1
|
Yao K, Fan H, Yang T, Yang C, Wang G, Li X, Ji XY, Wang Q, Lv S, Guo S. Identification of MYC and STAT3 for early diagnosis based on the long noncoding RNA-mRNA network and bioinformatics in colorectal cancer. Front Immunol 2025; 15:1497919. [PMID: 39830506 PMCID: PMC11739134 DOI: 10.3389/fimmu.2024.1497919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Background Colorectal cancer (CRC) ranks among the top three cancers globally in both incidence and mortality, posing a significant public health challenge. Most CRC cases are diagnosed at intermediate to advanced stages, and reliable biomarkers for early detection are lacking. Long non-coding RNAs (lncRNAs) have been implicated in various cancers, including CRC, playing key roles in tumor development, progression, and prognosis. Methods A comprehensive search of the PubMed database was conducted to identify relevant studies on the early diagnosis of CRC. Bioinformatics analysis was performed to explore lncRNA-mRNA networks, leading to the identification of five potential blood biomarkers. Expression analysis was carried out using the GEPIA and GEO online databases, focusing on MYC and STAT3. Differential expression between normal and CRC tissues was assessed, followed by Receiver Operating Characteristic (ROC) analysis to evaluate the diagnostic potential of these markers. Quantitative Real-Time PCR (qRT-PCR) was performed to validate MYC and STAT3 expression levels, and findings were further confirmed using the Human Protein Atlas (HPA) database. Results Database analysis revealed significant differential expression of MYC and STAT3 between normal and CRC tissues. ROC analysis demonstrated the diagnostic potential of these markers. qRT-PCR validation confirmed the differential expression patterns observed in the databases. Validation through the HPA database further supported these findings, confirming the potential of MYC and STAT3 as diagnostic biomarkers for CRC. Conclusion Our results suggest that MYC and STAT3 are promising diagnostic biomarkers for CRC, offering new insights into its pathophysiology and potential for targeted therapies.
Collapse
Affiliation(s)
- Kunhou Yao
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, China
| | - Hao Fan
- School of Basic Medicine, Henan University, Kaifeng, Henan, China
| | - Tiancheng Yang
- School of Basic Medicine, Henan University, Kaifeng, Henan, China
| | - Can Yang
- School of Basic Medicine, Henan University, Kaifeng, Henan, China
| | - Guibin Wang
- School of Basic Medicine, Henan University, Kaifeng, Henan, China
| | - Xingwang Li
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, China
| | - Xin-Ying Ji
- Department of General Surgery, Huaxian County People’s Hospital, Huaxian, Henan, China
| | - Qun Wang
- School of Basic Medicine, Henan University, Kaifeng, Henan, China
| | - Shaojiang Lv
- Department of General Surgery, Huaxian County People’s Hospital, Huaxian, Henan, China
| | - Shihao Guo
- Department of Colorectal Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
3
|
Bordoni L, Petracci I, Feliziani G, de Simone G, Rucci C, Gabbianelli R. Gut Microbiota-Derived Trimethylamine Promotes Inflammation with a Potential Impact on Epigenetic and Mitochondrial Homeostasis in Caco-2 Cells. Antioxidants (Basel) 2024; 13:1061. [PMID: 39334721 PMCID: PMC11428692 DOI: 10.3390/antiox13091061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Trimethylamine (TMA), a byproduct of gut microbiota metabolism from dietary precursors, is not only the precursor of trimethylamine-N-oxide (TMAO) but may also affect gut health. An in vitro model of intestinal epithelium of Caco-2 cells was used to evaluate the impact of TMA on inflammation, paracellular permeability, epigenetics and mitochondrial functions. The expression levels of pro-inflammatory cytokines (IL-6, IL-1β) increased significantly after 24 h exposure to TMA 1 mM. TMA exposure was associated with an upregulation of SIRT1 (TMA 1 mM, 400 μM, 10 μM) and DNMT1 (TMA 1 mM, 400 µM) genes, while DNMT3A expression decreased (TMA 1 mM). In a cell-free model, TMA (from 0.1 µM to 1 mM) induced a dose-dependent reduction in Sirtuin enzyme activity. In Caco-2 cells, TMA reduced total ATP levels and significantly downregulated ND6 expression (TMA 1 mM). TMA excess (1 mM) reduced intracellular mitochondrial DNA copy numbers and increased the methylation of the light-strand promoter in the D-loop area of mtDNA. Also, TMA (1 mM, 400 µM, 10 µM) increased the permeability of Caco-2 epithelium, as evidenced by the reduced transepithelial electrical resistance values. Based on our preliminary results, TMA excess might promote inflammation in intestinal cells and disturb epigenetic and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy and Health Products, University of Camerino, 62032 Camerino, Italy
| | - Irene Petracci
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy and Health Products, University of Camerino, 62032 Camerino, Italy
| | - Giulia Feliziani
- School of Advanced Studies, University of Camerino, 62032 Camerino, Italy
| | - Gaia de Simone
- School of Advanced Studies, University of Camerino, 62032 Camerino, Italy
| | - Chiara Rucci
- School of Advanced Studies, University of Camerino, 62032 Camerino, Italy
| | - Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy and Health Products, University of Camerino, 62032 Camerino, Italy
| |
Collapse
|
4
|
Stayoussef M, Weili X, Habel A, Barbirou M, Bedoui S, Attia A, Omrani Y, Zouari K, Maghrebi H, Almawi WY, Bouhaouala-Zahar B, Larbi A, Yacoubi-Loueslati B. Altered expression of cytokines, chemokines, growth factors, and soluble receptors in patients with colorectal cancer, and correlation with treatment outcome. Cancer Immunol Immunother 2024; 73:169. [PMID: 38954024 PMCID: PMC11219625 DOI: 10.1007/s00262-024-03746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 05/22/2024] [Indexed: 07/04/2024]
Abstract
Insofar as they play an important role in the pathogenesis of colorectal cancer (CRC), this study analyzes the serum profile of cytokines, chemokines, growth factors, and soluble receptors in patients with CRC and cancer-free controls as possible CRC signatures. Serum levels of 65 analytes were measured in patients with CRC and age- and sex-matched cancer-free controls using the ProcartaPlex Human Immune Monitoring 65-Plex Panel. Of the 65 tested analytes, 8 cytokines (CSF-3, IFN-γ, IL-12p70, IL-18, IL-20, MIF, TNF-α and TSLP), 8 chemokines (fractalkine, MIP-1β, BLC, Eotaxin-1, Eotaxin-2, IP-10, MIP-1a, MIP-3a), 2 growth factors (FGF-2, MMP-1), and 4 soluble receptors (APRIL, CD30, TNFRII, and TWEAK), were differentially expressed in CRC. ROC analysis confirmed the high association of TNF-α, BLC, Eotaxin-1, APRIL, and Tweak with AUC > 0.70, suggesting theranostic application. The expression of IFN-γ, IL-18, MIF, BLC, Eotaxin-1, Eotaxin-2, IP-10, and MMP1 was lower in metastatic compared to non-metastatic CRC; only AUC of MIF and MIP-1β were > 0.7. Moreover, MDC, IL-7, MIF, IL-21, and TNF-α are positively associated with tolerance to CRC chemotherapy (CT) (AUC > 0.7), whereas IL-31, Fractalkine, Eotaxin-1, and Eotaxin-2 were positively associated with resistance to CT. TNF-α, BLC, Eotaxin-1, APRIL, and Tweak may be used as first-line early detection of CRC. The variable levels of MIF and MIP-1β between metastatic and non-metastatic cases assign prognostic nature to these factors in CRC progression. Regarding tolerance to CT, MDC, IL-7, MIF, IL-21, and TNF-α are key when down-regulated or resistant to treatment is observed.
Collapse
Affiliation(s)
- M Stayoussef
- Laboratory of Mycology, Faculty of Sciences of Tunis (FST), Pathologies and Biomarkers (LR16ES05), University of Tunis El Manar (UTM), 1092, Tunis, Tunisia.
| | - X Weili
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore, 138648, Singapore
| | - A Habel
- Laboratory of Mycology, Faculty of Sciences of Tunis (FST), Pathologies and Biomarkers (LR16ES05), University of Tunis El Manar (UTM), 1092, Tunis, Tunisia
| | - M Barbirou
- Center for Biomedical Informatics, University of Missouri School of Medicine, Columbia, MO, USA
| | - S Bedoui
- Laboratory of Mycology, Faculty of Sciences of Tunis (FST), Pathologies and Biomarkers (LR16ES05), University of Tunis El Manar (UTM), 1092, Tunis, Tunisia
| | - A Attia
- Laboratory of Mycology, Faculty of Sciences of Tunis (FST), Pathologies and Biomarkers (LR16ES05), University of Tunis El Manar (UTM), 1092, Tunis, Tunisia
| | - Y Omrani
- Laboratory of Biomolecules, Venoms and Theranostic Applications, University of Tunis El Manar (UTM), Pasteur Institute of Tunis, 13 Place Pasteur, B.P. 74, 1002, Tunis, Tunisia
| | - K Zouari
- Department of Digestive Surgery, Fattouma Bourguiba Hospital, University of Monastir, Monastir, Tunisia
| | - H Maghrebi
- Faculty of Medicine of Tunis, University of Tunis El Manar (UTM), Tunis, Tunisia
| | - W Y Almawi
- Laboratory of Mycology, Faculty of Sciences of Tunis (FST), Pathologies and Biomarkers (LR16ES05), University of Tunis El Manar (UTM), 1092, Tunis, Tunisia
| | - B Bouhaouala-Zahar
- Laboratory of Biomolecules, Venoms and Theranostic Applications, University of Tunis El Manar (UTM), Pasteur Institute of Tunis, 13 Place Pasteur, B.P. 74, 1002, Tunis, Tunisia
- University of Tunis El Manar (UTM), Medical School of Tunis, Rue Djebal Lakhdar, 1006, Tunis, Tunisia
| | - A Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore, 138648, Singapore
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - B Yacoubi-Loueslati
- Laboratory of Mycology, Faculty of Sciences of Tunis (FST), Pathologies and Biomarkers (LR16ES05), University of Tunis El Manar (UTM), 1092, Tunis, Tunisia
| |
Collapse
|
5
|
Bhattacharya R, Brown JS, Gatenby RA, Ibrahim-Hashim A. A gene for all seasons: The evolutionary consequences of HIF-1 in carcinogenesis, tumor growth and metastasis. Semin Cancer Biol 2024; 102-103:17-24. [PMID: 38969311 DOI: 10.1016/j.semcancer.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/23/2024] [Accepted: 06/06/2024] [Indexed: 07/07/2024]
Abstract
Oxygen played a pivotal role in the evolution of multicellularity during the Cambrian Explosion. Not surprisingly, responses to fluctuating oxygen concentrations are integral to the evolution of cancer-a disease characterized by the breakdown of multicellularity. Poorly organized tumor vasculature results in chaotic patterns of blood flow characterized by large spatial and temporal variations in intra-tumoral oxygen concentrations. Hypoxia-inducible growth factor (HIF-1) plays a pivotal role in enabling cells to adapt, metabolize, and proliferate in low oxygen conditions. HIF-1 is often constitutively activated in cancers, underscoring its importance in cancer progression. Here, we argue that the phenotypic changes mediated by HIF-1, in addition to adapting the cancer cells to their local environment, also "pre-adapt" them for proliferation at distant, metastatic sites. HIF-1-mediated adaptations include a metabolic shift towards anaerobic respiration or glycolysis, activation of cell survival mechanisms like phenotypic plasticity and epigenetic reprogramming, and formation of tumor vasculature through angiogenesis. Hypoxia induced epigenetic reprogramming can trigger epithelial to mesenchymal transition in cancer cells-the first step in the metastatic cascade. Highly glycolytic cells facilitate local invasion by acidifying the tumor microenvironment. New blood vessels, formed due to angiogenesis, provide cancer cells a conduit to the circulatory system. Moreover, survival mechanisms acquired by cancer cells in the primary site allow them to remodel tissue at the metastatic site generating tumor promoting microenvironment. Thus, hypoxia in the primary tumor promoted adaptations conducive to all stages of the metastatic cascade from the initial escape entry into a blood vessel, intravascular survival, extravasation into distant tissues, and establishment of secondary tumors.
