1
|
Xu Y, Jiang Y, Wang Y, Meng F, Qin W, Lin Y. Metagenomic next-generation sequencing of bronchoalveolar lavage fluid assists in the diagnosis of pathogens associated with lower respiratory tract infections in children. Front Cell Infect Microbiol 2023; 13:1220943. [PMID: 37822360 PMCID: PMC10562542 DOI: 10.3389/fcimb.2023.1220943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
Worldwide, lower respiratory tract infections (LRTI) are an important cause of hospitalization in children. Due to the relative limitations of traditional pathogen detection methods, new detection methods are needed. The purpose of this study was to evaluate the value of metagenomic next-generation sequencing (mNGS) of bronchoalveolar lavage fluid (BALF) samples for diagnosing children with LRTI based on the interpretation of sequencing results. A total of 211 children with LRTI admitted to the First Affiliated Hospital of Guangzhou Medical University from May 2019 to December 2020 were enrolled. The diagnostic performance of mNGS versus traditional methods for detecting pathogens was compared. The positive rate for the BALF mNGS analysis reached 95.48% (95% confidence interval [CI] 92.39% to 98.57%), which was superior to the culture method (44.07%, 95% CI 36.68% to 51.45%). For the detection of specific pathogens, mNGS showed similar diagnostic performance to PCR and antigen detection, except for Streptococcus pneumoniae, for which mNGS performed better than antigen detection. S. pneumoniae, cytomegalovirus and Candida albicans were the most common bacterial, viral and fungal pathogens. Common infections in children with LRTI were bacterial, viral and mixed bacterial-viral infections. Immunocompromised children with LRTI were highly susceptible to mixed and fungal infections. The initial diagnosis was modified based on mNGS in 29.6% (37/125) of patients. Receiver operating characteristic (ROC) curve analysis was performed to predict the relationship between inflammation indicators and the type of pathogen infection. BALF mNGS improves the sensitivity of pathogen detection and provides guidance in clinical practice for diagnosing LRTI in children.
Collapse
Affiliation(s)
- Yunjian Xu
- Department of Clinical Laboratory, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Yueting Jiang
- Department of Clinical Laboratory, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Yan Wang
- CapitalBio Technology Inc., Beijing, China
| | | | - Wenyan Qin
- CapitalBio Technology Inc., Beijing, China
| | - Yongping Lin
- Department of Clinical Laboratory, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou, China
- Department of Laboratory Medicine, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen, China
| |
Collapse
|
2
|
He S, Xie L, Liu J, Zou L. Single-use flexible bronchoscopes vs traditional reusable flexible bronchoscopes: a prospective controlled study. BMC Pulm Med 2023; 23:202. [PMID: 37296389 DOI: 10.1186/s12890-023-02478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Single-use flexible bronchoscopes(SFB) eliminate the risk of bronchoscopy-related infection compared with traditional reusable flexible bronchoscopes(RFB). At present, there is no comparative study between SFB and RFB in the aspects of biopsy and interventional therapy. This study aims to explore whether SFB can perform complex bronchoscopic procedures such as transbronchial biopsies just like RFB. METHODS We conducted a prospective controlled study. A total of 45 patients who required bronchoscopic biopsy in our hospital from June 2022 to December 2022 were enrolled. The patients were divided into the SFB group and the RFB group, and routine bronchoscopy, bronchoalveolar lavage, and biopsy were performed respectively. Data on the time of routine bronchoscopy, the recovery rate of bronchoalveolar lavage fluid(BALF), biopsy time, and bleeding volume were collected. Then we used the two-sample t-test and the χ2 test to assess the performance differences between SFB and RFB. We also designed a questionnaire to compare the performance between SFB and RFB by different bronchoscope operators. RESULTS The routine examination time of SFB and RFB was 3.40 ± 0.50 min and 3.55 ± 0.42 min, respectively. There was no significant difference between the two groups (P = 0.308). The recovery rate of BALF was (46.56 ± 8.22) % in the SFB group and (47.00 ± 8.07) in the RFB group, without a significant difference between the two groups(P = 0.863). The biopsy time was similar(4.67 ± 0.51 min VS 4.57 ± 0.45 min) in both groups, with no significant difference(P = 0.512). The positive biopsy rate was 100% in both groups, with no significant difference. Overall, the bronchoscope operators were generally satisfied with SFB. CONCLUSION SFBs are non-inferior to RFBs in routine bronchoscopy, bronchoalveolar lavage, and biopsy. It is suggested that SFBs have a wider clinical application.
Collapse
Affiliation(s)
- Shuzhen He
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Lihua Xie
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.
| | - Jianming Liu
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Lijun Zou
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
3
|
Shaw JA, Meiring M, Allies D, Cruywagen L, Fisher TL, Kasavan K, Roos K, Botha SM, MacDonald C, Hiemstra AM, Simon D, van Rensburg I, Flinn M, Shabangu A, Kuivaniemi H, Tromp G, Malherbe ST, Walzl G, du Plessis N. Optimising the yield from bronchoalveolar lavage on human participants in infectious disease immunology research. Sci Rep 2023; 13:8859. [PMID: 37258565 PMCID: PMC10231287 DOI: 10.1038/s41598-023-35723-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
Bronchoalveolar lavage (BAL) is becoming a common procedure for research into infectious disease immunology. Little is known about the clinical factors which influence the main outcomes of the procedure. In research participants who underwent BAL according to guidelines, the BAL volume yield, and cell yield, concentration, viability, pellet colour and differential count were analysed for association with important participant characteristics such as active tuberculosis (TB) disease, TB exposure, HIV infection and recent SARS-CoV-2 infection. In 337 participants, BAL volume and BAL cell count were correlated in those with active TB disease, and current smokers. The right middle lobe yielded the highest volume. BAL cell and volume yields were lower in older participants, who also had more neutrophils. Current smokers yielded lower volumes and higher numbers of all cell types, and usually had a black pellet. Active TB disease was associated with higher cell yields, but this declined at the end of treatment. HIV infection was associated with more bloody pellets, and recent SARS-CoV-2 infection with a higher proportion of lymphocytes. These results allow researchers to optimise their participant and end assay selection for projects involving lung immune cells.
