1
|
McCann A, Xu E, Yen FY, Joseph N, Fang Q. Creating anatomically derived, standardized, customizable, and three-dimensional printable head caps for functional neuroimaging. NEUROPHOTONICS 2025; 12:015016. [PMID: 40104430 PMCID: PMC11915464 DOI: 10.1117/1.nph.12.1.015016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 03/20/2025]
Abstract
Significance Consistent and accurate probe placement is a crucial step toward enhancing the reproducibility of longitudinal and group-based functional neuroimaging studies. Although the selection of headgear is central to these efforts, there does not currently exist a standardized design that can accommodate diverse probe configurations and experimental procedures. Aim We aim to provide the community with an open-source software pipeline for conveniently creating low-cost, three-dimensional (3D) printable neuroimaging head caps with anatomically significant landmarks integrated into the structure of the cap. Approach We utilize our advanced 3D head mesh generation toolbox and 10-20 head landmark calculations to quickly convert a subject's anatomical scan or an atlas into a 3D printable head cap model. The 3D modeling environment of the open-source Blender platform permits advanced mesh processing features to customize the cap. The design process is streamlined into a Blender add-on named "NeuroCaptain." Results Using the intuitive user interface, we create various head cap models using brain atlases and share those with the community. The resulting mesh-based head cap designs are readily 3D printable using off-the-shelf printers and filaments while accurately preserving the head geometry and landmarks. Conclusions The methods developed in this work result in a widely accessible tool for community members to design, customize, and fabricate caps that incorporate anatomically derived landmarks. This not only permits personalized head cap designs to achieve improved accuracy but also offers an open platform for the community to propose standardizable head caps to facilitate multi-centered data collection and sharing.
Collapse
Affiliation(s)
- Ashlyn McCann
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Edward Xu
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Fan-Yu Yen
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Noah Joseph
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Qianqian Fang
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
- Northeastern University, Department of EECS, Boston, Massachusetts, United States
| |
Collapse
|
2
|
Kılıç A, Blaney G, Tavakoli F, Frias J, Sassaroli A, Fantini S, Koomson V. Frequency-domain instrument with custom ASIC for dual-slope near-infrared spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:114706. [PMID: 39527001 PMCID: PMC11585364 DOI: 10.1063/5.0227363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Real-time and non-invasive measurements of tissue concentrations of oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) are invaluable for research and clinical use. Frequency-domain near-infrared spectroscopy (FD-NIRS) enables non-invasive measurement of these chromophore concentrations in human tissue. We present a small form factor, dual-wavelength, miniaturized FD-NIRS instrument for absolute optical measurements, built around a custom application-specific integrated circuit and a dual-slope/self-calibrating (DS/SC) probe. The modulation frequency is 55 MHz, and the heterodyning technique was used for intensity and phase readout, with an acquisition rate of 0.7 Hz. The instrument consists of a 14 × 17 cm2 printed circuit board (PCB), a Raspberry Pi 4, an STM32G491 microcontroller, and the DS/SC probe. The DS/SC approach enables this instrument to be selective to deeper tissue and conduct absolute measurements without calibration. The instrument was initially validated using a tissue-mimicking solid phantom, and upon confirming its suitability for in vivo, a vascular occlusion experiment on a human subject was conducted. For the phantom experiments, an average of 0.08° phase noise and 0.10% standard deviation over the mean for the intensities was measured at a source-detector distance of 35 mm. The absorption and reduced scattering coefficients had average precisions (variation of measurement over time) of 0.5% and 0.9%, respectively, on a window of ten frames. Results from the in vivo experiment yielded the expected increase in HbO2 and HbR concentration for all measurement types tested, namely SC, DS intensity, and DS phase.
Collapse
Affiliation(s)
- Alper Kılıç
- Department of Electrical and Computer Engineering, Tufts University, 161 College Avenue, Medford, Massachusetts 02155, USA
| | - Giles Blaney
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA
| | - Fatemeh Tavakoli
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA
| | - Jodee Frias
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA
| | - Angelo Sassaroli
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA
| | - Sergio Fantini
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA
| | - Valencia Koomson
- Department of Electrical and Computer Engineering, Tufts University, 161 College Avenue, Medford, Massachusetts 02155, USA
| |
Collapse
|
3
|
Quang T, Mostashari G, Berning E, Gopalan BP, Lizarralde-Iragorri MA, Lovins D, Shet AS, Tromberg BJ. Non-invasive optical and laboratory hematologic biomarkers correlate in patients with sickle cell disease. BIOMEDICAL OPTICS EXPRESS 2024; 15:4829-4841. [PMID: 39346999 PMCID: PMC11427197 DOI: 10.1364/boe.527770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 10/01/2024]
Abstract
The goal of this study is to identify non-invasive optical hemodynamic biomarkers that can index laboratory hematology measurements in sickle cell disease (SCD). We acquired frequency-domain NIRS (FD-NIRS) and diffuse correlation spectroscopy (DCS) data from the forearms and foreheads of 17 participants in a randomized, double-blind, placebo-controlled trial evaluating effects of isoquercetin (IQ) on thromboinflammation in SCD. We observed multiple, significant correlations between optical and hematology biomarkers including cerebral tissue oxygen saturation (StO2) and hematocrit (HCT); oxyhemoglobin ([O2Hb]) recovery rate and intercellular adhesion molecule 1 (ICAM-1); and blood flow index (BFI) reperfusion rate and coagulation index (CI). The potential of these non-invasive optical biomarkers for assessing vascular pathophysiology for the management of SCD warrants further exploration.
Collapse
Affiliation(s)
- Timothy Quang
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA
| | - Golnar Mostashari
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA
| | - Elise Berning
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA
| | - Bindu Parachalil Gopalan
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | | | - Dianna Lovins
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Arun S Shet
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Bruce J Tromberg
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20814, USA
| |
Collapse
|
4
|
Toader AE, Fukuda M, Vazquez AL. Evaluation of calibrated and uncalibrated optical imaging approaches for relative cerebral oxygen metabolism measurements in awake mice. Physiol Meas 2024; 45:045007. [PMID: 38569522 DOI: 10.1088/1361-6579/ad3a2d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
Objective. The continuous delivery of oxygen is critical to sustain brain function, and therefore, measuring brain oxygen consumption can provide vital physiological insight. In this work, we examine the impact of calibration and cerebral blood flow (CBF) measurements on the computation of the relative changes in the cerebral metabolic rate of oxygen consumption (rCMRO2) from hemoglobin-sensitive intrinsic optical imaging data. Using these data, we calculate rCMRO2, and calibrate the model using an isometabolic stimulus.Approach. We used awake head-fixed rodents to obtain hemoglobin-sensitive optical imaging data to test different calibrated and uncalibrated rCMRO2models. Hypercapnia was used for calibration and whisker stimulation was used to test the impact of calibration.Main results. We found that typical uncalibrated models can provide reasonable estimates of rCMRO2with differences as small as 7%-9% compared to their calibrated models. However, calibrated models showed lower variability and less dependence on baseline hemoglobin concentrations. Lastly, we found that supplying the model with measurements of CBF significantly reduced error and variability in rCMRO2change calculations.Significance. The effect of calibration on rCMRO2calculations remains understudied, and we systematically evaluated different rCMRO2calculation scenarios that consider including different measurement combinations. This study provides a quantitative comparison of these scenarios to evaluate trade-offs that can be vital to the design of blood oxygenation sensitive imaging experiments for rCMRO2calculation.