Collapse
Affiliation(s)
- Ranjini Bhattacharya
- Department of Cancer Biology, University of South Florida, United States; Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, United States
| | - Joel S Brown
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, United States; Department of Evolutionary Biology, University of Illinois, at Chicago, United States
| | - Robert A Gatenby
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, United States; Department of Radiology, H. Lee Moffitt Cancer Center, United States.
| | - Arig Ibrahim-Hashim
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, United States.
| |
Collapse
|
6
|
Zhao N, Lai C, Wang Y, Dai S, Gu H. Understanding the role of DNA methylation in colorectal cancer: Mechanisms, detection, and clinical significance. Biochim Biophys Acta Rev Cancer 2024; 1879:189096. [PMID: 38499079 DOI: 10.1016/j.bbcan.2024.189096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/18/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
Colorectal cancer (CRC) is one of the deadliest malignancies worldwide, ranking third in incidence and second in mortality. Remarkably, early stage localized CRC has a 5-year survival rate of over 90%; in stark contrast, the corresponding 5-year survival rate for metastatic CRC (mCRC) is only 14%. Compounding this problem is the staggering lack of effective therapeutic strategies. Beyond genetic mutations, which have been identified as critical instigators of CRC initiation and progression, the importance of epigenetic modifications, particularly DNA methylation (DNAm), cannot be underestimated, given that DNAm can be used for diagnosis, treatment monitoring and prognostic evaluation. This review addresses the intricate mechanisms governing aberrant DNAm in CRC and its profound impact on critical oncogenic pathways. In addition, a comprehensive review of the various techniques used to detect DNAm alterations in CRC is provided, along with an exploration of the clinical utility of cancer-specific DNAm alterations.
Collapse
Affiliation(s)
- Ningning Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Chuanxi Lai
- Division of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Yunfei Wang
- Zhejiang ShengTing Biotech. Ltd, Hangzhou 310000, China
| | - Sheng Dai
- Division of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.
| | - Hongcang Gu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
7
|
Maurya SK, Rehman AU, Zaidi MAA, Khan P, Gautam SK, Santamaria-Barria JA, Siddiqui JA, Batra SK, Nasser MW. Epigenetic alterations fuel brain metastasis via regulating inflammatory cascade. Semin Cell Dev Biol 2024; 154:261-274. [PMID: 36379848 PMCID: PMC10198579 DOI: 10.1016/j.semcdb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Brain metastasis (BrM) is a major threat to the survival of melanoma, breast, and lung cancer patients. Circulating tumor cells (CTCs) cross the blood-brain barrier (BBB) and sustain in the brain microenvironment. Genetic mutations and epigenetic modifications have been found to be critical in controlling key aspects of cancer metastasis. Metastasizing cells confront inflammation and gradually adapt in the unique brain microenvironment. Currently, it is one of the major areas that has gained momentum. Researchers are interested in the factors that modulate neuroinflammation during BrM. We review here various epigenetic factors and mechanisms modulating neuroinflammation and how this helps CTCs to adapt and survive in the brain microenvironment. Since epigenetic changes could be modulated by targeting enzymes such as histone/DNA methyltransferase, deacetylases, acetyltransferases, and demethylases, we also summarize our current understanding of potential drugs targeting various aspects of epigenetic regulation in BrM.
Collapse
Affiliation(s)
- Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Asad Ur Rehman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Mohd Ali Abbas Zaidi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | | | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68108, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68108, USA.
| |
Collapse
|
8
|
Postwala H, Shah Y, Parekh PS, Chorawala MR. Unveiling the genetic and epigenetic landscape of colorectal cancer: new insights into pathogenic pathways. Med Oncol 2023; 40:334. [PMID: 37855910 DOI: 10.1007/s12032-023-02201-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023]
Abstract
Colorectal cancer (CRC) is a complex disease characterized by genetic and epigenetic alterations, playing a crucial role in its development and progression. This review aims to provide insights into the emerging landscape of these alterations in CRC pathogenesis to develop effective diagnostic tools and targeted therapies. Genetic alterations in signaling pathways such as Wnt/β-catenin, and PI3K/Akt/mTOR are pivotal in CRC development. Genetic profiling has identified distinct molecular subtypes, enabling personalized treatment strategies. Epigenetic modifications, including DNA methylation and histone modifications, also contribute to CRC pathogenesis by influencing critical cellular processes through gene silencing or activation. Non-coding RNAs have emerged as essential players in epigenetic regulation and CRC progression. Recent research highlights the interplay between genetic and epigenetic alterations in CRC. Genetic mutations can affect epigenetic modifications, leading to dysregulated gene expression and signaling cascades. Conversely, epigenetic changes can modulate genetic expression, amplifying or dampening the effects of genetic alterations. Advancements in understanding pathogenic pathways have potential clinical applications. Identifying genetic and epigenetic markers as diagnostic and prognostic biomarkers promises more accurate risk assessment and early detection. Challenges remain, including validating biomarkers and developing robust therapeutic strategies through extensive research and clinical trials. The dynamic nature of genetic and epigenetic alterations necessitates a comprehensive understanding of their temporal and spatial patterns during CRC progression. In conclusion, the genetic and epigenetic landscape of CRC is increasingly being unraveled, providing valuable insights into its pathogenesis. Integrating genetic and epigenetic knowledge holds great potential for improving diagnostics, prognostics, and personalized therapies in CRC. Continued research efforts are vital to translate these findings into clinical practice, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Priyajeet S Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, Florida, 32211, USA
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
9
|
Aggeletopoulou I, Kalafateli M, Tsounis EP, Triantos C. Epigenetic Regulation in Lean Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:12864. [PMID: 37629043 PMCID: PMC10454848 DOI: 10.3390/ijms241612864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most prominent cause of chronic liver disease worldwide, is a rapidly growing epidemic. It consists of a wide range of liver diseases, from steatosis to nonalcoholic steatohepatitis, and predisposes patients to liver fibrosis, cirrhosis, and even hepatocellular carcinoma. NAFLD is strongly correlated with obesity; however, it has been extensively reported among lean/nonobese individuals in recent years. Although lean patients demonstrate a lower prevalence of diabetes mellitus, central obesity, dyslipidemia, hypertension, and metabolic syndrome, a percentage of these patients may develop steatohepatitis, advanced liver fibrosis, and cardiovascular disease, and have increased all-cause mortality. The pathophysiological mechanisms of lean NAFLD remain vague. Studies have reported that lean NAFLD demonstrates a close association with environmental factors, genetic predisposition, and epigenetic modifications. In this review, we aim to discuss and summarize the epigenetic mechanisms involved in lean NAFLD and to introduce the interaction between epigenetic patterns and genetic or non genetic factors. Several epigenetic mechanisms have been implicated in the regulation of lean NAFLD. These include DNA methylation, histone modifications, and noncoding-RNA-mediated gene regulation. Epigenetics is an area of special interest in the setting of lean NAFLD as it could provide new insights into the therapeutic options and noninvasive biomarkers that target this under-recognized and challenging disorder.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (I.A.); (E.P.T.)
| | - Maria Kalafateli
- Department of Gastroenterology, General Hospital of Patras, 26332 Patras, Greece;
| | - Efthymios P. Tsounis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (I.A.); (E.P.T.)
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (I.A.); (E.P.T.)
| |
Collapse
|
10
|
Durham J, Tessmann JW, Deng P, Hennig B, Zaytseva YY. The role of perfluorooctane sulfonic acid (PFOS) exposure in inflammation of intestinal tissues and intestinal carcinogenesis. FRONTIERS IN TOXICOLOGY 2023; 5:1244457. [PMID: 37662676 PMCID: PMC10469509 DOI: 10.3389/ftox.2023.1244457] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
PFAS (per- and polyfluoroalkyl substances) are organofluorine substances that are used commercially in products like non-stick cookware, food packaging, personal care products, fire-fighting foam, etc. These chemicals have several different subtypes made of varying numbers of carbon and fluorine atoms. PFAS substances that have longer carbon chains, such as PFOS (perfluorooctane sulfonic acid), can potentially pose a significant public health risk due to their ability to bioaccumulate and persist for long periods of time in the body and the environment. The National Academies Report suggests there is some evidence of PFOS exposure and gastrointestinal (GI) inflammation contributing to ulcerative colitis. Inflammatory bowel diseases such as ulcerative colitis are precursors to colorectal cancer. However, evidence about the association between PFOS and colorectal cancer is limited and has shown contradictory findings. This review provides an overview of population and preclinical studies on PFOS exposure and GI inflammation, metabolism, immune responses, and carcinogenesis. It also highlights some mitigation approaches to reduce the harmful effects of PFOS on GI tract and discusses the dietary strategies, such as an increase in soluble fiber intake, to reduce PFOS-induced alterations in cellular lipid metabolism. More importantly, this review demonstrates the urgent need to better understand the relationship between PFOS and GI pathology and carcinogenesis, which will enable development of better approaches for interventions in populations exposed to high levels of PFAS, and in particular to PFOS.
Collapse
Affiliation(s)
- Jerika Durham
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Josiane Weber Tessmann
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Pan Deng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Bernhard Hennig
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Yekaterina Y. Zaytseva
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
11
|
Qu L, Yin T, Zhao Y, Lv W, Liu Z, Chen C, Liu K, Shan S, Zhou R, Li X, Dong H. Histone demethylases in the regulation of immunity and inflammation. Cell Death Discov 2023; 9:188. [PMID: 37353521 DOI: 10.1038/s41420-023-01489-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
Pathogens or danger signals trigger the immune response. Moderate immune response activation removes pathogens and avoids excessive inflammation and tissue damage. Histone demethylases (KDMs) regulate gene expression and play essential roles in numerous physiological processes by removing methyl groups from lysine residues on target proteins. Abnormal expression of KDMs is closely associated with the pathogenesis of various inflammatory diseases such as liver fibrosis, lung injury, and autoimmune diseases. Despite becoming exciting targets for diagnosing and treating these diseases, the role of these enzymes in the regulation of immune and inflammatory response is still unclear. Here, we review the underlying mechanisms through which KDMs regulate immune-related pathways and inflammatory responses. In addition, we also discuss the future applications of KDMs inhibitors in immune and inflammatory diseases.
Collapse
Affiliation(s)
- Lihua Qu
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Tong Yin
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yijin Zhao
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wenting Lv
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Ziqi Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Chao Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Kejun Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Shigang Shan
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Rui Zhou
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiaoqing Li
- Biological Targeted Therapy Key Laboratory in Hubei, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Huifen Dong
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China.
