1
|
Jiang C, Wu Y, Zhang Y, Zong J, Wang N, Liu G, Liu R, Yu H. Supramolecular Modulation for Selective Mechanochemical Iron-Catalyzed Olefin Oxidation. Angew Chem Int Ed Engl 2025; 64:e202413901. [PMID: 39221519 DOI: 10.1002/anie.202413901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/04/2024]
Abstract
The development of a mechanochemical Fe-catalyzed Wacker oxidation of olefins with a sustainable and benign procedure holds significant promise for industrial applications. However, navigating the intricate interactions inherent in ball-milling conditions to fine-tune reaction selectivity remains a formidable challenge. Herein, leveraging the dispersive and/or trapping properties of cyclodextrins, an innovative mechanochemical approach is developed through the integration of cyclodextrins into a Fe-catalyzed system, enabling a streamlined Wacker oxidation process from simple and/or commercially available alkenes. Our efforts have yielded optimized mechanochemical conditions demonstrating exceptional reactivity and selectivity in generating a diverse array of ketone products, markedly enhancing catalytic efficiency compared to conventional batch methods. Mechanistic investigations have revealed a predominantly Markovnikov-selective catalytic cycle, effectively minimizing undesired alcohol formation, hydrogenation, and the other competing pathways, boosting both reaction yield and selectivity.
Collapse
Affiliation(s)
- Chuan Jiang
- International Joint Laboratory on Resource Chemistry, Shanghai Normal University, 200234, Shanghai, P. R. China
| | - Ye Wu
- International Joint Laboratory on Resource Chemistry, Shanghai Normal University, 200234, Shanghai, P. R. China
| | - Yongjin Zhang
- International Joint Laboratory on Resource Chemistry, Shanghai Normal University, 200234, Shanghai, P. R. China
| | - Jiawei Zong
- International Joint Laboratory on Resource Chemistry, Shanghai Normal University, 200234, Shanghai, P. R. China
| | - Ning Wang
- International Joint Laboratory on Resource Chemistry, Shanghai Normal University, 200234, Shanghai, P. R. China
| | - Guohua Liu
- International Joint Laboratory on Resource Chemistry, Shanghai Normal University, 200234, Shanghai, P. R. China
| | - Rui Liu
- International Joint Laboratory on Resource Chemistry, Shanghai Normal University, 200234, Shanghai, P. R. China
| | - Han Yu
- International Joint Laboratory on Resource Chemistry, Shanghai Normal University, 200234, Shanghai, P. R. China
| |
Collapse
|
2
|
Trzeciak K, Dudek MK, Potrzebowski MJ. Mechanochemical Transformations of Pharmaceutical Cocrystals: Polymorphs and Coformer Exchange. Chemistry 2024; 30:e202402683. [PMID: 39384536 DOI: 10.1002/chem.202402683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Transformations of solid samples under solvent-free or minimal solvent conditions set the future trend and define a modern strategy for the production of new materials. Of the various technologies tested in recent years, the mechanochemical approach seems to be the most promising for economic and ecological reasons. The aim of this review article is to present the current state of art in solid state research on binary systems, which have found numerous applications in the pharmaceutical and materials science industries. This article is divided into three sections. In the first part, we describe the new equipment improvements, which include the innovative application of thermo-mechanochemistry, sono-mechanochemistry, photo-mechanochemistry, electro-mechanochemistry, as well as resonant acoustic mixing (RAM), and transformation under high-speed sample spinning ("SpeedMixing"). A brief description of techniques dedicated to ex-situ and in-situ studies of progress and the mechanism of solid matter transformation (PXRD, FTIR, Raman and NMR spectroscopy) is presented. In the second section, we discuss the problem of cocrystal polymorphism highlighting the issue related with correlation between mechanochemical parameters (time, temperature, energy, molar ratio, solvent used as a liquid assistant, surface energy, crystal size, crystal shape) and preference for the formation of requested polymorph. The last part is devoted to the description of the processes of coformer exchange in binary systems forced by mechanical and/or thermal stimuli. The influence of the thermodynamic factor on the selection of the best-suited partner for the formation of a two-component stable structure is presented.
Collapse
Affiliation(s)
- Katarzyna Trzeciak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Marta K Dudek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
3
|
Reynes J, Leon F, García F. Mechanochemistry for Organic and Inorganic Synthesis. ACS ORGANIC & INORGANIC AU 2024; 4:432-470. [PMID: 39371328 PMCID: PMC11450734 DOI: 10.1021/acsorginorgau.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 10/08/2024]
Abstract
In recent years, mechanochemistry has become an innovative and sustainable alternative to traditional solvent-based synthesis. Mechanochemistry rapidly expanded across a wide range of chemistry fields, including diverse organic compounds and active pharmaceutical ingredients, coordination compounds, organometallic complexes, main group frameworks, and technologically relevant materials. This Review aims to highlight recent advancements and accomplishments in mechanochemistry, underscoring its potential as a viable and eco-friendly alternative to conventional solution-based methods in the field of synthetic chemistry.
Collapse
Affiliation(s)
- Javier
F. Reynes
- Departamento
de Química Orgánica e Inorgánica. Facultad de
Química. Universidad de Oviedo. Ave. Julián Clavería
8, 33006 Oviedo, Asturias Spain
| | - Felix Leon
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Consejo Superior de Investigaciones, Científicas (CSIC) and Universidad de Sevilla, Avenida Américo Vespucio
49, 41092 Sevilla, Spain
| | - Felipe García
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
4
|
García-Rodríguez M, Cazorla-Amorós D, Morallón E. Eco-Friendly Mechanochemical Synthesis of Bifunctional Metal Oxide Electrocatalysts for Zn-Air Batteries. CHEMSUSCHEM 2024; 17:e202401055. [PMID: 38924618 DOI: 10.1002/cssc.202401055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
The development of green and environmentally friendly synthesis methods of electrocatalysts is a crucial aspect in decarbonizing energy generation. In this study, eco-friendly mechanochemical synthesis of perovskite metal oxide-carbon black composites is proposed using different conditions and additives such as KOH. Furthermore, the optimization of ball milling conditions, including time and rotational speed, is studied. The mechanochemical synthesis in solid-state conditions without additives produces electrocatalysts that exhibit the highest bifunctional electrochemical activity towards both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Moreover, this synthesis demonstrates a lower Environmental Impact Factor (E-factor), indicating its greener nature, and due to its simplicity, it has a great potential for scalability. The obtained bifunctional electrocatalysts have been tested in a rechargeable zinc-air battery (ZAB) for 22 h with similar performance compared to the commercial catalyst (Pt/C) at significantly lower cost. These promising findings are attributed to the enhanced interaction between the perovskite metal oxide and carbon material and the improved dispersion of the perovskite metal oxide on the carbon materials.
