMID: 34491498 PMCID: PMC8422837 DOI: 10.1007/s11356-021-16280-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/27/2021] [Indexed: 05/08/2023]
Abstract
Coronavirus disease (COVID-19) has been declared as a pandemic by the World Health Organization with rapid spread across 216 countries. COVID-19 pandemic has left its imprints on various health systems globally and caused immense social and economic disruptions. The scientific community across the globe is in a quest for digging the effective treatment for COVID-19 and exploring potential leads from traditional systems of healthcare across the world too. Ayurveda (Indian traditional system of medicine) has a comprehensive aspect of immunity through Rasayana which is a rejuvenation therapy. Here we attempt to generate the potential leads based on the classical text from Ayurveda in general and Rasayana in particular to develop effective antiviral and/or immunomodulator for potential or adjunct therapy in SARS-CoV-2. The Rasayana acts not only by resisting body to restrain or withstand the strength, severity or progression of a disease but also by promoting power of the body to prevent the manifestation of a disease. These Rasayana herbs are common in practice as immunomodulator, antiviral and protectives. The studies on Rasayana can provide an insight into the future course of research for the plausible development of effective management of COVID-19 by the utilization and development of various traditional systems of healthcare. Keeping in view the current pandemic situation, there is an urgent need of developing potential medicines. This study proposes certain prominent medicinal plants which may be further studied for drug development process and also in clinical setup under repurposing of these herbs.
Collapse
Affiliation(s)
- Rajeshwari Singh
- Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Janakpuri, New Delhi, 110058, India
| | - Sumeet Goel
- Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Janakpuri, New Delhi, 110058, India
| | - Pascale Bourgeade
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France.
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
33
|
Thongsri P, Pewkliang Y, Borwornpinyo S, Wongkajornsilp A, Hongeng S, Sa-Ngiamsuntorn K. Curcumin inhibited hepatitis B viral entry through NTCP binding. Sci Rep 2021; 11:19125. [PMID: 34580340 PMCID: PMC8476618 DOI: 10.1038/s41598-021-98243-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) has been implicated in hepatitis and hepatocellular carcinoma. Current agents (nucleos(t)ide analogs and interferons) could only attenuate HBV infection. A combination of agents targeting different stages of viral life cycle (e.g., entry, replication, and cccDNA stability) was expected to eradicate the infection. Curcumin (CCM) was investigated for inhibitory action toward HBV attachment and internalization. Immortalized hepatocyte-like cells (imHCs), HepaRG and non-hepatic cells served as host cells for binding study with CCM. CCM decreased viral load, HBeAg, HBcAg (infectivity), intracellular HBV DNA, and cccDNA levels. The CCM-induced suppression of HBV entry was directly correlated with the density of sodium-taurocholate co-transporting polypeptide (NTCP), a known host receptor for HBV entry. The site of action of CCM was confirmed using TCA uptake assay. The affinity between CCM and NTCP was measured using isothermal titration calorimetry (ITC). These results demonstrated that CCM interrupted HBV entry and would therefore suppress HBV re-infection.
Collapse
Affiliation(s)
- Piyanoot Thongsri
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand.,Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Yongyut Pewkliang
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand.,Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Adisak Wongkajornsilp
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.
| | - Khanit Sa-Ngiamsuntorn
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
34
|
Chojnacka K, Skrzypczak D, Izydorczyk G, Mikula K, Szopa D, Witek-Krowiak A. Antiviral Properties of Polyphenols from Plants. Foods 2021; 10:foods10102277. [PMID: 34681326 PMCID: PMC8534698 DOI: 10.3390/foods10102277] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/03/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023] Open
Abstract
Polyphenols are active substances against various types of viral infections. Researchers have characterized methods of how to isolate polyphenols without losing their potential to formulate pharmaceutical products. Researchers have also described mechanisms against common viral infections (i.e., influenza, herpes, hepatitis, rotavirus, coronavirus). Particular compounds have been discussed together with the plants in the biomass in which they occur. Quercetin, gallic acid and epigallocatechin are exemplary compounds that inhibit the growth cycle of viruses. Special attention has been paid to identify plants and polyphenols that can be efficient against coronavirus infections. It has been proven that polyphenols present in the diet and in pharmaceuticals protect us from viral infections and, in case of infection, support the healing process by various mechanisms, i.e., they block the entry into the host cells, inhibit the multiplication of the virus, seal blood vessels and protect against superinfection.