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
12
|
Maryam S, Krukiewicz K, Haq IU, Khan AA, Yahya G, Cavalu S. Interleukins (Cytokines) as Biomarkers in Colorectal Cancer: Progression, Detection, and Monitoring. J Clin Med 2023; 12:jcm12093127. [PMID: 37176567 PMCID: PMC10179696 DOI: 10.3390/jcm12093127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer is the primary cause of death in economically developed countries and the second leading cause in developing countries. Colorectal cancer (CRC) is the third most common cause of cancer-related deaths worldwide. Risk factors for CRC include obesity, a diet low in fruits and vegetables, physical inactivity, and smoking. CRC has a poor prognosis, and there is a critical need for new diagnostic and prognostic biomarkers to reduce related deaths. Recently, studies have focused more on molecular testing to guide targeted treatments for CRC patients. The most crucial feature of activated immune cells is the production and release of growth factors and cytokines that modulate the inflammatory conditions in tumor tissues. The cytokine network is valuable for the prognosis and pathogenesis of colorectal cancer as they can aid in the cost-effective and non-invasive detection of cancer. A large number of interleukins (IL) released by the immune system at various stages of CRC can act as "biomarkers". They play diverse functions in colorectal cancer, and include IL-4, IL-6, IL-8, IL-11, IL-17A, IL-22, IL-23, IL-33, TNF, TGF-β, and vascular endothelial growth factor (VEGF), which are pro-tumorigenic genes. However, there are an inadequate number of studies in this area considering its correlation with cytokine profiles that are clinically useful in diagnosing cancer. A better understanding of cytokine levels to establish diagnostic pathways entails an understanding of cytokine interactions and the regulation of their various biochemical signaling pathways in healthy individuals. This review provides a comprehensive summary of some interleukins as immunological biomarkers of CRC.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Ihtisham Ul Haq
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Awal Ayaz Khan
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Al Sharqia, Egypt
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
13
|
Liu Z, Gray BD, Barber C, Wan L, Furenlid LR, Liang R, Li Z, Woolfenden JM, Pak KY, Martin DR. PEGylated and Non-PEGylated TCP-1 Probes for Imaging of Colorectal Cancer. Mol Imaging Biol 2023; 25:133-143. [PMID: 34845659 PMCID: PMC9148376 DOI: 10.1007/s11307-021-01684-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Previous studies indicate that 99mTc- and fluorescent-labeled c[Cys-Thr-Pro-Ser-Pro-Phe-Ser-His-Cys]OH (TCP-1) peptides were able to detect colorectal cancer (CRC) and tumor-associated vasculature. This study was designed to characterize the targeting properties of PEGylated and non-PEGylated TCP-1 peptides for CRC imaging. PROCEDURES Cell uptake of cyanine 7 (Cy7)-labeled TCP-1 probes (Cy7-PEG4-TCP-1 and Cy7-TCP-1) was investigated in three CRC cell lines (human, HCT116 and HT29; mouse, CT26). Xenograft and orthotopic CRC tumor models with HCT116 and CT26 cells were used to characterize biodistribution and CRC tumor-targeting properties of TCP-1 fluorescence and radioligand with and without PEGylation, [99mTc]Tc-HYNIC-PEG4-TCP-1 vs. [99mTc]Tc-HYNIC-TCP-1. RESULTS Fluorescence images showed that TCP-1 probes were distributed in the cytoplasm and nucleus of CRC cells. When CT26 cells were treated with unlabeled TCP-1 peptide prior to the cell incubation with Cy7-PEG4-TCP-1, cell fluorescent signals were significantly reduced relative to the cells without blockade. Relative to Cy7-TCP-1, superior brilliance and visibility of fluorescence was observed in the tumor with Cy7-PEG4-TCP-1 and maintained up to 18 h post-injection. [99mTc]Tc-HYNIC-PEG4-TCP-1 images in xenograft and orthotopic CRC models demonstrated that TCP-1 PEGylation preserved tumor-targeting capability of TCP-1, but its distribution (%ID/g) in the liver and intestine was higher than that of [99mTc]Tc-HYNIC-TCP-1 (1.51 ± 0.29 vs 0.53 ± 0.12, P < 0.01). Better tumor visualization by [99mTc]Tc-HYNIC-TCP-1 was observed in the orthotopic CRC model due to lower intestinal radioactivity. CONCLUSIONS TCP-1-based probes undergo endocytosis and localize in the cytoplasm and nucleus of human and mouse CRC cells. Tumor detectability of fluorescent TCP-1 peptide with a PEG4 spacer is promising due to its enhanced tumor binding affinity and rapid clearance kinetics from nontumor tissues. Non-PEGylated [99mTc]Tc-HYNIC-TCP-1 exhibits lower nonspecific accumulation in the liver and gastrointestinal tract and might have better capability for detecting CRC lesions in clinical sites. TCP-1 may represent an innovative targeting molecule for detecting CRC noninvasively.
Collapse
Affiliation(s)
- Zhonglin Liu
- Department of Medical Imaging at College of Medicine, University of Arizona, Tucson, AZ , USA.
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA.
| | - Brian D Gray
- Molecular Targeting Technologies, Inc., West Chester, PA, USA.
| | - Christy Barber
- Department of Medical Imaging at College of Medicine, University of Arizona, Tucson, AZ , USA
| | - Li Wan
- Department of Medical Imaging at College of Medicine, University of Arizona, Tucson, AZ , USA
| | - Lars R Furenlid
- Department of Medical Imaging at College of Medicine, University of Arizona, Tucson, AZ , USA
- James C. Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, USA
| | - Rongguang Liang
- James C. Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, USA
| | - Zheng Li
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - James M Woolfenden
- Department of Medical Imaging at College of Medicine, University of Arizona, Tucson, AZ , USA
| | - Koon Y Pak
- Molecular Targeting Technologies, Inc., West Chester, PA, USA
| | - Diego R Martin
- Department of Medical Imaging at College of Medicine, University of Arizona, Tucson, AZ , USA
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
14
|
Damane BP, Mulaudzi TV, Kader SS, Naidoo P, Savkovic SD, Dlamini Z, Mkhize-Kwitshana ZL. Unraveling the Complex Interconnection between Specific Inflammatory Signaling Pathways and Mechanisms Involved in HIV-Associated Colorectal Oncogenesis. Cancers (Basel) 2023; 15:748. [PMID: 36765706 PMCID: PMC9913377 DOI: 10.3390/cancers15030748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
The advancement of HIV treatment has led to increased life expectancy. However, people living with HIV (PLWH) are at a higher risk of developing colorectal cancers. Chronic inflammation has a key role in oncogenesis, affecting the initiation, promotion, transformation, and advancement of the disease. PLWH are prone to opportunistic infections that trigger inflammation. It has been documented that 15-20% of cancers are triggered by infections, and this percentage is expected to be increased in HIV co-infections. The incidence of parasitic infections such as helminths, with Ascariasis being the most common, is higher in HIV-infected individuals. Cancer cells and opportunistic infections drive a cascade of inflammatory responses which assist in evading immune surveillance, making them survive longer in the affected individuals. Their survival leads to a chronic inflammatory state which further increases the probability of oncogenesis. This review discusses the key inflammatory signaling pathways involved in disease pathogenesis in HIV-positive patients with colorectal cancers. The possibility of the involvement of co-infections in the advancement of the disease, along with highlights on signaling mechanisms that can potentially be utilized as therapeutic strategies to prevent oncogenesis or halt cancer progression, are addressed.
Collapse
Affiliation(s)
- Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Medical School Campus, College of Health Sciences, University of KwaZulu-Natal-Natal, Durban 4041, South Africa
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Sayed Shakeel Kader
- Department of Surgery, University of KwaZulu Natal, Congella, Durban 4013, South Africa
| | - Pragalathan Naidoo
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Medical School Campus, College of Health Sciences, University of KwaZulu-Natal-Natal, Durban 4041, South Africa
- SAMRC Research Capacity Development Division, South African Medical Research Council, Tygerberg, Cape Town 4091, South Africa
| | - Suzana D. Savkovic
- School of Medicine, Department of Pathology & Laboratory Medicine, 1430 Tulane Ave., SL-79, New Orleans, LA 70112, USA
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Zilungile Lynette Mkhize-Kwitshana
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Medical School Campus, College of Health Sciences, University of KwaZulu-Natal-Natal, Durban 4041, South Africa
- SAMRC Research Capacity Development Division, South African Medical Research Council, Tygerberg, Cape Town 4091, South Africa
| |
Collapse
|
15
|
Kim JS, Han S, Kim H, Won SY, Park HW, Choi H, Choi M, Lee MY, Ha IJ, Lee SG. Anticancer Effects of High Glucosinolate Synthesis Lines of Brassica rapa on Colorectal Cancer Cells. Antioxidants (Basel) 2022; 11:antiox11122463. [PMID: 36552671 PMCID: PMC9774263 DOI: 10.3390/antiox11122463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Chemoprevention is a method of health control in modern industrialized societies. Traditional breeding (hybridization) has been widely used to produce new (sub)species with beneficial phenotypes. Previously, we produced a number of doubled haploid (DH) lines of Brassica rapa with a high glucosinolate (GSL) content. In this study, we evaluated the anticancer activities of extracts from three selected high-GSL (HGSL)-containing DH lines (DHLs) of Brassica rapa in human colorectal cancer (CRC) cells. The three HGSL DHL extracts showed anti-proliferative activities in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium assay and pro-apoptotic activities in the cell cycle or annexin V analysis with the induction of pro-apoptotic protein expression in CRC cells. Mechanistically, HGSL DHL extracts inhibited the NF-κB and ERK pathways, leading to a reduction in the nuclear localization of NF-κB p65. In addition, reactive oxygen species were induced by HGSL DHL extract treatment in CRC cells. In conclusion, our data suggest that the newly developed HGSL DHLs possess enhanced anticancer activities and are potentially helpful as a daily vegetable supplement with chemopreventive activities.
Collapse
Affiliation(s)
- Jung Sun Kim
- Genomic Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
- Correspondence: (J.S.K.); (S.-G.L.); Tel.: +82-63-238-4559 (J.S.K.); +82-2-961-2355 (S.-G.L.)
| | - Sanghee Han
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hail Kim
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - So Youn Won
- Genomic Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Hyun Woo Park
- Genomic Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Hyunjin Choi
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Minji Choi
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min Young Lee
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - In Jin Ha
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (J.S.K.); (S.-G.L.); Tel.: +82-63-238-4559 (J.S.K.); +82-2-961-2355 (S.-G.L.)
| |
Collapse
|
16
|
Xu R, Wu X, Du A, Zhao Q, Huang H. Identification of cuproptosis-related long non-coding ribonucleic acid signature as a novel prognosis model for colon cancer. Am J Cancer Res 2022; 12:5241-5254. [PMID: 36504883 PMCID: PMC9729908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/12/2022] [Indexed: 12/15/2022] Open
Abstract
Cuproptosis is a novel type of cell death that may play a vital role in preventing various types of cancer. Studies examining cuproptosis are limited, and the cuproptosis-related lncRNAs (long non-Coding ribonucleic acids) involved in the regulation of colon cancer remain unclear. This study aimed to identify the prognostic signature of cupronosis-related lncRNAs and explore their potential molecular functions in colon cancer. Data on the clinical correlation were obtained from The Cancer Genome Atlas (TCGA) database. The differentially expressed cuproptosis-related long non-coding ribonucleic acids (lncRNAs) were analyzed using the "limma" package. Then, the prognostic cuproptosis-related lncRNA signature (CupRLSig) was identified through univariate Cox and co-expression analyses, and a prognostic model was constructed based on CupRLSig using the least absolute shrinkage selection operator (LASSO) algorithm and Cox regression analysis. The Kaplan-Meier survival curve and receiver operating characteristic (ROC) curve were used for evaluating the model's capacity for prognosis prediction. In addition, the immune landscape, and drug sensitivity of CupRLSig were analyzed. Finally, the functions of AL512306.3 and ZEB1-AS1 were verified through in vitro experiments. The high- or low-risk groups were classified according to the risk score. The signature-based risk score showed a stronger ability to predict patient's survival compared with the traditional clinicopathological features. In addition, immune responses, such as inflammation-promoting response and T-cell co-inhibition, were significantly different between the two groups. Moreover, chemotherapy drugs or inhibitors, such as axitinib, cisplatin, doxorubicin, and elesclomol, may be considered as potential therapeutic drugs for patients in high-risk groups. Finally, inhibition of AL512306.3 and ZEB1-AS1 significantly suppressed the cell proliferation in colon cancer cells. These results provide novel insights into the pathogenesis of colon cancer and offer promising biomarkers with the potential to guide research on carcinogenesis and cancer treatment.
