1
|
Persichetti AS, Shao J, Gotts SJ, Martin A. A functional parcellation of the whole brain in high-functioning individuals with autism spectrum disorder reveals atypical patterns of network organization. Mol Psychiatry 2024:10.1038/s41380-024-02764-6. [PMID: 39349967 DOI: 10.1038/s41380-024-02764-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Researchers studying autism spectrum disorder (ASD) lack a comprehensive map of the functional network topography in the ASD brain. We used high-quality resting state functional MRI (rs-fMRI) connectivity data and a robust parcellation routine to provide a whole-brain map of functional networks in a group of seventy high-functioning individuals with ASD and a group of seventy typically developing (TD) individuals. The rs-fMRI data were collected using an imaging sequence optimized to achieve high temporal signal-to-noise ratio (tSNR) across the whole-brain. We identified functional networks using a parcellation routine that intrinsically incorporates internal consistency and repeatability of the networks by keeping only network distinctions that agree across halves of the data over multiple random iterations in each group. The groups were tightly matched on tSNR, in-scanner motion, age, and IQ. We compared the maps from each group and found that functional networks in the ASD group are atypical in three seemingly related ways: (1) whole-brain connectivity patterns are less stable across voxels within multiple functional networks, (2) the cerebellum, subcortex, and hippocampus show weaker differentiation of functional subnetworks, and (3) subcortical structures and the hippocampus are atypically integrated with the neocortex. These results were statistically robust and suggest that patterns of network connectivity between the neocortex and the cerebellum, subcortical structures, and hippocampus are atypical in ASD individuals.
Collapse
Affiliation(s)
- Andrew S Persichetti
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Jiayu Shao
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Stephen J Gotts
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Alex Martin
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Wardell V, Stewardson CI, Hunsche MC, Chen FS, Rights JD, Palombo DJ, Kerns CM. Are autistic traits associated with a social-emotional memory bias? Behav Res Ther 2024; 180:104578. [PMID: 38875935 DOI: 10.1016/j.brat.2024.104578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 12/01/2023] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Autistic traits are associated with differential processing of emotional and social cues. By contrast little is known about the relationship of autistic traits to socio-emotional memory, though research suggests an integral relationship between episodic memory processes and psychosocial well-being. Using an experimental paradigm, we tested if autistic traits moderate the effects of negative emotion and social cues on episodic memory (i.e. memory for past events). Young adults (N = 706) with varied levels of self-reported autistic traits (24% in clinical range) encoded images stratified by emotion (negative, neutral) and social cues (social, non-social) alongside a neutral object. After 24 h, item memory for images and associative memory for objects was tested. For item memory, after controlling for anxiety, a small effect emerged whereby a memory-enhancing effect of social cues was reduced as autistic traits increased. For associative memory, memory for pairings between neutral, but not negative, images reduced as autistic traits increased. Results suggest autistic traits are associated with reduced ability to bind neutral items together in memory, potentially impeding nuanced appraisals of past experience. This bias toward more negative, less nuanced memories of past experience may represent a cognitive vulnerability to social and mental health challenges commonly associated with autistic traits and a potential intervention target.
Collapse
|
3
|
Wang J, Christensen D, Coombes SA, Wang Z. Cognitive and brain morphological deviations in middle-to-old aged autistic adults: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 163:105782. [PMID: 38944227 PMCID: PMC11283673 DOI: 10.1016/j.neubiorev.2024.105782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
Cognitive challenges and brain structure variations are common in autism spectrum disorder (ASD) but are rarely explored in middle-to-old aged autistic adults. Cognitive deficits that overlap between young autistic individuals and elderlies with dementia raise an important question: does compromised cognitive ability and brain structure during early development drive autistic adults to be more vulnerable to pathological aging conditions, or does it protect them from further decline? To answer this question, we have synthesized current theoretical models of aging in ASD and conducted a systematic literature review (Jan 1, 1980 - Feb 29, 2024) and meta-analysis to summarize empirical studies on cognitive and brain deviations in middle-to-old aged autistic adults. We explored findings that support different aging theories in ASD and addressed study limitations and future directions. This review sheds light on the poorly understood consequences of aging question raised by the autism community to pave the way for future studies to identify sensitive and reliable measures that best predict the onset, progression, and prognosis of pathological aging in ASD.
Collapse
Affiliation(s)
- Jingying Wang
- Neurocognitive and Behavioral Development Laboratory, Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118206, Gainesville, FL 32611-8205, USA
| | - Danielle Christensen
- Neurocognitive and Behavioral Development Laboratory, Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118206, Gainesville, FL 32611-8205, USA; Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118206, Gainesville, FL 32611-8205, USA
| | - Stephen A Coombes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118206, Gainesville, FL 32611-8205, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Zheng Wang
- Neurocognitive and Behavioral Development Laboratory, Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118206, Gainesville, FL 32611-8205, USA.
| |
Collapse
|
4
|
Xia QQ, Singh A, Wang J, Xuan ZX, Singer JD, Powell CM. Autism risk gene Cul3 alters neuronal morphology via caspase-3 activity in mouse hippocampal neurons. Front Cell Neurosci 2024; 18:1320784. [PMID: 38803442 PMCID: PMC11129687 DOI: 10.3389/fncel.2024.1320784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Autism Spectrum Disorders (ASDs) are neurodevelopmental disorders (NDDs) in which children display differences in social interaction/communication and repetitive stereotyped behaviors along with variable associated features. Cul3, a gene linked to ASD, encodes CUL3 (CULLIN-3), a protein that serves as a key component of a ubiquitin ligase complex with unclear function in neurons. Cul3 homozygous deletion in mice is embryonic lethal; thus, we examine the role of Cul3 deletion in early synapse development and neuronal morphology in hippocampal primary neuronal cultures. Homozygous deletion of Cul3 significantly decreased dendritic complexity and dendritic length, as well as axon formation. Synaptic spine density significantly increased, mainly in thin and stubby spines along with decreased average spine volume in Cul3 knockouts. Both heterozygous and homozygous knockout of Cul3 caused significant reductions in the density and colocalization of gephyrin/vGAT puncta, providing evidence of decreased inhibitory synapse number, while excitatory synaptic puncta vGulT1/PSD95 density remained unchanged. Based on previous studies implicating elevated caspase-3 after Cul3 deletion, we demonstrated increased caspase-3 in our neuronal cultures and decreased neuronal cell viability. We then examined the efficacy of the caspase-3 inhibitor Z-DEVD-FMK to rescue the decrease in neuronal cell viability, demonstrating reversal of the cell viability phenotype with caspase-3 inhibition. Studies have also implicated caspase-3 in neuronal morphological changes. We found that caspase-3 inhibition largely reversed the dendrite, axon, and spine morphological changes along with the inhibitory synaptic puncta changes. Overall, these data provide additional evidence that Cul3 regulates the formation or maintenance of cell morphology, GABAergic synaptic puncta, and neuronal viability in developing hippocampal neurons in culture.
Collapse
Affiliation(s)
- Qiang-qiang Xia
- Department of Neurobiology, Marnix E. Heersink School of Medicine & Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anju Singh
- Department of Neurobiology, Marnix E. Heersink School of Medicine & Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jing Wang
- Department of Neurobiology, Marnix E. Heersink School of Medicine & Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zhong Xin Xuan
- Department of Neurobiology, Marnix E. Heersink School of Medicine & Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jeffrey D. Singer
- Department of Biology, Portland State University, Portland, OR, United States
| | - Craig M. Powell
- Department of Neurobiology, Marnix E. Heersink School of Medicine & Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
5
|
Bagnall R, Russell A, Brosnan M, Maras K. Autistic adults' inclination to lie in everyday situations. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2024; 28:718-731. [PMID: 37572035 PMCID: PMC10913365 DOI: 10.1177/13623613231183911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
LAY ABSTRACT Differences in social communication and understanding others' mental states may mean that autistic adults are less likely to deceive others than non-autistic individuals. We investigated whether autistic and non-autistic adults differ in their inclination to lie and which psychological factors are involved in the inclination to lie. We found that autistic and non-autistic groups reported a similar inclination to lie, and the extent to which participants viewed lying as acceptable helped to explain their inclination to deceive others. However, the other underlying psychological factors associated with deception inclination differed between autistic and non-autistic groups. Autistic adults' belief about their ability to lie and also how quickly they could lie helped to explain whether they were more or less inclined to lie. For non-autistic adults, their memory and ability to understand others' mental states helped to explain their lie inclination. We discuss these findings and recommend areas for future research.