Collapse
Affiliation(s)
- Jane Alexandra Shaw
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.
- Division of Molecular Biology and Human Genetics, Biomedical Research Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa.
| | - Maynard Meiring
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Biomedical Research Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
- South African Tuberculosis Bioinformatics Initiative, Stellenbosch University, Cape Town, South Africa
| | - Devon Allies
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Biomedical Research Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Lauren Cruywagen
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Biomedical Research Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Tarryn-Lee Fisher
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Biomedical Research Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Kesheera Kasavan
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Biomedical Research Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Kelly Roos
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Biomedical Research Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Stefan Marc Botha
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Biomedical Research Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Candice MacDonald
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Biomedical Research Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Andriёtte M Hiemstra
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Biomedical Research Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Donald Simon
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Biomedical Research Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Ilana van Rensburg
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Biomedical Research Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Marika Flinn
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Biomedical Research Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Ayanda Shabangu
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Biomedical Research Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Helena Kuivaniemi
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Biomedical Research Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Gerard Tromp
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Biomedical Research Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
- South African Tuberculosis Bioinformatics Initiative, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Stephanus T Malherbe
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Biomedical Research Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Gerhard Walzl
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Biomedical Research Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Nelita du Plessis
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Biomedical Research Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| |
Collapse
|
4
|
Thaweerattanasinp T, Wanitchang A, Saenboonrueng J, Srisutthisamphan K, Wanasen N, Sungsuwan S, Jongkaewwattana A, Chailangkarn T. SARS-CoV-2 Delta (B.1.617.2) variant replicates and induces syncytia formation in human induced pluripotent stem cell-derived macrophages. PeerJ 2023; 11:e14918. [PMID: 36883057 PMCID: PMC9985896 DOI: 10.7717/peerj.14918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/26/2023] [Indexed: 03/06/2023] Open
Abstract
Alveolar macrophages are tissue-resident immune cells that protect epithelial cells in the alveoli from invasion by pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, the interaction between macrophages and SARS-CoV-2 is inevitable. However, little is known about the role of macrophages in SARS-CoV-2 infection. Here, we generated macrophages from human induced pluripotent stem cells (hiPSCs) to investigate the susceptibility of hiPSC-derived macrophages (iMΦ) to the authentic SARS-CoV-2 Delta (B.1.617.2) and Omicron (B.1.1.529) variants as well as their gene expression profiles of proinflammatory cytokines during infection. With undetectable angiotensin-converting enzyme 2 (ACE2) mRNA and protein expression, iMΦ were susceptible to productive infection with the Delta variant, whereas infection of iMΦ with the Omicron variant was abortive. Interestingly, Delta induced cell-cell fusion or syncytia formation in iMΦ, which was not observed in Omicron-infected cells. However, iMΦ expressed moderate levels of proinflammatory cytokine genes in response to SARS-CoV-2 infection, in contrast to strong upregulation of these cytokine genes in response to polarization by lipopolysaccharide (LPS) and interferon-gamma (IFN-γ). Overall, our findings indicate that the SARS-CoV-2 Delta variant can replicate and cause syncytia formation in macrophages, suggesting that the Delta variant can enter cells with undetectable ACE2 levels and exhibit greater fusogenicity.
Collapse
Affiliation(s)
- Theeradej Thaweerattanasinp
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Asawin Wanitchang
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Janya Saenboonrueng
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Kanjana Srisutthisamphan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Nanchaya Wanasen
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Suttipun Sungsuwan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Anan Jongkaewwattana
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Thanathom Chailangkarn
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| |
Collapse
|
5
|
Nyazika TK, Sibale L, Phiri J, De Ste Croix M, Jasiunaite Z, Mkandawire C, Malamba R, Kankwatira A, Manduwa M, Ferreira DM, Nyirenda TS, Oggioni MR, Mwandumba HC, Jambo KC. Intracellular survival of Streptococcus pneumoniae in human alveolar macrophages is augmented with HIV infection. Front Immunol 2022; 13:992659. [PMID: 36203580 PMCID: PMC9531125 DOI: 10.3389/fimmu.2022.992659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
People Living with HIV (PLHIV) are at an increased risk of pneumococcal pneumonia than HIV-uninfected adults, but the reasons for this are still not well understood. We investigated whether alveolar macrophages (AM) mediated control of pneumococcal infection is impaired in PLHIV compared to HIV-uninfected adults. We assessed anti-bactericidal activity against Streptococcus pneumoniae of primary human AM obtained from PLHIV and HIV-uninfected adults. We found that pneumococcus survived intracellularly in AMs at least 24 hours post ex vivo infection, and this was more frequent in PLHIV than HIV-uninfected adults. Corroborating these findings, in vivo evidence showed that PLHIV had a higher propensity for harboring S. pneumoniae within their AMs than HIV-uninfected adults. Moreover, bacterial intracellular survival in AMs was associated with extracellular propagation of pneumococcal infection. Our data suggest that failure of AMs to eliminate S. pneumoniae intracellularly could contribute to the increased risk of pneumococcal pneumonia in PLHIV.