Collapse
|
35
|
Homaeigohar S, Liu Q, Kordbacheh D. Biomedical Applications of Antiviral Nanohybrid Materials Relating to the COVID-19 Pandemic and Other Viral Crises. Polymers (Basel) 2021; 13:2833. [PMID: 34451371 PMCID: PMC8401873 DOI: 10.3390/polym13162833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/12/2021] [Accepted: 08/20/2021] [Indexed: 01/19/2023] Open
Abstract
The COVID-19 pandemic has driven a global research to uncover novel, effective therapeutical and diagnosis approaches. In addition, control of spread of infection has been targeted through development of preventive tools and measures. In this regard, nanomaterials, particularly, those combining two or even several constituting materials possessing dissimilar physicochemical (or even biological) properties, i.e., nanohybrid materials play a significant role. Nanoparticulate nanohybrids have gained a widespread reputation for prevention of viral crises, thanks to their promising antimicrobial properties as well as their potential to act as a carrier for vaccines. On the other hand, they can perform well as a photo-driven killer for viruses when they release reactive oxygen species (ROS) or photothermally damage the virus membrane. The nanofibers can also play a crucial protective role when integrated into face masks and personal protective equipment, particularly as hybridized with antiviral nanoparticles. In this draft, we review the antiviral nanohybrids that could potentially be applied to control, diagnose, and treat the consequences of COVID-19 pandemic. Considering the short age of this health problem, trivially the relevant technologies are not that many and are handful. Therefore, still progressing, older technologies with antiviral potential are also included and discussed. To conclude, nanohybrid nanomaterials with their high engineering potential and ability to inactivate pathogens including viruses will contribute decisively to the future of nanomedicine tackling the current and future pandemics.
Collapse
Affiliation(s)
- Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK;
| | - Qiqi Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China;
| | - Danial Kordbacheh
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK;
| |
Collapse
|
36
|
Fu YS, Chen TH, Weng L, Huang L, Lai D, Weng CF. Pharmacological properties and underlying mechanisms of curcumin and prospects in medicinal potential. Biomed Pharmacother 2021; 141:111888. [PMID: 34237598 DOI: 10.1016/j.biopha.2021.111888] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/12/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022] Open
Abstract
Curcumin, isolated from Curcuma longa L., is a fat-soluble natural compound that can be obtained from ginger plant tuber roots, which accumulative evidences have demonstrated that it can resist viral and microbial infection and has anti-tumor, reduction of blood lipid and blood glucose, antioxidant and removal of free radicals, and is active against numerous disorders various chronic diseases including cardiovascular, pulmonary, neurological and autoimmune diseases. In this article is highlighted the recent evidence of curcuminoids applied in sevral aspects of medical problem particular in COVID-19 pandemics. We have searched several literature databases including MEDLINE (PubMed), EMBASE, the Web of Science, Cochrane Library, Google Scholar, and the ClinicalTrials.gov website via using curcumin and medicinal properties as a keyword. All studies published from the time when the database was established to May 2021 was retrieved. This review article summarizes the growing confirmation for the mechanisms related to curcumin's physiological and pharmacological effects with related target proteins interaction via molecular docking. The purpose is to provide deeper insight and understandings of curcumin's medicinal value in the discovery and development of new drugs. Curcumin could be used in the prevention or therapy of cardiovascular disease, respiratory diseases, cancer, neurodegeneration, infection, and inflammation based on cellular biochemical, physiological regulation, infection suppression and immunomodulation.
Collapse
Affiliation(s)
- Yaw-Syan Fu
- Department of Physiology, School of Basic Medicine, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Ting-Hsu Chen
- Department of Physiology, School of Basic Medicine, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Lebin Weng
- Department of Physiology, School of Basic Medicine, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Liyue Huang
- Department of Physiology, School of Basic Medicine, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Dong Lai
- Department of Transfusion, the Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, Fujian, China.
| | - Ching-Feng Weng
- Department of Physiology, School of Basic Medicine, Xiamen Medical College, Xiamen 361023, Fujian, China.