Collapse
Affiliation(s)
- M García-Rodríguez
- Dept. Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | - D Cazorla-Amorós
- Dept. Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | - E Morallón
- Dept. Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| |
Collapse
|
5
|
Hum G, Muzammil EM, Li Y, García F, Stuparu MC. Mechanochemical Synthesis of Corannulene Flanked N-heterocyclic Carbene (NHC) Precursors and Preparation of Their Metal Complexes. Chemistry 2024; 30:e202402056. [PMID: 38962947 DOI: 10.1002/chem.202402056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
The synthesis of new compounds is an important pillar for the advancement of the field of chemistry and adjacent fields. In this regard, over the last decades huge efforts have been made to not only develop new molecular entities but also more efficient sustainable synthetic methodologies due to the increasing concerns over environmental sustainability. In this context, we have developed synthetic routes to novel corannulene flanked imidazolium bromide NHC precursors both in the solid-state and solution phases. Our work presents a comprehensive comparative study of mechanochemical routes and conventional solution-based methods. Green metrics and energy consumption comparison were performed for both routes revealing ball-milling generation of these compounds to be an environmentally greener technique to produce such precursors compared to conventional solvent-based methods. In addition, we have demonstrated proof-of-concept of the herein reported corannulene flanked NHCs to be robust ligands for transition metals and their ligand substitution reactions.
Collapse
Affiliation(s)
- Gavin Hum
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Ezzah M Muzammil
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Yongxin Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Felipe García
- School of Chemistry, Monash University, 3800, Clayton, Victoria, Australia
| | - Mihaiela C Stuparu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
- National Institute for Research and Development of Isotopic and Molecular Technologies - INCDTIM, 67-103 Donat Street, 400293, Cluj-Napoca, Romania
| |
Collapse
|
6
|
Xiao Y, Choudhuri K, Thanetchaiyakup A, Chan WX, Hu X, Sadek M, Tam YH, Loh RG, Shaik Mohammed SNB, Lim KJY, Ten JZ, Garcia F, Chellappan V, Choksi TS, Lim Y, Soo HS. Machine-Learning-Assisted Discovery of Mechanosynthesized Lead-Free Metal Halide Perovskites for the Oxidative Photocatalytic Cleavage of Alkenes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309714. [PMID: 38807302 PMCID: PMC11304309 DOI: 10.1002/advs.202309714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/18/2024] [Indexed: 05/30/2024]
Abstract
Lead-free metal halide perovskites can potentially be air- and water-stable photocatalysts for organic synthesis, but there are limited studies on them for this application. Separately, machine learning (ML), a critical subfield of artificial intelligence, has played a pivotal role in identifying correlations and formulating predictions based on extensive datasets. Herein, an iterative workflow by incorporating high-throughput experimental data with ML to discover new lead-free metal halide perovskite photocatalysts for the aerobic oxidation of styrene is described. Through six rounds of ML optimization guided by SHapley Additive exPlanations (SHAP) analysis, BA2CsAg0.95Na0.05BiBr7 as a photocatalyst that afforded an 80% yield of benzoic acid under the standard conditions is identified, which is a 13-fold improvement compared to the 6% with when using Cs2AgBiBr6 as the initial photocatalyst benchmark that is started. BA2CsAg0.95Na0.05BiBr7 can tolerate various functional groups with 22 styrene derivatives, highlighting the generality of the photocatalytic properties demonstrated. Radical scavenging studies and density functional theory calculations revealed that the formation of the reactive oxygen species superoxide and singlet oxygen in the presence of BA2CsAg0.95Na0.05BiBr7 are critical for photocatalysis.
Collapse
Affiliation(s)
- Yonghao Xiao
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Khokan Choudhuri
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Adisak Thanetchaiyakup
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Wei Xin Chan
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Xinwen Hu
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Mansour Sadek
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Ying Hern Tam
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Ryan Guanying Loh
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | | | - Kendric Jian Ying Lim
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Ju Zheng Ten
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Felipe Garcia
- Departamento de Química Orgánica e InorgánicaFacultad de QuímicaUniversidad de OviedoJulián Claveria 8OviedoAsturias33006Spain
- School of ChemistryMonash UniversityClaytonVictoria3800Australia
| | - Vijila Chellappan
- Institute of Materials Research and Engineering (IMRE)Agency for ScienceTechnology and Research (A*STAR)Fusionopolis Way, Innovis #08‐03Singapore138634Singapore
- Institute for Functional Intelligent MaterialsNational University of Singapore4 Science Drive 2Singapore117544Singapore
| | - Tej S. Choksi
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological University62 Nanyang DriveSingapore637459Singapore
- Cambridge Centre for Advanced Research and Education in SingaporeCREATE Tower 1 Create WaySingapore138602Singapore
| | - Yee‐Fun Lim
- Institute of Materials Research and Engineering (IMRE)Agency for ScienceTechnology and Research (A*STAR)Fusionopolis Way, Innovis #08‐03Singapore138634Singapore
- Institute of Sustainability for ChemicalsEnergy and Environment (ISCE2)Agency of ScienceTechnology and Research (A*STAR)1 Pesek RoadSingapore627833Singapore
| | - Han Sen Soo
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| |
Collapse
|
7
|
Báti G, Csókás D, Stuparu MC. Mechanochemical Scholl Reaction on Phenylated Cyclopentadiene Core: One-Step Synthesis of Fluoreno[5]helicenes. Chemistry 2024; 30:e202302971. [PMID: 37870299 DOI: 10.1002/chem.202302971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
In this study, we explore feasibility of the mechanochemical approach in the synthesis of tetrabenzofluorenes (fluoreno[5]helicenes). For this, commercially available phenylated cyclopentadiene precursors are subjected to the Scholl reaction in the solid state using FeCl3 as an oxidant and sodium chloride as the solid reaction medium. This ball milling process gave access to the 5-membered ring containing-helicenes in one synthetic step in high (95-96 %) isolated yields. The solution-phase reactions, however, were found to be moderate to low yielding in this regard (10-40 %).
Collapse
Affiliation(s)
- Gábor Báti
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Dániel Csókás
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Mihaiela C Stuparu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| |
Collapse
|
8
|
Wenger LE, Hanusa TP. Synthesis without solvent: consequences for mechanochemical reactivity. Chem Commun (Camb) 2023; 59:14210-14222. [PMID: 37953718 DOI: 10.1039/d3cc04929a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Solvents are so nearly omnipresent in synthetic chemistry that a classic question for their use has been: "What is the best solvent for this reaction?" The increasing use of mechanochemical approaches to synthesis-by grinding, milling, extrusion, or other means-and usually with no, or only limited, amounts of solvent, has raised an alternative question for the synthetic chemist: "What happens if there is no solvent?" This review focuses on a three-part answer to that question: when there is little change ("solvent-optional" reactions); when solvent needs to be present in some form, even if only in the amounts provided by liquid-assisted (LAG) or solvate-assisted grinding; and those cases in which mechanochemistry allows access to compounds that cannot be obtained from solution-based routes. The emphasis here is on inorganic and organometallic systems, including selected examples of mechanosynthesis and mechanocatalysis. Issues of mechanochemical depictions and the adequacy of LAG descriptions are also reviewed.
Collapse
Affiliation(s)
- Lauren E Wenger
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, 37235, USA.
| | - Timothy P Hanusa
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, 37235, USA.
| |
Collapse
|
9
|
Cabeza JA, Reynes JF, García F, García-Álvarez P, García-Soriano R. Fast and scalable solvent-free access to Lappert's heavier tetrylenes E{N(SiMe 3) 2} 2 (E = Ge, Sn, Pb) and ECl{N(SiMe 3) 2} (E = Ge, Sn). Chem Sci 2023; 14:12477-12483. [PMID: 38020393 PMCID: PMC10646885 DOI: 10.1039/d3sc02709k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/03/2023] [Accepted: 09/24/2023] [Indexed: 12/01/2023] Open
Abstract
Iconic Lappert's heavier tetrylenes E{N(SiMe3)2}2 (E = Ge (1), Sn (2), Pb (3)) have been efficiently prepared from GeCl2·(1,4-dioxane), SnCl2 or PbCl2 and Li{N(SiMe3)2} via a completely solvent-free one-pot mechanochemical route followed by sublimation. This fast, high-yielding and scalable approach (2 has been prepared in a 100 mmol scale), which involves a small environmental footprint, represents a remarkable improvement over any synthetic route reported over the last five decades, being a so far rare example of the use of mechanochemistry in the realm of main group chemistry. This solventless route has been successfully extended to the preparation of other heavier tetrylenes, such as ECl{N(SiMe3)2} (E = Ge (4), Sn (5)).