Collapse
Affiliation(s)
- Rong Xu
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South UniversityChangsha 410078, Hunan, China,Department of Histology and Embryology, Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
| | - Xin Wu
- Department of Orthopedics, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Ashuai Du
- Department of Cell Biology, School of Life Sciences, Central South UniversityChangsha 410013, Hunan, China
| | - Qiangqiang Zhao
- Department of Hematology, The Qinghai Provincial People’s HospitalXining 810007, Qinghai, China
| | - He Huang
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South UniversityChangsha 410078, Hunan, China,Department of Histology and Embryology, Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
| |
Collapse
|
17
|
Emam O, Wasfey EF, Hamdy NM. Notch-associated lncRNAs profiling circuiting epigenetic modification in colorectal cancer. Cancer Cell Int 2022; 22:316. [PMID: 36229883 PMCID: PMC9558410 DOI: 10.1186/s12935-022-02736-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/28/2022] [Indexed: 11/15/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most prevalent digestive cancers, ranking the 2nd cause of cancer-related fatality worldwide. The worldwide burden of CRC is predicted to rise by 60% by 2030. Environmental factors drive, first, inflammation and hence, cancer incidence increase. Main The Notch-signaling system is an evolutionarily conserved cascade, has role in the biological normal developmental processes as well as malignancies. Long non-coding RNAs (LncRNAs) have become major contributors in the advancement of cancer by serving as signal pathways regulators. They can control gene expression through post-translational changes, interactions with micro-RNAs or down-stream effector proteins. Recent emerging evidence has emphasized the role of lncRNAs in controlling Notch-signaling activity, regulating development of several cancers including CRC. Conclusion Notch-associated lncRNAs might be useful prognostic biomarkers or promising potential therapeutic targets for CRC treatment. Therefore, here-in we will focus on the role of “Notch-associated lncRNAs in CRC” highlighting “the impact of Notch-associated lncRNAs as player for cancer induction and/or progression.” Graphical Abstract ![]()
Collapse
Affiliation(s)
| | - Eman F Wasfey
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
18
|
Luo JF, Zhou H, Lio CK. Akebia Saponin D Inhibits the Inflammatory Reaction by Inhibiting the IL-6-STAT3-DNMT3b Axis and Activating the Nrf2 Pathway. Molecules 2022; 27:molecules27196236. [PMID: 36234773 PMCID: PMC9614599 DOI: 10.3390/molecules27196236] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
Akebia saponin D (ASD) is derived from the Dipsacus asper Wall. ex Henry, which is a traditional Chinese medicine commonly used to treat rheumatic arthritis (RA). However, the in-depth mechanism of the anti-inflammatory effect of ASD is still unclear. This study aimed to preliminarily explore the anti-inflammatory effect of ASD and the underlying mechanisms from the perspective of DNA methylation and inflammation-related pathways. We found that ASD significantly reduced the production of multiple inflammatory mediators, including nitric oxide (NO) and prostaglandin E2 (PGE2), in LPS-induced RAW264.7 cells. The expression of DNA methyltransferase (DNMT) 3b and inducible nitric oxide synthase (iNOS) was also obviously inhibited by the ASD treatment. The protein and mRNA levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were also significantly inhibited by ASD. ASD inhibited the macrophage M1 phenotype, inhibited the high level of DNMT3b, and downregulated the signal transducer and activator of the transcription 3 (STAT3) pathway to exert its anti-inflammatory activity. Furthermore, DNMT3b siRNA and Nrf2 siRNA significantly promoted the anti-inflammatory effect of ASD. Our study demonstrates for the first time that ASD inhibits the IL-6-STAT3-DNMT3b axis and activates the nuclear factor-E2-related factor 2 (Nrf2) signaling pathway to achieve its inhibitory effect on inflammatory reactions.
Collapse
Affiliation(s)
- Jin-Fang Luo
- Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guian District, Guiyang 550025, China
| | - Hua Zhou
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China
- Correspondence:
| | - Chon-Kit Lio
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medcine and Immune Disease Research, Guangzhou 510006, China
| |
Collapse
|
19
|
Alimohammadi M, Makaremi S, Rahimi A, Asghariazar V, Taghadosi M, Safarzadeh E. DNA methylation changes and inflammaging in aging-associated diseases. Epigenomics 2022; 14:965-986. [PMID: 36043685 DOI: 10.2217/epi-2022-0143] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aging as an inevitable phenomenon is associated with pervasive changes in physiological functions. There is a relationship between aging and the increase of several chronic diseases. Most age-related disorders are accompanied by an underlying chronic inflammatory state, as demonstrated by local infiltration of inflammatory cells and greater levels of proinflammatory cytokines in the bloodstream. Within inflammaging, many epigenetic events, especially DNA methylation, change. During the aging process, due to aberrations of DNA methylation, biological processes are disrupted, leading to the emergence or progression of a variety of human diseases, including cancer, neurodegenerative disorders, cardiovascular disease and diabetes. The focus of this review is on DNA methylation, which is involved in inflammaging-related activities, and how its dysregulation leads to human disorders.
Collapse
Affiliation(s)
- Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1983969411, Iran
| | - Shima Makaremi
- School of Medicine & Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, 5618985991, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, 5618985991, Iran
| | - Vahid Asghariazar
- Deputy of Research & Technology, Ardabil University of Medical Sciences, Ardabil, 5618985991, Iran
| | - Mahdi Taghadosi
- Department of Immunology, Kermanshah University of Medical Sciences, Kermanshah, 6714869914, Iran
| | - Elham Safarzadeh
- Department of Microbiology, Parasitology, & Immunology, Ardabil University of Medical Sciences, Ardabil, 5618985991, Iran
| |
Collapse
|
20
|
Parmar S, Easwaran H. Genetic and epigenetic dependencies in colorectal cancer development. Gastroenterol Rep (Oxf) 2022; 10:goac035. [PMID: 35975243 PMCID: PMC9373935 DOI: 10.1093/gastro/goac035] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/24/2022] [Accepted: 05/22/2022] [Indexed: 11/12/2022] Open
Abstract
Recent studies have mapped key genetic changes in colorectal cancer (CRC) that impact important pathways contributing to the multistep models for CRC initiation and development. In parallel with genetic changes, normal and cancer tissues harbor epigenetic alterations impacting regulation of critical genes that have been shown to play profound roles in the tumor initiation. Cumulatively, these molecular changes are only loosely associated with heterogenous transcriptional programs, reflecting the heterogeneity in the various CRC molecular subtypes and the paths to CRC development. Studies from mapping molecular alterations in early CRC lesions and use of experimental models suggest that the intricate dependencies of various genetic and epigenetic hits shape the early development of CRC via different pathways and its manifestation into various CRC subtypes. We highlight the dependency of epigenetic and genetic changes in driving CRC development and discuss factors affecting epigenetic alterations over time and, by extension, risk for cancer.
Collapse
Affiliation(s)
- Sehej Parmar
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hariharan Easwaran
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
21
|
Chang Z, Zhang Y, Fan J, Zhang L, Liu S, Liu G, Tu J. The potential effects and mechanisms of breast inflammatory lesions on the occurrence and development of breast cancer. Front Oncol 2022; 12:932743. [PMID: 35992864 PMCID: PMC9389363 DOI: 10.3389/fonc.2022.932743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/30/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer as the most common cancer in women has become the leading cause of cancer death for women. Although many inflammatory factors increase the risk of breast cancer, there are very few studies on the mechanisms by which inflammation affects the initiation and progression of breast cancer. Here, we profiled and compared the transcriptome of normal tissues, inflammatory breast tissues, benign breast tumors, and malignant breast tumors. To find key regulatory factors, a protein interaction network between characteristic modules in inflammatory lesions and ER-negative (ER−) breast cancer was constructed and inflammation-cancer interface genes were identified. We found that the transcriptional profile of inflammatory breast tissues was similar with ER− malignant tumors, featured with low ER expression levels and similar immune signaling pathway activation. Through comprehensive protein network analysis, we identified the interface genes and chemokine signaling pathway that have the potential to promote inflammatory cancer transformation. These interface genes could be used as a risk factor to provide a certain basis for the clinical early detection and treatment of breast cancer. This is the first study to explore the association between breast inflammatory lesions and breast cancer at the transcriptome level. Our inflammation data and research results provide a basis for future inflammation-cancer transformation analysis.
Collapse
Affiliation(s)
- Zhaoxia Chang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Zhang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jue Fan
- Singleron Biotechnologies, Nanjing, China
| | - Lixing Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Juchuanli Tu, ; Guangyu Liu, ; Suling Liu,
| | - Guangyu Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Juchuanli Tu, ; Guangyu Liu, ; Suling Liu,
| | - Juchuanli Tu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Juchuanli Tu, ; Guangyu Liu, ; Suling Liu,
| |
Collapse
|
22
|
The methyltransferase METTL3-mediated fatty acid metabolism revealed the mechanism of cinnamaldehyde on alleviating steatosis. Biomed Pharmacother 2022; 153:113367. [PMID: 35780619 DOI: 10.1016/j.biopha.2022.113367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND As a primarily N6-methyladenosine methyltransferase, methyltransferase 3 (METTL3) plays a crucial role in nonalcoholic fatty liver disease. However, its regulatory mechanism in steatosis remains unknown. METHODS Alpha mouse liver 12 (AML12) cells were induced by free fatty acids (FFA). Triglycerides, lipid droplet assay, and Oil Red O staining were performed to evaluate steatosis. The expression of METTL3 and cytochrome P450 family 4 subfamily f polypeptide 40 (CYP4F40) was measured using Western blotting, real-time quantitative polymerase chain reaction, and dual-luciferase reporter assay. Triglycerides, total cholesterol, almandine aminotransferase, and aspartate aminotransferase were assayed after cinnamaldehyde treatment. Transcriptomics and metabolomics were performed to determine how METTL3 and cinnamaldehyde regulate steatosis. RESULTS METTL3 protein level was reduced in FFA-induced steatosis in AML12 cells, and METTL3 knockdown aggravated the steatosis. Cinnamaldehyde alleviated steatosis by increasing METTL3 expression. A combined transcriptomics and metabolomics analysis revealed that METTL3 knockdown reduced CYP4F40 expression and reduced the level of capric acid, gamma-linolenic acid, arachidonic acid, and docosapentaenoic acid. Cinnamaldehyde promoted CYP4F40 expression by increasing METTL3 and increased the levels of capric acid, gamma-linolenic acid, arachidonic acid, and docosapentaenoic acid. Finally, the beneficial effects of cinnamaldehyde on steatosis were reversed after METTL3 knockdown. CONCLUSIONS METTL3 knockdown aggravated steatosis in AML12 cells through CYP4F40-mediated fatty acid metabolism, and cinnamaldehyde alleviated steatosis via the METTL3-CYP4F40 pathway.
Collapse
|
23
|
Xu R, Pan J, Zhou W, Ji G, Dang Y. Recent advances in lean NAFLD. Biomed Pharmacother 2022; 153:113331. [PMID: 35779422 DOI: 10.1016/j.biopha.2022.113331] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/09/2023] Open
Abstract
As the predominant type of chronic liver disease, the growing prevalence of nonalcoholic fatty liver disease (NAFLD) has become a concern worldwide. Although obesity plays the most pivotal role in NAFLD, approximately 10-20% of individuals with NAFLD who are not overweight or obese (BMI < 25 kg/m2, or BMI < 23 kg/m2 in Asians) have "lean NAFLD." Lean individuals with NAFLD have a lower prevalence of diabetes, hypertension, hypertriglyceridemia, central obesity, and metabolic syndrome than nonlean individuals with NAFLD, but higher fibrosis scores and rates of cardiovascular morbidity and all-cause mortality in advanced stages. The pathophysiological mechanisms of lean NAFLD remain poorly understood. Studies have shown that lean NAFLD is more correlated with factors such as environmental, genetic susceptibility, and epigenetic regulation. This review will examine the way in which the research progress and characteristic of lean NAFLD, and explore the function of epigenetic modification to provide the basis for the clinical treatment and diagnosis of lean NAFLD.
Collapse
Affiliation(s)
- Ruohui Xu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jiashu Pan
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Department of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Yanqi Dang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
24
|
Tan SYX, Zhang J, Tee WW. Epigenetic Regulation of Inflammatory Signaling and Inflammation-Induced Cancer. Front Cell Dev Biol 2022; 10:931493. [PMID: 35757000 PMCID: PMC9213816 DOI: 10.3389/fcell.2022.931493] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/23/2022] [Indexed: 01/10/2023] Open
Abstract
Epigenetics comprise a diverse array of reversible and dynamic modifications to the cell’s genome without implicating any DNA sequence alterations. Both the external environment surrounding the organism, as well as the internal microenvironment of cells and tissues, contribute to these epigenetic processes that play critical roles in cell fate specification and organismal development. On the other hand, dysregulation of epigenetic activities can initiate and sustain carcinogenesis, which is often augmented by inflammation. Chronic inflammation, one of the major hallmarks of cancer, stems from proinflammatory cytokines that are secreted by tumor and tumor-associated cells in the tumor microenvironment. At the same time, inflammatory signaling can establish positive and negative feedback circuits with chromatin to modulate changes in the global epigenetic landscape. In this review, we provide an in-depth discussion of the interconnected crosstalk between epigenetics and inflammation, specifically how epigenetic mechanisms at different hierarchical levels of the genome control inflammatory gene transcription, which in turn enact changes within the cell’s epigenomic profile, especially in the context of inflammation-induced cancer.
