1
|
Coleman O, Baldwin JR, Dalgleish T, Rose-Clarke K, Widom CS, Danese A. Research Review: Why do prospective and retrospective measures of maltreatment differ? A narrative review. J Child Psychol Psychiatry 2024; 65:1662-1677. [PMID: 39150090 DOI: 10.1111/jcpp.14048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Childhood maltreatment contributes to a large mental health burden worldwide. Different measures of childhood maltreatment are not equivalent and may capture meaningful differences. In particular, prospective and retrospective measures of maltreatment identify different groups of individuals and are differentially associated with psychopathology. However, the reasons behind these discrepancies have not yet been comprehensively mapped. METHODS In this review, we draw on multi-disciplinary research and present an integrated framework to explain maltreatment measurement disagreement. RESULTS We identified three interrelated domains. First, methodological issues related to measurement and data collection methods. Second, the role of memory in influencing retrospective reports of maltreatment. Finally, the motivations individuals may have to disclose, withhold, or fabricate information about maltreatment. CONCLUSIONS A greater understanding of maltreatment measurement disagreement may point to new ways to conceptualise and assess maltreatment. Furthermore, it may help uncover mechanisms underlying maltreatment-related psychopathology and targets for novel interventions.
Collapse
Affiliation(s)
- Oonagh Coleman
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jessie R Baldwin
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Division of Psychology and Language Sciences, Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Tim Dalgleish
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Fulbourn, UK
| | | | - Cathy Spatz Widom
- Psychology Department, John Jay College, City University of New York, New York, NY, USA
- Graduate Center, City University of New York, New York, NY, USA
| | - Andrea Danese
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- National and Specialist CAMHS Clinic for Trauma, Anxiety, and Depression, South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
2
|
Tompary A, Davachi L. Integration of overlapping sequences emerges with consolidation through medial prefrontal cortex neural ensembles and hippocampal-cortical connectivity. eLife 2024; 13:e84359. [PMID: 39545928 PMCID: PMC11567667 DOI: 10.7554/elife.84359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 09/18/2024] [Indexed: 11/17/2024] Open
Abstract
Systems consolidation theories propose two mechanisms that enable the behavioral integration of related memories: coordinated reactivation between hippocampus and cortex, and the emergence of cortical traces that reflect overlap across memories. However, there is limited empirical evidence that links these mechanisms to the emergence of behavioral integration over time. In two experiments, participants implicitly encoded sequences of objects with overlapping structure. Assessment of behavioral integration showed that response times during a recognition task reflected behavioral priming between objects that never occurred together in time but belonged to overlapping sequences. This priming was consolidation-dependent and only emerged for sequences learned 24 hr prior to the test. Critically, behavioral integration was related to changes in neural pattern similarity in the medial prefrontal cortex and increases in post-learning rest connectivity between the posterior hippocampus and lateral occipital cortex. These findings suggest that memories with a shared predictive structure become behaviorally integrated through a consolidation-related restructuring of the learned sequences, providing insight into the relationship between different consolidation mechanisms that support behavioral integration.
Collapse
|
3
|
Zohar E, Kozak S, Abeles D, Shahar M, Censor N. Convolutional neural networks uncover the dynamics of human visual memory representations over time. Cereb Cortex 2024; 34:bhae447. [PMID: 39530747 DOI: 10.1093/cercor/bhae447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/21/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The ability to accurately retrieve visual details of past events is a fundamental cognitive function relevant for daily life. While a visual stimulus contains an abundance of information, only some of it is later encoded into long-term memory representations. However, an ongoing challenge has been to isolate memory representations that integrate various visual features and uncover their dynamics over time. To address this question, we leveraged a novel combination of empirical and computational frameworks based on the hierarchal structure of convolutional neural networks and their correspondence to human visual processing. This enabled to reveal the contribution of different levels of visual representations to memory strength and their dynamics over time. Visual memory strength was measured with distractors selected based on their shared similarity to the target memory along low or high layers of the convolutional neural network hierarchy. The results show that visual working memory relies similarly on low and high-level visual representations. However, already after a few minutes and on to the next day, visual memory relies more strongly on high-level visual representations. These findings suggest that visual representations transform from a distributed to a stronger high-level conceptual representation, providing novel insights into the dynamics of visual memory over time.
Collapse
Affiliation(s)
- Eden Zohar
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Stas Kozak
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dekel Abeles
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Moni Shahar
- The Center for Artificial Intelligence and Data Science (TAD), Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nitzan Censor
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
4
|
Abstract
Memories are stored as ensembles of engram neurons and their successful recall involves the reactivation of these cellular networks. However, significant gaps remain in connecting these cell ensembles with the process of forgetting. Here, we utilized a mouse model of object memory and investigated the conditions in which a memory could be preserved, retrieved, or forgotten. Direct modulation of engram activity via optogenetic stimulation or inhibition either facilitated or prevented the recall of an object memory. In addition, through behavioral and pharmacological interventions, we successfully prevented or accelerated forgetting of an object memory. Finally, we showed that these results can be explained by a computational model in which engrams that are subjectively less relevant for adaptive behavior are more likely to be forgotten. Together, these findings suggest that forgetting may be an adaptive form of engram plasticity which allows engrams to switch from an accessible state to an inaccessible state.
Collapse
Affiliation(s)
- James D O'Leary
- School of Biochemistry and Immunology, Trinity College DublinDublinIreland
- Trinity College Institute of Neuroscience, Trinity College DublinDublinIreland
| | - Rasmus Bruckner
- Trinity College Institute of Neuroscience, Trinity College DublinDublinIreland
- Department of Education and Psychology, Freie Universität BerlinBerlinGermany
- Max Planck Research Group NeuroCode, Max Planck Institute for Human DevelopmentBerlinGermany
| | - Livia Autore
- School of Biochemistry and Immunology, Trinity College DublinDublinIreland
- Trinity College Institute of Neuroscience, Trinity College DublinDublinIreland
| | - Tomás J Ryan
- School of Biochemistry and Immunology, Trinity College DublinDublinIreland
- Trinity College Institute of Neuroscience, Trinity College DublinDublinIreland
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of MelbourneMelbourneAustralia
- Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR)TorontoCanada
| |
Collapse
|
5
|
Horwath EA, Katerman BS, Biju M, DuBrow S, Murty VP. Threat Impairs the Organization of Memory Around Motivational Context. J Cogn Neurosci 2024; 36:2432-2441. [PMID: 39231282 DOI: 10.1162/jocn_a_02242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Previous work highlighted a critical role for top-down goals in shifting memory organization, namely, through studying the downstream influences of event segmentation and task switching on free recall. Here, we extend these frameworks into the realm of motivation, by comparing how threat motivation influences memory organization by capturing free recall dynamics. In Study 1, we manipulated individuals' motivation to successfully encode information by the threat of exposure to aversive sounds for forgetting. In Study 2, we conducted a parallel study manipulating motivation via instruction rather than threat, allowing us to examine changes directly related to threat motivation. Our findings showed that motivation to avoid threat broadly enhances memory for items presented within a threatening context, regardless of whether items were directly associated with the threat or not. Concurrently, these memory enhancements coincide with a decrease in the organization of memory around motivationally relevant features. These results highlight the importance of considering motivational valence when conceptualizing memory organization within adaptive memory frameworks.
Collapse
Affiliation(s)
| | | | - Meryl Biju
- Philadelphia College of Osteopathic Medicine
| | | | | |
Collapse
|
6
|
Cowan ET, Chanales AJ, Davachi L, Clewett D. Goal Shifts Structure Memories and Prioritize Event-defining Information in Memory. J Cogn Neurosci 2024; 36:2415-2431. [PMID: 38991135 DOI: 10.1162/jocn_a_02220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Every day, we encounter far more information than we could possibly remember. Thus, our memory systems must organize and prioritize the details from an experience that can adaptively guide the storage and retrieval of specific episodic events. Prior work has shown that shifts in internal goal states can function as event boundaries, chunking experiences into distinct and memorable episodes. In addition, at short delays, memory for contextual information at boundaries has been shown to be enhanced compared with items within each event. However, it remains unclear if these memory enhancements are limited to features that signal a meaningful transition between events. To determine how changes in dynamic goal states influence the organization and content of long-term memory, we designed a 2-day experiment in which participants viewed a series of black-and-white objects surrounded by a color border on a two-by-two grid. The location of the object on the grid determined which of two tasks participants performed on a given trial. To examine if distinct types of goal shifts modulate the effects of event segmentation, we changed the border color, the task, or both after every four items in a sequence. We found that goal shifts influenced temporal memory in a manner consistent with the formation of distinct events. However, for subjective memory representations in particular, these effects differed by the type of event boundary. Furthermore, to examine if goal shifts lead to the prioritization of goal-relevant features in longer lasting memories, we tested source memory for each object's color and grid location both immediately and after a 24-hr delay. On the immediate test, boundaries enhanced the memory for all concurrent source features compared with nonboundary items, but only if those boundaries involved a goal shift. In contrast, after a delay, the source memory was selectively enhanced for the feature relevant to the goal shift. These findings suggest that goals can adaptively structure memories by prioritizing contextual features that define a unique episode in memory.