Collapse
Affiliation(s)
- Javier A Cabeza
- Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo 33071 Oviedo Spain
| | - Javier F Reynes
- Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo 33071 Oviedo Spain
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo 33071 Oviedo Spain
- School of Chemistry, Monash University Clayton Victoria 3800 Australia
| | - Pablo García-Álvarez
- Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo 33071 Oviedo Spain
| | - Rubén García-Soriano
- Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo 33071 Oviedo Spain
| |
Collapse
|
10
|
Báti G, Laxmi S, Stuparu MC. Mechanochemical Synthesis of Corannulene: Scalable and Efficient Preparation of A Curved Polycyclic Aromatic Hydrocarbon under Ball Milling Conditions. CHEMSUSCHEM 2023; 16:e202301087. [PMID: 37581302 DOI: 10.1002/cssc.202301087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Corannulene, a curved polycyclic aromatic hydrocarbon, is prepared in a multigram scale through mechanochemical synthesis. Initially, a mixer mill approach is examined and found to be suitable for a gram scale synthesis. For larger scales, planetary mills are used. For instance, 15 g of corannulene could be obtained in a single milling cycle with an isolated yield of 90 %. The yields are lower when the jar rotation rate is lower or higher than 400 revolutions per minute (rpm). Cumulatively, 98 g of corannulene is produced through the ball milling-based grinding techniques. These results indicate the future potential of mechanochemistry in the rational chemical synthesis of highly curved nanocarbons such as fullerenes and carbon nanotubes.
Collapse
Affiliation(s)
- Gábor Báti
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link, 637371, Singapore, Singapore
| | - Shoba Laxmi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link, 637371, Singapore, Singapore
| | - Mihaiela C Stuparu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link, 637371, Singapore, Singapore
| |
Collapse
|
11
|
Fantozzi N, Volle JN, Porcheddu A, Virieux D, García F, Colacino E. Green metrics in mechanochemistry. Chem Soc Rev 2023; 52:6680-6714. [PMID: 37691600 DOI: 10.1039/d2cs00997h] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The development of new green methodologies and their broader adoption for promoting sustainable development in chemistry laboratories and industry play a significant role in society, due to the economic importance of chemistry and its widespread presence in everyday life. Therefore, a sustainable approach to chemistry contributes to the well-being of the worldwide population and complies with the United Nations Sustainable Development Goals (UN SDGs) and the European Green Deal. The review highlights how batch and continuous mechanochemical methods are an eco-friendly approach for organic synthesis, with a lower environmental footprint in most cases, compared to solution-based procedures. The assessment is objectively based on the use of green metrics (e.g., atom and real atom economy, E-factor, process mass intensity, material parameter recovery, Eco-scale, stoichiometric factor, etc.) and indicators (e.g. DOZN tool and life cycle assessment, LCA, studies) applied to organic transformations such as synthesis of the amide bond, carbamates, heterocycles, active pharmaceutical ingredients (APIs), porphyrins, porous organic polymers (POPs), metal- or acid-catalysed processes, multicomponent and condensation reactions, rearrangements, etc. The generalized absence of bulk solvents, the precise control over the stoichiometry (i.e., using agents in a stoichiometrically rather than in excess), and the more selective reactions enabling simplified work-up procedures are the distinctive factors, marking the superiority of mechanochemical processes over solution-based chemistry.
Collapse
Affiliation(s)
| | - Jean-Noël Volle
- ICGM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France.
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042, Monserrato (CA), Italy
| | - David Virieux
- ICGM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France.
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Julián Claveria 8, Oviedo, 33006, Asturias, Spain.
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
12
|
Leon F, Li C, Reynes JF, Singh VK, Lian X, Ong HC, Hum G, Sun H, García F. Mechanosynthesis and photophysics of colour-tunable photoluminescent group 13 metal complexes with sterically demanding salen and salophen ligands. Faraday Discuss 2023; 241:63-78. [PMID: 36218327 DOI: 10.1039/d2fd00117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A series of four photoluminescent Al and In complexes were synthesised using an environmentally-benign mechanosynthesis strategy. Sterically crowded 3,5-di-tert-butyl functionalised salophen and salen ligands and their respective complexes have been synthesised in the solid-state and fully characterised. Subsequent photophysics and electrochemistry studies of the resulting complexes suggest that these new group 13 complexes can be viable alternatives to traditional photoluminescent complexes based on expensive and low abundant noble metals. The herein-reported strategy avoids the use of organic solvents and provides a process with low environmental impact and enhanced energy efficiency.
Collapse
Affiliation(s)
- Felix Leon
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Chenfei Li
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Javier F Reynes
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Julián Claveria 8, Oviedo 33006, Asturias, Spain.
| | - Varun K Singh
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Xiao Lian
- School of Physical and Mathematical Sciences, Division of Physics and Applied Physics, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - How Chee Ong
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Gavin Hum
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Handong Sun
- School of Physical and Mathematical Sciences, Division of Physics and Applied Physics, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Julián Claveria 8, Oviedo 33006, Asturias, Spain.
| |
Collapse
|
13
|
Krusenbaum A, Grätz S, Tigineh GT, Borchardt L, Kim JG. The mechanochemical synthesis of polymers. Chem Soc Rev 2022; 51:2873-2905. [PMID: 35302564 PMCID: PMC8978534 DOI: 10.1039/d1cs01093j] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 02/06/2023]
Abstract
Mechanochemistry - the utilization of mechanical forces to induce chemical reactions - is a rarely considered tool for polymer synthesis. It offers numerous advantages such as reduced solvent consumption, accessibility of novel structures, and the avoidance of problems posed by low monomer solubility and fast precipitation. Consequently, the development of new high-performance materials based on mechanochemically synthesised polymers has drawn much interest, particularly from the perspective of green chemistry. This review covers the constructive mechanochemical synthesis of polymers, starting from early examples and progressing to the current state of the art while emphasising linear and porous polymers as well as post-polymerisation modifications.
Collapse
Affiliation(s)
- Annika Krusenbaum
- Anorganische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Sven Grätz
- Anorganische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Getinet Tamiru Tigineh
- Department of Chemistry, Bahir Dar University, Peda Street 07, PO Box 79, Bahir Dar, Amhara, Ethiopia
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeon-Ju, Jeollabuk-do, 54896, Republic of Korea.
| | - Lars Borchardt
- Anorganische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Jeung Gon Kim
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeon-Ju, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
14
|
Williams MTJ, Morrill LC, Browne DL. Mechanochemical Organocatalysis: Do High Enantioselectivities Contradict What We Might Expect? CHEMSUSCHEM 2022; 15:e202102157. [PMID: 34767693 PMCID: PMC9300213 DOI: 10.1002/cssc.202102157] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Indexed: 05/10/2023]
Abstract
Ball mills input energy to samples by pulverising the contents of the jar. Each impact on the sample or wall of the jar results in an instantaneous transmission of energy in the form of a temperature and pressure increase (volume reduction). Conversely, enantioselective organocatalytic reactions proceed through perceived delicate and well-organised transition states. Does there exist a dichotomy in the idea of enantioselective mechanochemical organocatalysis? This Review provides a survey of the literature reporting the combination of organocatalytic reactions with mechanochemical ball milling conditions. Where possible, direct comparisons of stirred in solution, stirred neat and ball milled processes are drawn with a particular focus on control of stereoselectivity.