Collapse
Affiliation(s)
- A E Toader
- Departments of Radiology, University of Pittsburgh, Pittsburgh PA 15217, United States of America
| | - M Fukuda
- Departments of Radiology, University of Pittsburgh, Pittsburgh PA 15217, United States of America
| | - A L Vazquez
- Departments of Radiology, University of Pittsburgh, Pittsburgh PA 15217, United States of America
- Bioengineering, University of Pittsburgh, Pittsburgh PA 15217, United States of America
| |
Collapse
|
5
|
Zhou X, Xia Y, Uchitel J, Collins-Jones L, Yang S, Loureiro R, Cooper RJ, Zhao H. Review of recent advances in frequency-domain near-infrared spectroscopy technologies [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:3234-3258. [PMID: 37497520 PMCID: PMC10368025 DOI: 10.1364/boe.484044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/29/2023] [Accepted: 05/25/2023] [Indexed: 07/28/2023]
Abstract
Over the past several decades, near-infrared spectroscopy (NIRS) has become a popular research and clinical tool for non-invasively measuring the oxygenation of biological tissues, with particular emphasis on applications to the human brain. In most cases, NIRS studies are performed using continuous-wave NIRS (CW-NIRS), which can only provide information on relative changes in chromophore concentrations, such as oxygenated and deoxygenated hemoglobin, as well as estimates of tissue oxygen saturation. Another type of NIRS known as frequency-domain NIRS (FD-NIRS) has significant advantages: it can directly measure optical pathlength and thus quantify the scattering and absorption coefficients of sampled tissues and provide direct measurements of absolute chromophore concentrations. This review describes the current status of FD-NIRS technologies, their performance, their advantages, and their limitations as compared to other NIRS methods. Significant landmarks of technological progress include the development of both benchtop and portable/wearable FD-NIRS technologies, sensitive front-end photonic components, and high-frequency phase measurements. Clinical applications of FD-NIRS technologies are discussed to provide context on current applications and needed areas of improvement. The review concludes by providing a roadmap toward the next generation of fully wearable, low-cost FD-NIRS systems.
Collapse
Affiliation(s)
- Xinkai Zhou
- HUB of Intelligent Neuro-engineering (HUBIN), Aspire CREATe, IOMS, Division of Surgery and Interventional Science, University College London (UCL), London, HA7 4LP, UK
| | - Yunjia Xia
- HUB of Intelligent Neuro-engineering (HUBIN), Aspire CREATe, IOMS, Division of Surgery and Interventional Science, University College London (UCL), London, HA7 4LP, UK
- DOT-HUB, Department of Medical Physics & Biomedical Engineering, UCL, London, WC1E 6BT, UK
| | - Julie Uchitel
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Liam Collins-Jones
- DOT-HUB, Department of Medical Physics & Biomedical Engineering, UCL, London, WC1E 6BT, UK
| | - Shufan Yang
- HUB of Intelligent Neuro-engineering (HUBIN), Aspire CREATe, IOMS, Division of Surgery and Interventional Science, University College London (UCL), London, HA7 4LP, UK
- School of Computing, Engineering & Build Environment, Edinburgh Napier University, Edinburgh, UK
| | - Rui Loureiro
- Aspire CREATe, Department of Orthopaedics & Musculoskeletal Science, UCL, London, HA7 4LP, UK
| | - Robert J. Cooper
- DOT-HUB, Department of Medical Physics & Biomedical Engineering, UCL, London, WC1E 6BT, UK
| | - Hubin Zhao
- HUB of Intelligent Neuro-engineering (HUBIN), Aspire CREATe, IOMS, Division of Surgery and Interventional Science, University College London (UCL), London, HA7 4LP, UK
- DOT-HUB, Department of Medical Physics & Biomedical Engineering, UCL, London, WC1E 6BT, UK
| |
Collapse
|
6
|
Côté-Corriveau G, Simard MN, Beaulieu O, Chowdhury RA, Gagnon MM, Gagnon M, Ledjiar O, Bernard C, Nuyt AM, Dehaes M, Luu TM. Associations between neurological examination at term-equivalent age and cerebral hemodynamics and oxygen metabolism in infants born preterm. Front Neurosci 2023; 17:1105638. [PMID: 36937667 PMCID: PMC10017489 DOI: 10.3389/fnins.2023.1105638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Background Infants born at 29-36 weeks gestational age (GA) are at risk of experiencing neurodevelopmental challenges. We hypothesize that cerebral hemodynamics and oxygen metabolism measured by bedside optical brain monitoring are potential biomarkers of brain development and are associated with neurological examination at term-equivalent age (TEA). Methods Preterm infants (N = 133) born 29-36 weeks GA and admitted in the neonatal intensive care unit were enrolled in this prospective cohort study. Combined frequency-domain near infrared spectroscopy (FDNIRS) and diffuse correlation spectroscopy (DCS) were used from birth to TEA to measure cerebral hemoglobin oxygen saturation and an index of microvascular cerebral blood flow (CBF i ) along with peripheral arterial oxygen saturation (SpO2). In combination with hemoglobin concentration in the blood, these parameters were used to derive cerebral oxygen extraction fraction (OEF) and an index of cerebral oxygen metabolism (CMRO2i ). The Amiel-Tison and Gosselin Neurological Assessment was performed at TEA. Linear regression models were used to assess the associations between changes in FDNIRS-DCS parameters from birth to TEA and GA at birth. Logistic regression models were used to assess the associations between changes in FDNIRS-DCS parameters from birth to TEA and neurological examination at TEA. Results Steeper increases in CBF i (p < 0.0001) and CMRO2i (p = 0.0003) were associated with higher GA at birth. Changes in OEF, CBF i , and CMRO2i from birth to TEA were not associated with neurological examination at TEA. Conclusion In this population, cerebral FDNIRS-DCS parameters were not associated with neurological examination at TEA. Larger increases in CBF i and CMRO2i from birth to TEA were associated with higher GA. Non-invasive bedside FDNIRS-DCS monitoring provides cerebral hemodynamic and metabolic parameters that may complement neurological examination to assess brain development in preterm infants.
Collapse
Affiliation(s)
- Gabriel Côté-Corriveau
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal, QC, Canada
| | - Marie-Noëlle Simard
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC, Canada
- School of Rehabilitation, University of Montreal, Montreal, QC, Canada
| | - Olivia Beaulieu
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Rasheda Arman Chowdhury
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC, Canada
- Institute of Biomedical Engineering, University of Montreal, Montreal, QC, Canada
| | - Marie-Michèle Gagnon
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Mélanie Gagnon
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Omar Ledjiar
- Unité de Recherche Clinique Appliquée, Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Catherine Bernard
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Anne Monique Nuyt
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC, Canada
- Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal, QC, Canada
| | - Mathieu Dehaes
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC, Canada
- Institute of Biomedical Engineering, University of Montreal, Montreal, QC, Canada
- Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montreal, QC, Canada
- *Correspondence: Mathieu Dehaes,
| | - Thuy Mai Luu
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC, Canada
- Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal, QC, Canada
- Thuy Mai Luu,
| |
Collapse
|
7
|
Vadset TA, Rajaram A, Hsiao CH, Kemigisha Katungi M, Magombe J, Seruwu M, Kaaya Nsubuga B, Vyas R, Tatz J, Playter K, Nalule E, Natukwatsa D, Wabukoma M, Neri Perez LE, Mulondo R, Queally JT, Fenster A, Kulkarni AV, Schiff SJ, Grant PE, Mbabazi Kabachelor E, Warf BC, Sutin JDB, Lin PY. Improving Infant Hydrocephalus Outcomes in Uganda: A Longitudinal Prospective Study Protocol for Predicting Developmental Outcomes and Identifying Patients at Risk for Early Treatment Failure after ETV/CPC. Metabolites 2022; 12:78. [PMID: 35050201 PMCID: PMC8781620 DOI: 10.3390/metabo12010078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 01/06/2023] Open
Abstract
Infant hydrocephalus poses a severe global health burden; 80% of cases occur in the developing world where patients have limited access to neurosurgical care. Surgical treatment combining endoscopic third ventriculostomy and choroid plexus cauterization (ETV/CPC), first practiced at CURE Children's Hospital of Uganda (CCHU), is as effective as standard ventriculoperitoneal shunt (VPS) placement while requiring fewer resources and less post-operative care. Although treatment focuses on controlling ventricle size, this has little association with treatment failure or long-term outcome. This study aims to monitor the progression of hydrocephalus and treatment response, and investigate the association between cerebral physiology, brain growth, and neurodevelopmental outcomes following surgery. We will enroll 300 infants admitted to CCHU for treatment. All patients will receive pre/post-operative measurements of cerebral tissue oxygenation (SO2), cerebral blood flow (CBF), and cerebral metabolic rate of oxygen consumption (CMRO2) using frequency-domain near-infrared combined with diffuse correlation spectroscopies (FDNIRS-DCS). Infants will also receive brain imaging, to monitor tissue/ventricle volume, and neurodevelopmental assessments until two years of age. This study will provide a foundation for implementing cerebral physiological monitoring to establish evidence-based guidelines for hydrocephalus treatment. This paper outlines the protocol, clinical workflow, data management, and analysis plan of this international, multi-center trial.