Collapse
|
6
|
Liloia D, Manuello J, Costa T, Keller R, Nani A, Cauda F. Atypical local brain connectivity in pediatric autism spectrum disorder? A coordinate-based meta-analysis of regional homogeneity studies. Eur Arch Psychiatry Clin Neurosci 2024; 274:3-18. [PMID: 36599959 PMCID: PMC10787009 DOI: 10.1007/s00406-022-01541-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
Despite decades of massive neuroimaging research, the comprehensive characterization of short-range functional connectivity in autism spectrum disorder (ASD) remains a major challenge for scientific advances and clinical translation. From the theoretical point of view, it has been suggested a generalized local over-connectivity that would characterize ASD. This stance is known as the general local over-connectivity theory. However, there is little empirical evidence supporting such hypothesis, especially with regard to pediatric individuals with ASD (age [Formula: see text] 18 years old). To explore this issue, we performed a coordinate-based meta-analysis of regional homogeneity studies to identify significant changes of local connectivity. Our analyses revealed local functional under-connectivity patterns in the bilateral posterior cingulate cortex and superior frontal gyrus (key components of the default mode network) and in the bilateral paracentral lobule (a part of the sensorimotor network). We also performed a functional association analysis of the identified areas, whose dysfunction is clinically consistent with the well-known deficits affecting individuals with ASD. Importantly, we did not find relevant clusters of local hyper-connectivity, which is contrary to the hypothesis that ASD may be characterized by generalized local over-connectivity. If confirmed, our result will provide a valuable insight into the understanding of the complex ASD pathophysiology.
Collapse
Affiliation(s)
- Donato Liloia
- GCS-fMRI Research Group, Koelliker Hospital and Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- GCS-fMRI Research Group, Koelliker Hospital and Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- GCS-fMRI Research Group, Koelliker Hospital and Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy.
- Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
- Neuroscience Institute of Turin (NIT), Turin, Italy.
| | - Roberto Keller
- Adult Autism Center, DSM Local Health Unit, ASL TO, Turin, Italy
| | - Andrea Nani
- Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI Research Group, Koelliker Hospital and Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
| |
Collapse
|
7
|
Agron AM, Martin A, Gilmore AW. Scene construction and autobiographical memory retrieval in autism spectrum disorder. Autism Res 2024; 17:204-214. [PMID: 38037250 PMCID: PMC10922094 DOI: 10.1002/aur.3066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Individuals with autism spectrum disorder (ASD) frequently exhibit difficulties in retrieving autobiographical memories (AMs) of specific events from their life. Such memory deficits are frequently attributed to underlying disruptions in self-referential or social cognition processes. This makes intuitive sense as these are hallmarks of ASD. However, an emerging literature suggests that parallel deficits also exist in ASD individuals' ability to reconstruct the rich spatial contexts in which events occur. This is a capacity known as scene construction, and in typically developing individuals is considered a core process in retrieving AMs. In this review, we discuss evidence of difficulties with scene construction in ASD, drawing upon experiments that involve AM retrieval, other forms of mental time travel, and spatial navigation. We also highlight aspects of extant data that cannot be accounted for using purely social explanations of memory deficits in ASD. We conclude by identifying key questions raised by our framework and suggest how they might be addressed in future research.
Collapse
Affiliation(s)
- Anna M. Agron
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, NIMH/NIH, Bethesda, MD 20892
| | - Alex Martin
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, NIMH/NIH, Bethesda, MD 20892
| | - Adrian W. Gilmore
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, NIMH/NIH, Bethesda, MD 20892
| |
Collapse
|
8
|
Persichetti AS, Shao J, Gotts SJ, Martin A. A functional parcellation of the whole brain in individuals with autism spectrum disorder reveals atypical patterns of network organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571854. [PMID: 38168156 PMCID: PMC10760210 DOI: 10.1101/2023.12.15.571854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
BACKGROUND Researchers studying autism spectrum disorder (ASD) lack a comprehensive map of the functional network topography in the ASD brain. We used high-quality resting state functional MRI (rs-fMRI) connectivity data and a robust parcellation routine to provide a whole-brain map of functional networks in a group of seventy individuals with ASD and a group of seventy typically developing (TD) individuals. METHODS The rs-fMRI data were collected using an imaging sequence optimized to achieve high temporal signal-to-noise ratio (tSNR) across the whole-brain. We identified functional networks using a parcellation routine that intrinsically incorporates stability and replicability of the networks by keeping only network distinctions that agree across halves of the data over multiple random iterations in each group. The groups were tightly matched on tSNR, in-scanner motion, age, and IQ. RESULTS We compared the maps from each group and found that functional networks in the ASD group are atypical in three seemingly related ways: 1) whole-brain connectivity patterns are less stable across voxels within multiple functional networks, 2) the cerebellum, subcortex, and hippocampus show weaker differentiation of functional subnetworks, and 3) subcortical structures and the hippocampus are atypically integrated with the neocortex. CONCLUSIONS These results were statistically robust and suggest that patterns of network connectivity between the neocortex and the cerebellum, subcortical structures, and hippocampus are atypical in ASD individuals.
Collapse
Affiliation(s)
- Andrew S Persichetti
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Jiayu Shao
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Stephen J Gotts
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Alex Martin
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
9
|
Liu J, Chen L, Chang H, Rudoler J, Al-Zughoul AB, Kang JB, Abrams DA, Menon V. Replicable Patterns of Memory Impairments in Children With Autism and Their Links to Hyperconnected Brain Circuits. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:1113-1123. [PMID: 37196984 PMCID: PMC10646152 DOI: 10.1016/j.bpsc.2023.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/07/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Memory impairments have profound implications for social communication and educational outcomes in children with autism spectrum disorder (ASD). However, the precise nature of memory dysfunction in children with ASD and the underlying neural circuit mechanisms remain poorly understood. The default mode network (DMN) is a brain network that is associated with memory and cognitive function, and DMN dysfunction is among the most replicable and robust brain signatures of ASD. METHODS We used a comprehensive battery of standardized episodic memory assessments and functional circuit analyses in 25 8- to 12-year-old children with ASD and 29 matched typically developing control children. RESULTS Memory performance was reduced in children with ASD compared with control children. General and face memory emerged as distinct dimensions of memory difficulties in ASD. Importantly, findings of diminished episodic memory in children with ASD were replicated in 2 independent data sets. Analysis of intrinsic functional circuits associated with the DMN revealed that general and face memory deficits were associated with distinct, hyperconnected circuits: Aberrant hippocampal connectivity predicted diminished general memory while aberrant posterior cingulate cortex connectivity predicted diminished face memory. Notably, aberrant hippocampal-posterior cingulate cortex circuitry was a common feature of diminished general and face memory in ASD. CONCLUSIONS Our results represent a comprehensive appraisal of episodic memory function in children with ASD and identify extensive and replicable patterns of memory reductions in children with ASD that are linked to dysfunction of distinct DMN-related circuits. These findings highlight a role for DMN dysfunction in ASD that extends beyond face memory to general memory function.