Collapse
Affiliation(s)
- Matthew T. J. Williams
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUK
| | - Louis C. Morrill
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUK
| | - Duncan L. Browne
- Department of Pharmaceutical and Biological ChemistrySchool of PharmacyUniversity College London29–39 Brunswick Square, BloomsburyLondonWC1N 1AXUK
| |
Collapse
|
15
|
Hao X, Li X, Li H, Zhang X, Liu X, Guo F. Mechanosynthesis of polymeric and binuclear copper complexes via dehydrochlorination and their application in solvent-free C–S bond cross-coupling. CrystEngComm 2022. [DOI: 10.1039/d2ce00624c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two copper complexes are readily synthesized from their respective salts by dehydrochlorination reactions and then used as catalysts in mechanosynthesis C–S coupling reactions.
Collapse
Affiliation(s)
- Xiujia Hao
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xinyu Li
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Haitao Li
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xin Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xiaozhi Liu
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Fang Guo
- College of Chemistry, Liaoning University, Shenyang 110036, China
| |
Collapse
|
16
|
André V, Duarte MT, Gomes CSB, Sarraguça MC. Mechanochemistry in Portugal-A Step towards Sustainable Chemical Synthesis. Molecules 2021; 27:241. [PMID: 35011471 PMCID: PMC8746420 DOI: 10.3390/molecules27010241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
In Portugal, publications with mechanochemical methods date back to 2009, with the report on mechanochemical strategies for the synthesis of metallopharmaceuticals. Since then, mechanochemical applications have grown in Portugal, spanning several fields, mainly crystal engineering and supramolecular chemistry, catalysis, and organic and inorganic chemistry. The area with the most increased development is the synthesis of multicomponent crystal forms, with several groups synthesizing solvates, salts, and cocrystals in which the main objective was to improve physical properties of the active pharmaceutical ingredients. Recently, non-crystalline materials, such as ionic liquids and amorphous solid dispersions, have also been studied using mechanochemical methods. An area that is in expansion is the use of mechanochemical synthesis of bioinspired metal-organic frameworks with an emphasis in antibiotic coordination frameworks. The use of mechanochemistry for catalysis and organic and inorganic synthesis has also grown due to the synthetic advantages, ease of synthesis, scalability, sustainability, and, in the majority of cases, the superior properties of the synthesized materials. It can be easily concluded that mechanochemistry is expanding in Portugal in diverse research areas.
Collapse
Affiliation(s)
- Vânia André
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento (IST-ID), Av. Rovisco Pais 1, 1049-003 Lisbon, Portugal
| | - M. Teresa Duarte
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Clara S. B. Gomes
- LAQV-REQUIMTE, Departamento de Química, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Mafalda C. Sarraguça
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
17
|
Pickhardt W, Wohlgemuth M, Grätz S, Borchardt L. Mechanochemically Assisted Synthesis of Hexaazatriphenylenehexacarbonitrile. J Org Chem 2021; 86:14011-14015. [PMID: 34014673 PMCID: PMC8524413 DOI: 10.1021/acs.joc.1c00253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 11/29/2022]
Abstract
1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile (HAT CN) was synthesized mechanochemically at room temperature. The coupling of hexaketocyclohexane and diaminomaleonitrile was conducted in 10 min by vibratory ball milling. The effects of milling parameters, acids, dehydrating agents, and liquid-assisted grinding were rationalized. With 67%, the yield of this mechanochemical approach exceeds that of state-of-the-art wet-chemical syntheses while being superior with respect to time-, resource-, and energy-efficiency as quantified via green metrics.
Collapse
Affiliation(s)
- Wilm Pickhardt
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Maximilian Wohlgemuth
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Sven Grätz
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Lars Borchardt
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
18
|
Zhang R, Wang Y, Zhao Y, Redshaw C, Fedushkin IL, Wu B, Yang XJ. Main-group metal complexes of α-diimine ligands: structure, bonding and reactivity. Dalton Trans 2021; 50:13634-13650. [PMID: 34519747 DOI: 10.1039/d1dt02120f] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
α-Diimine ligands, in particular 1,4-diazabutadiene (dad) and bis(iminoacenaphthene) (bian) derivatives, have been widely used for coordination with various metals, including main-group, transition, and lanthanide and actinide metals. In addition to their tunable steric and electronic properties, the dad and bian ligands are redox-active and can readily accept one or two electrons, converting into the radical-anionic (L˙-) or dianionic (enediamido, L2-) form, respectively. This non-innocence brings about rich electronic structures and properties of the ligands and complexes thereof. For example, the dad ligands in their three redox levels can effectively stabilize a series of metal centers in different oxidation states, including low-valent metals. Moreover, these ligands can serve as electron reservoirs and can participate in reactions toward other molecules with or without metals. Therefore, such ligands are extremely useful in the areas of low-valent complexes and small molecule activation. Herein, we will discuss the use of dad (and bian) ligands in the stabilization of metal-metal-bonded compounds, in particular those of main-group metals, as well as small molecule activation by these (low-valent) metal coordination species where the non-innocence of the ligands plays a key role.
Collapse
Affiliation(s)
- Rong Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Yanchao Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Yanxia Zhao
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Carl Redshaw
- Plastics Collaboratory, Department of Chemistry, University of Hull, Cottingham Road, Hull, UK
| | - Igor L Fedushkin
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.,G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 603950 Nizhny Novgorod, Tropinina str. 49, Russian Federation
| | - Biao Wu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Xiao-Juan Yang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China. .,College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| |
Collapse
|
19
|
Affiliation(s)
- Ross F. Koby
- Department of Chemistry Vanderbilt University Nashville TN 37235 USA
| | - Nathan D. Schley
- Department of Chemistry Vanderbilt University Nashville TN 37235 USA
| | - Timothy P. Hanusa
- Department of Chemistry Vanderbilt University Nashville TN 37235 USA
| |
Collapse
|
20
|
Koby RF, Schley ND, Hanusa TP. Di(indenyl)beryllium. Angew Chem Int Ed Engl 2021; 60:21174-21178. [PMID: 34227203 DOI: 10.1002/anie.202107980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 12/16/2022]
Abstract
The bonding in beryllocene, [BeCp2 ], took decades to establish, owing to its unexpected mixed hapticity structure (i.e., [Be(η5 -Cp)(η1 -Cp)]). Beryllium complexes containing the indenyl ligand, which is a close relative of the cyclopentadienyl anion, but which is also known to exhibit its own bonding peculiarities (e.g., facile η5 ⇄ η3 shifts), have remained unknown. Standard metathetical approaches to their synthesis (e.g., with K[Ind'] + BeX2 in an ether solvent) give rise to intractable oils from which nothing identifiable can be isolated. In contrast, mechanochemical preparation, involving the solvent-free grinding of BeBr2 and potassium indenides, leads to the production of discrete (indenyl)beryllium complexes, including [Be(C9 H7 )2 ] (1) and [Be{1,3-(SiMe3 )2 C9 H5 }Br] (2). The former displays η5 /η1 -coordinated ligands in the solid state, but DFT calculations indicate that an η5 /η5 -conformation is less than 5 kcal mol-1 higher in energy.