| |
Collapse
|
37
|
Dhar S, Bhattacharjee P. Promising role of curcumin against viral diseases emphasizing COVID-19 management: A review on the mechanistic insights with reference to host-pathogen interaction and immunomodulation. J Funct Foods 2021; 82:104503. [PMID: 33897833 PMCID: PMC8057770 DOI: 10.1016/j.jff.2021.104503] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023] Open
Abstract
Curcumin has already acknowledged immense interest from both medical and scientific research because of its multifaceted activity. To date, the promising effects of curcumin were perceived against numerous inflammatory diseases. Besides, curcumin's role as a medicine has been studied in many virus infections like influenza, HIV, etc. There is a need to analyze the cellular mechanisms of curcumin including host-pathogen interaction and immunomodulatory effects, to explore the role of curcumin against COVID-19. With this background, our study suggests that curcumin can prevent COVID-19 infections by inhibiting the pathogen entry, viral genome replication and steps in the endosomal pathway along with inhibition of T-cell signalling by impairing the autophagy-mediated antigen-presenting pathway. This review explicit the possible mechanisms behind curcumin-induced cellular immunity and a therapeutive dosage of curcumin suggesting a preventive strategy against COVID-19.
Collapse
|
38
|
Rai PK, Mueed Z, Chowdhury A, Deval R, Kumar D, Kamal MA, Negi YS, Pareek S, Poddar NK. Current Overviews on COVID-19 Management Strategies. Curr Pharm Biotechnol 2021; 23:361-387. [PMID: 33966618 DOI: 10.2174/1389201022666210509022313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/02/2021] [Accepted: 02/08/2021] [Indexed: 02/08/2023]
Abstract
The coronavirus pandemic has hit the world lately and caused acute respiratory syndrome in humans. The causative agent of the disease was soon brought to focus by scientists as SARS-CoV-2 and later called a novel coronavirus by the general public. Due to the severity and rapid spread of the disease, WHO classifies the COVID-19 pandemic as the 6th public health emergency even after taking efforts like worldwide quarantine and restrictions. Since only symptomatic treatment is available, the best way to control the spread of the virus is by taking preventive measures. Various types of antigen/antibody detection kits and diagnostic methods are available for the diagnosis of COVID-19 patients. In recent years, various phytochemicals and repurposing drugs are showing a broad range of anti-viral activities with different modes of action have been identified. Repurposing drugs such as arbidol, hydroxychloroquine, chloroquine, lopinavir, favipiravir, remdesivir, hexamethylene amiloride, and dexamethasone, tocilizumab, interferon-β, neutralizing antibodies exhibit in vitro anti-coronaviral properties by inhibiting multiple processes in the virus life cycle. Various research groups are involved in drug trials and vaccine development. Plant-based anti-viral compounds such as baicalin, calanolides, curcumin, oxymatrine, matrine, and resveratrol exhibit different modes of action against a wide range of positive/negative sense-RNA/DNA virus, and future researches need to be conducted to ascertain their role, use in managing SARS-CoV-2. Thus, this article is an attempt to review the current understanding of COVID-19 acute respiratory disease and summarize its clinical features with their prospective control and various aspects of the therapeutic approach.
Collapse
Affiliation(s)
- Pankaj Kumar Rai
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Zeba Mueed
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Abhiroop Chowdhury
- School of Environment & Sustainability, O.P. Jindal Global University, Sonipat, Haryana, India
| | - Ravi Deval
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Dinesh Kumar
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Mohammad A Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan. China
| | - Yogeshwar Singh Negi
- Department of Biosciences, Manipal University Jaipur, DehmiKalan, Jaipur-Ajmer Expressway, Jaipur-303007, Rajasthan, India
| | - Shubhra Pareek
- Department of Chemistry, Manipal University Jaipur, DehmiKalan, Jaipur-Ajmer Expressway, Jaipur-303007, Rajasthan, India
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, DehmiKalan, Jaipur-Ajmer Expressway, Jaipur-303007, Rajasthan, India
| |
Collapse
|
39
|
Singh NA, Kumar P, Jyoti, Kumar N. Spices and herbs: Potential antiviral preventives and immunity boosters during COVID-19. Phytother Res 2021; 35:2745-2757. [PMID: 33511704 PMCID: PMC8013177 DOI: 10.1002/ptr.7019] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/03/2020] [Accepted: 01/03/2021] [Indexed: 01/08/2023]
Abstract
A severe acute respiratory syndrome is an unusual type of contagious pneumonia that is caused by SARS coronavirus. At present, the whole world is trying to combat this coronavirus disease and scientific communities are putting rigorous efforts to develop vaccines. However, there are only a few specific medical treatments for SARS-CoV-2. Apart from other public health measures taken to prevent this virus, we can boost our immunity with natural products. In this article, we have highlighted the potential of common spices and herbs as antiviral agents and immunity boosters. A questionnaire-based online survey has been conducted on home remedies during COVID-19 among a wide range of peoples (n-531) of different age groups (13-68 years) from various countries. According to the survey, 71.8% of people are taking kadha for combating infection and boosting immunity. Most people (86.1%) think that there is no side effect of kadha while 13.9% think vice versa. A total of 93.6% of people think that spices are helpful in curing coronavirus or other viral infection as well as boosting immunity. Most people are using tulsi drops, vitamin C, and chyawanprash for boosting their immunity. Therefore, we conclude from the survey and available literature that spices and herbs play a significant role against viral infections.