Collapse
Affiliation(s)
- Jin Liu
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California.
| | - Lang Chen
- Department of Psychology, Santa Clara University, Santa Clara, California
| | - Hyesang Chang
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Jeremy Rudoler
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Ahmad Belal Al-Zughoul
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Julia Boram Kang
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Daniel A Abrams
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Wu Tsai Stanford Neurosciences Institute, Stanford University School of Medicine, Stanford, California
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, California; Wu Tsai Stanford Neurosciences Institute, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
10
|
Minor GN, Hannula DE, Gordon A, Ragland JD, Iosif AM, Solomon M. Relational memory weakness in autism despite the use of a controlled encoding task. Front Psychol 2023; 14:1210259. [PMID: 37691809 PMCID: PMC10484720 DOI: 10.3389/fpsyg.2023.1210259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Recent work challenged past findings that documented relational memory impairments in autism. Previous studies often relied solely on explicit behavioral responses to assess relational memory integrity, but successful performance on behavioral tasks may rely on other cognitive abilities (e.g., executive functioning) that are impacted in some autistic individuals. Eye-tracking tasks do not require explicit behavioral responses, and, further, eye movements provide an indirect measure of memory. The current study examined whether memory-specific viewing patterns toward scenes differ between autistic and non-autistic individuals. Methods Using a long-term memory paradigm that equated for complexity between item and relational memory tasks, participants studied a series of scenes. Following the initial study phase, scenes were re-presented, accompanied by an orienting question that directed participants to attend to either features of an item (i.e., in the item condition) or spatial relationships between items (i.e., in the relational condition) that might be subsequently modified during test. At test, participants viewed scenes that were unchanged (i.e., repeated from study), scenes that underwent an "item" modification (an exemplar switch) or a "relational" modification (a location switch), and scenes that had not been presented before. Eye movements were recorded throughout. Results During study, there were no significant group differences in viewing directed to regions of scenes that might be manipulated at test, suggesting comparable processing of scene details during encoding. However, there was a group difference in explicit recognition accuracy for scenes that underwent a relational change. Marginal group differences in the expression of memory-based viewing effects during test for relational scenes were consistent with this behavioral outcome, particularly when analyses were limited to scenes recognized correctly with high confidence. Group differences were also evident in correlational analyses that examined the association between study phase viewing and recognition accuracy and between performance on the Picture Sequence Memory Test and recognition accuracy. Discussion Together, our findings suggest differences in the integrity of relational memory representations and/or in the relationships between subcomponents of memory in autism.
Collapse
Affiliation(s)
- Greta N. Minor
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Deborah E. Hannula
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Andrew Gordon
- Department of Psychiatry & Behavioral Sciences, University of California, Davis, Davis, CA, United States
| | - J. Daniel Ragland
- Department of Psychiatry & Behavioral Sciences, University of California, Davis, Davis, CA, United States
| | - Ana-Maria Iosif
- Department of Psychiatry & Behavioral Sciences, University of California, Davis, Davis, CA, United States
| | - Marjorie Solomon
- Department of Psychiatry & Behavioral Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
11
|
Liu J, Chang H, Abrams DA, Kang JB, Chen L, Rosenberg-Lee M, Menon V. Atypical cognitive training-induced learning and brain plasticity and their relation to insistence on sameness in children with autism. eLife 2023; 12:e86035. [PMID: 37534879 PMCID: PMC10550286 DOI: 10.7554/elife.86035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023] Open
Abstract
Children with autism spectrum disorders (ASDs) often display atypical learning styles; however, little is known regarding learning-related brain plasticity and its relation to clinical phenotypic features. Here, we investigate cognitive learning and neural plasticity using functional brain imaging and a novel numerical problem-solving training protocol. Children with ASD showed comparable learning relative to typically developing children but were less likely to shift from rule-based to memory-based strategy. While learning gains in typically developing children were associated with greater plasticity of neural representations in the medial temporal lobe and intraparietal sulcus, learning in children with ASD was associated with more stable neural representations. Crucially, the relation between learning and plasticity of neural representations was moderated by insistence on sameness, a core phenotypic feature of ASD. Our study uncovers atypical cognitive and neural mechanisms underlying learning in children with ASD, and informs pedagogical strategies for nurturing cognitive abilities in childhood autism.
Collapse
Affiliation(s)
- Jin Liu
- Department of Psychiatry & Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Hyesang Chang
- Department of Psychiatry & Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Daniel A Abrams
- Department of Psychiatry & Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Julia Boram Kang
- Department of Psychiatry & Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Lang Chen
- Department of Psychiatry & Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
- Department of Psychology, Santa Clara UniversitySanta ClaraUnited States
| | - Miriam Rosenberg-Lee
- Department of Psychiatry & Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
- Department of Psychology, Rutgers UniversityNewarkUnited States
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
- Department of Neurology & Neurological Sciences, Stanford Neurosciences InstituteStanfordUnited States
- Stanford Neurosciences Institute, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
12
|
Justus SA, Mirjalili S, Powell PS, Duarte A. Neural reinstatement of context memory in adults with autism spectrum disorder. Cereb Cortex 2023; 33:8546-8556. [PMID: 37106572 PMCID: PMC10321090 DOI: 10.1093/cercor/bhad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is associated with episodic memory impairment. However, episodic memories include a variety of contextual details, and it is difficult to solely rely on behavioral data to assess how specifically (i.e. event-specific reinstatement) an event is remembered. We applied encoding-retrieval representational similarity (ERS) analysis to EEG data to assess event-specific ERS for object-context associations in a sample of 34 adults (17 with, 17 without ASD). Participants studied objects presented alongside 2 contextual features: scene/color, and attention was directed toward one object-context relationship. At retrieval, memory was assessed for the object and both contexts. Behavioral results revealed no group differences in item or context memory performance. ERS results revealed group temporal differences in reinstatement. Results may indicate differences in both encoding (i.e. fewer perceptual details) and retrieval (i.e. ineffectively skipping through memory fragments) in ASD and should be further investigated in studies modulating the perceptual detail required for memory decisions. Results highlight the utility of ERS as a methodology used to evaluate episodic reinstatement even in the absence of behavioral differences in memory performance.
Collapse
Affiliation(s)
- Sidni A Justus
- Department of Psychological Science, Kennesaw State University, 402 Bartow Ave NW, Kennesaw, GA 30144, United States
| | - Soroush Mirjalili
- Department of Psychology, University of Texas at Austin, 108 E Dean Keeton St, Austin, TX 78712, United States
| | - Patrick S Powell
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta GA 30333, United States
| | - Audrey Duarte
- Department of Psychology, University of Texas at Austin, 108 E Dean Keeton St, Austin, TX 78712, United States
| |
Collapse
|
13
|
Bylemans T, Heleven E, Baetens K, Deroost N, Baeken C, Van Overwalle F. Mentalizing and narrative coherence in autistic adults: Cerebellar sequencing and prediction. Neurosci Biobehav Rev 2023; 146:105045. [PMID: 36646260 DOI: 10.1016/j.neubiorev.2023.105045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
BYLEMANS, T., et al. Mentalizing and narrative coherence in autistic adults: Cerebellar sequencing and prediction. NEUROSCI BIOBEHAV REV, 2022. - This review focuses on autistic adults and serves 4 purposes: (1) providing an overview of their difficulties regarding mentalizing (understanding others' mental states) and narrative coherence (structured storytelling), (2) highlighting the relations between both skills by examining behavioral observations and shared neural substrates, (3) providing an integrated perspective regarding novel diagnostic tools and support services, and (4) raising awareness of adult autism. We suggest that mentalizing and narrative coherence are related at the behavioral level and neural level. In addition to the traditional mentalizing network, the cerebellum probably serves as an important hub in shared cerebral networks implicated in mentalizing and narrative coherence. Future autism research and support services should tackle new questions within a framework of social cerebellar (dys)functioning.
Collapse
Affiliation(s)
- Tom Bylemans
- Brain, Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Elien Heleven
- Brain, Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Kris Baetens
- Brain, Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Natacha Deroost
- Brain, Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Chris Baeken
- Ghent University: Department of Head and Skin (UZGent), Ghent Experimental Psychiatry (GHEP) Lab, Belgium; Vrije Universiteit Brussel (VUB), Department of Psychiatry, University Hospital (UZ Brussel), Brussels, Belgium; Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands.
| | - Frank Van Overwalle
- Brain, Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
14
|
Liu J, Chang H, Abrams DA, Kang JB, Chen L, Rosenberg-Lee M, Menon V. Atypical cognitive training-induced learning and brain plasticity and their relation to insistence on sameness in children with autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525594. [PMID: 36747659 PMCID: PMC9900852 DOI: 10.1101/2023.01.25.525594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Children with autism spectrum disorders (ASD) often display atypical learning styles, however little is known regarding learning-related brain plasticity and its relation to clinical phenotypic features. Here, we investigate cognitive learning and neural plasticity using functional brain imaging and a novel numerical problem-solving training protocol. Children with ASD showed comparable learning relative to typically developing children but were less likely to shift from rule-based to memory-based strategy. Critically, while learning gains in typically developing children were associated with greater plasticity of neural representations in the medial temporal lobe and intraparietal sulcus, learning in children with ASD was associated with more stable neural representations. Crucially, the relation between learning and plasticity of neural representations was moderated by insistence on sameness, a core phenotypic feature of ASD. Our study uncovers atypical cognitive and neural mechanisms underlying learning in children with ASD, and informs pedagogical strategies for nurturing cognitive abilities in childhood autism.