Collapse
Affiliation(s)
- Ross F Koby
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Nathan D Schley
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Timothy P Hanusa
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| |
Collapse
|
21
|
Wróblewska A, Lauriol G, Mlostoń G, Bantreil X, Lamaty F. Expedient synthesis of NOxy-Heterocyclic Carbenes (NOHC) ligands and metal complexes using mechanochemistry. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Yong T, Báti G, García F, Stuparu MC. Mechanochemical transformation of planar polyarenes to curved fused-ring systems. Nat Commun 2021; 12:5187. [PMID: 34465777 PMCID: PMC8408202 DOI: 10.1038/s41467-021-25495-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022] Open
Abstract
The transformation of planar aromatic molecules into π-extended non-planar structures is a challenging task and has not been realized by mechanochemistry before. Here we report that mechanochemical forces can successfully transform a planar polyarene into a curved geometry by creating new C-C bonds along the rim of the molecular structure. In doing so, mechanochemistry does not require inert conditions or organic solvents and provide better yields within shorter reaction times. This is illustrated in a 20-minute synthesis of corannulene, a fragment of fullerene C60, in 66% yield through ball milling of planar tetrabromomethylfluoranthene precursor under ambient conditions. Traditional solution and gas-phase synthetic pathways do not compete with the practicality and efficiency offered by the mechanochemical synthesis, which now opens up a new reaction space for inducing curvature at a molecular level.
Collapse
Affiliation(s)
- Teoh Yong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Gábor Báti
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Felipe García
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Mihaiela C Stuparu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
23
|
Affiliation(s)
- Pramod N. Rakendu
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Priyadarsini Hills P.O Kottayam Kerala 686560 India
| | - Thaipparambil Aneeja
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P.O Kottayam Kerala 686560 India
| | - Gopinathan Anilkumar
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Priyadarsini Hills P.O Kottayam Kerala 686560 India
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P.O Kottayam Kerala 686560 India
- Advanced Molecular Materials Research centre (AMMRC) Mahatma Gandhi University Priyadarsini Hills P.O Kottayam Kerala 686560 India
| |
Collapse
|
24
|
Fetrow TV, Daly SR. Mechanochemical synthesis and structural analysis of trivalent lanthanide and uranium diphenylphosphinodiboranates. Dalton Trans 2021; 50:11472-11484. [PMID: 34346459 DOI: 10.1039/d1dt01932e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphinodiboranates (H3BPR2BH3-) are a class of borohydrides that have merited a reputation as weakly coordinating anions, which is attributed in part to the dearth of coordination complexes known with transition metals, lanthanides, and actinides. We recently reported how K(H3BPtBu2BH3) exhibits sluggish salt elimination reactivity with f-metal halides in organic solvents such as Et2O and THF. Here we report how this reactivity appears to be further attenuated in solution when the tBu groups attached to phosphorus are exchanged for R = Ph or H, and we describe how mechanochemistry was used to overcome limited solution reactivity with K(H3BPPh2BH3). Grinding three equivalents of K(H3BPPh2BH3) with UI3(THF)4 or LnI3 (Ln = Ce, Pr, Nd) allowed homoleptic complexes with the empirical formulas U(H3BPPh2BH3)3 (1), Ce(H3BPPh2BH3)3 (2), Pr(H3BPPh2BH3)3 (3), and Nd(H3BPPh2BH3)3 (4) to be prepared and subsequently crystallized in good yields (50-80%). Single-crystal XRD studies revealed that all four complexes exist as dimers or coordination polymers in the solid-state, whereas 1H and 11B NMR spectra showed that they exist as a mixture of monomers and dimers in solution. Treating 4 with THF breaks up the dimer to yield the monomeric complex Nd(H3BPPh2BH3)3(THF)3 (4-THF). XRD studies revealed that 4-THF has one chelating and two dangling H3BPPh2BH3- ligands bound to the metal to accommodate binding of THF. In contrast to the results with K(H3BPPh2BH3), attempting the same mechanochemical reactions with Na(H3BPH2BH3) containing the simplest phosphinodiboranate were unsuccessful; only the partial metathesis product U(H3BPH2BH3)I2(THF)3 (5) was isolated in poor yields. Despite these limitations, our results offer new examples showing how mechanochemistry can be used to rapidly synthesize molecular coordination complexes that are otherwise difficult to prepare using more traditional solution methods.
Collapse
Affiliation(s)
- Taylor V Fetrow
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
25
|
Virieux D, Delogu F, Porcheddu A, García F, Colacino E. Mechanochemical Rearrangements. J Org Chem 2021; 86:13885-13894. [PMID: 34259516 DOI: 10.1021/acs.joc.1c01323] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Molecular rearrangements are a powerful tool for constructing complex structures in an atom- and step-economic manner, translating multistep transformations into an intrinsically more sustainable process. Mechanochemical molecular rearrangements become an even more appealing eco-friendly synthetic approach, especially for preparing active pharmaceutical ingredients (APIs) and natural products. Still in their infancy, rearrangements promoted by mechanochemistry represent a promising approach for chemists to merge molecular diversity and green chemistry perspectives toward more selective and efficient syntheses with a reduced environmental footprint.
Collapse
Affiliation(s)
- David Virieux
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34296, France
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Universita degli Studi di Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato, 09028 Cagliari, Italy
| | - Felipe García
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, 21 Nanyang Link, 63737 Singapore
| | | |
Collapse
|
26
|
Solares-Briones M, Coyote-Dotor G, Páez-Franco JC, Zermeño-Ortega MR, de la O Contreras CM, Canseco-González D, Avila-Sorrosa A, Morales-Morales D, Germán-Acacio JM. Mechanochemistry: A Green Approach in the Preparation of Pharmaceutical Cocrystals. Pharmaceutics 2021; 13:790. [PMID: 34070646 PMCID: PMC8228148 DOI: 10.3390/pharmaceutics13060790] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Mechanochemistry is considered an alternative attractive greener approach to prepare diverse molecular compounds and has become an important synthetic tool in different fields (e.g., physics, chemistry, and material science) since is considered an ecofriendly procedure that can be carried out under solvent free conditions or in the presence of minimal quantities of solvent (catalytic amounts). Being able to substitute, in many cases, classical solution reactions often requiring significant amounts of solvents. These sustainable methods have had an enormous impact on a great variety of chemistry fields, including catalysis, organic synthesis, metal complexes formation, preparation of multicomponent pharmaceutical solid forms, etc. In this sense, we are interested in highlighting the advantages of mechanochemical methods on the obtaining of pharmaceutical cocrystals. Hence, in this review, we describe and discuss the relevance of mechanochemical procedures in the formation of multicomponent solid forms focusing on pharmaceutical cocrystals. Additionally, at the end of this paper, we collect a chronological survey of the most representative scientific papers reporting the mechanochemical synthesis of cocrystals.