Collapse
Affiliation(s)
| | - Pradeep Kumar
- Department of ForestryNorth Eastern Regional Institute of Science and TechnologyNirjuliIndia
| | - Jyoti
- Department of MicrobiologyMohanlal Sukhadia UniversityUdaipurIndia
| | - Naresh Kumar
- Dairy Microbiology DivisionNational Dairy Research Institute, ICARKarnalIndia
| |
Collapse
|
40
|
Iqubal A, Iqubal MK, Ahmed M, Haque SE. Natural Products, a Potential Therapeutic Modality in Management and Treatment of nCoV-19 Infection: Preclinical and Clinical Based Evidence. Curr Pharm Des 2021; 27:1153-1169. [DOI: 10.2174/1381612827999210111190855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/13/2020] [Indexed: 11/22/2022]
Abstract
A recent outbreak of novel coronavirus (nCoV-19) has put an enormous burden on global public
health. Millions of people were affected by this pandemic, and as of now, no effective antiviral drug has been
found for the management of this situation. Cytokine storm, acute respiratory distress, hypoxia and multi-organ
failure are hallmark clinical conditions of this disease. Trials for several investigational and repurposed drugs
are being conducted, but none of them were found to be safe and effective. However, for the critically ill patient,
plasma therapy, dexamethasone, and remdesivir are included in the treatment protocol. For a long time,
various natural drugs have been used as antiviral agents in Indian and Chinese traditional medicines, which can
be explored as a potential therapeutic option in such situation. It is, therefore, speculated that the proper screening
and standardization of these medicines can be a breakthrough in the management and treatment of nCoV-19
infection. As natural products possess antioxidant, anti-inflammatory, anti-apoptotic, immunomodulatory properties
and also specifically act on various viral enzymatic machinery and affect their replication process, thus
they may be useful as alternatives in relieving symptoms and treatment of nCoV-19 infection. However, only
on the basis of their traditional value, discrimination and off-label use of these natural drugs must be prevented,
and robust preclinical and clinical data along with appropriate guidelines are needed for them to enter into clinical
practice.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohammad K. Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Musheer Ahmed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Syed E. Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
41
|
Batista de Andrade Neto J, Pessoa de Farias Cabral V, Brito Nogueira LF, Rocha da Silva C, Gurgel do Amaral Valente Sá L, Ramos da Silva A, Barbosa da Silva WM, Silva J, Marinho ES, Cavalcanti BC, Odorico de Moraes M, Nobre Júnior HV. Anti-MRSA activity of curcumin in planktonic cells and biofilms and determination of possible action mechanisms. Microb Pathog 2021; 155:104892. [PMID: 33894289 DOI: 10.1016/j.micpath.2021.104892] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus is a commensal bacterium and opportunistic human pathogen that can cause a wide variety of clinical infections. It is recognized for its ability to acquire antimicrobial resistance, so methicillin-resistant Staphylococcus aureus (MRSA) infections are a global healthcare challenge. Therefore, the development of new therapeutic options and alternative therapies for treatment is necessary. Curcumin, a polyphenolic substance found in the rhizome of turmeric longa L, has been shown to have several therapeutic properties, including antimicrobial activity. The objective of the study was to evaluate the in vitro antibacterial activity of curcumin alone and associated with oxacillin against MRSA strains, to analyze the mechanism of cell death involved in the isolated action of curcumin by means of flow cytometry and molecular docking, and to verify its superbiofilm action. Curcumin showed antibacterial activity in the range of 125-500 μg/mL against the tested strains, since it caused an increase in membrane permeability and DNA fragmentation, as revealed by flow cytometry analysis. Moreover, it was possible to observe interactions of curcumin with wild-type S. aureus DHFR, S. aureus gyrase and S. aureus gyrase complex with DNA, DNA (5'-D(*CP*GP*AP*TP*GP*CP*G)-3') and Acyl-PBP2a from MRSA by molecular docking. Curcumin also had a synergistic and additive effect when associated with oxacillin, and significantly reduced the cell viability of the analyzed biofilms. Thus, curcumin is a possible candidate for pharmaceutical formulation development for the treatment of MRSA infections.