Collapse
Affiliation(s)
- Taylor A. Vadset
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (T.A.V.); (A.R.); (C.-H.H.); (R.V.); (J.T.); (K.P.); (L.E.N.P.); (P.E.G.); (J.D.B.S.)
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Ajay Rajaram
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (T.A.V.); (A.R.); (C.-H.H.); (R.V.); (J.T.); (K.P.); (L.E.N.P.); (P.E.G.); (J.D.B.S.)
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Chuan-Heng Hsiao
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (T.A.V.); (A.R.); (C.-H.H.); (R.V.); (J.T.); (K.P.); (L.E.N.P.); (P.E.G.); (J.D.B.S.)
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Miriah Kemigisha Katungi
- CURE Children’s Hospital of Uganda, Mbale P.O. Box 903, Uganda; (M.K.K.); (J.M.); (M.S.); (B.K.N.); (E.N.); (D.N.); (M.W.); (R.M.); (E.M.K.)
| | - Joshua Magombe
- CURE Children’s Hospital of Uganda, Mbale P.O. Box 903, Uganda; (M.K.K.); (J.M.); (M.S.); (B.K.N.); (E.N.); (D.N.); (M.W.); (R.M.); (E.M.K.)
| | - Marvin Seruwu
- CURE Children’s Hospital of Uganda, Mbale P.O. Box 903, Uganda; (M.K.K.); (J.M.); (M.S.); (B.K.N.); (E.N.); (D.N.); (M.W.); (R.M.); (E.M.K.)
| | - Brian Kaaya Nsubuga
- CURE Children’s Hospital of Uganda, Mbale P.O. Box 903, Uganda; (M.K.K.); (J.M.); (M.S.); (B.K.N.); (E.N.); (D.N.); (M.W.); (R.M.); (E.M.K.)
| | - Rutvi Vyas
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (T.A.V.); (A.R.); (C.-H.H.); (R.V.); (J.T.); (K.P.); (L.E.N.P.); (P.E.G.); (J.D.B.S.)
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Julia Tatz
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (T.A.V.); (A.R.); (C.-H.H.); (R.V.); (J.T.); (K.P.); (L.E.N.P.); (P.E.G.); (J.D.B.S.)
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Katharine Playter
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (T.A.V.); (A.R.); (C.-H.H.); (R.V.); (J.T.); (K.P.); (L.E.N.P.); (P.E.G.); (J.D.B.S.)
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Esther Nalule
- CURE Children’s Hospital of Uganda, Mbale P.O. Box 903, Uganda; (M.K.K.); (J.M.); (M.S.); (B.K.N.); (E.N.); (D.N.); (M.W.); (R.M.); (E.M.K.)
| | - Davis Natukwatsa
- CURE Children’s Hospital of Uganda, Mbale P.O. Box 903, Uganda; (M.K.K.); (J.M.); (M.S.); (B.K.N.); (E.N.); (D.N.); (M.W.); (R.M.); (E.M.K.)
| | - Moses Wabukoma
- CURE Children’s Hospital of Uganda, Mbale P.O. Box 903, Uganda; (M.K.K.); (J.M.); (M.S.); (B.K.N.); (E.N.); (D.N.); (M.W.); (R.M.); (E.M.K.)
| | - Luis E. Neri Perez
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (T.A.V.); (A.R.); (C.-H.H.); (R.V.); (J.T.); (K.P.); (L.E.N.P.); (P.E.G.); (J.D.B.S.)
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Ronald Mulondo
- CURE Children’s Hospital of Uganda, Mbale P.O. Box 903, Uganda; (M.K.K.); (J.M.); (M.S.); (B.K.N.); (E.N.); (D.N.); (M.W.); (R.M.); (E.M.K.)
| | - Jennifer T. Queally
- Department of Psychiatry, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Aaron Fenster
- Robarts Research Institute, Western University, London, ON N6A 3K7, Canada;
| | | | - Steven J. Schiff
- Center for Neural Engineering, Center for Infectious Disease Dynamics, Departments of Engineering Science and Mechanics, Neurosurgery, and Physics, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Patricia Ellen Grant
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (T.A.V.); (A.R.); (C.-H.H.); (R.V.); (J.T.); (K.P.); (L.E.N.P.); (P.E.G.); (J.D.B.S.)
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Edith Mbabazi Kabachelor
- CURE Children’s Hospital of Uganda, Mbale P.O. Box 903, Uganda; (M.K.K.); (J.M.); (M.S.); (B.K.N.); (E.N.); (D.N.); (M.W.); (R.M.); (E.M.K.)
| | - Benjamin C. Warf
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Jason D. B. Sutin
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (T.A.V.); (A.R.); (C.-H.H.); (R.V.); (J.T.); (K.P.); (L.E.N.P.); (P.E.G.); (J.D.B.S.)
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Pei-Yi Lin
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (T.A.V.); (A.R.); (C.-H.H.); (R.V.); (J.T.); (K.P.); (L.E.N.P.); (P.E.G.); (J.D.B.S.)
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Harvey-Jones K, Lange F, Tachtsidis I, Robertson NJ, Mitra S. Role of Optical Neuromonitoring in Neonatal Encephalopathy-Current State and Recent Advances. Front Pediatr 2021; 9:653676. [PMID: 33898363 PMCID: PMC8062863 DOI: 10.3389/fped.2021.653676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/15/2021] [Indexed: 11/19/2022] Open
Abstract
Neonatal encephalopathy (NE) in term and near-term infants is a significant global health problem; the worldwide burden of disease remains high despite the introduction of therapeutic hypothermia. Assessment of injury severity and effective management in the neonatal intensive care unit (NICU) relies on multiple monitoring modalities from systemic to brain-specific. Current neuromonitoring tools provide information utilized for seizure management, injury stratification, and prognostication, whilst systemic monitoring ensures multi-organ dysfunction is recognized early and supported wherever needed. The neuromonitoring technologies currently used in NE however, have limitations in either their availability during the active treatment window or their reliability to prognosticate and stratify injury confidently in the early period following insult. There is therefore a real need for a neuromonitoring tool that provides cot side, early and continuous monitoring of brain health which can reliably stratify injury severity, monitor response to current and emerging treatments, and prognosticate outcome. The clinical use of near-infrared spectroscopy (NIRS) technology has increased in recent years. Research studies within this population have also increased, alongside the development of both instrumentation and signal processing techniques. Increasing use of commercially available cerebral oximeters in the NICU, and the introduction of advanced optical measurements using broadband NIRS (BNIRS), frequency domain NIRS (FDNIRS), and diffuse correlation spectroscopy (DCS) have widened the scope by allowing the direct monitoring of oxygen metabolism and cerebral blood flow, both key to understanding pathophysiological changes and predicting outcome in NE. This review discusses the role of optical neuromonitoring in NE and why this modality may provide the next significant piece of the puzzle toward understanding the real time state of the injured newborn brain.