Collapse
Affiliation(s)
- Mizraín Solares-Briones
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| | - Guadalupe Coyote-Dotor
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| | - José C. Páez-Franco
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| | - Miriam R. Zermeño-Ortega
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario No. 1, Nuevo Campus Universitario, Apdo. Postal 1552, Chihuahua, C.P. 31125, Mexico; (M.R.Z.-O.); (C.M.d.l.OC.)
| | - Carmen Myriam de la O Contreras
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario No. 1, Nuevo Campus Universitario, Apdo. Postal 1552, Chihuahua, C.P. 31125, Mexico; (M.R.Z.-O.); (C.M.d.l.OC.)
| | - Daniel Canseco-González
- CONACYT-Laboratorio Nacional de Investigación y Servicio Agroalimentario y Forestal, Universidad Autónoma de Chapingo, Texcoco de Mora, C.P. 56230, Mexico;
| | - Alcives Avila-Sorrosa
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Química Orgánica, Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Ciudad de México, C.P. 11340, Mexico;
| | - David Morales-Morales
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, Mexico
| | - Juan M. Germán-Acacio
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| |
Collapse
|
27
|
Wilke M, Gawryluk DJ, Casati N. Metastability and Seeding Effects in the Mechanochemical Hybrid Lead(II) Iodide Formation. Chemistry 2021; 27:5944-5955. [PMID: 33319376 DOI: 10.1002/chem.202004431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/09/2020] [Indexed: 11/06/2022]
Abstract
The mechanism for the mechanochemical synthesis of (C(NH2 )3 )3 PbI5 3 and (C(NH2 )3 )4 PbI6 4 and their conversion into each other is presented. We investigated the synthesis of 3 at different frequencies and energies using in situ powder X-ray diffraction. By splitting the reaction into single parts we could prove that the formation of 3 is simply dependent on the energy and mixing speed. The nucleation of 4 instead is slightly negative dependent on the energy but dependent on the mixing speed, while its growth is mostly independent of any influence. We were able to influence the reaction pathways by seeding the mixture with a small amount of powdery 4. The formation of 4 is very likely an auto-catalytic process. 3 instead is metastable. It can be stabilized by energy, which beside mechanochemistry can also be achieved by temperature. The results showcases the complex nature of mechanochemical reactions.
Collapse
Affiliation(s)
- Manuel Wilke
- Laboratory for Synchrotron Radiation-Condensed Matter, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Dariusz Jakub Gawryluk
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Nicola Casati
- Laboratory for Synchrotron Radiation-Condensed Matter, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| |
Collapse
|
28
|
Báti G, Csókás D, Yong T, Tam SM, Shi RRS, Webster RD, Pápai I, García F, Stuparu MC. Mechanochemical Synthesis of Corannulene‐Based Curved Nanographenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Gábor Báti
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Dániel Csókás
- Institute of Organic Chemistry Research Centre for Natural Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
| | - Teoh Yong
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Si Man Tam
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Raymond R. S. Shi
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Richard D. Webster
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Imre Pápai
- Institute of Organic Chemistry Research Centre for Natural Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
| | - Felipe García
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Mihaiela C. Stuparu
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| |
Collapse
|
29
|
Báti G, Csókás D, Yong T, Tam SM, Shi RRS, Webster RD, Pápai I, García F, Stuparu MC. Mechanochemical Synthesis of Corannulene‐Based Curved Nanographenes. Angew Chem Int Ed Engl 2020; 59:21620-21626. [DOI: 10.1002/anie.202007815] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/03/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Gábor Báti
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Dániel Csókás
- Institute of Organic Chemistry Research Centre for Natural Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
| | - Teoh Yong
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Si Man Tam
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Raymond R. S. Shi
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Richard D. Webster
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Imre Pápai
- Institute of Organic Chemistry Research Centre for Natural Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
| | - Felipe García
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Mihaiela C. Stuparu
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| |
Collapse
|
30
|
Synthesis, properties, and catalysis of p-block complexes supported by bis(arylimino)acenaphthene ligands. Commun Chem 2020; 3:113. [PMID: 36703406 PMCID: PMC9814787 DOI: 10.1038/s42004-020-00359-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/06/2020] [Indexed: 01/29/2023] Open
Abstract
Bis(arylimino)acenaphthene (Ar-BIAN) ligands have been recognized as robust scaffolds for metal complexes since the 1990 s and most of their coordination chemistry was developed with transition metals. Notably, there have been relatively few reports on complexes comprising main group elements, especially those capitalizing on the redox non-innocence of Ar-BIAN ligands supporting p-block elements. Here we present an overview of synthetic approaches to Ar-BIAN ligands and their p-block complexes using conventional solution-based methodologies and environmentally-benign mechanochemical routes. This is followed by a discussion on their catalytic properties, including comparisons to transition metal counterparts, as well as key structural and electronic properties of p-block Ar-BIAN complexes.
Collapse
|
31
|
An improved method for the preparation of β-lapachone:2-hydroxypropyl-β-cyclodextrin inclusion complexes. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Koby RF, Doerr AM, Rightmire NR, Schley ND, Long BK, Hanusa TP. An η
3
‐Bound Allyl Ligand on Magnesium in a Mechanochemically Generated Mg/K Allyl Complex. Angew Chem Int Ed Engl 2020; 59:9542-9548. [DOI: 10.1002/anie.201916410] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/07/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Ross F. Koby
- Department of Chemistry Vanderbilt University Nashville TN 37235 USA
| | - Alicia M. Doerr
- Department of Chemistry University of Tennessee Knoxville TN 37996-1600 USA
| | | | - Nathan D. Schley
- Department of Chemistry Vanderbilt University Nashville TN 37235 USA
| | - Brian K. Long
- Department of Chemistry University of Tennessee Knoxville TN 37996-1600 USA
| | - Timothy P. Hanusa
- Department of Chemistry Vanderbilt University Nashville TN 37235 USA
| |
Collapse
|
33
|
Koby RF, Doerr AM, Rightmire NR, Schley ND, Long BK, Hanusa TP. An η
3
‐Bound Allyl Ligand on Magnesium in a Mechanochemically Generated Mg/K Allyl Complex. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ross F. Koby
- Department of Chemistry Vanderbilt University Nashville TN 37235 USA
| | - Alicia M. Doerr
- Department of Chemistry University of Tennessee Knoxville TN 37996-1600 USA
| | | | - Nathan D. Schley
- Department of Chemistry Vanderbilt University Nashville TN 37235 USA
| | - Brian K. Long
- Department of Chemistry University of Tennessee Knoxville TN 37996-1600 USA
| | - Timothy P. Hanusa
- Department of Chemistry Vanderbilt University Nashville TN 37235 USA
| |
Collapse
|
34
|
Bodach A, Bamford KL, Longobardi LE, Felderhoff M, Stephan DW. Group 13-derived radicals from α-diimines via hydro- and carboalumination reactions. Dalton Trans 2020; 49:11689-11696. [DOI: 10.1039/d0dt02498h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mechanochemically synthesized alanes and (hydrido-)alanes were reacted with α-diimines to form aluminium derived radicals.