Collapse
Affiliation(s)
| | | | - Lila Davachi
- Columbia University
- The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY
| | | |
Collapse
|
7
|
Kuhn HM, Serrano LC, Stys GA, Smith BL, Speckmaier J, Dawson BD, Murray BR, He J, Robison AJ, Eagle AL. Lateral entorhinal cortex neurons that project to nucleus accumbens mediate contextual associative memory. Learn Mem 2024; 31:a054026. [PMID: 39592189 PMCID: PMC11606517 DOI: 10.1101/lm.054026.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024]
Abstract
The lateral entorhinal cortex (LEC) contains glutamatergic projections that innervate the nucleus accumbens (NAc) and may be involved in the encoding of contextual associations with both positive and negative valences, such as those encountered in drug cues or fear conditioning. To determine whether LEC-NAc neurons are activated by the encoding and recall of contexts associated with cocaine or footshock, we measured c-fos expression in these neurons and found that LEC-NAc neurons are activated in both contexts. Specifically, activation patterns of the LEC-NAc were observed in a novel context and reexposure to the same context, highlighting the specific role for LEC-NAc neurons in encoding rather than the valence of a specific event-related memory. Using a combination of circuit-specific chemogenetic tools and behavioral assays, we selectively inactivated LEC-NAc neurons in mice during the encoding and retrieval of memories of contexts associated with cocaine or footshock. Chemogenetic inactivation of LEC-NAc neurons impaired the formation of both positive and negative context-associated memories without affecting the retrieval of an established memory. This finding suggests a critical role for this circuit in the initial encoding of contextual associations. In summary, LEC-NAc neurons facilitate the encoding of contextual information, guiding motivational behaviors without directly mediating the hedonic or aversive properties of these associations.
Collapse
Affiliation(s)
- Hayley M Kuhn
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | - Grace A Stys
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Brianna L Smith
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | - Brooklynn R Murray
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Jin He
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Andrew L Eagle
- Department of Neuroscience, The University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
8
|
Yu W, Zadbood A, Chanales AJH, Davachi L. Repetition dynamically and rapidly increases cortical, but not hippocampal, offline reactivation. Proc Natl Acad Sci U S A 2024; 121:e2405929121. [PMID: 39316058 PMCID: PMC11459139 DOI: 10.1073/pnas.2405929121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
No sooner is an experience over than its neural representation begins to be transformed through memory reactivation during offline periods. The lion's share of prior research has focused on understanding offline reactivation within the hippocampus. However, it is hypothesized that consolidation processes involve offline reactivation in cortical regions as well as coordinated reactivation in the hippocampus and cortex. Using fMRI, we presented novel and repeated paired associates to participants during encoding and measured offline memory reactivation for those events during an immediate post-encoding rest period. post-encoding reactivation frequency of repeated and once-presented events did not differ in the hippocampus. However, offline reactivation in widespread cortical regions and hippocampal-cortical coordinated reactivation were significantly enhanced for repeated events. These results provide evidence that repetition might facilitate the distribution of memory representations across cortical networks, a hallmark of systems-level consolidation. Interestingly, we found that offline reactivation frequency in both hippocampus and cortex explained variance in behavioral success on an immediate associative recognition test for the once-presented information, potentially indicating a role of offline reactivation in maintaining these novel, weaker, memories. Together, our findings highlight that endogenous offline reactivation can be robustly and significantly modulated by study repetition.
Collapse
Affiliation(s)
- Wangjing Yu
- Department of Psychology, Columbia University, New York, NY10027
| | - Asieh Zadbood
- Department of Psychology, Columbia University, New York, NY10027
| | - Avi J. H. Chanales
- Hinge, Inc., New York, NY10014
- Department of Psychology, New York University, New York, NY10027
| | - Lila Davachi
- Department of Psychology, Columbia University, New York, NY10027
- Department of Clinical Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY10962
| |
Collapse
|
9
|
Meliss S, Pascua-Martin C, Skipper JI, Murayama K. The magic, memory, and curiosity fMRI dataset of people viewing magic tricks. Sci Data 2024; 11:1063. [PMID: 39353978 PMCID: PMC11445505 DOI: 10.1038/s41597-024-03675-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/23/2024] [Indexed: 10/03/2024] Open
Abstract
Videos of magic tricks offer lots of opportunities to study the human mind. They violate the expectations of the viewer, causing prediction errors, misdirect attention, and elicit epistemic emotions. Herein we describe and share the Magic, Memory, and Curiosity (MMC) Dataset where 50 participants watched 36 magic tricks filmed and edited specifically for functional magnetic imaging (fMRI) experiments. The MMC Dataset includes a contextual incentive manipulation, curiosity ratings for the magic tricks, and incidental memory performance tested a week later. We additionally measured individual differences in working memory and constructs relevant to motivated learning. fMRI data were acquired before, during, and after learning. We show that both behavioural and fMRI data are of high quality, as indicated by basic validation analysis, i.e., variance decomposition as well as intersubject correlation and seed-based functional connectivity, respectively. The richness and complexity of the MMC Dataset will allow researchers to explore dynamic cognitive and motivational processes from various angles during task and rest.
Collapse
Affiliation(s)
- Stefanie Meliss
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
- Experimental Psychology, University College London, London, UK
| | | | | | - Kou Murayama
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK.
- Hector Research Institute of Education Sciences and Psychology, University of Tübingen, Tübingen, Germany.
- Research Institute, Kochi University of Technology, Kochi, Japan.
| |
Collapse
|
10
|
Cocquyt CM, Wilson IS, Madan CR, Palombo DJ. The retrograde effects of negative emotion on memory for conceptually related events: a registered report. Cogn Emot 2024:1-17. [PMID: 39254338 DOI: 10.1080/02699931.2024.2397371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 07/04/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
Emotional events are often remembered better than neutral ones; however, emotion can also spill over and affect our memory for neutral experiences that precede an emotional event. Theories suggest that emotion can retroactively enhance memory for preceding neutral events that are considered high-priority while impairing memory for events deemed low-priority. However, the impact of conceptual relationships (i.e., semantic connections) between preceding neutral information and emotional events on memory for the preceding information has received little attention. This study investigated the influence of conceptual relatedness on the retroactive effects of emotion on memory. Participants sequentially encoded pairs of images that were high or low in conceptual relatedness, each comprising a neutral object followed by either a negative or neutral image. Participants returned the next day for a recognition memory assessment. The results indicated an interactive effect of emotion and conceptual relatedness on memory: In a "discovery" sample, memory was poorer for images preceding conceptually unrelated negative (vs. neutral) images, while the opposite pattern was seen for conceptually related images. In a "replication" sample, these effects were partially replicated, with the former impairment effect statistically observed but not the latter augmentation effect. Hence, conceptual relatedness affects how negative emotion influences memory.
Collapse
Affiliation(s)
| | - Isabel S Wilson
- Department of Psychology, University of British Columbia, Vancouver, Canada
| | | | - Daniela J Palombo
- Department of Psychology, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
11
|
Schmidt BE, Lopes-de-Souza LH, Gutierres A, Simon TT. Sleep, Sleepiness, and Memory. Sleep Sci 2024; 17:e255-e262. [PMID: 39268340 PMCID: PMC11390175 DOI: 10.1055/s-0044-1780500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/27/2023] [Indexed: 09/15/2024] Open
Abstract
Objective To evaluate the relationship between sleep and sleepiness with memory complaints. Materials and Methods Patients who were submitted to polysomnography between May and September of 2022 and answered the prospective and retrospective memory questionnaire and the Epworth sleepiness scale were included, respectively. Data were entered into an Excel spreadsheet and converted to a file compatible with the SPSS software. Results The sample consisted of 98 subjects, 62.2% male, mean age of 45.9 years, 73.4% overweight, 54.1% with comorbidities, and 51% with excessive sleepiness. There was a significant difference in sleep efficiency, respiratory disturbance index (RDI), slow wave sleep (SWS), and rapid eye movement (REM) sleep for the group with comorbidities; in latency to sleep and SWS between genders; and in RDI for the body mass index group. No correlation between RDI and memory could be identified, but there were statistically significant correlations between REM and sleep efficiency; RDI and REM sleep; RDI and SWS; SWS and sleep efficiency; and sleep efficiency and latency to sleep onset. Older adults performed better on memory tests when total sleep time (TST) is longer than 5 hours and excessive daytime sleepiness is related to complaints of prospective, retrospective, and total memory. Conclusion Elderly people with TST longer than 5 hours have a better memory. Although a correlation between RDI and memory was not observed, a correlation between excessive daytime sleepiness-one of the main symptoms of patients with sleep disorders-and memory was.
Collapse
|
12
|
Bloxham A, Horton CL. Enhancing and advancing the understanding and study of dreaming and memory consolidation: Reflections, challenges, theoretical clarity, and methodological considerations. Conscious Cogn 2024; 123:103719. [PMID: 38941924 DOI: 10.1016/j.concog.2024.103719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 04/24/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024]
Abstract
Empirical investigations that search for a link between dreaming and sleep-dependent memory consolidation have focused on testing for an association between dreaming of what was learned, and improved memory performance for learned material. Empirical support for this is mixed, perhaps owing to the inherent challenges presented by the nature of dreams, and methodological inconsistencies. The purpose of this paper is to address critically prevalent assumptions and practices, with the aim of clarifying and enhancing research on this topic, chiefly by providing a theoretical synthesis of existing models and evidence. Also, it recommends the method of Targeted Memory Reactivation (TMR) as a means for investigating if dream content can be linked to specific cued activations. Other recommendations to enhance research practice and enquiry on this subject are also provided, focusing on the HOW and WHY we search for memory sources in dreams, and what purpose (if any) they might serve.