Collapse
Affiliation(s)
- Kelly Harvey-Jones
- Neonatology, EGA Institute for Women's Health, University College London, London, United Kingdom
| | - Frederic Lange
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Ilias Tachtsidis
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Nicola J Robertson
- Neonatology, EGA Institute for Women's Health, University College London, London, United Kingdom.,Edinburgh Neuroscience & Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Subhabrata Mitra
- Neonatology, EGA Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
9
|
Wu MM, Chan ST, Mazumder D, Tamborini D, Stephens KA, Deng B, Farzam P, Chu JY, Franceschini MA, Qu JZ, Carp SA. Improved accuracy of cerebral blood flow quantification in the presence of systemic physiology cross-talk using multi-layer Monte Carlo modeling. NEUROPHOTONICS 2021; 8:015001. [PMID: 33437846 PMCID: PMC7779997 DOI: 10.1117/1.nph.8.1.015001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 12/09/2020] [Indexed: 05/08/2023]
Abstract
Significance: Contamination of diffuse correlation spectroscopy (DCS) measurements of cerebral blood flow (CBF) due to systemic physiology remains a significant challenge in the clinical translation of DCS for neuromonitoring. Tunable, multi-layer Monte Carlo-based (MC) light transport models have the potential to remove extracerebral flow cross-talk in cerebral blood flow index ( CBF i ) estimates. Aim: We explore the effectiveness of MC DCS models in recovering accurate CBF i changes in the presence of strong systemic physiology variations during a hypercapnia maneuver. Approach: Multi-layer slab and head-like realistic (curved) geometries were used to run MC simulations of photon propagation through the head. The simulation data were post-processed into models with variable extracerebral thicknesses and used to fit DCS multi-distance intensity autocorrelation measurements to estimate CBF i timecourses. The results of the MC CBF i values from a set of human subject hypercapnia sessions were compared with CBF i values estimated using a semi-infinite analytical model, as commonly used in the field. Results: Group averages indicate a gradual systemic increase in blood flow following a different temporal profile versus the expected rapid CBF response. Optimized MC models, guided by several intrinsic criteria and a pressure modulation maneuver, were able to more effectively separate CBF i changes from scalp blood flow influence than the analytical fitting, which assumed a homogeneous medium. Three-layer models performed better than two-layer ones; slab and curved models achieved largely similar results, though curved geometries were closer to physiological layer thicknesses. Conclusion: Three-layer, adjustable MC models can be useful in separating distinct changes in scalp and brain blood flow. Pressure modulation, along with reasonable estimates of physiological parameters, can help direct the choice of appropriate layer thicknesses in MC models.
Collapse
Affiliation(s)
- Melissa M. Wu
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Suk-Tak Chan
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Dibbyan Mazumder
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Davide Tamborini
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Kimberly A. Stephens
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Bin Deng
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Parya Farzam
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Joyce Yawei Chu
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Maria Angela Franceschini
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Jason Zhensheng Qu
- Massachusetts General Hospital, Harvard Medical School, Department of Anesthesia, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - Stefan A. Carp
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Address all correspondence to Stefan A. Carp,
| |
Collapse
|
10
|
Ko TS, Mavroudis CD, Baker WB, Morano VC, Mensah-Brown K, Boorady TW, Schmidt AL, Lynch JM, Busch DR, Gentile J, Bratinov G, Lin Y, Jeong S, Melchior RW, Rosenthal TM, Shade BC, Schiavo KL, Xiao R, Gaynor JW, Yodh AG, Kilbaugh TJ, Licht DJ. Non-invasive optical neuromonitoring of the temperature-dependence of cerebral oxygen metabolism during deep hypothermic cardiopulmonary bypass in neonatal swine. J Cereb Blood Flow Metab 2020; 40:187-203. [PMID: 30375917 PMCID: PMC6928559 DOI: 10.1177/0271678x18809828] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Management of deep hypothermic (DH) cardiopulmonary bypass (CPB), a critical neuroprotective strategy, currently relies on non-invasive temperature to guide cerebral metabolic suppression during complex cardiac surgery in neonates. Considerable inter-subject variability in temperature response and residual metabolism may contribute to the persisting risk for postoperative neurological injury. To characterize and mitigate this variability, we assess the sufficiency of conventional nasopharyngeal temperature (NPT) guidance, and in the process, validate combined non-invasive frequency-domain diffuse optical spectroscopy (FD-DOS) and diffuse correlation spectroscopy (DCS) for direct measurement of cerebral metabolic rate of oxygen (CMRO2). During CPB, n = 8 neonatal swine underwent cooling from normothermia to 18℃, sustained DH perfusion for 40 min, and then rewarming to simulate cardiac surgery. Continuous non-invasive and invasive measurements of intracranial temperature (ICT) and CMRO2 were acquired. Significant hysteresis (p < 0.001) between cooling and rewarming periods in the NPT versus ICT and NPT versus CMRO2 relationships were found. Resolution of this hysteresis in the ICT versus CMRO2 relationship identified a crucial insufficiency of conventional NPT guidance. Non-invasive CMRO2 temperature coefficients with respect to NPT (Q10 = 2.0) and ICT (Q10 = 2.5) are consistent with previous reports and provide further validation of FD-DOS/DCS CMRO2 monitoring during DH CPB to optimize management.
Collapse
Affiliation(s)
- Tiffany S Ko
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.,Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA.,Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Constantine D Mavroudis
- Division of Cardiovascular Surgery, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Wesley B Baker
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Vincent C Morano
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Kobina Mensah-Brown
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Timothy W Boorady
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Jennifer M Lynch
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David R Busch
- Department of Anesthesiology & Pain Management, University of Texas Southwestern, Dallas, TX, USA.,Department of Neurology & Neurotherapeutics, University of Texas Southwestern, Dallas, TX, USA
| | - Javier Gentile
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - George Bratinov
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yuxi Lin
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sejin Jeong
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Richard W Melchior
- Department of Perfusion Services, Cardiac Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tami M Rosenthal
- Department of Perfusion Services, Cardiac Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brandon C Shade
- Department of Perfusion Services, Cardiac Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kellie L Schiavo
- Department of Perfusion Services, Cardiac Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rui Xiao
- Department of Pediatrics, Division of Biostatistics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - J William Gaynor
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Todd J Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Daniel J Licht
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
11
|
Novi SL, Roberts E, Spagnuolo D, Spilsbury BM, Price DC, Imbalzano CA, Forero E, Yodh AG, Tellis GM, Tellis CM, Mesquita RC. Functional near-infrared spectroscopy for speech protocols: characterization of motion artifacts and guidelines for improving data analysis. NEUROPHOTONICS 2020; 7:015001. [PMID: 31956662 PMCID: PMC6953699 DOI: 10.1117/1.nph.7.1.015001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/19/2019] [Indexed: 05/02/2023]
Abstract
Monitoring speech tasks with functional near-infrared spectroscopy (fNIRS) enables investigation of speech production mechanisms and informs treatment strategies for speech-related disorders such as stuttering. Unfortunately, due to movement of the temporalis muscle, speech production can induce relative movement between probe optodes and skin. These movements generate motion artifacts during speech tasks. In practice, spurious hemodynamic responses in functional activation signals arise from lack of information about the consequences of speech-related motion artifacts, as well as from lack of standardized processing procedures for fNIRS signals during speech tasks. To this end, we characterize the effects of speech production on fNIRS signals, and we introduce a systematic analysis to ameliorate motion artifacts. The study measured 50 healthy subjects performing jaw movement (JM) tasks and found that JM produces two different patterns of motion artifacts in fNIRS. To remove these unwanted contributions, we validate a hybrid motion-correction algorithm based sequentially on spline interpolation and then wavelet filtering. We compared performance of the hybrid algorithm with standard algorithms based on spline interpolation only and wavelet decomposition only. The hybrid algorithm corrected 94% of the artifacts produced by JM, and it did not lead to spurious responses in the data. We also validated the hybrid algorithm during a reading task performed under two different conditions: reading aloud and reading silently. For both conditions, we observed significant cortical activation in brain regions related to reading. Moreover, when comparing the two conditions, good agreement of spatial and temporal activation patterns was found only when data were analyzed using the hybrid approach. Overall, the study demonstrates a standardized processing scheme for fNIRS data during speech protocols. The scheme decreases spurious responses and intersubject variability due to motion artifacts.