Collapse
Affiliation(s)
- Alexander Bodach
- Department of Chemistry
- University of Toronto
- Toronto
- Canada M5S 3H6
- Max-Planck-Institut für Kohlenforschung
| | | | | | - Michael Felderhoff
- Max-Planck-Institut für Kohlenforschung
- Department of Heterogeneous Catalysis
- 45470 Muelheim an der Ruhr
- Germany
| | | |
Collapse
|
35
|
Affiliation(s)
- Thomas E. Shaw
- Department of Chemistry and the Renewable Energy and Chemical Transformations Cluster, University of Central Florida, Orlando, Florida 32816, United States
| | - Logesh Mathivathanan
- Department of Chemistry & Biochemistry and the Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Titel Jurca
- Department of Chemistry and the Renewable Energy and Chemical Transformations Cluster, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
36
|
Affiliation(s)
- Tomislav Friščić
- Department of Chemistry McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
- Laboratoire SPCMIB, CNRS UMR 5068 Université de Toulouse UPS 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| | - Cristina Mottillo
- Department of Chemistry McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Hatem M. Titi
- Department of Chemistry McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| |
Collapse
|
37
|
Friščić T, Mottillo C, Titi HM. Mechanochemistry for Synthesis. Angew Chem Int Ed Engl 2019; 59:1018-1029. [DOI: 10.1002/anie.201906755] [Citation(s) in RCA: 392] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Tomislav Friščić
- Department of Chemistry McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
- Laboratoire SPCMIB, CNRS UMR 5068 Université de Toulouse UPS 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| | - Cristina Mottillo
- Department of Chemistry McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Hatem M. Titi
- Department of Chemistry McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| |
Collapse
|
38
|
Seo T, Ishiyama T, Kubota K, Ito H. Solid-state Suzuki-Miyaura cross-coupling reactions: olefin-accelerated C-C coupling using mechanochemistry. Chem Sci 2019; 10:8202-8210. [PMID: 31857886 PMCID: PMC6836942 DOI: 10.1039/c9sc02185j] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/21/2019] [Indexed: 12/19/2022] Open
Abstract
The Suzuki-Miyaura cross-coupling reaction is one of the most reliable methods for the construction of carbon-carbon bonds in solution. However, examples for the corresponding solid-state cross-coupling reactions remain scarce. Herein, we report the first broadly applicable mechanochemical protocol for a solid-state palladium-catalyzed organoboron cross-coupling reaction using an olefin additive. Compared to previous studies, the newly developed protocol shows a substantially broadened substrate scope. Our mechanistic data suggest that olefin additives might act as dispersants for the palladium-based catalyst to suppress higher aggregation of the nanoparticles, and also as stabilizer for the active monomeric Pd(0) species, thus facilitating these challenging solid-state C-C bond forming cross-coupling reactions.
Collapse
Affiliation(s)
- Tamae Seo
- Division of Applied Chemistry and Frontier Chemistry Center , Faculty of Engineering , Hokkaido University , Sapporo , Hokkaido , Japan . ;
| | - Tatsuo Ishiyama
- Division of Applied Chemistry and Frontier Chemistry Center , Faculty of Engineering , Hokkaido University , Sapporo , Hokkaido , Japan . ;
| | - Koji Kubota
- Division of Applied Chemistry and Frontier Chemistry Center , Faculty of Engineering , Hokkaido University , Sapporo , Hokkaido , Japan . ;
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) , Hokkaido University , Sapporo , Hokkaido , Japan
| | - Hajime Ito
- Division of Applied Chemistry and Frontier Chemistry Center , Faculty of Engineering , Hokkaido University , Sapporo , Hokkaido , Japan . ;
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) , Hokkaido University , Sapporo , Hokkaido , Japan
| |
Collapse
|
39
|
Hong Z, Tan D, John RA, Tay YKE, Ho YKT, Zhao X, Sum TC, Mathews N, García F, Soo HS. Completely Solvent-free Protocols to Access Phase-Pure, Metastable Metal Halide Perovskites and Functional Photodetectors from the Precursor Salts. iScience 2019; 16:312-325. [PMID: 31203187 PMCID: PMC6581789 DOI: 10.1016/j.isci.2019.05.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 05/22/2019] [Accepted: 05/30/2019] [Indexed: 12/22/2022] Open
Abstract
Mechanochemistry is a green, solid-state, re-emerging synthetic technique that can rapidly form complex molecules and materials without exogenous heat or solvent(s). Herein, we report the application of solvent-free mechanochemical ball milling for the synthesis of metal halide perovskites, to overcome problems with solution-based syntheses. We prepared phase-pure, air-sensitive CsSnX3 (X = I, Br, Cl) and its mixed halide perovskites by mechanochemistry for the first time by reactions between cesium and tin(II) halides. Notably, we report the sole examples where metastable, high-temperature phases like cubic CsSnCl3, cubic CsPbI3, and trigonal FAPbI3 were accessible at ambient temperatures and pressures without post-synthetic processing. The perovskites can be prepared up to "kilogram scales." Lead-free, all-inorganic photodetector devices were fabricated using the mechanosynthesized CsSnBr1.5Cl1.5 under solvent-free conditions and showed 10-fold differences between on-off currents. We highlight an essentially solvent-free, general approach to synthesize metastable compounds and fabricate photodetectors from commercially available precursors.
Collapse
Affiliation(s)
- Zonghan Hong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Davin Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Rohit Abraham John
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yong Kang Eugene Tay
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yan King Terence Ho
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Xin Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Nripan Mathews
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Energy Research Institute @NTU (ERI@N), Research Techno Plaza, X-Frontier Block, Level 5, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Felipe García
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Han Sen Soo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore; Solar Fuels Laboratory, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
40
|
Kaabel S, Stein RS, Fomitšenko M, Järving I, Friščić T, Aav R. Size-Control by Anion Templating in Mechanochemical Synthesis of Hemicucurbiturils in the Solid State. Angew Chem Int Ed Engl 2019; 58:6230-6234. [PMID: 30664335 DOI: 10.1002/anie.201813431] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Indexed: 12/22/2022]
Abstract
Self-organization is one of the most intriguing phenomena of chemical matter. While the self-assembly of macrocycles and cages in dilute solutions has been extensively studied, it remains poorly understood in solvent-free environments. Provided here is the first example of using anionic templates to achieve selective assembly of differently-sized macrocycles in a solvent-free system. Using acid-catalyzed synthesis of cyclohexanohemicucurbiturils as a model, size-controlled, quantitative synthesis of 6- or 8-membered macrocycles by spontaneous anion-directed reorganization of mechanochemically-made oligomers in the solid state is demonstrated.