Collapse
Affiliation(s)
- Jin Liu
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Hyesang Chang
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Daniel A. Abrams
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Julia Boram Kang
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Lang Chen
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Department of Psychology, Santa Clara University, Santa Clara, CA 95053
| | - Miriam Rosenberg-Lee
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Department of Psychology, Rutgers University, Newark, NJ 07102
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
15
|
Asiminas A, Lyon SA, Langston RF, Wood ER. Developmental trajectory of episodic-like memory in rats. Front Behav Neurosci 2022; 16:969871. [PMID: 36523755 PMCID: PMC9745197 DOI: 10.3389/fnbeh.2022.969871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/08/2022] [Indexed: 08/17/2023] Open
Abstract
Introduction Episodic memory formation requires the binding of multiple associations to a coherent episodic representation, with rich detail of times, places, and contextual information. During postnatal development, the ability to recall episodic memories emerges later than other types of memory such as object recognition. However, the precise developmental trajectory of episodic memory, from weaning to adulthood has not yet been established in rats. Spontaneous object exploration tasks do not require training, and allow repeated testing of subjects, provided novel objects are used on each trial. Therefore, these tasks are ideally suited for the study of the ontogeny of episodic memory and its constituents (e.g., object, spatial, and contextual memory). Methods In the present study, we used four spontaneous short-term object exploration tasks over two days: object (OR), object-context (OCR), object-place (OPR), and object-place-context (OPCR) recognition to characterise the ontogeny of episodic-like memory and its components in three commonly used outbred rat strains (Lister Hooded, Long Evans Hooded, and Sprague Dawley). Results In longitudinal studies starting at 3-4 weeks of age, we observed that short term memory for objects was already present at the earliest time point we tested, indicating that it is established before the end of the third week of life (consistent with several other reports). Object-context memory developed during the fifth week of life, while both object-in-place and the episodic-like object-place-context memory developed around the seventh postnatal week. To control for the effects of previous experience in the development of associative memory, we confirmed these developmental trajectories using a cross-sectional protocol. Discussion Our work provides robust evidence for different developmental trajectories of recognition memory in rats depending on the content and/or complexity of the associations and emphasises the utility of spontaneous object exploration tasks to assess the ontogeny of memory systems with high temporal resolution.
Collapse
Affiliation(s)
- Antonis Asiminas
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Stephanie A. Lyon
- Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Rosamund F. Langston
- Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Emma R. Wood
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Brain Development and Repair, Bengaluru, India
| |
Collapse
|
16
|
Cooper RA, Ritchey M. Patterns of episodic content and specificity predicting subjective memory vividness. Mem Cognit 2022; 50:1629-1643. [PMID: 35246786 DOI: 10.3758/s13421-022-01291-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 12/30/2022]
Abstract
The ability to remember and internally represent events is often accompanied by a subjective sense of "vividness". Vividness measures are frequently used to evaluate the experience of remembering and imagining events, yet little research has considered the objective attributes of event memories that underlie this subjective judgment, and individual differences in this mapping. Here, we tested how the content and specificity of event memories support subjectively vivid recollection. Over three experiments, participants encoded events containing a theme word and three distinct elements - a person, a place, and an object. In a memory test, memory for event elements was assessed at two levels of specificity - semantic gist (names) and perceptual details (lure discrimination). We found a strong correspondence between memory vividness and memory for gist information that did not vary by which elements were contained in memory. There was a smaller, additive benefit of remembering specific perceptual details on vividness, which, in one study, was driven by memory for place details. Moreover, we found individual differences in the relationship between memory vividness and objective memory attributes primarily along the specificity dimension, such that one cluster of participants used perceptual detail to inform memory vividness whereas another cluster was more driven by gist information. Therefore, while gist memory appears to drive vividness on average, there were idiosyncrasies in this pattern across participants. When assessing subjective ratings of memory and imagination, research should consider how these ratings map onto objective memory attributes in the context of their study design and population.
Collapse
Affiliation(s)
- Rose A Cooper
- Department of Psychology, Northeastern University, Boston, MA, USA.
- Roux Institute, Northeastern University, Boston, MA, USA.
| | - Maureen Ritchey
- Department of Psychology and Neuroscience, Boston College, Boston, MA, USA
| |
Collapse
|
17
|
Taheri F, Esmaeilpour K, Sepehri G, Sheibani V, Ur Rehman N, Maneshian M. Histamine H3 receptor antagonist, ciproxifan, alleviates cognition and synaptic plasticity alterations in a valproic acid-induced animal model of autism. Psychopharmacology (Berl) 2022; 239:2673-2693. [PMID: 35538250 DOI: 10.1007/s00213-022-06155-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/21/2022] [Indexed: 11/27/2022]
Abstract
RATIONALE Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and cognitive behaviors. Histamine H3 receptor (H3R) antagonists are considered as therapeutic factors for treating cognitive impairments. OBJECTIVES The aim of the present study was to evaluate the effects of the H3R antagonist, ciproxifan (CPX), on cognition impairment especially, spatial learning memory, and synaptic plasticity in the CA1 region of the hippocampus in autistic rats. METHODS Pregnant rats were injected with either valproic acid (VPA) (600 mg/kg, i.p.) or saline on an embryonic day 12.5 (E12.5). The effects of the H3R antagonist, ciproxifan (CPX) (1, 3 mg/kg, i.p.), were investigated on learning and memory in VPA-exposed rat pups and saline-exposed rat pups using Morris water maze (MWM) and social interaction tasks. The H2R antagonist, famotidine (FAM) (10, 20, 40 mg/kg, i.p.), was used to determine whether brain histaminergic neurotransmission exerted its procognitive effects through the H2R. In addition, synaptic reinforcement was evaluated by in vivo field potential recording. RESULTS The results showed that VPA-exposed rat pups had significantly lower sociability and social memory performance compared to the saline rats. VPA-exposed rat pups exhibited learning and memory impairments in the MWM task. In addition, VPA caused suppression of long-term potentiation (LTP) in the CA1 area of the hippocampus. Our results demonstrated that CPX 3 mg/kg improved VPA-induced cognitive impairments and FAM 20 mg/kg attenuated cognitive behaviors as well as electrophysiological properties. CONCLUSIONS CPX 3 mg/kg improved VPA-induced impairments of LTP as well as learning and memory deficits through H2R.
Collapse
Affiliation(s)
- Farahnaz Taheri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Physics and Astronomy Department, University of Waterloo, Waterloo, Ontario, Canada.
| | - Gholamreza Sepehri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Naeem Ur Rehman
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Marzieh Maneshian
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
18
|
The Distinctive Pattern of Declarative Memories in Autism Spectrum Disorder: Further Evidence of Episodic Memory Constraints. J Autism Dev Disord 2022:10.1007/s10803-022-05579-y. [PMID: 35616819 DOI: 10.1007/s10803-022-05579-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2022] [Indexed: 10/18/2022]
Abstract
This study examines declarative memory retrieval in ASD depending on the availability and access to stored conceptual knowledge. Fifteen autistic participants and a matched control group of 18 typically-developed (TD) volunteers completed a Remember-Know paradigm manipulated by encoding-type (categorical, perceptual) and item-typicality (high-typical, low-typical). The autistic group showed worse and slower recognition and less recollection but equivalent familiarity-based memories compared to TDs. Notably, low-typical items did not improve their memories as they did for TDs, likely due to difficulties in matching low-fit information to the stored schema. Results suggest that memory decline in ASD may derive from the episodic system and its dynamics with the semantic system. These findings may inform interventional strategies for enhancing learning abilities in ASD.