Collapse
Affiliation(s)
- Sergio L. Novi
- University of Campinas, Institute of Physics, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, São Paulo, Brazil
| | - Erin Roberts
- Misericordia University, Department of Speech-Language Pathology, Dallas, Pennsylvania, United States
| | - Danielle Spagnuolo
- Misericordia University, Department of Speech-Language Pathology, Dallas, Pennsylvania, United States
| | - Brianna M. Spilsbury
- Misericordia University, Department of Speech-Language Pathology, Dallas, Pennsylvania, United States
| | - D’manda C. Price
- Misericordia University, Department of Speech-Language Pathology, Dallas, Pennsylvania, United States
| | - Cara A. Imbalzano
- Misericordia University, Department of Speech-Language Pathology, Dallas, Pennsylvania, United States
| | - Edwin Forero
- University of Campinas, Institute of Physics, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, São Paulo, Brazil
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Glen M. Tellis
- Misericordia University, Department of Speech-Language Pathology, Dallas, Pennsylvania, United States
| | - Cari M. Tellis
- Misericordia University, Department of Speech-Language Pathology, Dallas, Pennsylvania, United States
| | - Rickson C. Mesquita
- University of Campinas, Institute of Physics, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, São Paulo, Brazil
- Address all correspondence to: Rickson C. Mesquita, E-mail:
| |
Collapse
|
12
|
Cheng HH, Ferradal SL, Vyas R, Wigmore D, McDavitt E, Soul JS, Franceschini MA, Newburger JW, Grant PE. Abnormalities in cerebral hemodynamics and changes with surgical intervention in neonates with congenital heart disease. J Thorac Cardiovasc Surg 2019; 159:2012-2021. [PMID: 31685276 DOI: 10.1016/j.jtcvs.2019.08.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 07/30/2019] [Accepted: 08/04/2019] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To use novel optical techniques to measure perioperative cerebral hemodynamics of diverse congenital heart disease (CHD) groups (two-ventricle, d-transposition of the great arteries [TGA], and single ventricle [SV]) and (1) compare CHD groups with healthy controls preoperatively and (2) compare preoperative and postoperative values within each CHD group. METHODS Frequency-domain near-infrared spectroscopy and diffuse correlation spectroscopy were used to measure cerebral oxygen saturation, cerebral blood volume, cerebral blood flow index, cerebral oxygen extraction fraction (OEF, calculated using arterial oxygen saturation and cerebral oxygen saturation), and an index of cerebral metabolic rate of oxygen consumption in control and CHD neonates. Preoperative CHD measures were compared with controls. Preoperative and postoperative measures were compared within each CHD group. RESULTS In total, 31 CHD neonates (7 two-ventricle, 11 TGA, 13 SV) and 13 controls were included. Only neonates with SV CHD displayed significantly lower preoperative cerebral blood flow index (P < .04) than controls. TGA and SV groups displayed greater OEF (P < .05) during the preoperative period compared with controls. Compared with the preoperative state, postoperative neonates with TGA had a greater arterial oxygen saturation with lower OEF. CONCLUSIONS Differences in cerebral hemodynamics and oxygen metabolism were observed in diverse CHD groups compared with controls. Increased OEF appears to be a compensatory mechanism in neonates with TGA and SV. Studies are needed to understand the relationship of these metrics to outcome and their potential to guide interventions to improve outcome.
Collapse
Affiliation(s)
- Henry H Cheng
- Department of Cardiology, Boston Children's Hospital, Boston, Mass
| | - Silvina L Ferradal
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, Mass
| | - Rutvi Vyas
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, Mass
| | - Daniel Wigmore
- Department of Cardiology, Boston Children's Hospital, Boston, Mass
| | - Erica McDavitt
- Department of Cardiology, Boston Children's Hospital, Boston, Mass
| | - Janet S Soul
- Department of Neurology, Boston Children's Hospital, Boston, Mass
| | - Mari A Franceschini
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Mass
| | - Jane W Newburger
- Department of Cardiology, Boston Children's Hospital, Boston, Mass
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, Mass.
| |
Collapse
|
13
|
Vasung L, Abaci Turk E, Ferradal SL, Sutin J, Stout JN, Ahtam B, Lin PY, Grant PE. Exploring early human brain development with structural and physiological neuroimaging. Neuroimage 2019; 187:226-254. [PMID: 30041061 PMCID: PMC6537870 DOI: 10.1016/j.neuroimage.2018.07.041] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022] Open
Abstract
Early brain development, from the embryonic period to infancy, is characterized by rapid structural and functional changes. These changes can be studied using structural and physiological neuroimaging methods. In order to optimally acquire and accurately interpret this data, concepts from adult neuroimaging cannot be directly transferred. Instead, one must have a basic understanding of fetal and neonatal structural and physiological brain development, and the important modulators of this process. Here, we first review the major developmental milestones of transient cerebral structures and structural connectivity (axonal connectivity) followed by a summary of the contributions from ex vivo and in vivo MRI. Next, we discuss the basic biology of neuronal circuitry development (synaptic connectivity, i.e. ensemble of direct chemical and electrical connections between neurons), physiology of neurovascular coupling, baseline metabolic needs of the fetus and the infant, and functional connectivity (defined as statistical dependence of low-frequency spontaneous fluctuations seen with functional magnetic resonance imaging (fMRI)). The complementary roles of magnetic resonance imaging (MRI), electroencephalography (EEG), magnetoencephalography (MEG), and near-infrared spectroscopy (NIRS) are discussed. We include a section on modulators of brain development where we focus on the placenta and emerging placental MRI approaches. In each section we discuss key technical limitations of the imaging modalities and some of the limitations arising due to the biology of the system. Although neuroimaging approaches have contributed significantly to our understanding of early brain development, there is much yet to be done and a dire need for technical innovations and scientific discoveries to realize the future potential of early fetal and infant interventions to avert long term disease.
Collapse
Affiliation(s)
- Lana Vasung
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Esra Abaci Turk
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Silvina L Ferradal
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Jason Sutin
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Jeffrey N Stout
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Banu Ahtam
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Pei-Yi Lin
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Selb J, Wu KC, Sutin J, Lin PY(I, Farzam P, Bechek S, Shenoy A, Patel AB, Boas DA, Franceschini MA, Rosenthal ES. Prolonged monitoring of cerebral blood flow and autoregulation with diffuse correlation spectroscopy in neurocritical care patients. NEUROPHOTONICS 2018; 5:045005. [PMID: 30450363 PMCID: PMC6233866 DOI: 10.1117/1.nph.5.4.045005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 09/24/2018] [Indexed: 05/13/2023]
Abstract
Monitoring of cerebral blood flow (CBF) and autoregulation are essential components of neurocritical care, but continuous noninvasive methods for CBF monitoring are lacking. Diffuse correlation spectroscopy (DCS) is a noninvasive diffuse optical modality that measures a CBF index ( CBF i ) in the cortex microvasculature by monitoring the rapid fluctuations of near-infrared light diffusing through moving red blood cells. We tested the feasibility of monitoring CBF i with DCS in at-risk patients in the Neurosciences Intensive Care Unit. DCS data were acquired continuously for up to 20 h in six patients with aneurysmal subarachnoid hemorrhage, as permitted by clinical care. Mean arterial blood pressure was recorded synchronously, allowing us to derive autoregulation curves and to compute an autoregulation index. The autoregulation curves suggest disrupted cerebral autoregulation in most patients, with the severity of disruption and the limits of preserved autoregulation varying between subjects. Our findings suggest the potential of the DCS modality for noninvasive, long-term monitoring of cerebral perfusion, and autoregulation.