Collapse
Affiliation(s)
- João Batista de Andrade Neto
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil; Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Vitória Pessoa de Farias Cabral
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Cecília Rocha da Silva
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil; Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil; Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil; Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Anderson Ramos da Silva
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Jacilene Silva
- Department of Chemistry, Group for Theoretical Chemistry and Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, Brazil
| | - Emmanuel Silva Marinho
- Department of Chemistry, Group for Theoretical Chemistry and Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, Brazil
| | - Bruno Coelho Cavalcanti
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Manoel Odorico de Moraes
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Hélio Vitoriano Nobre Júnior
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil; Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
42
|
Goh ZY, Ren EC, Ko HL. Intracellular interferon signalling pathways as potential regulators of covalently closed circular DNA in the treatment of chronic hepatitis B. World J Gastroenterol 2021; 27:1369-1391. [PMID: 33911462 PMCID: PMC8047536 DOI: 10.3748/wjg.v27.i14.1369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/23/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Infection with the hepatitis B virus (HBV) is still a major global health threat as 250 million people worldwide continue to be chronically infected with the virus. While patients may be treated with nucleoside/nucleotide analogues, this only suppresses HBV titre to sub-detection levels without eliminating the persistent HBV covalently closed circular DNA (cccDNA) genome. As a result, HBV infection cannot be cured, and the virus reactivates when conditions are favorable. Interferons (IFNs) are cytokines known to induce powerful antiviral mechanisms that clear viruses from infected cells. They have been shown to induce cccDNA clearance, but their use in the treatment of HBV infection is limited as HBV-targeting immune cells are exhausted and HBV has evolved multiple mechanisms to evade and suppress IFN signalling. Thus, to fully utilize IFN-mediated intracellular mechanisms to effectively eliminate HBV, instead of direct IFN administration, novel strategies to sustain IFN-mediated anti-cccDNA and antiviral mechanisms need to be developed. This review will consolidate what is known about how IFNs act to achieve its intracellular antiviral effects and highlight the critical interferon-stimulated gene targets and effector mechanisms with potent anti-cccDNA functions. These include cccDNA degradation by APOBECs and cccDNA silencing and transcription repression by epigenetic modifications. In addition, the mechanisms that HBV employs to disrupt IFN signalling will be discussed. Drugs that have been developed or are in the pipeline for components of the IFN signalling pathway and HBV targets that detract IFN signalling mechanisms will also be identified and discussed for utility in the treatment of HBV infections. Together, these will provide useful insights into design strategies that specifically target cccDNA for the eradication of HBV.
Collapse
Affiliation(s)
- Zhi Yi Goh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore 119077, Singapore
| | - Ee Chee Ren
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
| | - Hui Ling Ko
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| |
Collapse
|
43
|
Guo L, Li H, Fan T, Ma Y, Wang L. Synergistic efficacy of curcumin and anti-programmed cell death-1 in hepatocellular carcinoma. Life Sci 2021; 279:119359. [PMID: 33753114 DOI: 10.1016/j.lfs.2021.119359] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) ranks near the top in the global list of malignancies causing cancer-related death. Recently, combination therapy has gained popularity in treating this cancer. We tried to investigate the efficacy of combined treatment with curcumin and anti-programmed cell death-1 (anti-PD-1) in HCC. Hep3B cells were treated with different concentrations of curcumin, followed by determination of Hep3B cell proliferation and programmed cell death ligand-1 (PD-L1) expression. Then, Hep3B cells were co-cultured with peripheral blood mononuclear cells (PBMCs), after which the Hep3B cell growth and immune activity were detected following treatment with curcumin and/or anti-PD-1. Besides, we investigated the effect of transforming growth factor beta 1 (TGF-β1) on lymphocyte activation and the interaction between E1A binding protein P300 (P300), histone acetylation, TGF-β1, and thrombin. Additionally, the synergistic role of curcumin and anti-PD-1 in mouse models of HCC was studied. Curcumin retarded Hep3B cell growth and reduced surface PD-L1 expression in Hep3B cells. After co-culture of Hep3B cells and PBMCs, curcumin had a synergistic effect with anti-PD-1 to slow Hep3B cell proliferation, activate lymphocytes, inhibit immune evasion, and down-regulate TGF-β1 expression. Functionally, curcumin inhibited thrombin to reduce P300-induced histone acetylation in the TGF-β1 promoter region, and anti-PD-1 suppressed binding of PD-1 and PD-L1 to promote immune activity; the combination of the two showed better in vitro anti-cancer effects. In vivo, curcumin combined with anti-PD-1 also lowered HCC growth rate and improved the tumor microenvironment. In conclusion, the combination of curcumin and anti-PD-1 is synergistically effective in the treatment of HCC treatment.