Collapse
Affiliation(s)
- Tinashe K. Nyazika
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Lusako Sibale
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Joseph Phiri
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Megan De Ste Croix
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Zydrune Jasiunaite
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Christopher Mkandawire
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Rose Malamba
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Anstead Kankwatira
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Miriam Manduwa
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Daniela M. Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Tonney S. Nyirenda
- Department of Pathology, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Marco R. Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Dipartimento di Farmacia e Biotecnologie, Universita di Bologna, Bologna, Italy
| | - Henry C. Mwandumba
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kondwani C. Jambo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
6
|
Yang J, Zhang Q, Zhang J, Ouyang Y, Sun Z, Liu X, Qaio F, Xu LQ, Niu Y, Li J. Exploring the Change of Host and Microorganism in Chronic Obstructive Pulmonary Disease Patients Based on Metagenomic and Metatranscriptomic Sequencing. Front Microbiol 2022; 13:818281. [PMID: 35369515 PMCID: PMC8966909 DOI: 10.3389/fmicb.2022.818281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a universal respiratory disease resulting from the complex interactions between genes and environmental conditions. The process of COPD is deteriorated by repeated episodes of exacerbations, which are the primary reason for COPD-related morbidity and mortality. Bacterial pathogens are commonly identified in patients’ respiratory tracts both in the stable state and during acute exacerbations, with significant changes in the prevalence of airway bacteria occurring during acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Therefore, the changes in microbial composition and host inflammatory responses will be necessary to investigate the mechanistic link between the airway microbiome and chronic pulmonary inflammation in COPD patients. Methods We performed metatranscriptomic and metagenomic sequencing on sputum samples for twelve AECOPD patients before treatment and for four of them stable COPD (stabilization of AECOPD patients after treatment). Sequencing reads were classified by Kraken2, and the host gene expression was analyzed by Hisat2 and HTseq. The correlation between genes was obtained by the Spearman correlation coefficient. Mann–Whitney U-test was applied to identify microbes that exhibit significantly different distribution in two groups. Results At the phyla level, the top 5 dominant phyla were Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, and Fusobacteria. The proportion of dominant gates in metagenomic data was similar in metatranscriptomic data. There were significant differences in the abundance of specific microorganisms at the class level between the two methods. No significant difference between AECOPD and stable COPD was found. However, the different expression levels of 5 host genes were significantly increased in stable COPD and were involved in immune response and inflammatory pathways, which were associated with macrophages. Conclusion Our study may provide a clue to investigate the mechanism of COPD and potential biomarkers in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Jing Yang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Qiang Zhang
- Department of Respirology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jun Zhang
- Department of Respirology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | - Zepeng Sun
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Xinlong Liu
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Feng Qaio
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Li-Qun Xu
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | | | - Jian Li
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Sciences and Technology, Southeast University, Nanjing, China
| |
Collapse
|
7
|
McCallum AD, Pertinez HE, Else LJ, Dilly-Penchala S, Chirambo AP, Sheha I, Chasweka M, Chitani A, Malamba RD, Meghji JZ, Gordon SB, Davies GR, Khoo SH, Sloan DJ, Mwandumba HC. Intrapulmonary Pharmacokinetics of First-line Anti-tuberculosis Drugs in Malawian Patients With Tuberculosis. Clin Infect Dis 2021; 73:e3365-e3373. [PMID: 32856694 PMCID: PMC8563277 DOI: 10.1093/cid/ciaa1265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Further work is required to understand the intrapulmonary pharmacokinetics of first-line anti-tuberculosis drugs. This study aimed to describe the plasma and intrapulmonary pharmacokinetics of rifampicin, isoniazid, pyrazinamide, and ethambutol, and explore relationships with clinical treatment outcomes in patients with pulmonary tuberculosis. METHODS Malawian adults with a first presentation of microbiologically confirmed pulmonary tuberculosis received standard 6-month first-line therapy. Plasma and intrapulmonary samples were collected 8 and 16 weeks into treatment and drug concentrations measured in plasma, lung/airway epithelial lining fluid (ELF), and alveolar cells. Population pharmacokinetic modeling generated estimates of drug exposure (Cmax and AUC) from individual-level post hoc Bayesian estimates of plasma and intrapulmonary pharmacokinetics. RESULTS One-hundred fifty-seven patients (58% HIV coinfected) participated. Despite standard weight-based dosing, peak plasma concentrations of first-line drugs were below therapeutic drug-monitoring targets. Rifampicin concentrations were low in all 3 compartments. Isoniazid, pyrazinamide, and ethambutol achieved higher concentrations in ELF and alveolar cells than plasma. Isoniazid and pyrazinamide concentrations were 14.6-fold (95% CI, 11.2-18.0-fold) and 49.8-fold (95% CI, 34.2-65.3-fold) higher in ELF than plasma, respectively. Ethambutol concentrations were highest in alveolar cells (alveolar cell-plasma ratio, 15.0; 95% CI, 11.4-18.6). Plasma or intrapulmonary pharmacokinetics did not predict clinical treatment response. CONCLUSIONS We report differential drug concentrations between plasma and the lung. While plasma concentrations were below therapeutic monitoring targets, accumulation of drugs at the site of disease may explain the success of the first-line regimen. The low rifampicin concentrations observed in all compartments lend strong support for ongoing clinical trials of high-dose rifampicin regimens.
Collapse
Affiliation(s)
- Andrew D McCallum
- Malawi-Liverpool-Wellcome Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Henry E Pertinez
- Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Laura J Else
- Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Sujan Dilly-Penchala
- Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Aaron P Chirambo
- Malawi-Liverpool-Wellcome Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Irene Sheha
- Malawi-Liverpool-Wellcome Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Madalitso Chasweka
- Malawi-Liverpool-Wellcome Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Alex Chitani
- Malawi-Liverpool-Wellcome Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Rose D Malamba
- Malawi-Liverpool-Wellcome Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Jamilah Z Meghji
- Malawi-Liverpool-Wellcome Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Stephen B Gordon
- Malawi-Liverpool-Wellcome Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Geraint R Davies
- Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Saye H Khoo
- Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Derek J Sloan
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Henry C Mwandumba
- Malawi-Liverpool-Wellcome Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
8
|
Competency Assessment: Diagnostic Methods for Detection of Cryptosporidium, Microsporidia, and Toxoplasma in Bronchoalveolar Lavage Samples. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.111038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Protozoa have the ability to replace the human lung. Over recent years, the incidence of pulmonary infections caused by these microorganisms has increased, particularly in individuals with an immunodeficiency. The use of appropriate diagnostic methods is particularly important in the identification of parasites in pulmonary secretions. Objectives: The present study aimed to evaluate and compare PCR-based diagnostic methods with the gold standard method to detect three pathogenic protozoa, including Toxoplasma, Cryptosporidium, and Microsporidia in bronchoalveolar lavage (BAL) samples obtained from immunocompromised patients with chronic obstructive pulmonary disease. Methods: A BAL sample of immunodeficient patients suffering from chronic obstructive pulmonary disease (COPD) was examined by direct microscopy and PCR methods. Results: In this study, we examined 64 patients with immunodeficiency accompanied by COPD. Microsporidia were not identified in the samples. Direct methods identified three and nine cases of Toxoplasma and Cryptosporidium, respectively. However, the molecular method identified two and two cases of pulmonary infection with these parasites. Conclusions: Determining the standard diagnostic method for parasites is dependent on factors, such as the type of specimen and the type of parasite. Based on the results of the present study, the direct microscopic method is the optimal diagnostic method for Toxoplasma and Cryptosporidium in BAL samples.