Collapse
Affiliation(s)
- Juliette Selb
- Massachusetts General Hospital, Optics at Martinos, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Kuan-Cheng Wu
- Massachusetts General Hospital, Optics at Martinos, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Jason Sutin
- Massachusetts General Hospital, Optics at Martinos, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Pei-Yi (Ivy) Lin
- Massachusetts General Hospital, Optics at Martinos, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Parisa Farzam
- Massachusetts General Hospital, Optics at Martinos, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Sophia Bechek
- Massachusetts General Hospital, Department of Neurology, Boston, Massachusetts, United States
| | - Apeksha Shenoy
- Massachusetts General Hospital, Department of Neurology, Boston, Massachusetts, United States
| | - Aman B. Patel
- Massachusetts General Hospital, Department of Neurology, Boston, Massachusetts, United States
| | - David A. Boas
- Massachusetts General Hospital, Optics at Martinos, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Maria Angela Franceschini
- Massachusetts General Hospital, Optics at Martinos, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Address all correspondence to: Maria Angela Franceschini, E-mail:
| | - Eric S. Rosenthal
- Massachusetts General Hospital, Department of Neurology, Boston, Massachusetts, United States
| |
Collapse
|
15
|
Rajaram A, Bale G, Kewin M, Morrison LB, Tachtsidis I, St. Lawrence K, Diop M. Simultaneous monitoring of cerebral perfusion and cytochrome c oxidase by combining broadband near-infrared spectroscopy and diffuse correlation spectroscopy. BIOMEDICAL OPTICS EXPRESS 2018; 9:2588-2603. [PMID: 30258675 PMCID: PMC6154190 DOI: 10.1364/boe.9.002588] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 05/23/2023]
Abstract
Preterm infants born with very low birth weights are at a high risk of brain injury, in part because the premature brain is believed to be prone to periods of low cerebral blood flow (CBF). Tissue damage is likely to occur if reduction in CBF is sufficient to impair cerebral energy metabolism for extended periods. Therefore, a neuromonitoring method that can detect reductions in CBF, large enough to affect metabolism, could alert the neonatal intensive care team before injury occurs. In this report, we present the development of an optical system that combines diffuse correlation spectroscopy (DCS) for monitoring CBF and broadband near-infrared spectroscopy (B-NIRS) for monitoring the oxidation state of cytochrome c oxidase (oxCCO) - a key biomarker of oxidative metabolism. The hybrid instrument includes a multiplexing system to enable concomitant DCS and B-NIRS measurements while avoiding crosstalk between the two subsystems. The ability of the instrument to monitor dynamic changes in CBF and oxCCO was demonstrated in a piglet model of neonatal hypoxia-ischemia (HI). Experiments conducted in eight animals, including two controls, showed that oxCCO exhibited a delayed response to ischemia while CBF and tissue oxygenation (StO2) responses were instantaneous. These findings suggest that simultaneous neuromonitoring of perfusion and metabolism could provide critical information regarding clinically significant hemodynamic events prior to the onset of brain injury.
Collapse
Affiliation(s)
- Ajay Rajaram
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| | - Gemma Bale
- Medical Physics & Biomedical Engineering, University College London, Gower St., Bloomsbury, London, WC1E 6BT, United Kingdom
| | - Matthew Kewin
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| | - Laura B. Morrison
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
| | - Ilias Tachtsidis
- Medical Physics & Biomedical Engineering, University College London, Gower St., Bloomsbury, London, WC1E 6BT, United Kingdom
| | - Keith St. Lawrence
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| | - Mamadou Diop
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| |
Collapse
|
16
|
Beausoleil TP, Janaillac M, Barrington KJ, Lapointe A, Dehaes M. Cerebral oxygen saturation and peripheral perfusion in the extremely premature infant with intraventricular and/or pulmonary haemorrhage early in life. Sci Rep 2018; 8:6511. [PMID: 29695729 PMCID: PMC5916916 DOI: 10.1038/s41598-018-24836-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/09/2018] [Indexed: 12/29/2022] Open
Abstract
Extremely preterm infants are at higher risk of pulmonary (PH) and intraventricular (IVH) haemorrhage during the transitioning physiology due to immature cardiovascular system. Monitoring of haemodynamics can detect early abnormal circulation that may lead to these complications. We described time-frequency relationships between near infrared spectroscopy (NIRS) cerebral regional haemoglobin oxygen saturation (CrSO2) and preductal peripheral perfusion index (PI), capillary oxygen saturation (SpO2) and heart rate (HR) in extremely preterm infants in the first 72 h of life. Patients were sub-grouped in infants with PH and/or IVH (N H = 8) and healthy controls (N C = 11). Data were decomposed in wavelets allowing the analysis of localized variations of power. This approach allowed to quantify the percentage of time of significant cross-correlation, semblance, gain (transfer function) and coherence between signals. Ultra-low frequencies (<0.28 mHz) were analyzed as slow and prolonged periods of impaired circulation are considered more detrimental than transient fluctuations. Cross-correlation between CrSO2 and oximetry (PI, SpO2 and HR) as well as in-phase semblance and gain between CrSO2 and HR were significantly lower while anti-phase semblance between CrSO2 and HR was significantly higher in PH-IVH infants compared to controls. These differences may reflect haemodynamic instability associated with cerebrovascular autoregulation and hemorrhagic complications observed during the transitioning physiology.
Collapse
Affiliation(s)
- Thierry P Beausoleil
- Institute of Biomedical Engineering, University of Montréal, Montréal, Canada.,Research Centre, CHU Sainte-Justine, Montréal, Canada
| | - Marie Janaillac
- Department of Pediatrics, Division of Neonatology, CHU Sainte-Justine and University of Montréal, Montréal, Canada
| | - Keith J Barrington
- Research Centre, CHU Sainte-Justine, Montréal, Canada.,Department of Pediatrics, Division of Neonatology, CHU Sainte-Justine and University of Montréal, Montréal, Canada
| | - Anie Lapointe
- Department of Pediatrics, Division of Neonatology, CHU Sainte-Justine and University of Montréal, Montréal, Canada
| | - Mathieu Dehaes
- Research Centre, CHU Sainte-Justine, Montréal, Canada. .,Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montréal, Montréal, Canada.
| |
Collapse
|
17
|
Tamborini D, Farzam P, Zimmermann B, Wu KC, Boas DA, Franceschini MA. Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system. NEUROPHOTONICS 2018; 5:011015. [PMID: 28948194 PMCID: PMC5607257 DOI: 10.1117/1.nph.5.1.011015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/01/2017] [Indexed: 05/03/2023]
Abstract
This paper presents a multidistance and multiwavelength diffuse correlation spectroscopy (DCS) approach and its implementation to simultaneously measure the optical proprieties of deep tissue as well as the blood flow. The system consists of three long coherence length lasers at different wavelengths in the near-infrared, eight single-photon detectors, and a correlator board. With this approach, we collect both light intensity and DCS data at multiple distances and multiple wavelengths, which provide unique information to fit for all the parameters of interest: scattering, blood flow, and hemoglobin concentration. We present the characterization of the system and its validation with phantom measurements.