Collapse
Affiliation(s)
- Shawn Ying Xuan Tan
- Chromatin Dynamics and Disease Epigenetics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Jieqiong Zhang
- Chromatin Dynamics and Disease Epigenetics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wee-Wei Tee
- Chromatin Dynamics and Disease Epigenetics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
25
|
Fatemi N, Tierling S, Es HA, Varkiani M, Nazemalhosseini Mojarad E, Asadzadeh Aghdaei H, Walter J, Totonchi M. DNA Methylation Biomarkers in Colorectal Cancer: Clinical Applications for Precision Medicine. Int J Cancer 2022; 151:2068-2081. [PMID: 35730647 DOI: 10.1002/ijc.34186] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/29/2022] [Accepted: 06/08/2022] [Indexed: 11/06/2022]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death worldwide that is attributed to gradual long-term accumulation of both genetic and epigenetic changes. To reduce the mortality rate of CRC and to improve treatment efficacy, it will be important to develop accurate noninvasive diagnostic tests for screening, acute, and personalized diagnosis. Epigenetic changes such as DNA methylation play an important role in the development and progression of CRC. Over the last decade, a panel of DNA methylation markers has been reported showing a high accuracy and reproducibility in various semi-invasive or noninvasive biosamples. Research to obtain comprehensive panels of markers allowing a highly sensitive and differentiating diagnosis of CRC is ongoing. Moreover, the epigenetic alterations for cancer therapy, as a precision medicine strategy will increase their therapeutic potential over time. Here, we discuss the current state of DNA methylation-based biomarkers and their impact on CRC diagnosis. We emphasize the need to further identify and stratify methylation-biomarkers and to develop robust and effective detection methods that are applicable for a routine clinical setting of CRC diagnostics particularly at the early stage of the disease.
Collapse
Affiliation(s)
- Nayeralsadat Fatemi
- Basic & Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sascha Tierling
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | | | - Maryam Varkiani
- Department of Molecular Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Ehsan Nazemalhosseini Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic & Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jörn Walter
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | - Mehdi Totonchi
- Basic & Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
26
|
Role of the Ghrelin System in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23105380. [PMID: 35628187 PMCID: PMC9141034 DOI: 10.3390/ijms23105380] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
The ghrelin system contains several components (e.g., ghrelin with growing number of alternative peptides, growth hormone secretagogue receptors (GHS-Rs), and ghrelin-O-acyl-transferase (GOAT) and participates in regulation of a number of key processes of gastrointestinal (GI) tract cancer progression, including cell proliferation, migration, invasion, apoptosis, inflammation, and angiogenesis. However, its exact role in promoting or inhibiting cancer progression is still unclear. Colorectal cancer (CRC) is one of the most common human malignancies worldwide. Molecular studies suggest an autocrine/paracrine mechanism for the secretion of ghrelin in colorectal carcinogenesis and its contribution to its initial stages. However, the signalling pathways of CRC development involving the ghrelin system are poorly understood. Potential mechanisms of colon carcinogenesis involving components of the ghrelin system were previously described in an animal model and in in vitro studies. However, the diagnostic–prognostic role of serum ghrelin concentrations, tissue expression, or genetic changes of this system in various stages of CRC progression remains an open case. Thus, the aim of this study is to discuss the role of the ghrelin system in colon carcinogenesis, diagnostics and CRC prognostics, as well as the results of studies on the use of ghrelin and its analogues in the therapy of CRC-related syndromes (e.g., cachexia and sarcopenia).
Collapse
|
27
|
UHMK1 aids colorectal cancer cell proliferation and chemoresistance through augmenting IL-6/STAT3 signaling. Cell Death Dis 2022; 13:424. [PMID: 35501324 PMCID: PMC9061793 DOI: 10.1038/s41419-022-04877-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 12/14/2022]
Abstract
UHMK1, a serine/threonine kinase with a U2AF homology motif, is implicated in RNA processing and protein phosphorylation. Increasing evidence has indicated its involvement in tumorigenesis. However, it remains to be elucidated whether UHMK1 plays a role in the development of colorectal cancer (CRC). Here, we demonstrated that UHMK1 was frequently upregulated in CRC samples compared with adjacent normal tissue and high expression of UHMK1 predicted poor outcomes. Knockdown of UHMK1 by siRNAs restrained CRC cell proliferation and increased oxaliplatin sensitivity, whereas overexpression of UHMK1 promoted CRC cell growth and oxaliplatin resistance, suggesting that UHMK1 plays important oncogenic roles in CRC. Mechanistically, we showed that UHMK1 had a significant effect on IL6/STAT3 signaling by interacting with STAT3. The interaction of UHMK1 with STAT3 enhanced STAT3 activity in regulating gene transcription. Furthermore, we found that STAT3 could in turn transcriptionally activate UHMK1 expression in CRC cells. The complementary experiments for cell growth and oxaliplatin resistance indicated the interdependent relationship between UHMK1 and STAT3. Thus, these collective findings uncovered a new UHMK1/STAT3 positive feedback regulatory loop contributing to CRC development and chemoresistance.
Collapse
|
28
|
Chen S, Jundi D, Wang W, Ren C. LINC01857 promotes the proliferation, migration, and invasion of gastric cancer cells via regulating miR-4731-5p/HOXC6. Can J Physiol Pharmacol 2022; 100:689-701. [PMID: 35468304 DOI: 10.1139/cjpp-2021-0411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The great importance of long non-coding RNAs (lncRNAs) in tumorigenesis has been acknowledged gradually. LINC01857 is previously reported to be highly expressed in gastric cancer (GC), while the regulatory mechanism of LINC01857 in gastric cancer is largely unknown. In this study, we detected high expression of LINC01857 from the gastric cancer microarray GSE109476. Additionally, LINC01857 expression is remarkably up-regulated in gastric cancer cell lines (AGS, MKN-45, HGC-27 and SGC-7901) compared to the normal gastric mucosal cell line GES-1. Functionally, LINC01857 knockdown suppressed the proliferation, migration, invasion, and epithelial-mesenchymal transformation (EMT) of GC cells, while LINC01857 overexpression promoted the proliferation, migration, invasion and EMT of GC cells. Furthermore, our data demonstrate that LINC01857 targeted miR-4731-5p and subsequently increased the expression of HOXC6 in GC. Rescue experiments showed that miR-4731-5p inhibition and HOXC6 overexpression could reverse the biological behavior of GC cells induced by LINC01857 knockdown. In conclusion, we demonstrated that LINC01857 sponged miR-4731-5p to promote the expression of HOXC6 and eventually acts as an oncogene in GC.
Collapse
Affiliation(s)
| | - Dai Jundi
- Shandong Province, Department of Gastrointestinal Surgery, Yantai, China;
| | - Wei Wang
- Shandong Province, Department of Gastrointestinal Surgery, Yantai, China;
| | - Chenglei Ren
- Shandong Province, Department of Gastrointestinal Surgery, Yantai, China, 264000;
| |
Collapse
|
29
|
Yang S, Huang Y, Zhao Q. Epigenetic Alterations and Inflammation as Emerging Use for the Advancement of Treatment in Non-Small Cell Lung Cancer. Front Immunol 2022; 13:878740. [PMID: 35514980 PMCID: PMC9066637 DOI: 10.3389/fimmu.2022.878740] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022] Open
Abstract
Lung cancer remains one of the most common malignancies in the world. Nowadays, the most common lung cancer is non-small cell lung cancer (NSCLC), namely, adenocarcinoma, squamous cell carcinoma, and large cell lung carcinoma. Epigenetic alterations that refer to DNA methylation, histone modifications, and noncoding RNA expression, are now suggested to drive the genesis and development of NSCLC. Additionally, inflammation-related tumorigenesis also plays a vital role in cancer research and efforts have been attempted to reverse such condition. During the occurrence and development of inflammatory diseases, the immune component of inflammation may cause epigenetic changes, but it is not always certain whether the immune component itself or the stimulated host cells cause epigenetic changes. Moreover, the links between epigenetic alterations and cancer-related inflammation and their influences on the human cancer are not clear so far. Therefore, the connection between epigenetic drivers, inflammation, and NSCLC will be summarized. Investigation on such topic is most likely to shed light on the molecular and immunological mechanisms of epigenetic and inflammatory factors and promote the application of epigenetics in the innovative diagnostic and therapeutic strategies for NSCLC.
Collapse
Affiliation(s)
- Shuo Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Shuo Yang, ; Yang Huang, ; Qi Zhao,
| | - Yang Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Shuo Yang, ; Yang Huang, ; Qi Zhao,
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau SAR, China
- *Correspondence: Shuo Yang, ; Yang Huang, ; Qi Zhao,
| |
Collapse
|
30
|
Du J, Gong A, Zhao X, Wang G. Pseudouridylate Synthase 7 Promotes Cell Proliferation and Invasion in Colon Cancer Through Activating PI3K/AKT/mTOR Signaling Pathway. Dig Dis Sci 2022; 67:1260-1270. [PMID: 33811565 DOI: 10.1007/s10620-021-06936-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/18/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND Colorectal cancer is commonly malignant tumor. Herein, we demonstrate that pseudouridylate synthase 7 (PUS7) is closely related to colon cancer. But the biological role of PUS7 in colon cancer is not known. AIMS The present study aims to investigate the effects of PUS7 in colon cancer clinical samples and cells and the related molecular mechanism. METHODS A profile data set was downloaded from the Cancer Genome Atlas database, which included data from colon cancer tissue samples and normal tissue samples. The top 200 differentially expressed genes were subsequently investigated by a protein-protein interaction (PPI) network. RT-PCR and western blot assays were used to determine gene expression levels. CCK8 assay, colony formation experiment, transwell and flow cytometry assay were used to determine cell viability, proliferation, invasion, and apoptosis, respectively. RESULTS PUS7 is a key gene from the most significant module of the PPI network. PUS7 was upregulated in colon cancer tissues and cell lines. Moreover, PUS7 overexpression is significantly related to the poor survival rate for 60 colon cancer's patients. Cell proliferation and invasion was significantly reduced by PUS7 inhibition and promoted by PUS7 overexpression. The protein levels of cleaved caspase-3/9, c-myc, E-cadherin and vimentin genes were significantly regulated in colon cancer cells transfected with PUS7 interference or overexpression. PUS7 overexpression significantly upregulated the phosphorylation levels of PI3K, AKT and mTOR. CONCLUSION The results of this study demonstrate that PUS7 overexpression upregulates cell proliferation, invasion and inhibits cell apoptosis of colon cancer cells via activating PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jiming Du
- Department of Anus and Intestine Surgery, Xinhua Hospital Affiliated to Dalian University, 156 Wansui Street Shahekou District, Dalian City, 116000, Liaoning Province, China
| | - Aimin Gong
- Department of Anus and Intestine Surgery, Xinhua Hospital Affiliated to Dalian University, 156 Wansui Street Shahekou District, Dalian City, 116000, Liaoning Province, China.