Collapse
|
9
|
Ectopic Expression of Human Thymosin β4 Confers Resistance to Legionella pneumophila during Pulmonary and Systemic Infection in Mice. Infect Immun 2021; 89:IAI.00735-20. [PMID: 33468581 DOI: 10.1128/iai.00735-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022] Open
Abstract
Thymosin beta-4 (Tβ4) is an actin-sequestering peptide that plays important roles in regeneration and remodeling of injured tissues. However, its function in a naturally occurring pathogenic bacterial infection model has remained elusive. We adopted Tβ4-overexpressing transgenic (Tg) mice to investigate the role of Tβ4 in acute pulmonary infection and systemic sepsis caused by Legionella pneumophila Upon infection, Tβ4-Tg mice demonstrated significantly lower bacterial loads in the lung, less hyaline membranes and necrotic abscess, with lower interstitial infiltration of neutrophils, CD4+, and CD8+ T cells. Bronchoalveolar lavage fluid of Tβ4-Tg mice possessed higher bactericidal activity against exogenously added L. pneumophila, suggesting that constitutive expression of Tβ4 could efficiently control L. pneumophila Furthermore, qPCR analysis of lung homogenates demonstrated significant reduction of interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α), which primarily originate from lung macrophages, in Tβ4-Tg mice after pulmonary infection. Upon L. pneumophila challenge of bone marrow-derived macrophages (BMDM) in vitro, secretion of IL-1β and TNF-α proteins was also reduced in Tβ4-Tg macrophages, without affecting their survival. The anti-inflammatory effects of BMDM in Tβ4-Tg mice on each cytokine were affected when triggering with tlr2, tlr4, tlr5, or tlr9 ligands, suggesting that anti-inflammatory effects of Tβ4 are likely mediated by the reduced activation of Toll-like receptors (TLR). Finally, Tβ4-Tg mice in a systemic sepsis model were protected from L. pneumophila-induced lethality compared to wild-type controls. Therefore, Tβ4 confers effective resistance against L. pneumophila via two pathways, a bactericidal and an anti-inflammatory pathway, which can be harnessed to treat acute pneumonia and septic conditions caused by L. pneumophila in humans.
Collapse
|
10
|
Goenka A, Prise IE, Connolly E, Fernandez-Soto P, Morgan D, Cavet JS, Grainger JR, Nichani J, Arkwright PD, Hussell T. Infant Alveolar Macrophages Are Unable to Effectively Contain Mycobacterium tuberculosis. Front Immunol 2020; 11:486. [PMID: 32265931 PMCID: PMC7107672 DOI: 10.3389/fimmu.2020.00486] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/03/2020] [Indexed: 12/21/2022] Open
Abstract
Infants are more likely to develop lethal disseminated forms of tuberculosis compared with older children and adults. The reasons for this are currently unknown. In this study we test the hypothesis that antimycobacterial function is impaired in infant alveolar macrophages (AMϕs) compared with those of adults. We develop a method of obtaining AMϕs from healthy infants using rigid bronchoscopy and incubate the AMϕs with live virulent Mycobacterium tuberculosis (Mtb). Infant AMϕs are less able to restrict Mtb replication compared with adult AMϕs, despite having similar phagocytic capacity and immunophenotype. RNA-Seq showed that infant AMϕs exhibit lower expression of genes involved in mycobactericidal activity and IFNγ-induction pathways. Infant AMϕs also exhibit lower expression of genes encoding mononuclear cell chemokines such as CXCL9. Our data indicates that failure of AMϕs to contain Mtb and recruit additional mononuclear cells to the site of infection helps to explain the more fulminant course of tuberculosis in early life.
Collapse
Affiliation(s)
- Anu Goenka
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Ian E. Prise
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Emma Connolly
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Paulina Fernandez-Soto
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - David Morgan
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Jennifer S. Cavet
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - John R. Grainger
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Jaya Nichani
- Department of Paediatric Otolaryngology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Peter D. Arkwright
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Tracy Hussell
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
11
|
Fischer A, Patel NM, Volkmann ER. Interstitial Lung Disease in Systemic Sclerosis: Focus on Early Detection and Intervention. Open Access Rheumatol 2019; 11:283-307. [PMID: 31849543 PMCID: PMC6910104 DOI: 10.2147/oarrr.s226695] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/09/2019] [Indexed: 12/11/2022] Open
Abstract
Systemic sclerosis (SSc) is a progressive and often devastating disease characterized by autoimmune dysfunction, vasculopathy, and fibrosis. Interstitial lung disease (ILD) is identified in the majority of patients with SSc and is the leading cause of SSc-related mortality. Although clinical manifestations and ILD severity vary among patients, lung function typically declines to the greatest extent during the first 3-4 years after disease onset. We aim to provide an overview of SSc-associated ILD (SSc-ILD) with a focus on current and emerging tools for early diagnosis of ILD and current and novel treatments under investigation. Early detection of ILD provides the opportunity for early therapeutic intervention, which could improve patient outcomes. Thoracic high-resolution computed tomography is the most effective method of identifying ILD in patients with SSc; it enables detection of mild lung abnormalities and plays an important role in monitoring disease progression. Cyclophosphamide and mycophenolate mofetil are the most commonly prescribed treatments for SSc-ILD. Recently, nintedanib (an antifibrotic) was approved by the Food and Drug Administration for patients with SSc-ILD; it is indicated for slowing the rate of decline in pulmonary function. However, there is a need for additional effective and well-tolerated disease-modifying therapy. Ongoing studies are evaluating other antifibrotics and novel agents. We envision that early detection of lung involvement, combined with the emergence and integration of novel therapies, will lead to improved outcomes in patients with SSc-ILD.