Collapse
|
19
|
Hus Y. Detecting Time Concept Competence in Children with Autism Spectrum and Attention Disorders. Neuropsychiatr Dis Treat 2022; 18:2323-2348. [PMID: 36276427 PMCID: PMC9579054 DOI: 10.2147/ndt.s331985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/12/2022] [Indexed: 11/07/2022] Open
Abstract
The importance of time concept in human existence is "ancient history" celebrated in the biblical book Ecclesiastes. Indeed, our time-sensitive mechanisms are literally carved into our biology and neurology on a molecular level, gifting us with neural clocks. However, time in human consciousness is not the time indicated by physical clocks: time is a subjective reality in our psychological makeup due to the nature of the temporal neural mechanisms and unique properties of physical time. Nonetheless, subjective time requires anchoring to physical time which permeates our language, endeavors, and entire existence, a process hinging on time-related skills such as estimates and measures of passage and duration of time. Moreover, accurate time reading, a critical adaptive life-skill, is imperative for effective function in all societal activities. Because it embodies the complexity of the time construct, it is central to instruction of time concept in primary education. It is often measured in children by clock drawings, a cognitive integrative skill with errors pointing to neuroanatomical differences impacting the integrity of executive function. Time competence in children with atypical neurobiological development and high prevalence, as in autism spectrum disorders (ASD), and attention disorders (ADHD), is often compromised, calling for investigation of its function. This thematic review article aims to: 1) discuss the complexity of time concept and its underlying bio-neurological mechanisms, 2) elucidate difficulties children with ASD and those with ADHD exhibit in temporal development, and 3) demonstrate the use of a set of clinical tools in uncovering temporal competence and ecological executive function in two children with ASD, and a child with ADHD, using a clock drawing task and error analyses; children's time knowledge questionnaire; a behavior rating parent questionnaire examining ecological executive function, and parent open-ended questions related to their children's time difficulties. A discussion, directions, and a take-home message round out the article.
Collapse
Affiliation(s)
- Yvette Hus
- Cyprus University of Technology, Department of Rehabilitation Sciences, Theralab Research Collaborator Under Direction of Prof. Kakia Petinou, Limassol, Cyprus
| |
Collapse
|
20
|
I remember it like it was yesterday: Age-related differences in the subjective experience of remembering. Psychon Bull Rev 2021; 29:1223-1245. [PMID: 34918271 DOI: 10.3758/s13423-021-02048-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 11/08/2022]
Abstract
It has been frequently described that older adults subjectively report the vividness of their memories as being as high, or even higher, than young adults, despite poorer objective memory performance. Here, we review studies that examined age-related differences in the subjective experience of memory vividness. By examining vividness calibration and resolution, studies using different types of approaches converge to suggest that older adults overestimate the intensity of their vividness ratings relative to young adults, and that they rely on retrieved memory details to a lesser extent to judge vividness. We discuss potential mechanisms underlying these observations. Inflation of memory vividness with regard to the richness of memory content may stem from age-differences in vividness criterion or scale interpretation and psycho-social factors. The reduced reliance on episodic memory details in older adults may stem from age-related differences in how they monitor these details to make their vividness ratings. Considered together, these findings emphasize the importance of examining age-differences in memory vividness using different analytical methods and they provide valuable evidence that the subjective experience of remembering is more than the reactivation of memory content. In this vein, we recommend that future studies explore the links between memory vividness and other subjective memory scales (e.g., ratings of details or memory confidence) in healthy aging and/or other populations, as it could be used as a window to better characterize the cognitive processes that underpin the subjective assessment of the quality of recollected events.
Collapse
|
21
|
Bagnall R, Russell A, Brosnan M, Maras K. Deceptive behaviour in autism: A scoping review. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2021; 26:293-307. [PMID: 34825581 PMCID: PMC8814957 DOI: 10.1177/13623613211057974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
LAY ABSTRACT The ability to deceive others is an important skill that usually develops in early childhood. In this review, we give an overview of studies that have examined deceptive behaviour in autistic children, adolescents and adults. We separated the study findings into three main categories and seven sub-categories: (1) Deception ability and prevalence (1a) gameplay deception; (1b) naturalistic deception; (2) Psychological processes in deception (2a) verbal, intellectual and social ability; (2b) ability to understand others' thoughts and beliefs; (2c) cognitive ability; and (3) Social learning (3a) training; (3b) social contexts. Contrary to some stereotypes, we found that autistic people can and do deceive but often find this more difficult than non-autistic people. We also found that autistic people may use different psychological processes than non-autistic people when deceiving and may get better at deception in adulthood.
Collapse
|
22
|
Paterno R, Marafiga JR, Ramsay H, Li T, Salvati KA, Baraban SC. Hippocampal gamma and sharp-wave ripple oscillations are altered in a Cntnap2 mouse model of autism spectrum disorder. Cell Rep 2021; 37:109970. [PMID: 34758298 PMCID: PMC8783641 DOI: 10.1016/j.celrep.2021.109970] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/02/2021] [Accepted: 10/19/2021] [Indexed: 01/02/2023] Open
Abstract
Impaired synaptic neurotransmission may underly circuit alterations contributing to behavioral autism spectrum disorder (ASD) phenotypes. A critical component of impairments reported in somatosensory and prefrontal cortex of ASD mouse models are parvalbumin (PV)-expressing fast-spiking interneurons. However, it remains unknown whether PV interneurons mediating hippocampal networks crucial to navigation and memory processing are similarly impaired. Using PV-labeled transgenic mice, a battery of behavioral assays, in vitro patch-clamp electrophysiology, and in vivo 32-channel silicon probe local field potential recordings, we address this question in a Cntnap2-null mutant mouse model representing a human ASD risk factor gene. Cntnap2-/- mice show a reduction in hippocampal PV interneuron density, reduced inhibitory input to CA1 pyramidal cells, deficits in spatial discrimination ability, and frequency-dependent circuit changes within the hippocampus, including alterations in gamma oscillations, sharp-wave ripples, and theta-gamma modulation. Our findings highlight hippocampal involvement in ASD and implicate interneurons as a potential therapeutical target.
Collapse
Affiliation(s)
- Rosalia Paterno
- Department of Neurological Surgery and Weill Institute of Neuroscience, University of California, San Francisco, CA 94143, USA.
| | - Joseane Righes Marafiga
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Brazil
| | - Harrison Ramsay
- Department of Neurological Surgery and Weill Institute of Neuroscience, University of California, San Francisco, CA 94143, USA
| | - Tina Li
- Department of Neurological Surgery and Weill Institute of Neuroscience, University of California, San Francisco, CA 94143, USA
| | - Kathryn A Salvati
- Department of Neurological Surgery and Weill Institute of Neuroscience, University of California, San Francisco, CA 94143, USA
| | - Scott C Baraban
- Department of Neurological Surgery and Weill Institute of Neuroscience, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
23
|
Intact context memory performance in adults with autism spectrum disorder. Sci Rep 2021; 11:20482. [PMID: 34650189 PMCID: PMC8516951 DOI: 10.1038/s41598-021-99898-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Research on memory in autism spectrum disorder (ASD) finds increased difficulty encoding contextual associations in episodic memory and suggests executive dysfunction (e.g., selective attention, cognitive flexibility) and deficient metacognitive monitoring as potential contributing factors. Findings from our lab suggest that age-related impairments in selective attention contribute to those in context memory accuracy and older adults tended to show dependence in context memory accuracy between relevant and irrelevant context details (i.e., hyper-binding). Using an aging framework, we tested the effects of selective attention on context memory in a sample of 23 adults with ASD and 23 typically developed adults. Participants studied grayscale objects flanked by two types of contexts (color, scene) on opposing sides and were told to attend to only one object-context relationship, ignoring the other context. At test, participants made object and context recognition decisions and judgment of confidence decisions allowing for an evaluation of context memory performance, hyper-binding, and metacognitive performance for context judgments in a single task. Results showed that adults with ASD performed similarly to typically developed adults on all measures. These findings suggest that context memory performance is not always disrupted in adults with ASD, even when demands on selective attention are high. We discuss the need for continued research to evaluate episodic memory in a wider variety of adults with ASD.
Collapse
|
24
|
Implicit and Explicit Memory in Youths with High-Functioning Autism Spectrum Disorder: A Case-Control Study. J Clin Med 2021; 10:jcm10184283. [PMID: 34575393 PMCID: PMC8464918 DOI: 10.3390/jcm10184283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
Individuals with autism spectrum disorder (ASD) usually manifest heterogeneous impairments in their higher cognitive functions, including their implicit memory (IM) and explicit memory (EM). However, the findings on IM and EM in youths with ASD remain debated. The aim of this study was to clarify such conflicting results by examining IM and EM using two comparable versions of the Serial Reaction Time Task (SRTT) in the same group of children and adolescents with ASD. Twenty-five youths with high-functioning ASD and 29 age-matched and IQ-matched typically developing youths undertook both tasks. The ability to implicitly learn the temporal sequence of events across the blocks in the SRTT was intact in the youths with ASD. When they were tested for EM, the participants with ASD did not experience a significant reduction in their reaction times during the blocks with the previously learned sequence, suggesting an impairment in EM. Moreover, the participants with ASD were less accurate and made more omissions than the controls in the EM task. The implications of these findings for the establishment of tailored educational programs for children with high-functioning ASD are discussed.