Collapse
Affiliation(s)
- Anthony Bloxham
- Nottingham Trent University, Nottingham, NG1 4FQ, United Kingdom.
| | | |
Collapse
|
13
|
Whitehurst LN, Morehouse A, Mednick SC. Can stimulants make you smarter, despite stealing your sleep? Trends Cogn Sci 2024; 28:702-713. [PMID: 38763802 DOI: 10.1016/j.tics.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
Nonmedical use of psychostimulants for cognitive enhancement is widespread and growing in neurotypical individuals, despite mixed scientific evidence of their effectiveness. Sleep benefits cognition, yet the interaction between stimulants, sleep, and cognition in neurotypical adults has received little attention. We propose that one effect of psychostimulants, namely decreased sleep, may play an important and unconsidered role in the effect of stimulants on cognition. We discuss the role of sleep in cognition, the alerting effects of stimulants in the context of sleep loss, and the conflicting findings of stimulants for complex cognitive processes. Finally, we hypothesize that sleep may be one unconsidered factor in the mythology of stimulants as cognitive enhancers and propose a methodological approach to systematically assess this relation.
Collapse
Affiliation(s)
- Lauren N Whitehurst
- Department of Psychology, University of Kentucky, Lexington, KY, USA, 40508.
| | - Allison Morehouse
- Department of Cognitive Science, University of California, Irvine, Irvine, CA, USA, 92617
| | - Sara C Mednick
- Department of Cognitive Science, University of California, Irvine, Irvine, CA, USA, 92617.
| |
Collapse
|
14
|
Kalisch R, Russo SJ, Müller MB. Neurobiology and systems biology of stress resilience. Physiol Rev 2024; 104:1205-1263. [PMID: 38483288 PMCID: PMC11381009 DOI: 10.1152/physrev.00042.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 05/16/2024] Open
Abstract
Stress resilience is the phenomenon that some people maintain their mental health despite exposure to adversity or show only temporary impairments followed by quick recovery. Resilience research attempts to unravel the factors and mechanisms that make resilience possible and to harness its insights for the development of preventative interventions in individuals at risk for acquiring stress-related dysfunctions. Biological resilience research has been lagging behind the psychological and social sciences but has seen a massive surge in recent years. At the same time, progress in this field has been hampered by methodological challenges related to finding suitable operationalizations and study designs, replicating findings, and modeling resilience in animals. We embed a review of behavioral, neuroimaging, neurobiological, and systems biological findings in adults in a critical methods discussion. We find preliminary evidence that hippocampus-based pattern separation and prefrontal-based cognitive control functions protect against the development of pathological fears in the aftermath of singular, event-type stressors [as found in fear-related disorders, including simpler forms of posttraumatic stress disorder (PTSD)] by facilitating the perception of safety. Reward system-based pursuit and savoring of positive reinforcers appear to protect against the development of more generalized dysfunctions of the anxious-depressive spectrum resulting from more severe or longer-lasting stressors (as in depression, generalized or comorbid anxiety, or severe PTSD). Links between preserved functioning of these neural systems under stress and neuroplasticity, immunoregulation, gut microbiome composition, and integrity of the gut barrier and the blood-brain barrier are beginning to emerge. On this basis, avenues for biological interventions are pointed out.
Collapse
Affiliation(s)
- Raffael Kalisch
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Scott J Russo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Marianne B Müller
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
15
|
Cabrera Y, Koymans KJ, Poe GR, Kessels HW, Van Someren EJW, Wassing R. Overnight neuronal plasticity and adaptation to emotional distress. Nat Rev Neurosci 2024; 25:253-271. [PMID: 38443627 DOI: 10.1038/s41583-024-00799-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 03/07/2024]
Abstract
Expressions such as 'sleep on it' refer to the resolution of distressing experiences across a night of sound sleep. Sleep is an active state during which the brain reorganizes the synaptic connections that form memories. This Perspective proposes a model of how sleep modifies emotional memory traces. Sleep-dependent reorganization occurs through neurophysiological events in neurochemical contexts that determine the fates of synapses to grow, to survive or to be pruned. We discuss how low levels of acetylcholine during non-rapid eye movement sleep and low levels of noradrenaline during rapid eye movement sleep provide a unique window of opportunity for plasticity in neuronal representations of emotional memories that resolves the associated distress. We integrate sleep-facilitated adaptation over three levels: experience and behaviour, neuronal circuits, and synaptic events. The model generates testable hypotheses for how failed sleep-dependent adaptation to emotional distress is key to mental disorders, notably disorders of anxiety, depression and post-traumatic stress with the common aetiology of insomnia.
Collapse
Affiliation(s)
- Yesenia Cabrera
- Department of Integrative Biology and Physiology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Karin J Koymans
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Gina R Poe
- Department of Integrative Biology and Physiology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Helmut W Kessels
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Department of Synaptic Plasticity and Behaviour, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Society for Arts and Sciences, Amsterdam, Netherlands
| | - Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Society for Arts and Sciences, Amsterdam, Netherlands
- Department of Integrative Neurophysiology and Psychiatry, VU University, Amsterdam UMC, Amsterdam, Netherlands
- Center for Neurogenomics and Cognitive Research, VU University, Amsterdam UMC, Amsterdam, Netherlands
| | - Rick Wassing
- Sleep and Circadian Research, Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia.
- School of Psychological Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia.
- Sydney Local Health District, Sydney, New South Wales, Australia.
| |
Collapse
|
16
|
Koevoet D, Postma A. Is there selective retroactive memory enhancement in humans?: a meta-analysis. Psychon Bull Rev 2024; 31:531-540. [PMID: 37749381 PMCID: PMC11061014 DOI: 10.3758/s13423-023-02372-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2023] [Indexed: 09/27/2023]
Abstract
Memory is an adaptive and flexible system that preferentially stores motivationally relevant information. However, in some cases information that is initially irrelevant can become relevant at a later time. The question arises whether and to what extent the memory system can retroactively boost memories of the initially irrelevant information. Experimental studies in animals and humans have provided evidence for such retroactive memory boosting. Additionally, these studies suggest that retroactive memory enhancement (RME) can be selective to the semantic meaning of the material. Nonetheless, recent experimental work could not replicate these findings, posing the question whether the selective RME effect is reliable. To synthesize the available evidence, we conducted meta-analyses of 14 experiments. Although the classical meta-analytic procedure suggested a small selective RME effect, Cohen's dz = 0.16, when accounting for small-study bias using robust Bayesian meta-analysis the null hypothesis was supported, Cohen's dz = 0.02, BF01 = 3.03. Furthermore strong evidence was found for a bias due to small-study effects, BF10 = 11.39. Together, this calls the reliability of a selective RME effect into question.
Collapse
Affiliation(s)
- Damian Koevoet
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands.
| | - Albert Postma
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
17
|
Cowan ET, Zhang Y, Rottman BM, Murty VP. The effects of mnemonic variability and spacing on memory over multiple timescales. Proc Natl Acad Sci U S A 2024; 121:e2311077121. [PMID: 38470923 PMCID: PMC10962934 DOI: 10.1073/pnas.2311077121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024] Open
Abstract
The memory benefit that arises from distributing learning over time rather than in consecutive sessions is one of the most robust effects in cognitive psychology. While prior work has mainly focused on repeated exposures to the same information, in the real world, mnemonic content is dynamic, with some pieces of information staying stable while others vary. Thus, open questions remain about the efficacy of the spacing effect in the face of variability in the mnemonic content. Here, in two experiments, we investigated the contributions of mnemonic variability and the timescale of spacing intervals, ranging from seconds to days, to long-term memory. For item memory, both mnemonic variability and spacing intervals were beneficial for memory; however, mnemonic variability was greater at shorter spacing intervals. In contrast, for associative memory, repetition rather than mnemonic variability was beneficial for memory, and spacing benefits only emerged in the absence of mnemonic variability. These results highlight a critical role for mnemonic variability and the timescale of spacing intervals in the spacing effect, bringing this classic memory paradigm into more ecologically valid contexts.
Collapse
Affiliation(s)
- Emily T. Cowan
- Department of Psychology & Neuroscience, Temple University, PhiladelphiaPA19122
| | - Yiwen Zhang
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA15260
| | | | - Vishnu P. Murty
- Department of Psychology & Neuroscience, Temple University, PhiladelphiaPA19122
| |
Collapse
|
18
|
Jimenez CA, Meyer ML. The dorsomedial prefrontal cortex prioritizes social learning during rest. Proc Natl Acad Sci U S A 2024; 121:e2309232121. [PMID: 38466844 PMCID: PMC10962978 DOI: 10.1073/pnas.2309232121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Sociality is a defining feature of the human experience: We rely on others to ensure survival and cooperate in complex social networks to thrive. Are there brain mechanisms that help ensure we quickly learn about our social world to optimally navigate it? We tested whether portions of the brain's default network engage "by default" to quickly prioritize social learning during the memory consolidation process. To test this possibility, participants underwent functional MRI (fMRI) while viewing scenes from the documentary film, Samsara. This film shows footage of real people and places from around the world. We normed the footage to select scenes that differed along the dimension of sociality, while matched on valence, arousal, interestingness, and familiarity. During fMRI, participants watched the "social" and "nonsocial" scenes, completed a rest scan, and a surprise recognition memory test. Participants showed superior social (vs. nonsocial) memory performance, and the social memory advantage was associated with neural pattern reinstatement during rest in the dorsomedial prefrontal cortex (DMPFC), a key node of the default network. Moreover, it was during early rest that DMPFC social pattern reinstatement was greatest and predicted subsequent social memory performance most strongly, consistent with the "prioritization" account. Results simultaneously update 1) theories of memory consolidation, which have not addressed how social information may be prioritized in the learning process, and 2) understanding of default network function, which remains to be fully characterized. More broadly, the results underscore the inherent human drive to understand our vastly social world.