Collapse
Affiliation(s)
- Lei Guo
- Department of Infection, Qingdao No. 6 People's Hospital, Qingdao 266033, PR China
| | - Hongbo Li
- Department of Dermatology, Qingdao No. 6 People's Hospital, Qingdao 266033, PR China
| | - Tianli Fan
- Department of Infection, Qingdao No. 6 People's Hospital, Qingdao 266033, PR China
| | - Yanli Ma
- Department of Infection, Qingdao No. 6 People's Hospital, Qingdao 266033, PR China.
| | - Lili Wang
- Department of Hepatology, Qingdao No. 6 People's Hospital, Qingdao 266033, PR China.
| |
Collapse
|
44
|
CRISPR-Cas9 gene editing of hepatitis B virus in chronically infected humanized mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 20:258-275. [PMID: 33473359 PMCID: PMC7803634 DOI: 10.1016/j.omtm.2020.11.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
Chronic hepatitis B virus (HBV) infection is a major public health problem. New treatment approaches are needed because current treatments do not target covalently closed circular DNA (cccDNA), the template for HBV replication, and rarely clear the virus. We harnessed adeno-associated virus (AAV) vectors and CRISPR-Staphylococcus aureus (Sa)Cas9 to edit the HBV genome in liver-humanized FRG mice chronically infected with HBV and receiving entecavir. Gene editing was detected in livers of five of eight HBV-specific AAV-SaCas9-treated mice, but not control mice, and mice with detectable HBV gene editing showed higher levels of SaCas9 delivery to HBV+ human hepatocytes than those without gene editing. HBV-specific AAV-SaCas9 therapy significantly improved survival of human hepatocytes, showed a trend toward decreasing total liver HBV DNA and cccDNA, and was well tolerated. This work provides evidence for the feasibility and safety of in vivo gene editing for chronic HBV infections, and it suggests that with further optimization, this approach may offer a plausible way to treat or even cure chronic HBV infections.
Collapse
|
45
|
Ailioaie LM, Litscher G. Curcumin and Photobiomodulation in Chronic Viral Hepatitis and Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:ijms21197150. [PMID: 32998270 PMCID: PMC7582680 DOI: 10.3390/ijms21197150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022] Open
Abstract
Immune modulation is a very modern medical field for targeting viral infections. In the race to develop the best immune modulator against viruses, curcumin, as a natural product, is inexpensive, without side effects, and can stimulate very well certain areas of the human immune system. As a bright yellow component of turmeric spice, curcumin has been the subject of thousands of scientific and clinical studies in recent decades to prove its powerful antioxidant properties and anticancer effects. Curcumin has been shown to influence inter- and intracellular signaling pathways, with direct effects on gene expression of the antioxidant proteins and those that regulate the immunity. Experimental studies have shown that curcumin modulates several enzyme systems, reduces nitrosative stress, increases the antioxidant capacity, and decreases the lipid peroxidation, protecting against fatty liver pathogenesis and fibrotic changes. Hepatitis B virus (HBV) affects millions of people worldwide, having sometimes a dramatic evolution to chronic aggressive infection, cirrhosis, and hepatocellular carcinoma. All up-to-date treatments are limited, there is still a gap in the scientific knowledge, and a sterilization cure may not yet be possible with the removal of both covalently closed circular DNA (cccDNA) and the embedded HBV DNA. With a maximum light absorption at 420 nm, the cytotoxicity of curcumin as photosensitizer could be expanded by the intravenous blue laser blood irradiation (IVBLBI) or photobiomodulation in patients with chronic hepatitis B infection, Hepatitis B e-antigen (HBeAg)-positive, noncirrhotic, but nonresponsive to classical therapy. Photobiomodulation increases DNA repair by the biosynthesis of complex molecules with antioxidant properties, the outset of repairing enzyme systems and new phospholipids for regenerating the cell membranes. UltraBioavailable Curcumin and blue laser photobiomodulation could suppress the virus and control better the disease by reducing inflammation/fibrosis and stopping the progression of chronic hepatitis, reversing fibrosis, and diminishing the progression of cirrhosis, and decreasing the incidence of hepatocellular carcinoma. Photodynamic therapy with blue light and curcumin opens new avenues for the effective prevention and cure of chronic liver infections and hepatocellular carcinoma. Blue laser light and UltraBioavailable Curcumin could be a new valuable alternative for medical applications in chronic B viral hepatitis and hepatocarcinoma, saving millions of lives.