Collapse
Affiliation(s)
- Aryeh Fischer
- Division of Rheumatology, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Denver, CO, USA
| | - Nina M Patel
- Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Elizabeth R Volkmann
- Division of Rheumatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Tighe RM, Redente EF, Yu YR, Herold S, Sperling AI, Curtis JL, Duggan R, Swaminathan S, Nakano H, Zacharias WJ, Janssen WJ, Freeman CM, Brinkman RR, Singer BD, Jakubzick CV, Misharin AV. Improving the Quality and Reproducibility of Flow Cytometry in the Lung. An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 2019; 61:150-161. [PMID: 31368812 PMCID: PMC6670040 DOI: 10.1165/rcmb.2019-0191st] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Defining responses of the structural and immune cells in biologic systems is critically important to understanding disease states and responses to injury. This requires accurate and sensitive methods to define cell types in organ systems. The principal method to delineate the cell populations involved in these processes is flow cytometry. Although researchers increasingly use flow cytometry, technical challenges can affect its accuracy and reproducibility, thus significantly limiting scientific advancements. This challenge is particularly critical to lung immunology, as the lung is readily accessible and therefore used in preclinical and clinical studies to define potential therapeutics. Given the importance of flow cytometry in pulmonary research, the American Thoracic Society convened a working group to highlight issues and technical challenges to the performance of high-quality pulmonary flow cytometry, with a goal of improving its quality and reproducibility.
Collapse
|
13
|
El biomodelo porcino en la investigación médica traslacional: del biomodelo al humano en trasplante pulmonar. ACTA ACUST UNITED AC 2019; 39:300-313. [DOI: 10.7705/biomedica.v39i3.3820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Indexed: 01/05/2023]
Abstract
Introducción. La anatomía humana y porcina son comparables. En consecuencia, el biomodelo porcino tiene el potencial de ser implementado para entrenar al profesional quirúrgico en áreas como el trasplante de órganos sólidos.Objetivo. Describir los procedimientos y hallazgos obtenidos mediante experimentos de medicina respiratoria traslacional con biomodelos porcinos realizados en un laboratorio de experimentación animal, y hacer una revisión comparativa entre el pulmón humano y el porcino.Materiales y métodos. El experimento se llevó a cabo en nueve cerdos de raza híbrida en un laboratorio de cirugía experimental. Se estudiaron la anatomía y la histología de las vías respiratorias mediante fibrobroncoscopia, biopsia bronquial y lavado broncoalveolar. El lavado broncoalveolar se estudió con citología en base líquida y se evaluó con las coloraciones de Papanicolau y hematoxilina y eosina. Se utilizaron técnicas de patología molecular, como inmunohistoquímica, citometría de flujo y microscopía electrónica. Los cerdos se sometieron a neumonectomía izquierda con posterior implante del injerto en otro cerdo experimental.Resultados. Los estudios histopatológicos y moleculares evidenciaron un predominio de macrófagos alveolares (98 %) y linfocitos T (2 %) en el lavado broncoalveolar porcino. En los estudios del parénquima pulmonar porcino se encontró tejido linfoide hiperplásico asociado a las paredes bronquiales. La microscopía electrónica evidenció linfocitos T dentro del epitelio y el diámetro de las cilias porcinas fue similar al de las humanas.Conclusiones. El biomodelo porcino es viable en la investigación traslacional para el entendimiento de la anatomía del sistema respiratorio y el entrenamiento en trasplante pulmonar. La implementación de este modelo experimental podría fortalecer los grupos que planean implementar un programa institucional de trasplante pulmonar en humanos.
Collapse
|
14
|
Yang S, Harding AT, Sweeney C, Miao D, Swan G, Zhou C, Jiang Z, Fitzgerald KA, Hammer G, Bergo MO, Kroh HK, Lacy DB, Sun C, Glogauer M, Que LG, Heaton NS, Wang D. Control of antiviral innate immune response by protein geranylgeranylation. SCIENCE ADVANCES 2019; 5:eaav7999. [PMID: 31149635 PMCID: PMC6541464 DOI: 10.1126/sciadv.aav7999] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/24/2019] [Indexed: 06/01/2023]
Abstract
The mitochondrial antiviral signaling protein (MAVS) orchestrates host antiviral innate immune response to RNA virus infection. However, how MAVS signaling is controlled to eradicate virus while preventing self-destructive inflammation remains obscure. Here, we show that protein geranylgeranylation, a posttranslational lipid modification of proteins, limits MAVS-mediated immune signaling by targeting Rho family small guanosine triphosphatase Rac1 into the mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) at the mitochondria-ER junction. Protein geranylgeranylation and subsequent palmitoylation promote Rac1 translocation into MAMs upon viral infection. MAM-localized Rac1 limits MAVS' interaction with E3 ligase Trim31 and hence inhibits MAVS ubiquitination, aggregation, and activation. Rac1 also facilitates the recruitment of caspase-8 and cFLIPL to the MAVS signalosome and the subsequent cleavage of Ripk1 that terminates MAVS signaling. Consistently, mice with myeloid deficiency of protein geranylgeranylation showed improved survival upon influenza A virus infection. Our work revealed a critical role of protein geranylgeranylation in regulating antiviral innate immune response.