Collapse
Affiliation(s)
- Davide Tamborini
- Harvard Medical School, MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Address all correspondence to: Davide Tamborini, E-mail:
| | - Parisa Farzam
- Harvard Medical School, MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
| | - Bernhard Zimmermann
- Harvard Medical School, MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
| | - Kuan-Cheng Wu
- Harvard Medical School, MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
| | - David A. Boas
- Boston University, Boston University Neurophotonics Center, Boston, Massachusetts, United States
| | - Maria Angela Franceschini
- Harvard Medical School, MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
| |
Collapse
|
18
|
Farzam P, Buckley EM, Lin PY, Hagan K, Grant PE, Inder TE, Carp SA, Franceschini MA. Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods. Sci Rep 2017; 7:15786. [PMID: 29150648 PMCID: PMC5693925 DOI: 10.1038/s41598-017-15995-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/03/2017] [Indexed: 11/24/2022] Open
Abstract
Investigating the cerebral physiology of healthy term newborns' brains is important for better understanding perinatal brain injuries, of which the most common etiologies are hypoxia and ischemia. Hence, cerebral blood flow and cerebral oxygenation are important biomarkers of brain health. In this study, we employed a hybrid diffuse optical system consisting of diffuse correlation spectroscopy (DCS) and frequency-domain near infrared spectroscopy (FDNIRS) to measure hemoglobin concentration, oxygen saturation, and indices of cerebral blood flow and metabolism. We measured 30 term infants to assess the optical and physiological characteristics of the healthy neonatal brain in the frontal, temporal, and parietal lobes. We observed higher metabolism in the right hemisphere compared to the left and a positive correlation between gestational age and the level of cerebral hemoglobin concentration, blood volume, and oxygen saturation. Moreover, we observed higher cerebral blood flow and lower oxygen saturation in females compared to males. The delayed maturation in males and the sexual dimorphism in cerebral hemodynamics may explain why males are more vulnerable to perinatal brain injuries than females.
Collapse
Affiliation(s)
- Parisa Farzam
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.
| | - Erin M Buckley
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Pei-Yi Lin
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Katherine Hagan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Terrie Eleanor Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Stefan A Carp
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Maria Angela Franceschini
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| |
Collapse
|
19
|
Shedding light on the neonatal brain: probing cerebral hemodynamics by diffuse optical spectroscopic methods. Sci Rep 2017. [PMID: 29150648 DOI: 10.1038/s41598‐017‐15995‐1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Investigating the cerebral physiology of healthy term newborns' brains is important for better understanding perinatal brain injuries, of which the most common etiologies are hypoxia and ischemia. Hence, cerebral blood flow and cerebral oxygenation are important biomarkers of brain health. In this study, we employed a hybrid diffuse optical system consisting of diffuse correlation spectroscopy (DCS) and frequency-domain near infrared spectroscopy (FDNIRS) to measure hemoglobin concentration, oxygen saturation, and indices of cerebral blood flow and metabolism. We measured 30 term infants to assess the optical and physiological characteristics of the healthy neonatal brain in the frontal, temporal, and parietal lobes. We observed higher metabolism in the right hemisphere compared to the left and a positive correlation between gestational age and the level of cerebral hemoglobin concentration, blood volume, and oxygen saturation. Moreover, we observed higher cerebral blood flow and lower oxygen saturation in females compared to males. The delayed maturation in males and the sexual dimorphism in cerebral hemodynamics may explain why males are more vulnerable to perinatal brain injuries than females.
Collapse
|
20
|
Carp SA, Farzam P, Redes N, Hueber DM, Franceschini MA. Combined multi-distance frequency domain and diffuse correlation spectroscopy system with simultaneous data acquisition and real-time analysis. BIOMEDICAL OPTICS EXPRESS 2017; 8:3993-4006. [PMID: 29026684 PMCID: PMC5611918 DOI: 10.1364/boe.8.003993] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/29/2017] [Accepted: 07/29/2017] [Indexed: 05/19/2023]
Abstract
Frequency domain near infrared spectroscopy (FD-NIRS) and diffuse correlation spectroscopy (DCS) have emerged as synergistic techniques for the non-invasive assessment of tissue health. Combining FD-NIRS oximetry with DCS measures of blood flow, the tissue oxygen metabolic rate can be quantified, a parameter more closely linked to underlying physiology and pathology than either NIRS or DCS estimates alone. Here we describe the first commercially available integrated instrument, called the "MetaOx", designed to enable simultaneous FD-NIRS and DCS measurements at rates of 10 + Hz, and offering real-time data evaluation. We show simultaneously acquired characterization data demonstrating performance equivalent to individual devices and sample in vivo measurements of pulsation resolved blood flow, forearm occlusion hemodynamic changes and muscle oxygen metabolic rate monitoring during stationary bike exercise.
Collapse
Affiliation(s)
- Stefan A. Carp
- Harvard Medical School, Massachusetts General Hospital, Martinos Center for Biomedical Imaging, 149 13th St., Charlestown, MA 02129, USA
| | - Parisa Farzam
- Harvard Medical School, Massachusetts General Hospital, Martinos Center for Biomedical Imaging, 149 13th St., Charlestown, MA 02129, USA
| | - Norin Redes
- ISS Inc., 1602 Newton Drive, Champaign, IL 61822, USA
| | | | - Maria Angela Franceschini
- Harvard Medical School, Massachusetts General Hospital, Martinos Center for Biomedical Imaging, 149 13th St., Charlestown, MA 02129, USA
| |
Collapse
|
21
|
Ferradal SL, Yuki K, Vyas R, Ha CG, Yi F, Stopp C, Wypij D, Cheng HH, Newburger JW, Kaza AK, Franceschini MA, Kussman BD, Grant PE. Non-invasive Assessment of Cerebral Blood Flow and Oxygen Metabolism in Neonates during Hypothermic Cardiopulmonary Bypass: Feasibility and Clinical Implications. Sci Rep 2017; 7:44117. [PMID: 28276534 PMCID: PMC5343476 DOI: 10.1038/srep44117] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 02/02/2017] [Indexed: 02/01/2023] Open
Abstract
The neonatal brain is extremely vulnerable to injury during periods of hypoxia and/or ischemia. Risk of brain injury is increased during neonatal cardiac surgery, where pre-existing hemodynamic instability and metabolic abnormalities are combined with long periods of low cerebral blood flow and/or circulatory arrest. Our understanding of events associated with cerebral hypoxia-ischemia during cardiopulmonary bypass (CPB) remains limited, largely due to inadequate tools to quantify cerebral oxygen delivery and consumption non-invasively and in real-time. This pilot study aims to evaluate cerebral blood flow (CBF) and oxygen metabolism (CMRO2) intraoperatively in neonates by combining two novel non-invasive optical techniques: frequency-domain near-infrared spectroscopy (FD-NIRS) and diffuse correlation spectroscopy (DCS). CBF and CMRO2 were quantified before, during and after deep hypothermic cardiopulmonary bypass (CPB) in nine neonates. Our results show significantly decreased CBF and CMRO2 during hypothermic CPB. More interestingly, a change of coupling between both variables is observed during deep hypothermic CPB in all subjects. Our results are consistent with previous studies using invasive techniques, supporting the concept of FD-NIRS/DCS as a promising technology to monitor cerebral physiology in neonates providing the potential for individual optimization of surgical management.
Collapse
Affiliation(s)
- Silvina L Ferradal
- Fetal-Neonatal Neuroimaging &Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Koichi Yuki
- Department of Anesthesiology, Perioperative &Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rutvi Vyas
- Fetal-Neonatal Neuroimaging &Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher G Ha
- Fetal-Neonatal Neuroimaging &Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Francesca Yi
- Fetal-Neonatal Neuroimaging &Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian Stopp
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David Wypij
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Henry H Cheng
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jane W Newburger
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aditya K Kaza
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria A Franceschini
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Barry D Kussman
- Department of Anesthesiology, Perioperative &Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging &Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Liang Z, Gu Y, Duan X, Cheng L, Liang S, Tong Y, Li X. Design of multichannel functional near-infrared spectroscopy system with application to propofol and sevoflurane anesthesia monitoring. NEUROPHOTONICS 2016; 3:045001. [PMID: 27725946 PMCID: PMC5050277 DOI: 10.1117/1.nph.3.4.045001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/12/2016] [Indexed: 05/30/2023]
Abstract
Monitoring the changes of cerebral hemodynamics and the state of consciousness during general anesthesia (GA) is clinically important. There is a great need for developing advanced detectors to investigate the physiological processes of the brain during GA. We developed a multichanneled, functional near-infrared spectroscopy (fNIRS) system device and applied it to GA operation monitoring. The cerebral hemodynamic data from the forehead of 11 patients undergoing propofol and sevoflurane anesthesia were analyzed. The concentration changes of oxygenated hemoglobin, deoxygenated hemoglobin, total hemoglobin, and cerebral tissue heart rate were determined from the raw optical information based on the discrete stationary wavelet transform. This custom-made device provides an easy-to-build solution for continuous wave-fNIRS system, with customized specifications. The developed device has a potential value in cerebral monitoring in clinical settings.