Collapse
Affiliation(s)
| | - Meghan L. Meyer
- Department of Psychology, Columbia University, New York, NY10027
| |
Collapse
|
19
|
Keller NE, Salvi C, Leiker EK, Gruber MJ, Dunsmoor JE. States of epistemic curiosity interfere with memory for incidental scholastic facts. NPJ SCIENCE OF LEARNING 2024; 9:22. [PMID: 38499583 PMCID: PMC10948872 DOI: 10.1038/s41539-024-00234-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
Curiosity can be a powerful motivator to learn and retain new information. Evidence shows that high states of curiosity elicited by a specific source (i.e., a trivia question) can promote memory for incidental stimuli (non-target) presented close in time. The spreading effect of curiosity states on memory for other information has potential for educational applications. Specifically, it could provide techniques to improve learning for information that did not spark a sense of curiosity on its own. Here, we investigated how high states of curiosity induced through trivia questions affect memory performance for unrelated scholastic facts (e.g., scientific, English, or historical facts) presented in close temporal proximity to the trivia question. Across three task versions, participants viewed trivia questions closely followed in time by a scholastic fact unrelated to the trivia question, either just prior to or immediately following the answer to the trivia question. Participants then completed a surprise multiple-choice memory test (akin to a pop quiz) for the scholastic material. In all three task versions, memory performance was poorer for scholastic facts presented after trivia questions that had elicited high versus low levels of curiosity. These results contradict previous findings showing curiosity-enhanced memory for incidentally presented visual stimuli and suggest that target information that generates a high-curiosity state interferes with encoding complex and unrelated scholastic facts presented close in time.
Collapse
Affiliation(s)
- Nicole E Keller
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Carola Salvi
- Department of Psychology and Social Sciences, John Cabot University, Rome, Italy
| | - Emily K Leiker
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthias J Gruber
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Joseph E Dunsmoor
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA.
- Department of Neuroscience, University of Texas at Austin, Austin, TX, USA.
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
20
|
Lenormand D, Fauvel B, Piolino P. The formation of episodic autobiographical memory is predicted by mental imagery, self-reference, and anticipated details. Front Psychol 2024; 15:1355343. [PMID: 38476385 PMCID: PMC10930760 DOI: 10.3389/fpsyg.2024.1355343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Despite the ecological nature of episodic memory (EM) and the importance of consolidation in its functioning, studies tackling both subjects are still scarce. Therefore, the present study aims at establishing predictions of the future of newly encoded information in EM in an ecological paradigm. Methods Participants recorded two personal events per day with a SenseCam portable camera, for 10 days, and characterized the events with different subjective scales (emotional valence and intensity, self-concept and self-relevance, perspective and anticipated details at a month, mental images…). They then performed a surprise free recall at 5 days and 1 month after encoding. Machine learning algorithms were used to predict the future of events (episodic or forgotten) in memory at 1 month. Results The best algorithm showed an accuracy of 78%, suggesting that such a prediction is reliably possible. Variables that best differentiated between episodic and forgotten memories at 1 month were mental imagery, self-reference, and prospection (anticipated details) at encoding and the first free recall. Discussion These results may establish the basis for the development of episodic autobiographical memory during daily experiences.
Collapse
Affiliation(s)
- Diane Lenormand
- Laboratoire Mémoire, Cerveau & Cognition (LMC2 UR 7536), Institut de Psychologie, Université Paris Cité, Paris, France
| | | | - Pascale Piolino
- Laboratoire Mémoire, Cerveau & Cognition (LMC2 UR 7536), Institut de Psychologie, Université Paris Cité, Paris, France
| |
Collapse
|
21
|
Nickl AT, Bäuml KHT. To-be-forgotten information shows more relative forgetting over time than to-be-remembered information. Psychon Bull Rev 2024; 31:156-165. [PMID: 37434044 PMCID: PMC10866758 DOI: 10.3758/s13423-023-02330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 07/13/2023]
Abstract
People can intentionally forget studied material when cued to do so. Corresponding evidence has arisen from studies on item-method directed forgetting, in which participants are asked to forget single items directly upon presentation. We measured memory performance of to-be-remembered (TBR) and to-be-forgotten (TBF) items across retention intervals of up to 1 week and fitted power functions of time to the observed recall (Experiment 1) and recognition (Experiment 2) rates. In both experiments and each retention interval condition, memory performance for the TBR items was higher than for the TBF items, supporting the view that directed forgetting effects are lasting. Recall and recognition rates of both TBR and TBF items were well fit by the power function. However, the relative forgetting rates of the two item types differed, with a higher forgetting rate for the TBF than the TBR items. The findings are consistent with the view that TBR and TBF items differ (mainly) in recruitment of rehearsal processes and resulting memory strength.
Collapse
Affiliation(s)
- Anna T Nickl
- Department of Experimental Psychology, Regensburg University, 93040, Regensburg, Germany.
| | - Karl-Heinz T Bäuml
- Department of Experimental Psychology, Regensburg University, 93040, Regensburg, Germany
| |
Collapse
|
22
|
Iyer S, Collier E, Broom TW, Finn ES, Meyer ML. Individuals who see the good in the bad engage distinctive default network coordination during post-encoding rest. Proc Natl Acad Sci U S A 2024; 121:e2306295121. [PMID: 38150498 PMCID: PMC10769837 DOI: 10.1073/pnas.2306295121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/20/2023] [Indexed: 12/29/2023] Open
Abstract
Focusing on the upside of negative events often promotes resilience. Yet, the underlying mechanisms that allow some people to spontaneously see the good in the bad remain unclear. The broaden-and-build theory of positive emotion has long suggested that positive affect, including positivity in the face of negative events, is linked to idiosyncratic thought patterns (i.e., atypical cognitive responses). Yet, evidence in support of this view has been limited, in part, due to difficulty in measuring idiosyncratic cognitive processes as they unfold. To overcome this barrier, we applied Inter-Subject Representational Similarity Analysis to test whether and how idiosyncratic neural responding supports positive reactions to negative experience. We found that idiosyncratic functional connectivity patterns in the brain's default network while resting after a negative experience predicts more positive descriptions of the event. This effect persisted when controlling for connectivity 1) before and during the negative experience, 2) before, during, and after a neutral experience, and 3) between other relevant brain regions (i.e., the limbic system). The relationship between idiosyncratic default network responding and positive affect was largely driven by functional connectivity patterns between the ventromedial prefrontal cortex and the rest of the default network and occurred relatively quickly during rest. We identified post-encoding rest as a key moment and the default network as a key brain system in which idiosyncratic responses correspond with seeing the good in the bad.
Collapse
Affiliation(s)
- Siddhant Iyer
- Department of Psychology, Columbia University, New York, NY10027
| | - Eleanor Collier
- Department of Psychology, University of California, Riverside, CA92521
| | - Timothy W. Broom
- Department of Psychology, Columbia University, New York, NY10027
| | - Emily S. Finn
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH03755
| | - Meghan L. Meyer
- Department of Psychology, Columbia University, New York, NY10027
| |
Collapse
|
23
|
Chen P, Hao C, Ma N. Sleep spindles consolidate declarative memory with tags: A meta-analysis of adult data. JOURNAL OF PACIFIC RIM PSYCHOLOGY 2024; 18. [DOI: 10.1177/18344909241226761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Abstract
Tags are attached to salient information during the wake period, which can preferentially determine what information can be consolidated during sleep. Previous studies demonstrated that spindles during non-rapid eye movement (NREM) sleep give priority to strengthening memory representations with tags, indicating a privileged reactivation of tagged information. The current meta-analysis investigated whether and how spindles can capture different tags to consolidate declarative memory. This study searched the Web of Science, Google Scholar, PubMed, PsycINFO, and OATD databases for studies that spindles consolidate declarative memory with tags. A meta-analysis using a random-effects model was performed. Based on 19 datasets from 18 studies (N = 388), spindles had a medium effect on the consolidation of declarative memory with tags ( r = 0.519). In addition, spindles derived from whole-night sleep and nap studies were positively related to the consolidation of memory representations with tags. These findings reveal the shared mechanism that spindles are actively involved in the prefrontal-hippocampus circuits to consolidate memory with tags.