| | - Xuefeng Zhao
- Department of Anus and Intestine Surgery, Xinhua Hospital Affiliated to Dalian University, 156 Wansui Street Shahekou District, Dalian City, 116000, Liaoning Province, China
| | - Guixin Wang
- Department of Anus and Intestine Surgery, Xinhua Hospital Affiliated to Dalian University, 156 Wansui Street Shahekou District, Dalian City, 116000, Liaoning Province, China
| |
Collapse
|
31
|
Feng J, Li S, Zhang B, Duan N, Zhou R, Yan S, Elango J, Liu N, Wu W. FGFC1 Exhibits Anti-Cancer Activity via Inhibiting NF-κB Signaling Pathway in EGFR-Mutant NSCLC Cells. Mar Drugs 2022; 20:md20010076. [PMID: 35049931 PMCID: PMC8781927 DOI: 10.3390/md20010076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/29/2022] Open
Abstract
FGFC1, an active compound isolated from the culture of marine fungi Stachybotrys longispora FG216, elicits fibrinolytic, anti-oxidative, and anti-inflammatory activity. We have previously reported that FGFC1 inhibited the proliferation, migration, and invasion of the non-small cell lung cancer (NSCLC) cells in vitro. However, the precise mechanisms of FGFC1 on NSCLC and its anti-cancer activity in vivo remains unclear. Hence, this study was focused to investigate the effects and regulatory mechanisms of FGFC1 on two NSCLC cell lines, EGFR-mutant PC9 (ex19del) and EGFR wild-type H1299. Results suggested that FGFC1 significantly inhibited proliferation, colony formation, as well as triggered G0/G1 arrest and apoptosis of PC9 cells in a dose- and time-dependent manner, but no obvious inhibitory effects were observed in H1299 cells. Subsequently, transcriptome analysis revealed that FGFC1 significantly down-regulated 28 genes related to the NF-κB pathway, including IL-6, TNF-α, and ICAM-1 in the PC9 cells. We further confirmed that FGFC1 decreased the expression of protein p-IKKα/β, p-p65, p-IκB, IL-6, and TNF-α. Moreover, NF-κB inhibitor PDTC could strengthen the effects of FGFC1 on the expression of CDK4, Cyclin D1, cleaved-PARP-1, and cleaved-caspase-3 proteins, suggesting that the NF-κB pathway plays a major role in FGFC1-induced cell cycle arrest and apoptosis. Correspondingly, the nuclear translocation of p-p65 was also suppressed by FGFC1 in PC9 cells. Finally, the intraperitoneal injection of FGFC1 remarkably inhibited PC9 xenograft growth and decreased the expression of Ki-67, p-p65, IL-6, and TNF-α in tumors. Our results indicated that FGFC1 exerted anti-cancer activity in PC9 cells via inhibiting the NF-κB signaling pathway, providing a possibility for FGFC1 to be used as a lead compound for the treatment of NSCLC in the future.
Collapse
Affiliation(s)
- Jingwen Feng
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.F.); (B.Z.); (N.D.); (R.Z.); (S.Y.); (J.E.)
| | - Songlin Li
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai 201306, China;
| | - Bing Zhang
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.F.); (B.Z.); (N.D.); (R.Z.); (S.Y.); (J.E.)
| | - Namin Duan
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.F.); (B.Z.); (N.D.); (R.Z.); (S.Y.); (J.E.)
| | - Rui Zhou
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.F.); (B.Z.); (N.D.); (R.Z.); (S.Y.); (J.E.)
| | - Shike Yan
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.F.); (B.Z.); (N.D.); (R.Z.); (S.Y.); (J.E.)
| | - Jeevithan Elango
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.F.); (B.Z.); (N.D.); (R.Z.); (S.Y.); (J.E.)
| | - Ning Liu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.F.); (B.Z.); (N.D.); (R.Z.); (S.Y.); (J.E.)
- Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (N.L.); (W.W.)
| | - Wenhui Wu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.F.); (B.Z.); (N.D.); (R.Z.); (S.Y.); (J.E.)
- Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (N.L.); (W.W.)
| |
Collapse
|
32
|
Xie J, Wang S. Small Interfering RNA in Colorectal Cancer Liver Metastasis Therapy. Technol Cancer Res Treat 2022; 21:15330338221103318. [PMID: 35899305 PMCID: PMC9340422 DOI: 10.1177/15330338221103318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is associated with numerous genetic disorders and cellular abnormalities, and liver metastasis is a common health concern in patients with CRC. Exploring newer and more efficient therapies to block liver metastasis is pivotal for prolonging patient survival. Therefore, small interfering RNAs (siRNAs) are expected to be remarkable tools capable of regulating gene expression by participating in a process called RNA interference (RNAi). RNAi is a biological process among eukaryotes wherein specific messenger RNA (mRNA) molecules are destroyed and gene expression is inhibited. This technology is a promising therapeutic agent in the treatment of CRC liver metastasis (CRLM). Nevertheless, crucial problems in siRNA therapeutics, including inherent poor serum stability and nonspecific uptake into biological systems, must be recognized. For this reason, delivery systems are being developed in an attempt to solve these problems. Here, we discuss the utility of siRNA therapy for the treatment of CRCLM by targeting the major metastasis-related signaling pathways. siRNA therapy has the potential to be one of the most effective methods for CRLM treatment in the future.
Collapse
Affiliation(s)
- Junlin Xie
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal
Cancer Translational Research, Cancer Institute, Peking University Shenzhen
Hospital, Shenzhen-Peking University-Hong Kong University of Science and
Technology Medical Center, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Shubin Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal
Cancer Translational Research, Cancer Institute, Peking University Shenzhen
Hospital, Shenzhen-Peking University-Hong Kong University of Science and
Technology Medical Center, Shenzhen, China
- Shantou University Medical College, Shantou, China
| |
Collapse
|
33
|
UBQLN4 is activated by C/EBPβ and exerts oncogenic effects on colorectal cancer via the Wnt/β-catenin signaling pathway. Cell Death Dis 2021; 7:398. [PMID: 34930912 PMCID: PMC8688525 DOI: 10.1038/s41420-021-00795-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/24/2021] [Accepted: 12/10/2021] [Indexed: 01/17/2023]
Abstract
Ubiquilin 4 (UBQLN4) is an important member of the ubiquitin-like protein family. An increasing number of studies have shown that UBQLN4 is an important regulator of tumorigenesis. Nevertheless, the biological function and detailed mechanisms of UBQLN4 in colorectal cancer (CRC) development and progression remain unclear. Here, we identified UBQLN4 upregulation in CRC tissues and it is positively associated with CRC size, TNM stage, and lymphatic metastasis. Patients with high UBQLN4 expression had a poor prognosis. Functionally, overexpression of UBQLN4 significantly promoted CRC cell proliferation, migration, and invasion, while UBQLN4 silencing elicited the opposite effect. This result was consistent with the conclusion that UBQLN4 expression correlated positively with the CRC size and lymphatic metastasis. In vivo, UBQLN4 silencing also inhibited tumor growth. Mechanistically, using gene set enrichment analysis (GSEA) and western blot experiments, we identified that UBQLN4 activated the Wnt/β-catenin signaling pathway to upregulate β-catenin and c-Myc expression, thereby promoting CRC proliferation, migration and invasion. A rescue experiment further verified this conclusion. Dual luciferase reporter, real-time quantitative PCR (RT-qPCR), western blot and chromatin immunoprecipitation (ChIP) assays indicated that the transcription factor CCAAT/enhancer-binding protein beta (C/EBPβ) directly bound to the UBQLN4 core promoter region and activated its transcription, upregulating β-catenin and c-Myc expression to promote CRC progression. Thus, our findings suggest that UBQLN4 is a key oncogene in CRC and may be a promising target for the diagnosis and treatment of patients with CRC.
Collapse
|
34
|
Das D, Karthik N, Taneja R. Crosstalk Between Inflammatory Signaling and Methylation in Cancer. Front Cell Dev Biol 2021; 9:756458. [PMID: 34901003 PMCID: PMC8652226 DOI: 10.3389/fcell.2021.756458] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/11/2021] [Indexed: 01/08/2023] Open
Abstract
Inflammation is an intricate immune response against infection and tissue damage. While the initial immune response is important for preventing tumorigenesis, chronic inflammation is implicated in cancer pathogenesis. It has been linked to various stages of tumor development including transformation, proliferation, angiogenesis, and metastasis. Immune cells, through the production of inflammatory mediators such as cytokines, chemokines, transforming growth factors, and adhesion molecules contribute to the survival, growth, and progression of the tumor in its microenvironment. The aberrant expression and secretion of pro-inflammatory and growth factors by the tumor cells result in the recruitment of immune cells, thus creating a mutual crosstalk. The reciprocal signaling between the tumor cells and the immune cells creates and maintains a successful tumor niche. Many inflammatory factors are regulated by epigenetic mechanisms including DNA methylation and histone modifications. In particular, DNA and histone methylation are crucial forms of transcriptional regulation and aberrant methylation has been associated with deregulated gene expression in oncogenesis. Such deregulations have been reported in both solid tumors and hematological malignancies. With technological advancements to study genome-wide epigenetic landscapes, it is now possible to identify molecular mechanisms underlying altered inflammatory profiles in cancer. In this review, we discuss the role of DNA and histone methylation in regulation of inflammatory pathways in human cancers and review the merits and challenges of targeting inflammatory mediators as well as epigenetic regulators in cancer.
Collapse
Affiliation(s)
- Dipanwita Das
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nandini Karthik
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
35
|
Mohd Y, Kumar P, Kuchi Bhotla H, Meyyazhagan A, Balasubramanian B, Ramesh Kumar MK, Pappusamy M, Alagamuthu KK, Orlacchio A, Keshavarao S, Sampathkumar P, Arumugam VA. Transmission Jeopardy of Adenomatosis Polyposis Coli and Methylenetetrahydrofolate Reductase in Colorectal Cancer. J Renin Angiotensin Aldosterone Syst 2021; 2021:7010706. [PMID: 34956401 PMCID: PMC8683247 DOI: 10.1155/2021/7010706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/14/2021] [Accepted: 11/18/2021] [Indexed: 11/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the globally prevalent and virulent types of cancer with a distinct alteration in chromosomes. Often, any alterations in the adenomatosis polyposis coli (APC), a tumor suppressor gene, and methylenetetrahydrofolate reductase (MTHFR) gene are related to surmise colorectal cancer significantly. In this study, we have investigated chromosomal and gene variants to discern a new-fangled gene and its expression in the southern populations of India by primarily spotting the screened APC and MTHFR variants in CRC patients. An equal number of CRC patients and healthy control subjects (n = 65) were evaluated to observe a chromosomal alteration in the concerted and singular manner for APC and MTHFR genotypes using standard protocols. The increasing prognosis was observed in persons with higher alcoholism and smoking (P < 0.05) with frequent alterations in chromosomes 1, 5, 12, 13, 15, 17, 18, 21, and 22. The APC Asp 1822Val and MTHFR C677T genotypes provided significant results, while the variant alleles of this polymorphism were linked with an elevated risk of CRC. Chromosomal alterations can be the major cause in inducing carcinogenic outcomes in CRCs and can drive to extreme pathological states.