Collapse
Affiliation(s)
- Sandra Kaabel
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.,Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC, H3A 0B8, Canada
| | - Robin S Stein
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC, H3A 0B8, Canada
| | - Maria Fomitšenko
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Ivar Järving
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Tomislav Friščić
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC, H3A 0B8, Canada
| | - Riina Aav
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| |
Collapse
|
41
|
Kaabel S, Stein RS, Fomitšenko M, Järving I, Friščić T, Aav R. Size‐Control by Anion Templating in Mechanochemical Synthesis of Hemicucurbiturils in the Solid State. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Sandra Kaabel
- Department of Chemistry and BiotechnologyTallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
- Department of ChemistryMcGill University 801 Sherbrooke St. W. Montreal QC H3A 0B8 Canada
| | - Robin S. Stein
- Department of ChemistryMcGill University 801 Sherbrooke St. W. Montreal QC H3A 0B8 Canada
| | - Maria Fomitšenko
- Department of Chemistry and BiotechnologyTallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
| | - Ivar Järving
- Department of Chemistry and BiotechnologyTallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
| | - Tomislav Friščić
- Department of ChemistryMcGill University 801 Sherbrooke St. W. Montreal QC H3A 0B8 Canada
| | - Riina Aav
- Department of Chemistry and BiotechnologyTallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
| |
Collapse
|
42
|
Bolm C, Hernández JG. Mechanochemistry of Gaseous Reactants. Angew Chem Int Ed Engl 2019; 58:3285-3299. [DOI: 10.1002/anie.201810902] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Carsten Bolm
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - José G. Hernández
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
43
|
Affiliation(s)
- Carsten Bolm
- Institut für Organische Chemie; RWTH Aachen University; Landoltweg 1 52074 Aachen Deutschland
| | - José G. Hernández
- Institut für Organische Chemie; RWTH Aachen University; Landoltweg 1 52074 Aachen Deutschland
| |
Collapse
|
44
|
Tan D, García F. Main group mechanochemistry: from curiosity to established protocols. Chem Soc Rev 2019; 48:2274-2292. [PMID: 30806391 DOI: 10.1039/c7cs00813a] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the last few decades, mechanochemistry has become rapidly established as a powerful tool enabling environmentally-benign and sustainable chemical syntheses. Not only have these techniques been demonstrated as viable alternatives to traditional solution-based syntheses, but they have also received attention for their ability to enable new reactivity and "unlocking" novel compounds inaccessible by conventional methods. Reflecting the rising popularity of mechanochemistry, many excellent reviews highlighting its benefits have recently been published. Whilst the scope of most of these focuses on organic chemistry, transition-metal catalysis, porous framework materials, coordination compounds and supramolecular synthesis, few have addressed the use of mechanochemical ball milling for the synthesis of compounds containing s- and p-block elements. This tutorial review turns the spotlight towards mechanochemical research in the field of inorganic main group chemistry, highlighting significant advantages that solid-state inorganic reactions often possess, and the potential for these to drive the development of greener methodologies within the modern main group arena.
Collapse
Affiliation(s)
- Davin Tan
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| | | |
Collapse
|
45
|
Speight IR, Chmely SC, Hanusa TP, Rheingold AL. Mechanochemically directed metathesis in group 2 chemistry: calcium amide formation without solvent. Chem Commun (Camb) 2019; 55:2202-2205. [DOI: 10.1039/c8cc10155h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanochemistry nails the synthesis of a bulky calcium amide without producing the contamination that can occur with a solution preparation
Collapse
Affiliation(s)
| | | | | | - Arnold L. Rheingold
- Department of Chemistry and Biochemistry
- University of California
- San Diego, La Jolla
- USA
| |
Collapse
|
46
|
Portada T, Margetić D, Štrukil V. Mechanochemical Catalytic Transfer Hydrogenation of Aromatic Nitro Derivatives. Molecules 2018; 23:molecules23123163. [PMID: 30513686 PMCID: PMC6321105 DOI: 10.3390/molecules23123163] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/31/2022] Open
Abstract
Mechanochemical ball milling catalytic transfer hydrogenation (CTH) of aromatic nitro compounds using readily available and cheap ammonium formate as the hydrogen source is demonstrated as a simple, facile and clean approach for the synthesis of substituted anilines and selected pharmaceutically relevant compounds. The scope of mechanochemical CTH is broad, as the reduction conditions tolerate various functionalities, for example nitro, amino, hydroxy, carbonyl, amide, urea, amino acid and heterocyclic. The presented methodology was also successfully integrated with other types of chemical reactions previously carried out mechanochemically, such as amide bond formation by coupling amines with acyl chlorides or anhydrides and click-type coupling reactions between amines and iso(thio)cyanates. In this way, we showed that active pharmaceutical ingredients Procainamide and Paracetamol could be synthesized from the respective nitro-precursors on milligram and gram scale in excellent isolated yields.
Collapse
Affiliation(s)
- Tomislav Portada
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Davor Margetić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Vjekoslav Štrukil
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
47
|
Koby RF, Hanusa TP, Schley ND. Mechanochemically Driven Transformations in Organotin Chemistry: Stereochemical Rearrangement, Redox Behavior, and Dispersion-Stabilized Complexes. J Am Chem Soc 2018; 140:15934-15942. [DOI: 10.1021/jacs.8b09862] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ross F. Koby
- Department of Chemistry, Vanderbilt University, VU Station B #351822, Nashville, Tennessee 37235, United States
| | - Timothy P. Hanusa
- Department of Chemistry, Vanderbilt University, VU Station B #351822, Nashville, Tennessee 37235, United States
| | - Nathan D. Schley
- Department of Chemistry, Vanderbilt University, VU Station B #351822, Nashville, Tennessee 37235, United States
| |
Collapse
|
48
|
Bolm C, Hernández JG. From Synthesis of Amino Acids and Peptides to Enzymatic Catalysis: A Bottom-Up Approach in Mechanochemistry. CHEMSUSCHEM 2018; 11:1410-1420. [PMID: 29436773 DOI: 10.1002/cssc.201800113] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Recently, chemical reactions induced or facilitated by mechanical energy have gained recognition in diverse areas of chemical synthesis. In particular, mechanosyntheses of amino acids and short peptides, along with their applications in catalysis, have revealed the high degree of stability of peptide bonds in environments of harsh mechanical stress. These observations quickly led to the recent interest in developing mechanochemical enzymatic reactions. Experimentally, manual grinding, ball-milling techniques, and twin-screw extrusion technology have proven valuable to convey mechanical forces into a chemical synthesis. These practices have enabled the establishment of more sustainable alternatives for chemical synthesis by reducing the use of organic solvents and waste production, thereby having a direct impact on the E-factor of the chemical process. In this Minireview, the series of events that allowed the development of mechanochemical enzymatic reactions are described from a bottom-up perspective.
Collapse
Affiliation(s)
- Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - José G Hernández
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
49
|
Denlinger KL, Ortiz-Trankina L, Carr P, Benson K, Waddell DC, Mack J. Liquid-assisted grinding and ion pairing regulates percentage conversion and diastereoselectivity of the Wittig reaction under mechanochemical conditions. Beilstein J Org Chem 2018; 14:688-696. [PMID: 29623132 PMCID: PMC5870152 DOI: 10.3762/bjoc.14.57] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/06/2018] [Indexed: 11/24/2022] Open
Abstract
Mechanochemistry is maturing as a discipline and continuing to grow, so it is important to continue understanding the rules governing the system. In a mechanochemical reaction, the reactants are added into a vessel along with one or more grinding balls and the vessel is shaken at high speeds to facilitate a chemical reaction. The dielectric constant of the solvent used in liquid-assisted grinding (LAG) and properly chosen counter-ion pairing increases the percentage conversion of stilbenes in a mechanochemical Wittig reaction. Utilizing stepwise addition/evaporation of ethanol in liquid-assisted grinding also allows for the tuning of the diastereoselectivity in the Wittig reaction.
Collapse
Affiliation(s)
- Kendra Leahy Denlinger
- Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH 45221-0172, USA
| | - Lianna Ortiz-Trankina
- Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH 45221-0172, USA
| | - Preston Carr
- Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH 45221-0172, USA
| | - Kingsley Benson
- Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH 45221-0172, USA
| | - Daniel C Waddell
- Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH 45221-0172, USA
| | - James Mack
- Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH 45221-0172, USA
| |
Collapse
|
50
|
Mantovani AC, Hernández JG, Bolm C. Synthesis of 3-Iodobenzofurans by Electrophilic Cyclization under Solventless Conditions in a Ball Mill. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anderson C. Mantovani
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - José G. Hernández
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Carsten Bolm
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| |
Collapse
|