Collapse
Affiliation(s)
- Peiyao Chen
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Chao Hao
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Ning Ma
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| |
Collapse
|
24
|
Denis D, Cairney SA. Neural reactivation during human sleep. Emerg Top Life Sci 2023; 7:487-498. [PMID: 38054531 PMCID: PMC10754334 DOI: 10.1042/etls20230109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023]
Abstract
Sleep promotes memory consolidation: the process by which newly acquired memories are stabilised, strengthened, and integrated into long-term storage. Pioneering research in rodents has revealed that memory reactivation in sleep is a primary mechanism underpinning sleep's beneficial effect on memory. In this review, we consider evidence for memory reactivation processes occurring in human sleep. Converging lines of research support the view that memory reactivation occurs during human sleep, and is functionally relevant for consolidation. Electrophysiology studies have shown that memory reactivation is tightly coupled to the cardinal neural oscillations of non-rapid eye movement sleep, namely slow oscillation-spindle events. In addition, functional imaging studies have found that brain regions recruited during learning become reactivated during post-learning sleep. In sum, the current evidence paints a strong case for a mechanistic role of neural reactivation in promoting memory consolidation during human sleep.
Collapse
Affiliation(s)
- Dan Denis
- Department of Psychology, University of York, York YO10 5DD, U.K
| | - Scott A. Cairney
- Department of Psychology, University of York, York YO10 5DD, U.K
- York Biomedical Research Institute, University of York, York YO10 5DD, U.K
| |
Collapse
|
25
|
Huelin Gorriz M, Takigawa M, Bendor D. The role of experience in prioritizing hippocampal replay. Nat Commun 2023; 14:8157. [PMID: 38071221 PMCID: PMC10710481 DOI: 10.1038/s41467-023-43939-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
During sleep, recent memories are replayed by the hippocampus, leading to their consolidation, with a higher priority given to salient experiences. To examine the role of replay in the selective strengthening of memories, we recorded large ensembles of hippocampal place cells while male rats ran repeated spatial trajectories on two linear tracks, differing in either their familiarity or number of laps run. We observed that during sleep, the rate of replay events for a given track increased proportionally with the number of spatial trajectories run by the animal. In contrast, the rate of sleep replay events decreased if the animal was more familiar with the track. Furthermore, we find that the cumulative number of awake replay events occurring during behavior, influenced by both the novelty and duration of an experience, predicts which memories are prioritized for sleep replay, providing a more parsimonious neural correlate for the selective strengthening of memories.
Collapse
Affiliation(s)
- Marta Huelin Gorriz
- Institute of Behavioural Neuroscience (IBN), University College London (UCL), London, WC1H 0AP, UK
| | - Masahiro Takigawa
- Institute of Behavioural Neuroscience (IBN), University College London (UCL), London, WC1H 0AP, UK
| | - Daniel Bendor
- Institute of Behavioural Neuroscience (IBN), University College London (UCL), London, WC1H 0AP, UK.
| |
Collapse
|
26
|
Chappel-Farley MG, Adams JN, Betzel RF, Janecek JC, Sattari NS, Berisha DE, Meza NJ, Niknazar H, Kim S, Dave A, Chen IY, Lui KK, Neikrug AB, Benca RM, Yassa MA, Mander BA. Medial temporal lobe functional network architecture supports sleep-related emotional memory processing in older adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564260. [PMID: 37961192 PMCID: PMC10634911 DOI: 10.1101/2023.10.27.564260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Memory consolidation occurs via reactivation of a hippocampal index during non-rapid eye movement slow-wave sleep (NREM SWS) which binds attributes of an experience existing within cortical modules. For memories containing emotional content, hippocampal-amygdala dynamics facilitate consolidation over a sleep bout. This study tested if modularity and centrality-graph theoretical measures that index the level of segregation/integration in a system and the relative import of its nodes-map onto central tenets of memory consolidation theory and sleep-related processing. Findings indicate that greater network integration is tied to overnight emotional memory retention via NREM SWS expression. Greater hippocampal and amygdala influence over network organization supports emotional memory retention, and hippocampal or amygdala control over information flow are differentially associated with distinct stages of memory processing. These centrality measures are also tied to the local expression and coupling of key sleep oscillations tied to sleep-dependent memory consolidation. These findings suggest that measures of intrinsic network connectivity may predict the capacity of brain functional networks to acquire, consolidate, and retrieve emotional memories.
Collapse
Affiliation(s)
- Miranda G. Chappel-Farley
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Jenna N. Adams
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Richard F. Betzel
- Department of Psychological and Brain Sciences, University of Indiana Bloomington, Bloomington IN, 47405
| | - John C. Janecek
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Negin S. Sattari
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Destiny E. Berisha
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Novelle J. Meza
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Hamid Niknazar
- Department of Cognitive Sciences, University of California Irvine, Irvine CA, 92697, USA
| | - Soyun Kim
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Abhishek Dave
- Department of Cognitive Sciences, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Ivy Y. Chen
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Kitty K. Lui
- San Diego State University/University of California San Diego, Joint Doctoral Program in Clinical Psychology, San Diego, CA, 92093, USA
| | - Ariel B. Neikrug
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Ruth M. Benca
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, 53706, WI, USA
- Department of Psychiatry and Behavioral Medicine, Wake Forest University, Winston-Salem, NC, 27109, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine CA, 92697, USA
| | - Michael A. Yassa
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine CA, 92697, USA
- Department of Neurology, University of California Irvine, Irvine CA, 92697, USA
| | - Bryce A. Mander
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Cognitive Sciences, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine CA, 92697, USA
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine CA, 92697, USA
| |
Collapse
|
27
|
Tanrıverdi B, Cowan ET, Metoki A, Jobson KR, Murty VP, Chein J, Olson IR. Awake Hippocampal-Cortical Co-reactivation Is Associated with Forgetting. J Cogn Neurosci 2023; 35:1446-1462. [PMID: 37348130 PMCID: PMC10759317 DOI: 10.1162/jocn_a_02021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Systems consolidation theories posit that consolidation occurs primarily through a coordinated communication between hippocampus and neocortex [Moscovitch, M., & Gilboa, A. Systems consolidation, transformation and reorganization: Multiple trace theory, trace transformation theory and their competitors. PsyArXiv, 2021; Kumaran, D., Hassabis, D., & McClelland, J. L. What learning systems do intelligent agents need? Complementary learning systems theory updated. Trends in Cognitive Sciences, 20, 512-534, 2016; McClelland, J. L., & O'Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419-457, 1995]. Recent sleep studies in rodents have shown that hippocampus and visual cortex replay the same information at temporal proximity ("co-replay"; Lansink, C. S., Goltstein, P. M., Lankelma, J. V., McNaughton, B. L., & Pennartz, C. M. A. Hippocampus leads ventral striatum in replay of place-reward information. PLoS Biology, 7, e1000173, 2009; Peyrache, A., Khamassi, M., Benchenane, K., Wiener, S. I., & Battaglia, F. P. Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nature Neuroscience, 12, 919-926, 2009; Wierzynski, C. M., Lubenov, E. V., Gu, M., & Siapas, A. G. State-dependent spike-timing relationships between hippocampal and prefrontal circuits during sleep. Neuron, 61, 587-596, 2009; Ji, D., & Wilson, M. A. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature Neuroscience, 10, 100-107, 2007). We developed a novel repetition time (TR)-based co-reactivation analysis method to study hippocampal-cortical co-replays in humans using fMRI. Thirty-six young adults completed an image (face or scene) and location paired associate encoding task in the scanner, which were preceded and followed by resting state scans. We identified post-encoding rest TRs (± 1) that showed neural reactivation of each image-location trials in both hippocampus (HPC) and category-selective cortex (fusiform face area [FFA]). This allowed us to characterize temporally proximal coordinated reactivations ("co-reactivations") between HPC and FFA. Moreover, we found that increased HPC-FFA co-reactivations were associated with incorrectly recognized trials after a 1-week delay (p = .004). Finally, we found that these HPC-FFA co-reactivations were also associated with trials that were initially correctly recognized immediately after encoding but were later forgotten in 1-day (p = .043) and 1-week delay period (p = .031). We discuss these results from a trace transformation perspective [Sekeres, M. J., Winocur, G., & Moscovitch, M. The hippocampus and related neocortical structures in memory transformation. Neuroscience Letters, 680, 39-53, 2018; Winocur, G., & Moscovitch, M. Memory transformation and systems consolidation. Journal of the International Neuropsychological Society, 17, 766-780, 2011] and speculate that HPC-FFA co-reactivations may be integrating related events, at the expense of disrupting event-specific details, hence leading to forgetting.
Collapse
|
28
|
Antony JW, Schechtman E. Reap while you sleep: Consolidation of memories differs by how they were sown. Hippocampus 2023; 33:922-935. [PMID: 36973868 PMCID: PMC10429120 DOI: 10.1002/hipo.23526] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/29/2023]
Abstract
Newly formed memories are spontaneously reactivated during sleep, leading to their strengthening. This reactivation process can be manipulated by reinstating learning-related stimuli during sleep, a technique termed targeted memory reactivation. Numerous studies have found that delivering cues during sleep improves memory for simple associations, in which one cue reactivates one tested memory. However, real-life memories often live in rich, complex networks of associations. In this review, we will examine recent forays into investigating how targeted sleep reactivation affects memories within complex paradigms, in which one cue can reactivate multiple tested memories. A common theme across studies is that reactivation consequences do not merely depend on whether memories reside in complex arrangements, but on how memories interact with one another during acquisition. We therefore emphasize how intricate study design details that alter the nature of learning and/or participant intentions impact the outcomes of sleep reactivation. In some cases, complex networks of memories interact harmoniously to bring about mutual memory benefits; in other cases, memories interact antagonistically and produce selective impairments in retrieval. Ultimately, although this burgeoning area of research has yet to be systematically explored, results suggest that the fate of reactivated stimuli within complex arrangements depends on how they were learned.