Collapse
|
25
|
Banker SM, Gu X, Schiller D, Foss-Feig JH. Hippocampal contributions to social and cognitive deficits in autism spectrum disorder. Trends Neurosci 2021; 44:793-807. [PMID: 34521563 DOI: 10.1016/j.tins.2021.08.005] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/07/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Autism spectrum disorder (ASD) is characterized by hallmark impairments in social functioning. Nevertheless, nonsocial cognition, including hippocampus-dependent spatial reasoning and episodic memory, is also commonly impaired in ASD. ASD symptoms typically emerge between 12 and 24 months of age, a time window associated with critical developmental events in the hippocampus. Despite this temporal overlap and evidence of hippocampal structural abnormalities in ASD individuals, relatively few human studies have focused on hippocampal function in ASD. Herein, we review the existing evidence for the involvement of the hippocampus in ASD and highlight the hippocampus as a promising area of interest for future research in ASD.
Collapse
Affiliation(s)
- Sarah M Banker
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Xiaosi Gu
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniela Schiller
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jennifer H Foss-Feig
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
26
|
Benítez-Burraco A, Ferretti F, Progovac L. Human Self-Domestication and the Evolution of Pragmatics. Cogn Sci 2021; 45:e12987. [PMID: 34170029 DOI: 10.1111/cogs.12987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
As proposed for the emergence of modern languages, we argue that modern uses of languages (pragmatics) also evolved gradually in our species under the effects of human self-domestication, with three key aspects involved in a complex feedback loop: (a) a reduction in reactive aggression, (b) the sophistication of language structure (with emerging grammars initially facilitating the transition from physical aggression to verbal aggression); and (c) the potentiation of pragmatic principles governing conversation, including, but not limited to, turn-taking and inferential abilities. Our core hypothesis is that the reduction in reactive aggression, one of the key factors in self-domestication processes, enabled us to fully exploit our cognitive and interactional potential as applied to linguistic exchanges, and ultimately to evolve a specific form of communication governed by persuasive reciprocity-a trait of human conversation characterized by both competition and cooperation. In turn, both early crude forms of language, well suited for verbal aggression/insult, and later more sophisticated forms of language, well suited for persuasive reciprocity, significantly contributed to the resolution and reduction of (physical) aggression, thus having a return effect on the self-domestication processes. Supporting evidence for our proposal, as well as grounds for further testing, comes mainly from the consideration of cognitive disorders, which typically simultaneously present abnormal features of self-domestication (including aggressive behavior) and problems with pragmatics and social functioning. While various approaches to language evolution typically reduce it to a single factor, our approach considers language evolution as a multifactorial process, with each player acting upon the other, engaging in an intense mutually reinforcing feedback loop. Moreover, we see language evolution as a gradual process, continuous with the pre-linguistic cognitive abilities, which were engaged in a positive feedback loop with linguistic innovations, and where gene-culture co-evolution and cultural niche construction were the main driving forces.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics and Theory of Literature (Linguistics), Faculty of Philology, University of Seville
| | - Francesco Ferretti
- Department of Philosophy, Communication and Performing Arts. Roma Tre University
| | | |
Collapse
|
27
|
The Episodic Memory Profile in Autism Spectrum Disorder: A Bayesian Meta-Analysis. Neuropsychol Rev 2021; 32:316-351. [PMID: 33954915 DOI: 10.1007/s11065-021-09493-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/24/2021] [Indexed: 10/21/2022]
Abstract
Although autism spectrum disorders (ASD) are commonly characterized by diminished episodic memory, the literature in this area is mixed. We address these inconsistent findings by employing multilevel Bayesian meta-analysis to quantify episodic memory differences between individuals with ASD and typically developing (TD) controls. We used meta-regression to evaluate the effects of test modality (e.g., word list, story recall), delay interval (immediate vs. delayed), retrieval demands (recognition vs. recall), and sensory modality (auditory vs. visual) on episodic memory in ASD. A total of 338 effect sizes from 113 empirical articles, including 5,632 unique participants (ASD = 2,777, TD = 2,855), were included. Results show that the memory deficits associated with ASD were larger for recall (g = -0.52, se = 0.04, 95% CrI [-0.60, -0.43]) compared to recognition (g = -0.25, se = 0.05, 95% CrI [-0.35, -0.14]) and differed based on the testing modality. For example, effect sizes were smallest for words (g = -0.28, se = 0.05, 95% CrI [-0.38, -0.18]), pictures (g = -0.38, se = 0.07, 95% CrI [-0.52, -0.24]), and figure reproduction (g = -0.49, se = 0.11, 95% CrI [-0.70, -0.27]). However, effect sizes for sentences (g = -0.59, se = 0.20, 95% CrI [-1.00, -0.21]), stories (Hedges' g = -0.54, se = 0.08, 95% CrI [-0.69, -0.38]) and staged events (g = -0.75, se = 0.10, 95% CrI [-0.95, -0.55]) were much larger. These findings suggest that ASD is associated with a small to medium reduction in scores on episodic memory tests relative to TD controls.
Collapse
|
28
|
Ring M, Guillery-Girard B, Quinette P, Gaigg SB, Bowler DM. Short-Term Memory Span and Cross-Modality Integration in Younger and Older Adults With and Without Autism Spectrum Disorder. Autism Res 2020; 13:1970-1984. [PMID: 32926571 DOI: 10.1002/aur.2387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 11/09/2022]
Abstract
This study tested whether adults with autism spectrum disorder (ASD) show the same pattern of difficulties and absence of age-related differences in short-term memory (STM) as those that have been reported in episodic long-term memory (LTM). Fifty-three adults with ASD (age range: 25-65 years) were compared to 52 age-, biological sex-, and intelligence-matched typically developing (TD; age range: 21-67 years) adults on three STM span tasks, which tested STM performance for letters (Verbal), grid locations (Visuospatial), or letters in grid locations (Multimodal). A subsample of 34 TD and 33 ASD participants ranging in age from 25 to 64 years completed a fourth Multimodal Integration task. We also administered the Color Trails Test as a measure of executive function. ASD participants' accuracy was lower than that of the TD participants on the three span tasks (Cohen's d: 0.26-0.50). The Integration task difference was marginally significant (p = .07) but had a moderate effect size (Cohen's d = 0.50). Regression analyses confirmed reduced STM performance only for older TD participants. Analyses also indicated that executive processes played a greater role in the ASD group's performance. The demonstration of similar difficulties and age-related patterning of STM in ASD to those documented for LTM and the greater recruitment of executive processes by older ASD participants on the Integration task suggest a compensatory role of frontal processes both as a means of achieving undiminished task performance and as a possible protection against older age cognitive decline in ASD. Longitudinal research is needed to confirm this. Autism Res 2020, 13: 1970-1984. © 2020 The Authors. Autism Research published by International Society for Autism Research and Wiley Periodicals LLC. LAY SUMMARY: Little is known about short-term memory (STM) in younger and older adults with autism spectrum disorder (ASD). This study tested different kinds of STM and showed that ASD adults remembered shorter sequences of letters, crosses, or letters in grid cells less well than matched participants with typical development. However, older ASD individuals performed similarly to younger ASD individuals, nor showing the reduction in performance usually seen with older age. The data suggest that ASD individuals use different underlying mechanisms when performing the tasks and that this might help protect their memory as they grow older.