Collapse
Affiliation(s)
- Shigao Yang
- Division of Rheumatology and Immunology, Department of Medicine, Duke University School of Medicine, 207 Research Drive, Durham, NC 27710, USA
| | - Alfred T. Harding
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, 207 Research Drive, Durham, NC 27710, USA
| | - Catherine Sweeney
- Division of Rheumatology and Immunology, Department of Medicine, Duke University School of Medicine, 207 Research Drive, Durham, NC 27710, USA
| | - David Miao
- Division of Rheumatology and Immunology, Department of Medicine, Duke University School of Medicine, 207 Research Drive, Durham, NC 27710, USA
| | - Gregory Swan
- Division of Rheumatology and Immunology, Department of Medicine, Duke University School of Medicine, 207 Research Drive, Durham, NC 27710, USA
- Department of Immunology, Duke University School of Medicine, 207 Research Drive, Durham, NC 27710, USA
| | - Connie Zhou
- Division of Rheumatology and Immunology, Department of Medicine, Duke University School of Medicine, 207 Research Drive, Durham, NC 27710, USA
| | - Zhaozhao Jiang
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Katherine A. Fitzgerald
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Gianna Hammer
- Department of Immunology, Duke University School of Medicine, 207 Research Drive, Durham, NC 27710, USA
| | - Martin O. Bergo
- Karolinska Institute, Department of Biosciences and Nutrition, NEO Building 6th Floor, SE-141 83 Huddinge, Sweden
| | - Heather K. Kroh
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232, USA
| | - D. Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232, USA
- Veterans Affairs Tennessee Valley Healthcare System, 1310 24th Avenue South, Nashville, TN 37212, USA
| | - Chunxiang Sun
- Faculty of Dentistry, University of Toronto, 150 College Street, Ontario, M5S 3E2, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, 150 College Street, Ontario, M5S 3E2, Canada
| | - Loretta G. Que
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, 207 Research Drive, Durham, NC 27710, USA
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, 207 Research Drive, Durham, NC 27710, USA
| | - Donghai Wang
- Division of Rheumatology and Immunology, Department of Medicine, Duke University School of Medicine, 207 Research Drive, Durham, NC 27710, USA
- Department of Immunology, Duke University School of Medicine, 207 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
15
|
Transcriptionally Active Lung Microbiome and Its Association with Bacterial Biomass and Host Inflammatory Status. mSystems 2018; 3:mSystems00199-18. [PMID: 30417108 PMCID: PMC6208642 DOI: 10.1128/msystems.00199-18] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/11/2018] [Indexed: 12/16/2022] Open
Abstract
Recent studies of the microbiome proposed that resident microbes play a beneficial role in maintaining human health. Although lower respiratory tract disease is a leading cause of sickness and mortality, how the lung microbiome interacts with human health remains largely unknown. Here we assessed the association between the lung microbiome and host gene expression, cytokine concentration, and over 20 clinical features. Intriguingly, we found a stratified structure of the active lung microbiome which was significantly associated with bacterial biomass, lymphocyte proportion, human Th17 immune response, and COPD exacerbation frequency. These observations suggest that the microbiome plays a significant role in lung homeostasis. Not only microbial composition but also active functional elements and host immunity characteristics differed among different individuals. Such diversity may partially account for the variation in susceptibility to particular diseases. Alteration of the lung microbiome has been observed in several respiratory tract diseases. However, most previous studies were based on 16S ribosomal RNA and shotgun metagenome sequencing; the viability and functional activity of the microbiome, as well as its interaction with host immune systems, have not been well studied. To characterize the active lung microbiome and its associations with host immune response and clinical features, we applied metatranscriptome sequencing to bronchoalveolar lavage fluid (BALF) samples from 25 patients with chronic obstructive pulmonary disease (COPD) and from nine control cases without known pulmonary disease. Community structure analyses revealed three distinct microbial compositions, which were significantly correlated with bacterial biomass, human Th17 immune response, and COPD exacerbation frequency. Specifically, samples with transcriptionally active Streptococcus, Rothia, or Pseudomonas had bacterial loads 16 times higher than samples enriched for Escherichia and Ralstonia. These high-bacterial-load samples also tended to undergo a stronger Th17 immune response. Furthermore, an increased proportion of lymphocytes was found in samples with active Pseudomonas. In addition, COPD patients with active Streptococcus or Rothia infections tended to have lower rates of exacerbations than patients with active Pseudomonas and patients with lower bacterial biomass. Our results support the idea of a stratified structure of the active lung microbiome and a significant host-microbe interaction. We speculate that diverse lung microbiomes exist in the population and that their presence and activities could either influence or reflect different aspects of lung health. IMPORTANCE Recent studies of the microbiome proposed that resident microbes play a beneficial role in maintaining human health. Although lower respiratory tract disease is a leading cause of sickness and mortality, how the lung microbiome interacts with human health remains largely unknown. Here we assessed the association between the lung microbiome and host gene expression, cytokine concentration, and over 20 clinical features. Intriguingly, we found a stratified structure of the active lung microbiome which was significantly associated with bacterial biomass, lymphocyte proportion, human Th17 immune response, and COPD exacerbation frequency. These observations suggest that the microbiome plays a significant role in lung homeostasis. Not only microbial composition but also active functional elements and host immunity characteristics differed among different individuals. Such diversity may partially account for the variation in susceptibility to particular diseases.
Collapse
|
16
|
Circulating Mycobacterium tuberculosis DosR latency antigen-specific, polyfunctional, regulatory IL10 + Th17 CD4 T-cells differentiate latent from active tuberculosis. Sci Rep 2017; 7:11948. [PMID: 28931830 PMCID: PMC5607261 DOI: 10.1038/s41598-017-10773-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/02/2017] [Indexed: 12/30/2022] Open
Abstract
The functional heterogeneity of T cell responses to diverse antigens expressed at different stages of Mycobacterium tuberculosis (Mtb) infection, in particular early secreted versus dormancy related latency antigens expressed later, that distinguish subjects with latent (LTBI), pulmonary (PTB) or extrapulmonary (EPTB) tuberculosis remains unclear. Here we show blood central memory CD4 T-cell responses specific to Mtb dormancy related (DosR) latency, but not classical immunodominant secretory antigens, to clearly differentiate LTBI from EPTB and PTB. The polyfunctionality score integrating up to 31 DosR-specific CD4 T-cell functional profiles was significantly higher in LTBI than EPTB or PTB subjects. Further analysis of 256 DosR-specific T-cell functional profiles identified regulatory IL10 + Th17 cells (IL10+IL17A+IL17F+IL22+) to be significantly enriched in LTBI; in contrast to pro-inflammatory Th17 cells (IFNγ+IL17A+/IL10-) in the blood and lung of EPTB and PTB subjects respectively. A blood polyfunctional, Mtb DosR latency antigen specific, regulatory, central memory response is therefore a novel functional component of T-cell immunity in latent TB and potential correlate of protection.