Collapse
MESH Headings
- Antineoplastic Agents, Phytogenic/therapeutic use
- Antioxidants/therapeutic use
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/radiotherapy
- Carcinoma, Hepatocellular/virology
- Curcumin/therapeutic use
- DNA Repair/radiation effects
- DNA, Circular/antagonists & inhibitors
- DNA, Circular/genetics
- DNA, Circular/metabolism
- DNA, Viral/antagonists & inhibitors
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Hepatitis B e Antigens/genetics
- Hepatitis B e Antigens/immunology
- Hepatitis B virus/drug effects
- Hepatitis B virus/growth & development
- Hepatitis B virus/pathogenicity
- Hepatitis B virus/radiation effects
- Hepatitis B, Chronic/complications
- Hepatitis B, Chronic/drug therapy
- Hepatitis B, Chronic/radiotherapy
- Hepatitis B, Chronic/virology
- Humans
- Immunologic Factors/therapeutic use
- Liver/drug effects
- Liver/immunology
- Liver/pathology
- Liver/radiation effects
- Liver Cirrhosis/drug therapy
- Liver Cirrhosis/etiology
- Liver Cirrhosis/radiotherapy
- Liver Cirrhosis/virology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/etiology
- Liver Neoplasms/radiotherapy
- Liver Neoplasms/virology
- Low-Level Light Therapy/methods
- Photosensitizing Agents/therapeutic use
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania;
- Ultramedical & Laser Clinic, 83 Arcu Street, 700135 Iasi, Romania
| | - Gerhard Litscher
- Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, and Traditional Chinese Medicine (TCM) Research Center Graz, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-83907
| |
Collapse
|
46
|
Wang Z, Wang W, Wang L. Epigenetic regulation of covalently closed circular DNA minichromosome in hepatitis B virus infection. BIOPHYSICS REPORTS 2020. [DOI: 10.1007/s41048-020-00112-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
47
|
Abstract
Plants are a rich source of new antiviral, pharmacologically active agents. The naturally occurring plant alkaloid berberine (BBR) is one of the phytochemicals with a broad range of biological activity, including anticancer, anti-inflammatory and antiviral activity. BBR targets different steps in the viral life cycle and is thus a good candidate for use in novel antiviral drugs and therapies. It has been shown that BBR reduces virus replication and targets specific interactions between the virus and its host. BBR intercalates into DNA and inhibits DNA synthesis and reverse transcriptase activity. It inhibits replication of herpes simplex virus (HSV), human cytomegalovirus (HCMV), human papillomavirus (HPV), and human immunodeficiency virus (HIV). This isoquinoline alkaloid has the ability to regulate the MEK-ERK, AMPK/mTOR, and NF-κB signaling pathways, which are necessary for viral replication. Furthermore, it has been reported that BBR supports the host immune response, thus leading to viral clearance. In this short review, we focus on the most recent studies on the antiviral properties of berberine and its derivatives, which might be promising agents to be considered in future studies in the fight against the current pandemic SARS-CoV-2, the virus that causes COVID-19.