Collapse
Affiliation(s)
- Younis Mohd
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, School of Life Sciences, Bharathiar University, 641046 Tamil Nadu, India
| | - Parvinder Kumar
- Department of Zoology, Jammu University, Jammu, 180006 Jammu and Kashmir, India
- Institution of Human Genetics, Jammu University, Jammu, 180006 Jammu and Kashmir, India
| | - Haripriya Kuchi Bhotla
- Human Genetics Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 461046 Tamil Nadu, India
| | - Arun Meyyazhagan
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560029, India
| | | | - Mithun Kumar Ramesh Kumar
- Department of General Surgery, Mahatma Gandhi Medical College and Research Institute, Pillaiyarkuppam, 607403 Pondicherry, India
| | - Manikantan Pappusamy
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560029, India
| | - Karthick Kumar Alagamuthu
- Department of Biotechnology, Selvamm Arts and Science College (Autonomous), Namakkal, Tamil Nadu 637003, India
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Sasikala Keshavarao
- Human Genetics Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 461046 Tamil Nadu, India
| | - Palanisamy Sampathkumar
- Department of Chemistry and Biosciences, SASTRA Deemed to be University, Kumbakonam Tamil Nadu 612001, India
| | - Vijaya Anand Arumugam
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, School of Life Sciences, Bharathiar University, 641046 Tamil Nadu, India
| |
Collapse
|
36
|
Yang J, Chen W, Sun Y, Xia P, Liu J, Zhang W. The role of microRNAs in regulating cadmium-induced apoptosis by targeting Bcl-2 in IEC-6 cells. Toxicol Appl Pharmacol 2021; 432:115737. [PMID: 34662668 DOI: 10.1016/j.taap.2021.115737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/28/2021] [Accepted: 09/12/2021] [Indexed: 02/07/2023]
Abstract
Cadmium (Cd) is one of the most harmful environmental pollutants and has been found to have adverse effects on the gut. However, the toxic effects and potential mechanism of Cd on intestinal epithelial cells (IECs) are poorly understood. This study evaluated the effects of Cd exposure (0, 0.25, 0.5, 1, 2, and 4 μM) on IEC-6 cells in terms of cell viability and apoptosis, as well as apoptosis-associated gene expression. The results indicated that low doses (0.25- 1 μM) of Cd exhibited hormetic effects, while high doses of Cd (2 and 4 μM) reduced cell viability. The apoptotic effect increased in a dose-dependent pattern. Moreover, the mRNA levels of the Bcl-2, Bax and Caspase 3 genes were altered, which was in agreement with their protein expression. Based on sequencing analysis, the expression pattern of the microRNAs (miRNAs) changed significantly in the 2 μM Cd-treated group. QRT-PCR verified that 7 miRNAs, including miR-124-3p and miR-370-3p, were all upregulated with dose-effect relationship. Besides, transfection of miR-124-3p and miR-370-3p mimics /inhibitor and Bcl-2 siRNA into IEC-6 cells verified that these two miRNAs could regulate Cd-induced apoptosis by targeting Bcl-2. Finally, the direct targeting relationship between miR-370-3p and Bcl-2 gene was confirmed by luciferase reporter assay. Overall, the results demonstrated that Cd exposure could induce apoptosis in IEC-6 cells. The potential mechanism may be interference with the regulation of Bcl-2 gene expression by miR-370-3p and miR-124-3p.
Collapse
Affiliation(s)
- Jinsong Yang
- Department of Infectious Disease Prevention and Control, Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Jintai Road No.76, 350001, China.
| | - Wei Chen
- Department of Infectious Disease Prevention and Control, Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Jintai Road No.76, 350001, China
| | - Yi Sun
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyuan Road No. 1, Minhou Coudslanty, Fuzhou 350108, China
| | - Pincang Xia
- Department of Infectious Disease Prevention and Control, Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Jintai Road No.76, 350001, China
| | - Jin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyuan Road No. 1, Minhou Coudslanty, Fuzhou 350108, China
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyuan Road No. 1, Minhou Coudslanty, Fuzhou 350108, China.
| |
Collapse
|
37
|
Bioinformatics Analysis to Screen Key Targets of Curcumin against Colorectal Cancer and the Correlation with Tumor-Infiltrating Immune Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9132608. [PMID: 34804186 PMCID: PMC8604591 DOI: 10.1155/2021/9132608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022]
Abstract
Purpose Curcumin is a potential drug for the treatment of colorectal cancer (CRC). Its mechanism of action has not been elucidated. This study aims to investigate the mechanism of action of curcumin in the treatment of CRC via bioinformatics methods such as network pharmacology and molecular docking. Methods The targets of curcumin and CRC were obtained from the public databases. The component-targets network of curcumin in the treatment of CRC was constructed by Cytoscape v3.7.2. Through protein-protein interaction (PPI), the Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG), important targets and signaling pathways related to CRC treatment were identified. Finally, the results were verified by molecular docking, and the correlation between the key targets and tumor-infiltrating immune cells (TICs) was analyzed. Results A total of 30 potential targets of curcumin for CRC treatment were collected. The GO function enrichment analysis showed 140 items, and the KEGG pathway enrichment analysis showed 61 signaling pathways related to the regulation of protein kinase activity, negative regulation of apoptosis process, cancer signaling pathway, and PI3K-Akt signaling pathway. The molecular docking results showed that curcumin could be combined with AKT1, EGFR, and STAT3 more stably, and AKT1 has the strongest binding to curcumin. Bioinformatics analysis discovered that the expression of core targets AKT1, EGFR, and STAT3 in CRC was related to TICs. Conclusion This study explored the targets and pathways of curcumin in the treatment of CRC. The core targets are AKT1, EGFR, and STAT3. The study indicated that curcumin has preventive and treatment effects on CRC through multitarget and multipathway, which laid the foundation for follow-up research.
Collapse
|
38
|
Kocabas Ş, Sanlier N. A comprehensive overview of the complex relationship between epigenetics, bioactive components, cancer, and aging. Crit Rev Food Sci Nutr 2021:1-13. [PMID: 34623201 DOI: 10.1080/10408398.2021.1986803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Among age-related diseases, the incidence of cancer increases significantly due to the overlap of some molecular pathways between cancer and aging. While the genetic influence on the human lifespan is estimated to be about 20-25%, epigenetic changes play an important role in modulating individual health status, aging. Aging and age-related conditions are processes that can be modified by both genetic, environmental factors, including dietary habits. Epigenetics is a new discipline has significant potential to be applied for the prevention, management of certain carcinomas and diseases. Epigenetic modifications may play an important role in disease occurrence and pathogenesis. Some nutritional components can be significantly effective in the prevention of breast, skin, esophagus, colorectal, prostate, pancreatic, lung cancers. It contains minerals, vitamins, and some bioactive components (curcumin, indole 3 carbinol, di-indolylmethane, sulforaphane, epigallocatechin-3-gallate, genistein, resveratrol, pterostilbene, apigenin, etc.) regulatory processes. However, compelling evidence suggests that dietary habits can manipulate the aging process and/or its consequences, have health benefits. Aging processes become complex when combined with the relational role of bioactive nutritional components on gene expression. In this review, the relationship between epigenetic processes caused by DNA methylylation, histone modification, non-coding m-RNA, and telomerase activity, the risk of aging and cancer is discussed.
Collapse
Affiliation(s)
- Şule Kocabas
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Altındağ, Ankara, Turkey
| | - Nevin Sanlier
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Altındağ, Ankara, Turkey
| |
Collapse
|
39
|
Potential of olive oil and its phenolic compounds as therapeutic intervention against colorectal cancer: a comprehensive review. Br J Nutr 2021; 128:1257-1273. [PMID: 34338174 DOI: 10.1017/s0007114521002919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is one of the major causes of death across the world and incidence rate of CRC increasing alarmingly each passing year. Diet, genomic anomalies, inflammation and deregulated signalling pathways are among the major causes of CRC. Because of numerous side effects of CRC therapies available now, researchers all over the world looking for alternative treatment/preventive strategy with lesser/no side effects. Olive oil which is part of Mediterranean diet contains numerous phenolic compounds that fight against free radicals and inflammation and also well-known for protective role against CRC. The current review focused on the recent evidences where olive oil and its phenolic compounds such as hydroxytyrosol, oleuropein and oleocanthal showed activities against CRC as well to analyse the cellular and molecular signalling mechanism through which these compounds act on. These compounds shown to combat CRC by reducing proliferation, migration, invasion and angiogenesis through regulation of numerous signalling pathways including MAPK pathway, PI3K-Akt pathway and Wnt/β-catenin pathway and at the same time, induce apoptosis in different CRC model. However, further research is an absolute necessity to establish these compounds as nutritional supplements and develop therapeutic strategy in CRC.
Collapse
|
40
|
Kartikasari AER, Huertas CS, Mitchell A, Plebanski M. Tumor-Induced Inflammatory Cytokines and the Emerging Diagnostic Devices for Cancer Detection and Prognosis. Front Oncol 2021; 11:692142. [PMID: 34307156 PMCID: PMC8294036 DOI: 10.3389/fonc.2021.692142] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation generated by the tumor microenvironment is known to drive cancer initiation, proliferation, progression, metastasis, and therapeutic resistance. The tumor microenvironment promotes the secretion of diverse cytokines, in different types and stages of cancers. These cytokines may inhibit tumor development but alternatively may contribute to chronic inflammation that supports tumor growth in both autocrine and paracrine manners and have been linked to poor cancer outcomes. Such distinct sets of cytokines from the tumor microenvironment can be detected in the circulation and are thus potentially useful as biomarkers to detect cancers, predict disease outcomes and manage therapeutic choices. Indeed, analyses of circulating cytokines in combination with cancer-specific biomarkers have been proposed to simplify and improve cancer detection and prognosis, especially from minimally-invasive liquid biopsies, such as blood. Additionally, the cytokine signaling signatures of the peripheral immune cells, even from patients with localized tumors, are recently found altered in cancer, and may also prove applicable as cancer biomarkers. Here we review cytokines induced by the tumor microenvironment, their roles in various stages of cancer development, and their potential use in diagnostics and prognostics. We further discuss the established and emerging diagnostic approaches that can be used to detect cancers from liquid biopsies, and additionally the technological advancement required for their use in clinical settings.
Collapse
Affiliation(s)
- Apriliana E. R. Kartikasari
- Translational Immunology and Nanotechnology Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Cesar S. Huertas
- Integrated Photonics and Applications Centre (InPAC), School of Engineering, RMIT University, Melbourne, VIC, Australia
| | - Arnan Mitchell
- Integrated Photonics and Applications Centre (InPAC), School of Engineering, RMIT University, Melbourne, VIC, Australia
| | - Magdalena Plebanski
- Translational Immunology and Nanotechnology Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
41
|
Missing links - epigenetic regulators of the pancreatic cancer-associated inflammation. Clin Sci (Lond) 2021; 135:1289-1293. [PMID: 34047338 DOI: 10.1042/cs20210181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 11/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) features a hostile tumor microenvironment (TME) that renders it remarkably resistant to most therapeutic interventions. Consequently, survival remains among the poorest compared with other gastrointestinal cancers. Concerted efforts are underway to decipher the complex PDAC TME, break down barriers to efficacious therapies and identify novel treatment strategies. In the recent Clinical Science, Li and colleagues identify the long noncoding RNA KLHDC7B-DT as a crucial epigenetic regulator of IL-6 transcription in PDAC and illustrate its potent influences on the pancreatic TME. In this commentary, we introduce epigenetics in pancreatic cancer and put the findings by Li et al. in context with current knowledge.
Collapse
|
42
|
Zhao H, He M, Zhang M, Sun Q, Zeng S, Chen L, Yang H, Liu M, Ren S, Meng X, Xu H. Colorectal Cancer, Gut Microbiota and Traditional Chinese Medicine: A Systematic Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:805-828. [PMID: 33827382 DOI: 10.1142/s0192415x21500385] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Based on the study and research on the pathogenesis of colorectal cancer, the types and functions of gut microbiota, and its role in guiding and regulating the occurrence and development of diseases, we have explored the mechanism of traditional Chinese medicine in the treatment of colorectal cancer by regulating the gut microbiota. Genetic variation, abnormal responses of innate and adaptive immunity, mucosal barrier dysfunction, imbalance of intestinal microbial colonization, personal and environmental risk factors are the main pathogenesis of colorectal cancer. The gut microbiota mainly includes Sclerotium (including Clostridium, Enterococcus, Lactobacillus and Ruminococcus) and Bacteroides (including Bacteroides and Prevotella), which have biological antagonism, nutrition for the organism, metabolic abilities, immune stimulation, and ability to shape cancer genes functions to body. The gut microbiota can be related to the health of the host. Current studies have shown that Chinese herbal compound, single medicinal materials, and monomer components can treat colorectal cancer by regulating the gut microbiota, such as Xiaoyaosan can increase the abundance of Bacteroides, Lactobacillus, and Proteus and decrease the abundance of Desulfovibrio and Rickerella. Therefore, studying the regulation and mechanism of gut microbiota on colorectal cancer is of great benefit to disease treatment.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Man He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
43
|
Khaledi F, Ghasemi S. A review on epigenetic effects of environmental factors causing and inhibiting cancer. Curr Mol Med 2021; 22:8-24. [PMID: 33573554 DOI: 10.2174/1566524021666210211112800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 11/22/2022]
Abstract
Epigenetic modifications refer to reversible changes in gene expression. Epigenetic changes include DNA methylation, histone modification, and non-coding RNAs that are collectively called epigenome. Various epigenetic effects account for the main impacts of environment and lifestyle on multifactorial diseases such as cancers. The environment's impacts on cancers act as double-edged swords. While some of them are involved in cancer development, some others contribute to preventing it. In this review article, the keywords 'cancer', 'epigenetic', 'lifestyle', 'carcinogen', ' cancer inhibitors" and related words were searched to finding a link between environmental factors and epigenetic mechanisms influencing cancer in ISI, PUBMED, SCOPUS, and Google Scholar databases. Based on the literature environmental factors that are effective in cancer development or cancer prevention in this review will be divided into physical, chemical, biological, and lifestyle types. Different types of epigenetic mechanisms known for each of these agents will be addressed in this review. Unregulated changes in epigenome play roles in tumorigenicity and cancer development. The action mechanism and genes targeted which are related to the signaling pathway for epigenetic alterations determine whether environmental agents are carcinogenic or prevent cancer. Having knowledge about the effective factors and related mechanisms such as epigenetic on cancer can help to prevent and better cancers treatment.