Collapse
|
17
|
Zaidi SR, Collins AM, Mitsi E, Reiné J, Davies K, Wright AD, Owugha J, Fitzgerald R, Ganguli A, Gordon SB, Ferreira DM, Rylance J. Single use and conventional bronchoscopes for Broncho alveolar lavage (BAL) in research: a comparative study (NCT 02515591). BMC Pulm Med 2017; 17:83. [PMID: 28476111 PMCID: PMC5420119 DOI: 10.1186/s12890-017-0421-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/25/2017] [Indexed: 12/05/2022] Open
Abstract
Background Broncho alveolar lavage (BAL) is widely used for investigative research to study innate, cellular and humoral immune responses, and in early phase drug trials. Conventional (multiple use) flexible bronchoscopes have time and monetary costs associated with cleaning, and carries a small risk of cross infection. Single use bronchoscopes may provide an alternative, but have not been evaluated in this context. Methods Healthy volunteers underwent bronchoscopy at a day-case clinical research unit using the Ambu® aScopeTM single-use flexible intubation bronchoscope. Broncho alveolar lavage was performed from a sub segmental bronchus within the right middle lobe; a total of 200 ml of warmed normal saline was instilled then aspirated using handheld suction. BAL volume yield, cell yield and viability were recorded. Results Ten volunteers, (mean age 23 years, six male) participated. Bronchoscopies were carried out by one of two senior bronchoscopists, experienced in the technique of obtaining BAL for research purposes. The results were compared to 50 (mean age 23, 14 male) procedures performed using the conventional scope by the same two bronchoscopists. The total volume yield was significantly higher in the disposable group median 152 ml (IQR 141–166 ml) as compared to conventional 124 ml (110–135 ml), p = <0.01. The total cell yield and viability were similar in both groups, with no significant differences. Conclusions With single use bronchoscopes, we achieved a larger BAL volume yield than conventional bronchoscopes, with comparable cell yield and viability. Better volume yields can potentially reduce post procedure side effects such as pleuritic chest pain and cough. The risk of cross infection can be eliminated, providing reassurance to researchers and participants. Reduced maintenance requirements can be cost effective. These could potentially be used for early phase drug development studies. Trial registration This trial was registered prospectively in July 2015 with the National Clinical Trials register, with the following registration number assigned: NCT 02515591.
Collapse
Affiliation(s)
- Seher Raza Zaidi
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK. .,Respiratory Research Group, Royal Liverpool and Broadgreen University Hospital NHS Trust, Liverpool, L7 8XP, UK.
| | - Andrea M Collins
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK. .,Respiratory Research Group, Royal Liverpool and Broadgreen University Hospital NHS Trust, Liverpool, L7 8XP, UK.
| | - Elena Mitsi
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jesús Reiné
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Kayleigh Davies
- Respiratory Research Group, Royal Liverpool and Broadgreen University Hospital NHS Trust, Liverpool, L7 8XP, UK
| | - Angela D Wright
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Respiratory Research Group, Royal Liverpool and Broadgreen University Hospital NHS Trust, Liverpool, L7 8XP, UK.,Clinical Research Network, Northwest Coast, Liverpool, UK
| | - Jessica Owugha
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Richard Fitzgerald
- Respiratory Research Group, Royal Liverpool and Broadgreen University Hospital NHS Trust, Liverpool, L7 8XP, UK
| | - Amitava Ganguli
- Respiratory Research Group, Royal Liverpool and Broadgreen University Hospital NHS Trust, Liverpool, L7 8XP, UK
| | - Stephen B Gordon
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Daniela Mulari Ferreira
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jamie Rylance
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Respiratory Research Group, Royal Liverpool and Broadgreen University Hospital NHS Trust, Liverpool, L7 8XP, UK
| |
Collapse
|
18
|
Dhakal S, Hiremath J, Bondra K, Lakshmanappa YS, Shyu DL, Ouyang K, Kang KI, Binjawadagi B, Goodman J, Tabynov K, Krakowka S, Narasimhan B, Lee CW, Renukaradhya GJ. Biodegradable nanoparticle delivery of inactivated swine influenza virus vaccine provides heterologous cell-mediated immune response in pigs. J Control Release 2017; 247:194-205. [PMID: 28057521 DOI: 10.1016/j.jconrel.2016.12.039] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/12/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022]
Abstract
Swine influenza virus (SwIV) is one of the important zoonotic pathogens. Current flu vaccines have failed to provide cross-protection against evolving viruses in the field. Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable FDA approved polymer and widely used in drug and vaccine delivery. In this study, inactivated SwIV H1N2 antigens (KAg) encapsulated in PLGA nanoparticles (PLGA-KAg) were prepared, which were spherical in shape with 200 to 300nm diameter, and induced maturation of antigen presenting cells in vitro. Pigs vaccinated twice with PLGA-KAg via intranasal route showed increased antigen specific lymphocyte proliferation and enhanced the frequency of T-helper/memory and cytotoxic T cells (CTLs) in peripheral blood mononuclear cells (PBMCs). In PLGA-KAg vaccinated and heterologous SwIV H1N1 challenged pigs, clinical flu symptoms were absent, while the control pigs had fever for four days. Grossly and microscopically, reduced lung pathology and viral antigenic mass in the lung sections with clearance of infectious challenge virus in most of the PLGA-KAg vaccinated pig lung airways were observed. Immunologically, PLGA-KAg vaccine irrespective of not significantly boosting the mucosal antibody response, it augmented the frequency of IFN-γ secreting total T cells, T-helper and CTLs against both H1N2 and H1N1 SwIV. In summary, inactivated influenza virus delivered through PLGA-NPs reduced the clinical disease and induced cross-protective cell-mediated immune response in a pig model. Our data confirmed the utility of a pig model for intranasal particulate flu vaccine delivery platform to control flu in humans.