Collapse
|
48
|
Loutfy SA, Elberry MH, Farroh KY, Mohamed HT, Mohamed AA, Mohamed EB, Faraag AHI, Mousa SA. Antiviral Activity of Chitosan Nanoparticles Encapsulating Curcumin Against Hepatitis C Virus Genotype 4a in Human Hepatoma Cell Lines. Int J Nanomedicine 2020; 15:2699-2715. [PMID: 32368050 PMCID: PMC7184126 DOI: 10.2147/ijn.s241702] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/23/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose Current direct-acting antiviral agents for treatment of hepatitis C virus genotype 4a (HCV-4a) have been reported to cause adverse effects, and therefore less toxic antivirals are needed. This study investigated the role of curcumin chitosan (CuCs) nanocomposite as a potential anti-HCV-4a agent in human hepatoma cells Huh7. Methods Docking of curcumin and CuCs nanocomposite and binding energy calculations were carried out. Chitosan nanoparticles (CsNPs) and CuCs nanocomposite were prepared with an ionic gelation method and characterized with TEM, zeta size and potential, and HPLC to calculate encapsulation efficiency. Cytotoxicity studies were performed on Huh7 cells using MTT assay and confirmed with cellular and molecular assays. Anti-HCV-4a activity was determined using real-time PCR and Western blot. Results The strength of binding interactions between protein ligand complexes gave scores with NS3 protease, NS5A polymerase, and NS5B polymerase of -124.91, -159.02, and -129.16, for curcumin respectively, and -68.51, -54.52, and -157.63 for CuCs nanocomposite, respectively. CuCs nanocomposite was prepared at sizes 29-39.5 nm and charges of 33 mV. HPLC detected 4% of curcumin encapsulated into CsNPs. IC50 was 8 µg/mL for curcumin and 25 µg/mL for the nanocomposite on Huh7 but was 25.8 µg/mL and 34 µg/mL on WISH cells. CsNPs had no cytotoxic effect on tested cell lines. Apoptotic genes' expression revealed the caspase-dependent pathway mechanism. CsNPs and CuCs nanocomposite demonstrated 100% inhibition of viral entry and replication, which was confirmed with HCV core protein expression. Conclusion CuCs nanocomposite inhibited HCV-4a entry and replication compared to curcumin alone, suggesting its potential role as an effective therapeutic agent.
Collapse
Affiliation(s)
- Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.,Nanotechnology Research Center, British University, Cairo, Egypt
| | - Mostafa H Elberry
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Khaled Yehia Farroh
- Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza, Egypt
| | - Hossam Taha Mohamed
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th October, Giza, Egypt.,Department of Zoology, Faculty of Science,Cairo University, Giza, Egypt
| | - Aya A Mohamed
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th October, Giza, Egypt
| | - ElChaimaa B Mohamed
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ahmed Hassan Ibrahim Faraag
- Botany and Microbiology Department, Bioinformatics Center, Faculty of Science, Helwan University, Cairo, Egypt
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| |
Collapse
|
49
|
Liu S, Xin Y. HBV cccDNA: The Stumbling Block for Treatment of HBV Infection. J Clin Transl Hepatol 2019; 7:195-196. [PMID: 31608210 PMCID: PMC6783674 DOI: 10.14218/jcth.2019.00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Shousheng Liu
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, China
| | - Yongning Xin
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, China
- Correspondence to: Yongning Xin, Department of Infectious Disease, Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, Shandong 266011, China. Tel: +86-532-82789463, Fax: +86-532-85968434, E-mail:
| |
Collapse
|
50
|
Zhu A, Liao X, Li S, Zhao H, Chen L, Xu M, Duan X. HBV cccDNA and Its Potential as a Therapeutic Target. J Clin Transl Hepatol 2019; 7:258-262. [PMID: 31608218 PMCID: PMC6783673 DOI: 10.14218/jcth.2018.00054] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 04/02/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Chronic hepatitis B virus infection continues to be a major health burden worldwide. It can cause various degrees of liver damage and is strongly associated with the development of liver cirrhosis and hepatocellular carcinoma. Covalently closed circular DNA in the nucleus of infected cells cannot be disabled by present therapies which may lead to HBV persistence and relapse. In this review, we summarized the current knowledge on hepatitis B virus covalently closed circular DNA and its potential role as a therapeutic target.
Collapse
Affiliation(s)
- Anjing Zhu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Xinzhong Liao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Shuang Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Hang Zhao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Min Xu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| |
Collapse
|