Collapse
Affiliation(s)
- Fatemeh Khaledi
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord. Iran
| | - Sorayya Ghasemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord. Iran
| |
Collapse
|
44
|
Caramujo-Balseiro S, Faro C, Carvalho L. Metabolic pathways in sporadic colorectal carcinogenesis: A new proposal. Med Hypotheses 2021; 148:110512. [PMID: 33548761 DOI: 10.1016/j.mehy.2021.110512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/09/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
Given the reports made about geographical differences in Colorectal Cancer (CRC) occurrence, suggesting a link between dietary habits, genes and cancer risk, we hypothesise that there are four fundamental metabolic pathways involved in diet-genes interactions, directly implicated in colorectal carcinogenesis: folate metabolism; lipid metabolism; oxidative stress response; and inflammatory response. Supporting this hypothesis are the evidence given by the significant associations between several diet-genes polymorphisms and CRC, namely: MTHFR, MTR, MTRR and TS (involved in folate metabolism); NPY, APOA1, APOB, APOC3, APOE, CETP, LPL and PON1 (involved in lipid metabolism); MNSOD, SOD3, CAT, GSTP1, GSTT1 and GSTM1 (involved in oxidative stress response); and IL-1, IL-6, TNF-α, and TGF-β (involved in inflammatory response). We also highlight the association between some foods/nutrients/nutraceuticals that are important in CRC prevention or treatment and the four metabolic pathways proposed, and the recent results of genome-wide association studies, both assisting our hypothesis. Finally, we propose a new line of investigation with larger studies, using accurate dietary biomarkers and investigating the four metabolic pathways genes simultaneously. This line of investigation will be essential to understand the full complexity of the association between nature and nurture in CRC and perhaps in other types of cancers. Only with this in-depth knowledge will it be possible to make personalised nutrition recommendations for disease prevention and management.
Collapse
Affiliation(s)
- Sandra Caramujo-Balseiro
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine - University of Coimbra, Coimbra, Portugal; Department of Life Sciences - University of Coimbra, Coimbra, Portugal.
| | - Carlos Faro
- Department of Life Sciences - University of Coimbra, Coimbra, Portugal; UC Biotech, Cantanhede, Portugal
| | - Lina Carvalho
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine - University of Coimbra, Coimbra, Portugal
| |
Collapse
|
45
|
Saul D, Kosinsky RL. Epigenetics of Aging and Aging-Associated Diseases. Int J Mol Sci 2021; 22:ijms22010401. [PMID: 33401659 PMCID: PMC7794926 DOI: 10.3390/ijms22010401] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/19/2020] [Accepted: 12/26/2020] [Indexed: 12/17/2022] Open
Abstract
Aging represents the multifactorial decline in physiological function of every living organism. Over the past decades, several hallmarks of aging have been defined, including epigenetic deregulation. Indeed, multiple epigenetic events were found altered across different species during aging. Epigenetic changes directly contributing to aging and aging-related diseases include the accumulation of histone variants, changes in chromatin accessibility, loss of histones and heterochromatin, aberrant histone modifications, and deregulated expression/activity of miRNAs. As a consequence, cellular processes are affected, which results in the development or progression of several human pathologies, including cancer, diabetes, osteoporosis, and neurodegenerative disorders. In this review, we focus on epigenetic mechanisms underlying aging-related processes in various species and describe how these deregulations contribute to human diseases.
Collapse
Affiliation(s)
- Dominik Saul
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA;
- Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, 37075 Goettingen, Germany
| | - Robyn Laura Kosinsky
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +1-507-293-2386
| |
Collapse
|
46
|
Tian C, Chen K, Gong W, Yoshimura T, Huang J, Wang JM. The G-Protein Coupled Formyl Peptide Receptors and Their Role in the Progression of Digestive Tract Cancer. Technol Cancer Res Treat 2020; 19:1533033820973280. [PMID: 33251986 PMCID: PMC7705772 DOI: 10.1177/1533033820973280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation is a causative factor of many cancers, although it
originally acts as a protective host response to the loss of tissue homeostasis.
Many inflammatory conditions predispose susceptible cells, most of which are of
epithelial origin, to neoplastic transformation. There is a close correlation
between digestive tract (DT) cancer and chronic inflammation, such as esophageal
adenocarcinoma associated with Barrett’s esophagus, helicobacter
pylori infection as the cause of stomach cancer, hepatitis leading
to liver cirrhosis and subsequent cancer, and colon cancer linking to
inflammatory bowel diseases and schistosomiasis. A prominent
feature of malignant transformation of DT tract epithelial cells is their
adoption of somatic gene mutations resulting in abnormal expression of proteins
that endow the cells with unlimited proliferation as well as increased motility
and invasive capabilities. Many of these events are mediated by Gi-protein
coupled chemoattractant receptors (GPCRs) including formyl peptide receptors
(FPRs in human, Fprs in mice). In this article, we review the current
understanding of FPRs (Fprs) and their function in DT cancer types as well as
their potential as therapeutic targets.
Collapse
Affiliation(s)
- Cuimeng Tian
- Department of Radiation Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China.,Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Keqiang Chen
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jiaqiang Huang
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.,Laboratory of Cancer Basic Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Ji Ming Wang
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| |
Collapse
|
47
|
Nutrition in Cancer Therapy in the Elderly-An Epigenetic Connection? Nutrients 2020; 12:nu12113366. [PMID: 33139626 PMCID: PMC7692262 DOI: 10.3390/nu12113366] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
The continuous increase in life expectancy results in a steady increase of cancer risk, which consequently increases the population of older adults with cancer. Older adults have their age-related nutritional needs and often suffer from comorbidities that may affect cancer therapy. They frequently are malnourished and present advanced-stage cancer. Therefore, this group of patients requires a special multidisciplinary approach to optimize their therapy and increase quality of life impaired by aging, cancer, and the side effects of therapy. Evaluation strategies, taking advantage of comprehensive geriatric assessment tools, including the comprehensive geriatric assessment (CGA), can help individualize treatment. As epigenetics, an emerging element of the regulation of gene expression, is involved in both aging and cancer and the epigenetic profile can be modulated by the diet, it seems to be a candidate to assist with planning a nutritional intervention in elderly populations with cancer. In this review, we present problems associated with the diet and nutrition in the elderly undergoing active cancer therapy and provide some information on epigenetic aspects of aging and cancer transformation. Nutritional interventions modulating the epigenetic profile, including caloric restriction and basal diet with modifications (elimination diet, supplementary diet) are discussed as the ways to improve the efficacy of cancer therapy and maintain the quality of life of older adults with cancer.
Collapse
|
48
|
Liu H, Yang P, Li X, Jia Y. Ring finger protein 180 is associated with biological behavior and prognosis in patients with non-small cell lung cancer. Oncol Lett 2020; 20:35. [PMID: 32802159 PMCID: PMC7412726 DOI: 10.3892/ol.2020.11898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
There are few studies on the role of ring finger protein (RNF)180 in non-small cell lung cancer (NSCLC). The present study investigated the expression of RNF180 in NSCLC and its associations with the clinical factors and prognosis of NSCLC. The mRNA and protein expression levels of RNF180 were detected via reverse transcription-quantitative PCR and western blotting. Methylation-specific PCR (MSP) analysis was utilized to detect the methylation of RNF180. RNF180 expression levels were analyzed via immunohistochemistry. The protein and mRNA expression levels of RNF180 were lower in NSCLC cell lines compared with in the non-tumor cell line. Immunohistochemistry revealed that 64 patients that were negative for RNF180, while MSP detection analysis demonstrated that 60 patients exhibited RNF180 promoter methylation. The methylation status of RNF180 was significantly associated with RNF180 expression level. Among all factors evaluated, logistic regression analysis indicated that only T stage was significantly associated with RNF180 expression. Cox multivariate analysis demonstrated that RNF180 expression was an independent predictor of overall survival in patients with NSCLC. Methylation in the promoter of RNF180 was shown to reduce its expression levels. In summary, low RNF180 expression levels were associated with poor biological behaviors, thus RNF180 expression level may be used as a clinical marker to predict the prognosis of patients with NSCLC.
Collapse
Affiliation(s)
- Honggen Liu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| | - Peiying Yang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| | - Xiaojiang Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| |
Collapse
|
49
|
Ambrosone CB, Higgins MJ. Relationships between Breast Feeding and Breast Cancer Subtypes: Lessons Learned from Studies in Humans and in Mice. Cancer Res 2020; 80:4871-4877. [PMID: 32816853 DOI: 10.1158/0008-5472.can-20-0077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/21/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022]
Abstract
There are differential risk relationships between parity and breast cancer according to estrogen receptor (ER) status, with an increased risk of ER- disease reduced by breastfeeding. This may be particularly relevant for understanding the higher incidence of ER- tumors in Black women, who are more likely to be parous and less likely to breastfeed than other U.S. groups. Potential mechanisms for these relationships may include effects of disordered breast involution on inflammatory milieu in the breast as well as epigenetic reprogramming in the mammary gland, which can affect cell fate decisions in progenitor cell pools. In normal breast tissue, parity has been associated with hypermethylation of FOXA1, a pioneer transcription factor that promotes the luminal phenotype in luminal progenitors, while repressing the basal phenotype. In breast tumors, relationships between FOXA1 methylation and parity were strongest among women who did not breastfeed. Here, we summarize the epidemiologic literature regarding parity, breastfeeding, and breast cancer subtypes, and review potential mechanisms whereby these factors may influence breast carcinogenesis, with a focus on effects on progenitor cell pools in the mammary gland.
Collapse
Affiliation(s)
- Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| | - Michael J Higgins
- Department of Cellular and Molecular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
50
|
Cervena K, Siskova A, Buchler T, Vodicka P, Vymetalkova V. Methylation-Based Therapies for Colorectal Cancer. Cells 2020; 9:E1540. [PMID: 32599894 PMCID: PMC7349319 DOI: 10.3390/cells9061540] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 02/08/2023] Open
Abstract
Colorectal carcinogenesis (CRC) is caused by the gradual long-term accumulation of both genetic and epigenetic changes. Recently, epigenetic alterations have been included in the classification of the CRC molecular subtype, and this points out their prognostic impact. As epigenetic modifications are reversible, they may represent relevant therapeutic targets. DNA methylation, catalyzed by DNA methyltransferases (DNMTs), regulates gene expression. For many years, the deregulation of DNA methylation has been considered to play a substantial part in CRC etiology and evolution. Despite considerable advances in CRC treatment, patient therapy response persists as limited, and their profit from systemic therapies are often hampered by the introduction of chemoresistance. In addition, inter-individual changes in therapy response in CRC patients can arise from their specific (epi)genetic compositions. In this review article, we summarize the options of CRC treatment based on DNA methylation status for their predictive value. This review also includes the therapy outcomes based on the patient's methylation status in CRC patients. In addition, the current challenge of research is to develop therapeutic inhibitors of DNMT. Based on the essential role of DNA methylation in CRC development, the application of DNMT inhibitors was recently proposed for the treatment of CRC patients, especially in patients with DNA hypermethylation.
Collapse
Affiliation(s)
- Klara Cervena
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| | - Anna Siskova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic;
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|