Collapse
Affiliation(s)
- Melanie Ring
- Clinic of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Autism Research Group, Department of Psychology, City, University of London, London, UK
| | - Bérengère Guillery-Girard
- Normandie Univ., UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Peggy Quinette
- Normandie Univ., UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Sebastian B Gaigg
- Autism Research Group, Department of Psychology, City, University of London, London, UK
| | - Dermot M Bowler
- Autism Research Group, Department of Psychology, City, University of London, London, UK
| |
Collapse
|
29
|
Exploring the Event‐Related Potentials' Time Course of Associative Recognition in Autism. Autism Res 2020; 13:1998-2016. [DOI: 10.1002/aur.2384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 11/07/2022]
|
30
|
Mogensen RLH, Hedegaard MB, Olsen LR, Gebauer L. Linking the Puzzle Pieces of the Past: A Study of Relational Memory in Children with Autism Spectrum Disorder. Autism Res 2020; 13:1959-1969. [PMID: 32869928 DOI: 10.1002/aur.2379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 06/29/2020] [Accepted: 07/30/2020] [Indexed: 11/07/2022]
Abstract
Our memories are made of detailed sensory information representing the puzzle pieces of our personal past. The type of memory integrating sensory features is referred to as relational memory. The main objective of this study was to investigate whether relational memory is affected in children with autism spectrum disorder (ASD) since altered relational memory may contribute to atypical episodic memory observed in ASD. We also examined the association between perceptual style and relational memory abilities. Children with ASD (n = 14) and typically developed (TD) children (n = 16, 9-15 years old) completed a memory task with three conditions: two single-feature conditions measuring memory for objects and locations, and one relational memory condition measuring memory for objects and their locations combined. The Children's embedded figures test was administered to measure perceptual style. The ASD group selected more incorrect stimuli (false alarms) than the TD group, resulting in a lower proportion of correctly recognized targets across all memory conditions. The ASD group did not display a more local perceptual style than the TD group. However, perceptual style was associated with improved memory abilities across conditions. Our findings indicate that the overall memory performance of children with ASD is less stable, leading them to more incorrect responses than TD children. This may be due to the executive demands of the memory tasks, rather than specific impairments in memory binding. Autism Res 2020, 13: 1959-1969. © 2020 International Society for Autism Research and Wiley Periodicals LLC LAY SUMMARY: The present study shows that children with autism have a less stable memory than typically developed children, which is reflected in a higher amount of incorrect memory responses. Overall, our results indicate that children with autism display difficulties in differentiating previously studied from novel information when solving both single-feature memory tasks and a relational memory task (requiring memory of combination of features). These difficulties may have implications for how children with autism remember episodes from their personal past.
Collapse
Affiliation(s)
- Rasmine L H Mogensen
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Maja B Hedegaard
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | | | - Line Gebauer
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
- Langagerskolen-Special Education for Children with ASD and ADHD, Aarhus, Denmark
| |
Collapse
|
31
|
Maras K, Dando C, Stephenson H, Lambrechts A, Anns S, Gaigg S. The Witness-Aimed First Account (WAFA): A new technique for interviewing autistic witnesses and victims. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2020; 24:1449-1467. [PMID: 32168990 PMCID: PMC7376626 DOI: 10.1177/1362361320908986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
LAY ABSTRACT Autistic people may be more likely to be interviewed by police as a victim/witness, yet they experience social communication difficulties alongside specific memory difficulties that can impact their ability to recall information from memory. Police interviewing techniques do not take account of these differences, and so are often ineffective. We developed a new technique for interviewing autistic witnesses, referred to a Witness-Aimed First Account, which was designed to better support differences in the way that autistic witnesses process information in memory. The Witness-Aimed First Account technique encourages witnesses to first segment the witnessed event into discrete, parameter-bound event topics, which are then displayed on post-it notes while the witness goes onto freely recall as much information as they can from within each parameter-bound topic in turn. Since witnessed events are rarely cohesive stories with a logical chain of events, we also explored autistic and non-autistic witnesses' recall when the events were witnessed in a random (nonsensical) order. Thirty-three autistic and 30 typically developing participants were interviewed about their memory for two videos depicting criminal events. Clip segments of one video were 'scrambled', disrupting the event's narrative structure; the other video was watched intact. Although both autistic and non-autistic witnesses recalled fewer details with less accuracy from the scrambled video, Witness-Aimed First Account interviews resulted in more detailed and accurate recall from both autistic and non-autistic witnesses, for both scrambled and unscrambled videos. The Witness-Aimed First Account technique may be a useful tool to improve witnesses' accounts within a legally appropriate, non-leading framework.
Collapse
|
32
|
Anns S, Gaigg SB, Hampton JA, Bowler DM, Boucher J. Declarative Memory and Structural Language Impairment in Autistic Children and Adolescents. Autism Res 2020; 13:1947-1958. [PMID: 32207566 DOI: 10.1002/aur.2282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/07/2020] [Accepted: 01/28/2020] [Indexed: 11/11/2022]
Abstract
Two experiments tested the hypothesis that a plausible contributory factor of structural language impairment in Autism Spectrum Disorder (ASD) is impaired declarative memory. We hypothesized that familiarity and recollection (subserving semantic and episodic memory, respectively) are both impaired in autistic individuals with clinically significant language impairment and learning disability (ASDLI/LD ); whereas recollection is selectively impaired in autistic individuals with typical language (ASDTL ). Teenagers with ASDLI/LD (n = 19) and primary school age children with ASDTL (n = 26) were compared with teenagers with learning disability (LD) (n = 26) without autism, and primary school aged typically developing (TD) children (n = 32). Both experiments provided strong support for the hypothesized links between declarative memory processes and lexical-semantic facets of language in the two autistic groups, but not in the TD group. Additional findings of interest were that declarative memory processes and lexical-semantic knowledge were also linked in the LD group and that the ASD groups-and to a lesser extent the LD group-may have compensated for declarative memory impairments using spared visual-perceptual abilities, a finding with potential educational implications. Relative difficulties with familiarity and recollection in ASDLI/LD and LD may help explain structural language impairment, as investigated here, but also the broader learning disabilities found in these populations. Autism Res 2020. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. Autism Res 2020, 13: 1947-1958. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Language impairment and learning disability affect 45% of the autistic population yet the factors that may be contributing to them is remarkably under-researched. To date there are no explanations of the lexical semantic (word meaning) abnormalities observed in ASD. We found that declarative memory is associated with lexical semantic knowledge in autism and learning disability but not in typical development. Difficulties with declarative memory may also be compensated for using visual-perceptual abilities by autistic and learning-disabled adolescents, which has positive implications for educationalists.
Collapse
Affiliation(s)
- Sophie Anns
- School of Psychology, University of Sussex, Falmer, UK
| | | | | | | | - Jill Boucher
- Autism Research Group, City, University of London, UK
| |
Collapse
|
33
|
Lobzhanidze G, Japaridze N, Lordkipanidze T, Rzayev F, MacFabe D, Zhvania M. Behavioural and brain ultrastructural changes following the systemic administration of propionic acid in adolescent male rats. Further development of a rodent model of autism. Int J Dev Neurosci 2020; 80:139-156. [PMID: 31997401 DOI: 10.1002/jdn.10011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/08/2020] [Accepted: 01/19/2020] [Indexed: 12/18/2022] Open
Abstract
Short chain fatty acids, produced as gut microbiome metabolites but also present in the diet, exert broad effects in host physiology. Propionic acid (PPA), along with butyrate and acetate, plays a growing role in health, but also in neurological conditions. Increased PPA exposure in humans, animal models and cell lines elicit diverse behavioural and biochemical changes consistent with organic acidurias, mitochondrial disorders and autism spectrum disorders (ASD). ASD is considered a disorder of synaptic dysfunction and cell signalling, but also neuroinflammatory and neurometabolic components. We examined behaviour (Morris water and radial arm mazes) and the ultrastructure of the hippocampus and medial prefrontal cortex (electron microscopy) following a single intraperitoneal (i.p.) injection of PPA (175 mg/kg) in male adolescent rats. PPA treatment showed altered social and locomotor behaviour without changes in learning and memory. Both transient and enduring ultrastructural alterations in synapses, astro- and microglia were detected in the CA1 hippocampal area. Electron microscopic analysis showed the PPA treatment significantly decreased the total number of synaptic vesicles, presynaptic mitochondria and synapses with a symmetric active zone. Thus, brief systemic administration of this dietary and enteric short chain fatty acid produced behavioural and dynamic brain ultrastructural changes, providing further validation of the PPA model of ASD.