Collapse
Affiliation(s)
- James W. Antony
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, California, USA
| | - Eitan Schechtman
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
- Center for Neurobiology of Learning and Memory, University of California Irvine, Irvine, California, USA
| |
Collapse
|
29
|
Brosens N, Lesuis SL, Bassie I, Reyes L, Gajadien P, Lucassen PJ, Krugers HJ. Elevated corticosterone after fear learning impairs remote auditory memory retrieval and alters brain network connectivity. Learn Mem 2023; 30:125-132. [PMID: 37487708 PMCID: PMC10519398 DOI: 10.1101/lm.053836.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023]
Abstract
Glucocorticoids are potent memory modulators that can modify behavior in an adaptive or maladaptive manner. Elevated glucocorticoid levels after learning promote memory consolidation at recent time points, but their effects on remote time points are not well established. Here we set out to assess whether corticosterone (CORT) given after learning modifies remote fear memory. To that end, mice were exposed to a mild auditory fear conditioning paradigm followed by a single 2 mg/kg CORT injection, and after 28 d, auditory memory was assessed. Neuronal activation was investigated using immunohistochemistry for the immediate early gene c-Fos, and coactivation of brain regions was determined using a correlation matrix analysis. CORT-treated mice displayed significantly less remote auditory memory retrieval. While the net activity of studied brain regions was similar compared with the control condition, CORT-induced remote memory impairment was associated with altered correlated activity between brain regions. Specifically, connectivity of the lateral amygdala with the basal amygdala and the dorsal dentate gyrus was significantly reduced in CORT-treated mice, suggesting disrupted network connectivity that may underlie diminished remote memory retrieval. Elucidating the pathways underlying these effects could help provide mechanistic insight into the effects of stress on memory and possibly provide therapeutic targets for psychopathology.
Collapse
Affiliation(s)
- Niek Brosens
- Brain Plasticity Group, Swammerdam Institute for Life Sciences (SILS)-Cognitive and Systems Neuroscience (CNS), University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Sylvie L Lesuis
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Ilse Bassie
- Brain Plasticity Group, Swammerdam Institute for Life Sciences (SILS)-Cognitive and Systems Neuroscience (CNS), University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Lara Reyes
- Brain Plasticity Group, Swammerdam Institute for Life Sciences (SILS)-Cognitive and Systems Neuroscience (CNS), University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Priya Gajadien
- Brain Plasticity Group, Swammerdam Institute for Life Sciences (SILS)-Cognitive and Systems Neuroscience (CNS), University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences (SILS)-Cognitive and Systems Neuroscience (CNS), University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Harm J Krugers
- Brain Plasticity Group, Swammerdam Institute for Life Sciences (SILS)-Cognitive and Systems Neuroscience (CNS), University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| |
Collapse
|
30
|
Glicksohn A, Shams L, Seitz AR. Improving memory for unusual events with wakeful reactivation. Front Psychol 2023; 14:1092408. [PMID: 37057152 PMCID: PMC10086428 DOI: 10.3389/fpsyg.2023.1092408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/06/2023] [Indexed: 03/30/2023] Open
Abstract
Memory consists of multiple processes, from encoding information, consolidating it into short- and long- term memory, and later retrieving relevant information. Targeted memory reactivation is an experimental method during which sensory components of a multisensory representation (such as sounds or odors) are ‘reactivated’, facilitating the later retrieval of unisensory attributes. We examined whether novel and unpredicted events benefit from reactivation to a greater degree than normal stimuli. We presented participants with everyday objects, and ‘tagged’ these objects with sounds (e.g., animals and their matching sounds) at different screen locations. ‘Oddballs’ were created by presenting unusual objects and sounds (e.g., a unicorn with a heartbeat sound). During a short reactivation phase, participants listened to a replay of normal and oddball sounds. Participants were then tested on their memory for visual and spatial information in the absence of sounds. Participants were better at remembering the oddball objects compared to normal ones. Importantly, participants were also better at recalling the locations of oddball objects whose sounds were reactivated, compared to objects whose sounds that were not presented again. These results suggest that episodic memory benefits from associating objects with unusual cues, and that reactivating those cues strengthen the entire multisensory representation, resulting in enhanced memory for unisensory attributes.
Collapse
Affiliation(s)
- Arit Glicksohn
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ladan Shams
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aaron R. Seitz
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
- Department of Psychology, Northeastern University, Boston, MA, United States
- *Correspondence: Aaron R. Seitz,
| |
Collapse
|
31
|
Iyer S, Collier E, Finn ES, Meyer ML. Negative affect homogenizes and positive affect diversifies social memory consolidation across people. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.20.528994. [PMID: 36865262 PMCID: PMC9980006 DOI: 10.1101/2023.02.20.528994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
We are often surprised when an interaction we remember positively is recalled by a peer negatively. What colors social memories with positive versus negative hues? We show that when resting after a social experience, individuals showing similar default network responding subsequently remember more negative information, while individuals showing idiosyncratic default network responding remember more positive information. Results were specific to rest after the social experience (as opposed to before or during the social experience, or rest after a nonsocial experience). The results provide novel neural evidence in support of the "broaden and build" theory of positive emotion, which posits that while negative affect confines, positive affect broadens idiosyncrasy in cognitive processing. For the first time, we identified post-encoding rest as a key moment and the default network as a key brain system in which negative affect homogenizes, whereas positive affect diversifies social memories.
Collapse
|
32
|
Karmazyn-Raz H, Smith LB. Sampling statistics are like story creation: a network analysis of parent-toddler exploratory play. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210358. [PMID: 36571129 PMCID: PMC9791483 DOI: 10.1098/rstb.2021.0358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/04/2022] [Indexed: 12/27/2022] Open
Abstract
Actions in the world elicit data for learning and do so in a stream of interconnected events. Here, we provide evidence on how toddlers with their parent sample information by acting on toys during exploratory play. We observed 10 min of free-flowing and unconstrained object exploration of by toddlers (mean age 21 months) and parents in a room with many available objects (n = 32). Borrowing concepts and measures from the study of narratives, we found that the toy selections are not a string of unrelated events but exhibit a suite of what we call coherence statistics: Zipfian distributions, burstiness and a network structure. We discuss the transient memory processes that underlie the moment-to-moment toy selections that create this coherence and the role of these statistics in the development of abstract and generalizable systems of knowledge. This article is part of the theme issue 'Concepts in interaction: social engagement and inner experiences'.
Collapse
Affiliation(s)
- Hadar Karmazyn-Raz
- Psychological and Brain Sciences, Indiana University, Bloomington, IN 47401, USA
| | - Linda B. Smith
- Psychological and Brain Sciences, Indiana University, Bloomington, IN 47401, USA
| |
Collapse
|
33
|
Horwath EA, Rouhani N, DuBrow S, Murty VP. Value restructures the organization of free recall. Cognition 2023; 231:105315. [PMID: 36399901 PMCID: PMC9839530 DOI: 10.1016/j.cognition.2022.105315] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 10/12/2022] [Accepted: 10/22/2022] [Indexed: 11/17/2022]
Abstract
A large body of research illustrates the prioritization of goal-relevant information in memory; however, it is unclear how reward-related memories are organized. Using a rewarded free recall paradigm, we investigated how reward motivation structures the organization of memory around temporal and higher-order contexts. To better understand these processes, we simulated our findings using a reward-modulated variant of the Context Maintenance and Retrieval Model (CMR; Polyn et al., 2009). In the first study, we found that reward did not influence temporal clustering, but instead shifted the organization of memory based on reward category. Further, we showed that a reward-modulated learning rate and source features of CMR most accurately depict reward's enhancement on memory and clustering by value. In a second study, we showed that reward-memory effects can exist in both extended periods of sustained motivation and frequent changes in motivation, by showing equivalent reward effects using mixed- and pure-list motivation manipulations. However, we showed that a reward-modulated learning rate in isolation can support reward's enhancement of memory in pure-list contexts. Overall, we conclude that reward-related memories are adaptively organized by higher-order value information, and contextual binding to value contexts may only be necessary when rewards are intermittent versus sustained.