Collapse
Affiliation(s)
- Santosh Dhakal
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jagadish Hiremath
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kathryn Bondra
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Yashavanth S Lakshmanappa
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Duan-Liang Shyu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kang Ouyang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kyung-Il Kang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Basavaraj Binjawadagi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jonathan Goodman
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Kairat Tabynov
- The Research Institute for Biological Safety Problems (RIBSP), Zhambylskaya Oblast, Gvardeiskiy 080409, Kazakhstan
| | - Steven Krakowka
- The Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 1925 Coffey Road, Columbus, OH, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Chang Won Lee
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
19
|
Wootton DG, Diggle PJ, Court J, Eneje O, Keogan L, Macfarlane L, Wilks S, Woodhead M, Gordon SB. Recovery from pneumonia requires efferocytosis which is impaired in smokers and those with low body mass index and enhanced by statins. Thorax 2016; 71:1052-1054. [PMID: 27471049 PMCID: PMC5099176 DOI: 10.1136/thoraxjnl-2016-208505] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/12/2016] [Indexed: 01/09/2023]
Abstract
Background Efferocytosis (the phagocytosis of apoptotic self cells) is a key mechanism in the resolution of inflammatory processes such as community-acquired pneumonia (CAP). Efferocytosis therefore represents a modifiable target for therapy aimed at enhancing intrinsic recovery mechanisms. It is currently not known which patients recovering from CAP would mostly benefit from a strategy aimed at enhancing efferocytosis. Methods We recruited a cohort of patients with CAP admitted to a hospital in Liverpool. One month into recovery, subjects were invited for research bronchoscopy and bronchoalveolar lavage. An ex vivo efferocytosis assay was performed by challenging alveolar macrophages with autologous, apoptotic neutrophils. The percentage of alveolar macrophages that had undergone efferocytosis was determined by flow cytometry. We conducted a multivariable regression using a linear mixed effects model to determine which clinical parameters were most closely associated with efferocytosis. Results We observed high rates of comorbidity among this CAP cohort. Efferocytosis was measured in 22 subjects. We assessed multiple combinations of clinical parameters for association with efferocytosis and found the best-fitting model included an interaction between smoking status and prior statin use—smoking being associated with decreased efferocytosis and statin use with increased efferocytosis. These effects were modified by an association between efferocytosis and body mass index (BMI), such that as BMI increased so did efferocytosis. Conclusions This is the first study to measure efferocytosis in patients recovering from CAP. The results suggest that smokers with low BMI have impaired efferocytosis and may benefit from a statin to boost recovery.
Collapse
Affiliation(s)
- Daniel G Wootton
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK Department of Respiratory Research, Aintree University Hospital NHS Foundation Trust, Liverpool, UK
| | - Peter J Diggle
- CHICAS, Lancaster University Medical School, Lancaster University, Lancaster, UK
| | - Joanne Court
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Odiri Eneje
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Lynne Keogan
- Department of Respiratory Research, Aintree University Hospital NHS Foundation Trust, Liverpool, UK
| | - Laura Macfarlane
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Sarah Wilks
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Mark Woodhead
- Department of Respiratory Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK Manchester Academic Health Science Centre and Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - Stephen B Gordon
- CHICAS, Lancaster University Medical School, Lancaster University, Lancaster, UK
| |
Collapse
|
20
|
Rylance J, Fullerton DG, Scriven J, Aljurayyan AN, Mzinza D, Barrett S, Wright AKA, Wootton DG, Glennie SJ, Baple K, Knott A, Mortimer K, Russell DG, Heyderman RS, Gordon SB. Household air pollution causes dose-dependent inflammation and altered phagocytosis in human macrophages. Am J Respir Cell Mol Biol 2015; 52:584-93. [PMID: 25254931 DOI: 10.1165/rcmb.2014-0188oc] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Three billion people are exposed to household air pollution from biomass fuel use. Exposure is associated with higher incidence of pneumonia, and possibly tuberculosis. Understanding mechanisms underlying these defects would improve preventive strategies. We used human alveolar macrophages obtained from healthy Malawian adults exposed naturally to household air pollution and compared them with human monocyte-derived macrophages exposed in vitro to respirable-sized particulates. Cellular inflammatory response was assessed by IL-6 and IL-8 production in response to particulate challenge; phagosomal function was tested by uptake and oxidation of fluorescence-labeled beads; ingestion and killing of Streptococcus pneumoniae and Mycobacterium tuberculosis were measured by microscopy and quantitative culture. Particulate ingestion was quantified by digital image analysis. We were able to reproduce the carbon loading of naturally exposed alveolar macrophages by in vitro exposure of monocyte-derived macrophages. Fine carbon black induced IL-8 release from monocyte-derived and alveolar macrophages (P < 0.05) with similar magnitude responses (log10 increases of 0.93 [SEM = 0.2] versus 0.74 [SEM = 0.19], respectively). Phagocytosis of pneumococci and mycobacteria was impaired with higher particulate loading. High particulate loading corresponded with a lower oxidative burst capacity (P = 0.0015). There was no overall effect on killing of M. tuberculosis. Alveolar macrophage function is altered by particulate loading. Our macrophage model is comparable morphologically to the in vivo uptake of particulates. Wood smoke-exposed cells demonstrate reduced phagocytosis, but unaffected mycobacterial killing, suggesting defects related to chronic wood smoke inhalation limited to specific innate immune functions.
Collapse
Affiliation(s)
- Jamie Rylance
- 1 Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|