Collapse
Affiliation(s)
- Giorgi Lobzhanidze
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia.,Department of Brain Ultrastructure and Nanoarchitecture, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Nadezhda Japaridze
- Department of Brain Ultrastructure and Nanoarchitecture, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia.,Medical School, New Vision University, Tbilisi, Georgia
| | - Tamar Lordkipanidze
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia.,Department of Brain Ultrastructure and Nanoarchitecture, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Fuad Rzayev
- Laboratory of Electron Microscopy, Research Center of Azerbaijan Medical University, Baku, Azerbaijan
| | - Derrick MacFabe
- The Kilee Patchell-Evans Autism Research Group, London, ON, Canada.,Faculty of Medicine, Department of Microbiology, Center for Healthy Eating and Food Innovation, Maastricht University, Maastricht, the Netherlands
| | - Mzia Zhvania
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia.,Department of Brain Ultrastructure and Nanoarchitecture, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| |
Collapse
|
34
|
Fletcher FE, Knowland V, Walker S, Gaskell MG, Norbury C, Henderson LM. Atypicalities in sleep and semantic consolidation in autism. Dev Sci 2019; 23:e12906. [PMID: 31569286 PMCID: PMC7187235 DOI: 10.1111/desc.12906] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/22/2019] [Accepted: 09/27/2019] [Indexed: 11/29/2022]
Abstract
Sleep is known to support the neocortical consolidation of declarative memory, including the acquisition of new language. Autism spectrum disorder (ASD) is often characterized by both sleep and language learning difficulties, but few studies have explored a potential connection between the two. Here, 54 children with and without ASD (matched on age, nonverbal ability and vocabulary) were taught nine rare animal names (e.g., pipa). Memory was assessed via definitions, naming and speeded semantic decision tasks immediately after learning (pre‐sleep), the next day (post‐sleep, with a night of polysomnography between pre‐ and post‐sleep tests) and roughly 1 month later (follow‐up). Both groups showed comparable performance at pre‐test and similar levels of overnight change on all tasks; but at follow‐up children with ASD showed significantly greater forgetting of the unique features of the new animals (e.g., pipa is a flat frog). Children with ASD had significantly lower central non‐rapid eye movement (NREM) sigma power. Associations between spindle properties and overnight changes in speeded semantic decisions differed by group. For the TD group, spindle duration predicted overnight changes in responses to novel animals but not familiar animals, reinforcing a role for sleep in the stabilization of new semantic knowledge. For the ASD group, sigma power and spindle duration were associated with improvements in responses to novel and particularly familiar animals, perhaps reflecting more general sleep‐associated improvements in task performance. Plausibly, microstructural sleep atypicalities in children with ASD and differences in how information is prioritized for consolidation may lead to cumulative consolidation difficulties, compromising the quality of newly formed semantic representations in long‐term memory.
Collapse
Affiliation(s)
| | | | - Sarah Walker
- Department of Psychology, University of York, York, UK
| | | | | | | |
Collapse
|
35
|
Hogeveen J, Krug MK, Geddert RM, Ragland JD, Solomon M. Compensatory Hippocampal Recruitment Supports Preserved Episodic Memory in Autism Spectrum Disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 5:97-109. [PMID: 31676207 DOI: 10.1016/j.bpsc.2019.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND The degree to which individuals with autism spectrum disorder (ASD) evidence impairments in episodic memory relative to their typically developing (TD) counterparts remains unclear. According to a prominent view, ASD is associated with deficits in encoding associations between items and recollecting precise context details. Here, we evaluated behavioral and neural evidence for this impaired relational binding hypothesis using a task involving relational encoding and recollection during functional magnetic resonance imaging. METHODS Adolescents and young adults (nASD = 47, nTD = 60) performed the Relational and Item-Specific Encoding task during functional magnetic resonance imaging, including item and associative recognition testing. We modeled functional recruitment within the medial temporal lobes (MTLs), and connectivity between MTL and the posterior medial (PM) network thought to underlie relational memory. The impaired relational binding model would predict a behavioral deficit driven by aberrant recruitment and connectivity of MTL and the PM network. RESULTS The ASD and TD groups showed indistinguishable item and associative recognition performance. During relational encoding, the ASD group demonstrated increased hippocampal recruitment, and decreased connectivity between MTL and PM regions relative to the TD group. Within ASD, hippocampal recruitment and MTL-PM connectivity were inversely correlated. CONCLUSIONS The lack of a behavioral deficit in ASD does not support the impaired relational binding hypothesis. Instead, the current data suggest that increased recruitment of the hippocampus compensates for decreased MTL-PM connectivity to support preserved episodic memory in ASD. These findings suggest a compensatory neurodevelopmental mechanism that may support preserved cognitive domains in ASD: local hyperrecruitment may offset connectivity aberrations in individuals with ASD relative to TD subjects.
Collapse
Affiliation(s)
- Jeremy Hogeveen
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico; Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, New Mexico.
| | - Marie K Krug
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; MIND Institute, University of California, Davis, Davis, California
| | - Raphael M Geddert
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina
| | - J Daniel Ragland
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; Imaging Research Center, University of California, Davis, Davis, California
| | - Marjorie Solomon
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; MIND Institute, University of California, Davis, Davis, California; Imaging Research Center, University of California, Davis, Davis, California
| |
Collapse
|
36
|
Anger M, Wantzen P, Le Vaillant J, Malvy J, Bon L, Guénolé F, Moussaoui E, Barthelemy C, Bonnet-Brilhault F, Eustache F, Baleyte JM, Guillery-Girard B. Positive Effect of Visual Cuing in Episodic Memory and Episodic Future Thinking in Adolescents With Autism Spectrum Disorder. Front Psychol 2019; 10:1513. [PMID: 31354565 PMCID: PMC6629950 DOI: 10.3389/fpsyg.2019.01513] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 06/17/2019] [Indexed: 01/09/2023] Open
Abstract
Cognitive studies generally report impaired autobiographical memory in individuals with autism spectrum disorder (ASD), but mostly using verbal paradigms. In the present study, we therefore investigated the properties of both past and future autobiographical productions using visual cues in 16 boys with ASD and 16 typically developing (TD) participants aged between 10 and 18 years. We focused on sensory properties, emotional properties, and recollection, probing past and future productions for both near and distant time periods. Results showed that the ASD group performed more poorly than controls on free recall for recent periods, but performed like them when provided with visual cues. In addition, the ASD group reported fewer sensory details than controls and exhibited difficulties in the experience of recollection for the most remote events. These data suggest a combination of consolidation and binding deficits. Finally, our findings reveal the relevance of using visual cues to probe autobiographical memory, with possible perspectives for memory rehabilitation.
Collapse
Affiliation(s)
- Marine Anger
- Normandie Université, UNICAEN, PSL Universités Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
- Service de Psychiatrie de l’Enfant et de l’Adolescent, CHU de Caen, Caen, France
| | - Prany Wantzen
- Normandie Université, UNICAEN, PSL Universités Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Justine Le Vaillant
- Normandie Université, UNICAEN, PSL Universités Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
- Service de Psychiatrie de l’Enfant et de l’Adolescent, CHU de Caen, Caen, France
| | - Joëlle Malvy
- UMR 1253, iBrain, Université de Tours, INSERM, Centre Universitaire de Pédopsychiatrie, CHRU de Tours, Tours, France
| | - Laetitia Bon
- Normandie Université, UNICAEN, PSL Universités Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
- Service de Psychiatrie de l’Enfant et de l’Adolescent, CHU de Caen, Caen, France
| | - Fabian Guénolé
- Normandie Université, UNICAEN, PSL Universités Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
- Service de Psychiatrie de l’Enfant et de l’Adolescent, CHU de Caen, Caen, France
| | - Edgar Moussaoui
- Service de Psychiatrie de l’Enfant et de l’Adolescent, CHU de Caen, Caen, France
| | - Catherine Barthelemy
- UMR 1253, iBrain, Université de Tours, INSERM, Centre Universitaire de Pédopsychiatrie, CHRU de Tours, Tours, France
| | - Frédérique Bonnet-Brilhault
- UMR 1253, iBrain, Université de Tours, INSERM, Centre Universitaire de Pédopsychiatrie, CHRU de Tours, Tours, France
| | - Francis Eustache
- Normandie Université, UNICAEN, PSL Universités Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Jean-Marc Baleyte
- Normandie Université, UNICAEN, PSL Universités Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
- Service de Psychiatrie de l’Enfant et de l’Adolescent, CHI de Créteil, Créteil, France
| | - Bérengère Guillery-Girard
- Normandie Université, UNICAEN, PSL Universités Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| |
Collapse
|