Collapse
Affiliation(s)
- Elizabeth A Horwath
- Department of Psychology, Temple University, Philadelphia, PA, United States of America
| | - Nina Rouhani
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, United States of America
| | - Sarah DuBrow
- Department of Psychology, University of Oregon, Eugene, OR, United States of America
| | - Vishnu P Murty
- Department of Psychology, Temple University, Philadelphia, PA, United States of America.
| |
Collapse
|
34
|
Whitney P, Kurinec CA, Hinson JM. Temporary amnesia from sleep loss: A framework for understanding consequences of sleep deprivation. Front Neurosci 2023; 17:1134757. [PMID: 37065907 PMCID: PMC10098076 DOI: 10.3389/fnins.2023.1134757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/13/2023] [Indexed: 04/18/2023] Open
Abstract
Throughout its modern history, sleep research has been concerned with both the benefits of sleep and the deleterious impact of sleep disruption for cognition, behavior, and performance. When more specifically examining the impact of sleep on memory and learning, however, research has overwhelmingly focused on how sleep following learning facilitates memory, with less attention paid to how lack of sleep prior to learning can disrupt subsequent memory. Although this imbalance in research emphasis is being more frequently addressed by current investigators, there is a need for a more organized approach to examining the effect of sleep deprivation before learning. The present review briefly describes the generally accepted approach to analyzing effects of sleep deprivation on subsequent memory and learning by means of its effects on encoding. Then, we suggest an alternative framework with which to understand sleep loss and memory in terms of temporary amnesia from sleep loss (TASL). The review covers the well-characterized properties of amnesia arising from medial temporal lobe lesions and shows how the pattern of preserved and impaired aspects of memory in amnesia may also be appearing during sleep loss. The view of the TASL framework is that amnesia and the amnesia-like deficits observed during sleep deprivation not only affect memory processes but will also be apparent in cognitive processes that rely on those memory processes, such as decision-making. Adoption of the TASL framework encourages movement away from traditional explanations based on narrowly defined domains of memory functioning, such as encoding, and taking instead a more expansive view of how brain structures that support memory, such as the hippocampus, interact with higher structures, such as the prefrontal cortex, to produce complex cognition and behavioral performance, and how this interaction may be compromised by sleep disruption.
Collapse
Affiliation(s)
- Paul Whitney
- Department of Psychology, Washington State University, Pullman, WA, United States
- Sleep and Performance Research Center, Washington State University, Spokane, WA, United States
- *Correspondence: Paul Whitney,
| | - Courtney A. Kurinec
- Sleep and Performance Research Center, Washington State University, Spokane, WA, United States
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - John M. Hinson
- Department of Psychology, Washington State University, Pullman, WA, United States
- Sleep and Performance Research Center, Washington State University, Spokane, WA, United States
| |
Collapse
|
35
|
Roüast NM, Schönauer M. Continuously changing memories: a framework for proactive and non-linear consolidation. Trends Neurosci 2023; 46:8-19. [PMID: 36428193 DOI: 10.1016/j.tins.2022.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/10/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
The traditional view of long-term memory is that memory traces mature in a predetermined 'linear' process: their neural substrate shifts from rapidly plastic medial temporal regions towards stable neocortical networks. We propose that memories remain malleable, not by repeated reinstantiations of this linear process but instead via dynamic routes of proactive and non-linear consolidation: memories change, their trajectory is flexible and reversible, and their physical basis develops continuously according to anticipated demands. Studies demonstrating memory updating, increasing hippocampal dependence to support adaptive use, and rapid neocortical plasticity provide evidence for continued non-linear consolidation. Although anticipated demand can affect all stages of memory formation, the extent to which it shapes the physical memory trace repeatedly and proactively will require further dedicated research.
Collapse
Affiliation(s)
- Nora Malika Roüast
- Institute for Psychology, Neuropsychology, University of Freiburg, Freiburg, Germany.
| | - Monika Schönauer
- Institute for Psychology, Neuropsychology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
36
|
Singh D, Norman KA, Schapiro AC. A model of autonomous interactions between hippocampus and neocortex driving sleep-dependent memory consolidation. Proc Natl Acad Sci U S A 2022; 119:e2123432119. [PMID: 36279437 PMCID: PMC9636926 DOI: 10.1073/pnas.2123432119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/11/2022] [Indexed: 08/04/2023] Open
Abstract
How do we build up our knowledge of the world over time? Many theories of memory formation and consolidation have posited that the hippocampus stores new information, then "teaches" this information to the neocortex over time, especially during sleep. But it is unclear, mechanistically, how this actually works-How are these systems able to interact during periods with virtually no environmental input to accomplish useful learning and shifts in representation? We provide a framework for thinking about this question, with neural network model simulations serving as demonstrations. The model is composed of hippocampus and neocortical areas, which replay memories and interact with one another completely autonomously during simulated sleep. Oscillations are leveraged to support error-driven learning that leads to useful changes in memory representation and behavior. The model has a non-rapid eye movement (NREM) sleep stage, where dynamics between the hippocampus and neocortex are tightly coupled, with the hippocampus helping neocortex to reinstate high-fidelity versions of new attractors, and a REM sleep stage, where neocortex is able to more freely explore existing attractors. We find that alternating between NREM and REM sleep stages, which alternately focuses the model's replay on recent and remote information, facilitates graceful continual learning. We thus provide an account of how the hippocampus and neocortex can interact without any external input during sleep to drive useful new cortical learning and to protect old knowledge as new information is integrated.
Collapse
Affiliation(s)
- Dhairyya Singh
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104
| | - Kenneth A. Norman
- Department of Psychology, Princeton University, Princeton, NJ 08540
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540
| | - Anna C. Schapiro
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
37
|
Iggena D, Maier PM, Häußler SM, Menk M, Olze H, Larkum ME, Finke C, Ploner CJ. Post-encoding modulation of spatial memory consolidation by propofol. Cortex 2022; 156:1-12. [DOI: 10.1016/j.cortex.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/09/2022] [Accepted: 08/10/2022] [Indexed: 11/03/2022]
|
38
|
Sleep preferentially consolidates negative aspects of human memory: Well-powered evidence from two large online experiments. Proc Natl Acad Sci U S A 2022; 119:e2202657119. [PMID: 36279434 PMCID: PMC9636942 DOI: 10.1073/pnas.2202657119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent research has called into question whether sleep improves memory, especially for emotional information. However, many of these studies used a relatively small number of participants and focused only on college student samples, limiting both the power of these findings and their generalizability to the wider population. Here, using the well-established emotional memory trade-off task, we investigated sleep’s impact on memory for emotional components of scenes in a large online sample of adults ranging in age from 18 to 59 y. Despite the limitations inherent in using online samples, this well-powered study provides strong evidence that sleep selectively consolidates negative emotional aspects of memory and that this effect generalizes to participants across young adulthood and middle age. Research suggests that sleep benefits memory. Moreover, it is often claimed that sleep selectively benefits memory for emotionally salient information over neutral information. However, not all scientists are convinced by this relationship [e.g., J. M. Siegel. Curr. Sleep Med. Rep., 7, 15–18 (2021)]. One criticism of the overall sleep and memory literature—like other literature—is that many studies are underpowered and lacking in generalizability [M. J. Cordi, B. Rasch. Curr. Opin. Neurobiol., 67, 1–7 (2021)], thus leaving the evidence mixed and confusing to interpret. Because large replication studies are sorely needed, we recruited over 250 participants spanning various age ranges and backgrounds in an effort to confirm sleep’s preferential emotional memory consolidation benefit using a well-established task. We found that sleep selectively benefits memory for negative emotional objects at the expense of their paired neutral backgrounds, confirming our prior work and clearly demonstrating a role for sleep in emotional memory formation. In a second experiment also using a large sample, we examined whether this effect generalized to positive emotional memory. We found that while participants demonstrated better memory for positive objects compared to their neutral backgrounds, sleep did not modulate this effect. This research provides strong support for a sleep-specific benefit on memory consolidation for specifically negative information and more broadly affirms the benefit of sleep for cognition.
Collapse
|
39
|
Multiple traces and altered signal-to-noise in systems consolidation: Evidence from the 7T fMRI Natural Scenes Dataset. Proc Natl Acad Sci U S A 2022; 119:e2123426119. [PMID: 36279446 PMCID: PMC9636924 DOI: 10.1073/pnas.2123426119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
How do the neural correlates of recognition change over time? We study natural scene image recognition spanning a year with 7-Tesla functional magnetic resonance imaging (fMRI) of the human brain. We find that the medial temporal lobe (MTL) contribution to recognition persists over 200 d, supporting multiple-trace theory and contradicting a trace transfer (from MTL to cortex) point of view. We then test the hypothesis that the signal-to-noise ratio of traces increases over time, presumably a consequence of synaptic “desaturation” in the weeks following learning. The fMRI trace signature associates with the rate of removal of competing traces and reflects a time-related enhancement of image-feature selectivity. We conclude that multiple MTL traces and improved signal-to-noise may underlie systems-level memory consolidation. The brain mechanisms of memory consolidation remain elusive. Here, we examine blood-oxygen-level-dependent (BOLD) correlates of image recognition through the scope of multiple influential systems consolidation theories. We utilize the longitudinal Natural Scenes Dataset, a 7-Tesla functional magnetic resonance imaging human study in which ∼135,000 trials of image recognition were conducted over the span of a year among eight subjects. We find that early- and late-stage image recognition associates with both medial temporal lobe (MTL) and visual cortex when evaluating regional activations and a multivariate classifier. Supporting multiple-trace theory (MTT), parts of the MTL activation time course show remarkable fit to a 20-y-old MTT time-dynamical model predicting early trace intensity increases and slight subsequent interference (R2 > 0.90). These findings contrast a simplistic, yet common, view that memory traces are transferred from MTL to cortex. Next, we test the hypothesis that the MTL trace signature of memory consolidation should also reflect synaptic “desaturation,” as evidenced by an increased signal-to-noise ratio. We find that the magnitude of relative BOLD enhancement among surviving memories is positively linked to the rate of removal (i.e., forgetting) of competing traces. Moreover, an image-feature and time interaction of MTL and visual cortex functional connectivity suggests that consolidation mechanisms improve the specificity of a distributed trace. These neurobiological effects do not replicate on a shorter timescale (within a session), implicating a prolonged, offline process. While recognition can potentially involve cognitive processes outside of memory retrieval (e.g., re-encoding), our work largely favors MTT and desaturation as perhaps complementary consolidative memory mechanisms.
Collapse
|
40
|
Dunsmoor JE, Murty VP, Clewett D, Phelps EA, Davachi L. Tag and capture: how salient experiences target and rescue nearby events in memory. Trends Cogn Sci 2022; 26:782-795. [PMID: 35842373 PMCID: PMC9378568 DOI: 10.1016/j.tics.2022.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
The long-term fate of a memory is not exclusively determined by the events occurring at the moment of encoding. Research at the cellular, circuit, and behavioral levels is beginning to reveal how neurochemical activations in the moments surrounding an event can retroactively and proactively rescue weak memory for seemingly mundane experiences. We review emerging evidence showing enhancement of weakly formed memories encoded minutes to hours before or after a related motivationally relevant experience. We discuss proposed neurobiological mechanisms for strengthening weak memories formed in temporal proximity to a strong event, and how this knowledge could be leveraged to improve memory for information that is prone to forgetting.
Collapse
Affiliation(s)
- Joseph E Dunsmoor
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA.
| | - Vishnu P Murty
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - David Clewett
- Department of Psychology, University of California, Los Angeles, CA, USA
| | | | - Lila Davachi
- Nathan Kline Institute, Orangeburg, NY, USA; Department of Psychology, Columbia University, New York, NY, USA.
| |
Collapse
|
41
|
Narrative thinking lingers in spontaneous thought. Nat Commun 2022; 13:4585. [PMID: 35933422 PMCID: PMC9357042 DOI: 10.1038/s41467-022-32113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 07/16/2022] [Indexed: 11/28/2022] Open
Abstract
Some experiences linger in mind, spontaneously returning to our thoughts for minutes after their conclusion. Other experiences fall out of mind immediately. It remains unclear why. We hypothesize that an input is more likely to persist in our thoughts when it has been deeply processed: when we have extracted its situational meaning rather than its physical properties or low-level semantics. Here, participants read sequences of words with different levels of coherence (word-, sentence-, or narrative-level). We probe participants’ spontaneous thoughts via free word association, before and after reading. By measuring lingering subjectively (via self-report) and objectively (via changes in free association content), we find that information lingers when it is coherent at the narrative level. Furthermore, and an individual’s feeling of transportation into reading material predicts lingering better than the material’s objective coherence. Thus, our thoughts in the present moment echo prior experiences that have been incorporated into deeper, narrative forms of thinking. Some experiences linger in our minds, while others quickly fade. Here, the authors show that the extent to which our recent experiences linger into subsequent thought increases as a function of processing depth.
Collapse
|
42
|
Dunsmoor JE, Cisler JM, Fonzo GA, Creech SK, Nemeroff CB. Laboratory models of post-traumatic stress disorder: The elusive bridge to translation. Neuron 2022; 110:1754-1776. [PMID: 35325617 PMCID: PMC9167267 DOI: 10.1016/j.neuron.2022.03.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating mental illness composed of a heterogeneous collection of symptom clusters. The unique nature of PTSD as arising from a precipitating traumatic event helps simplify cross-species translational research modeling the neurobehavioral effects of stress and fear. However, the neurobiological progress on these complex neural circuits informed by animal models has yet to produce novel, evidence-based clinical treatment for PTSD. Here, we provide a comprehensive overview of popular laboratory models of PTSD and provide concrete ideas for improving the validity and clinical translational value of basic research efforts in humans. We detail modifications to simplified animal paradigms to account for myriad cognitive factors affected in PTSD, which may contribute to abnormalities in regulating fear. We further describe new avenues for integrating different areas of psychological research underserved by animal models of PTSD. This includes incorporating emerging trends in the cognitive neuroscience of episodic memory, emotion regulation, social-emotional processes, and PTSD subtyping to provide a more comprehensive recapitulation of the human experience to trauma in laboratory research.
Collapse
Affiliation(s)
- Joseph E Dunsmoor
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin Dell Medical School, Austin, TX, USA; Center for Psychedelic Research and Therapy, University of Texas at Austin Dell Medical School, Austin, TX, USA.
| | - Josh M Cisler
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin Dell Medical School, Austin, TX, USA; Institute for Early Life Adversity Research, University of Texas at Austin, Austin, TX, USA; Center for Psychedelic Research and Therapy, University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Gregory A Fonzo
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin Dell Medical School, Austin, TX, USA; Institute for Early Life Adversity Research, University of Texas at Austin, Austin, TX, USA; Center for Psychedelic Research and Therapy, University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Suzannah K Creech
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin Dell Medical School, Austin, TX, USA; Institute for Early Life Adversity Research, University of Texas at Austin, Austin, TX, USA
| | - Charles B Nemeroff
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin Dell Medical School, Austin, TX, USA; Institute for Early Life Adversity Research, University of Texas at Austin, Austin, TX, USA; Center for Psychedelic Research and Therapy, University of Texas at Austin Dell Medical School, Austin, TX, USA.
| |
Collapse
|
43
|
Gil-Lievana E, Ramírez-Mejía G, Urrego-Morales O, Luis-Islas J, Gutierrez R, Bermúdez-Rattoni F. Photostimulation of Ventral Tegmental Area-Insular Cortex Dopaminergic Inputs Enhances the Salience to Consolidate Aversive Taste Recognition Memory via D1-Like Receptors. Front Cell Neurosci 2022; 16:823220. [PMID: 35360496 PMCID: PMC8962201 DOI: 10.3389/fncel.2022.823220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/08/2022] [Indexed: 12/04/2022] Open
Abstract
Taste memory involves storing information through plasticity changes in the neural network of taste, including the insular cortex (IC) and ventral tegmental area (VTA), a critical provider of dopamine. Although a VTA-IC dopaminergic pathway has been demonstrated, its role to consolidate taste recognition memory remains poorly understood. We found that photostimulation of dopaminergic neurons in the VTA or VTA-IC dopaminergic terminals of TH-Cre mice improves the salience to consolidate a subthreshold novel taste stimulus regardless of its hedonic value, without altering their taste palatability. Importantly, the inhibition of the D1-like receptor into the IC impairs the salience to facilitate consolidation of an aversive taste recognition memory. Finally, our results showed that VTA photostimulation improves the salience to consolidate a conditioned taste aversion memory through the D1-like receptor into the IC. It is concluded that the dopamine activity from the VTA into IC is required to increase the salience enabling the consolidation of a taste recognition memory. Notably, the D1-like receptor activity into the IC is required to consolidate both innate and learned aversive taste memories but not appetitive taste memory.
Collapse
Affiliation(s)
- Elvi Gil-Lievana
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gerardo Ramírez-Mejía
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Oscar Urrego-Morales
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge Luis-Islas
- Laboratory of Neurobiology of Appetitive, Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV, Mexico City, Mexico
| | - Ranier Gutierrez
- Laboratory of Neurobiology of Appetitive, Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV, Mexico City, Mexico
| | - Federico Bermúdez-Rattoni
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Federico Bermúdez-Rattoni,
| |
Collapse
|
44
|
Giglia G, Gambino G, Cuffaro L, Aleo F, Sardo P, Ferraro G, Blandino V, Brighina F, Gangitano M, Piccoli T. Modulating Long Term Memory at Late-Encoding Phase: An rTMS Study. Brain Topogr 2021; 34:834-839. [PMID: 34674095 DOI: 10.1007/s10548-021-00872-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/18/2021] [Indexed: 11/29/2022]
Abstract
Despite a huge effort of the scientific community, the functioning of Long-Term Memory (LTM) processes is still debated and far from being elucidated. Functional and neurophysiological data point to an involvement of Dorsolateral Prefrontal Cortex (DLPFC) in both encoding and retrieval phases. However, the recently proposed Explicit/Implicit Memory Encoding and Retrieval (EIMER) model proposes that LTM at the encoding phase consists of anatomically and chronologically different sub-phases. On this basis, we aimed to investigate the role of right DLPFC during a late-encoding phase by means of low-frequency rTMS. Thirty right-handed healthy subjects were divided into three experimental groups. Inhibitory rTMS was applied over right-DLPFC immediately after the encoding phase (Late-Encoding Group) or before recognition phase (Pre-Recognition Group), 24 h after, of an LTM task. Both groups also received sham stimulation during the non-target phase, while the third group (Sham Group) received only sham stimulation in both phases. The Late-Encoding Group collected a lower number of correct responses compared with Sham Group (p = 0.00), while Pre-Retrieval Group increased accuracy as compared to the Sham Group (p = 0.0). rTMS-inhibition of the right DLPFC seems able to interfere with LTM memory performances when delivered at a late stage of the encoding phase, with opposite effects at the pre-retrieval phase.
Collapse
Affiliation(s)
- Giuseppe Giglia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy.,Euro Mediterranean Institute of Science and Technology- I.E.ME.S.T., Palermo, Italy
| | - Giuditta Gambino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Luca Cuffaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy.
| | - Fabio Aleo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Pierangelo Sardo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy.
| | - Giuseppe Ferraro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Valeria Blandino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Filippo Brighina
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Massimo Gangitano
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Tommaso Piccoli
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| |
Collapse
|