Collapse
Affiliation(s)
- Zhenhu Liang
- Yanshan University, Institute of Electrical Engineering, No. 438 Hebei Street, Haigang District, Qinhuangdao 066004, China
| | - Yue Gu
- Yanshan University, Institute of Electrical Engineering, No. 438 Hebei Street, Haigang District, Qinhuangdao 066004, China
| | - Xuejing Duan
- Yanshan University, Institute of Electrical Engineering, No. 438 Hebei Street, Haigang District, Qinhuangdao 066004, China
| | - Lei Cheng
- Yanshan University, Institute of Electrical Engineering, No. 438 Hebei Street, Haigang District, Qinhuangdao 066004, China
| | - Shujuan Liang
- Department of Anesthesia, No. 1 Hospital of Qinhuangdao, No. 258 Wenhua Street, Haigang District, Qinhuangdao 066004, China
| | - Yunjie Tong
- McLean Hospital, McLean Imaging Center, 115 Mill Street, Belmont, Massachusetts 02478, United States
| | - Xiaoli Li
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, No. 19 Xinjiekou Wai Street, Haidian District, Beijing 100875, China
- Beijing Normal University, Center for Collaboration and Innovation in Brain and Learning Sciences, No. 19 Xinjiekou Wai Street, Haidian District, Beijing 100875, China
| |
Collapse
|
23
|
Verdecchia K, Diop M, Lee A, Morrison LB, Lee TY, St. Lawrence K. Assessment of a multi-layered diffuse correlation spectroscopy method for monitoring cerebral blood flow in adults. BIOMEDICAL OPTICS EXPRESS 2016; 7:3659-3674. [PMID: 27699127 PMCID: PMC5030039 DOI: 10.1364/boe.7.003659] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 05/21/2023]
Abstract
Diffuse correlation spectroscopy (DCS) is a promising technique for brain monitoring as it can provide a continuous signal that is directly related to cerebral blood flow (CBF); however, signal contamination from extracerebral tissue can cause flow underestimations. The goal of this study was to investigate whether a multi-layered (ML) model that accounts for light propagation through the different tissue layers could successfully separate scalp and brain flow when applied to DCS data acquired at multiple source-detector distances. The method was first validated with phantom experiments. Next, experiments were conducted in a pig model of the adult head with a mean extracerebral tissue thickness of 9.8 ± 0.4 mm. Reductions in CBF were measured by ML DCS and computed tomography perfusion for validation; excellent agreement was observed by a mean difference of 1.2 ± 4.6% (CI95%: -31.1 and 28.6) between the two modalities, which was not significantly different.
Collapse
Affiliation(s)
- Kyle Verdecchia
- Imaging Program, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Mamadou Diop
- Imaging Program, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Albert Lee
- Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Laura B. Morrison
- Imaging Program, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Ting-Yim Lee
- Imaging Program, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7, Canada
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario N6G 2V4, Canada
| | - Keith St. Lawrence
- Imaging Program, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7, Canada
| |
Collapse
|
24
|
Reduced cerebral blood flow and oxygen metabolism in extremely preterm neonates with low-grade germinal matrix- intraventricular hemorrhage. Sci Rep 2016; 6:25903. [PMID: 27181339 PMCID: PMC4867629 DOI: 10.1038/srep25903] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/25/2016] [Indexed: 01/24/2023] Open
Abstract
Low-grade germinal matrix-intraventricular hemorrhage (GM-IVH) is the most common complication in extremely premature neonates. The occurrence of GM-IVH is highly associated with hemodynamic instability in the premature brain, yet the long-term impact of low-grade GM-IVH on cerebral blood flow and neuronal health have not been fully investigated. We used an innovative combination of frequency-domain near infrared spectroscopy and diffuse correlation spectroscopy (FDNIRS-DCS) to measure cerebral oxygen saturation (SO2) and an index of cerebral blood flow (CBFi) at the infant’s bedside and compute an index of cerebral oxygen metabolism (CMRO2i). We enrolled twenty extremely low gestational age (ELGA) neonates (seven with low-grade GM-IVH) and monitored them weekly until they reached full-term equivalent age. During their hospital stay, we observed consistently lower CBFi and CMRO2i in ELGA neonates with low-grade GM-IVH compared to neonates without hemorrhages. Furthermore, lower CBFi and CMRO2i in the former group persists even after the resolution of the hemorrhage. In contrast, SO2 does not differ between groups. Thus, CBFi and CMRO2i may have better sensitivity than SO2 in detecting GM-IVH-related effects on infant brain development. FDNIRS-DCS methods may have clinical benefit for monitoring the evolution of GM-IVH, evaluating treatment response, and potentially predicting neurodevelopmental outcome.
Collapse
|
25
|
Nourhashemi M, Mahmoudzadeh M, Wallois F. Thermal impact of near-infrared laser in advanced noninvasive optical brain imaging. NEUROPHOTONICS 2016; 3:015001. [PMID: 27115020 PMCID: PMC4802390 DOI: 10.1117/1.nph.3.1.015001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 12/03/2015] [Indexed: 05/04/2023]
Abstract
The propagation of laser light in human tissues is an important issue in functional optical imaging. We modeled the thermal effect of different laser powers with various spot sizes and different head tissue characteristics on neonatal and adult quasirealistic head models. The photothermal effect of near-infrared laser (800 nm) was investigated by numerical simulation using finite-element analysis. Our results demonstrate that the maximum temperature increase on the brain for laser irradiance between 0.127 (1 mW) and [Formula: see text] (100 mW) at a 1 mm spot size, ranged from 0.0025°C to 0.26°C and from 0.03°C to 2.85°C at depths of 15.9 and 4.9 mm in the adult and neonatal brain, respectively. Due to the shorter distance of the head layers from the neonatal head surface, the maximum temperature increase was higher in the neonatal brain than in the adult brain. Our results also show that, at constant power, spot size changes had a lesser heating effect on deeper tissues. While the constraints for safe laser irradiation to the brain are dictated by skin safety, these results can be useful to optimize laser parameters for a variety of laser applications in the brain. Moreover, combining simulation and adequate in vitro experiments could help to develop more effective optical imaging to avoid possible tissue damage.
Collapse
Affiliation(s)
- Mina Nourhashemi
- Université de Picardie, INSERM U 1105, GRAMFC, CHU Sud, rue René Laennec, 80054 Amiens Cedex 1, France
| | - Mahdi Mahmoudzadeh
- Université de Picardie, INSERM U 1105, GRAMFC, CHU Sud, rue René Laennec, 80054 Amiens Cedex 1, France
| | - Fabrice Wallois
- Université de Picardie, INSERM U 1105, GRAMFC, CHU Sud, rue René Laennec, 80054 Amiens Cedex 1, France
- Address all correspondence to: Fabrice Wallois, E-mail:
| |
Collapse
|
26
|
Govindan RB, Massaro A, Chang T, Vezina G, du Plessis A. A novel technique for quantitative bedside monitoring of neurovascular coupling. J Neurosci Methods 2015; 259:135-142. [PMID: 26684362 DOI: 10.1016/j.jneumeth.2015.11.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 11/24/2015] [Accepted: 11/27/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND There is no current method for continuous quantification of neurovascular coupling (NVC) in spontaneous brain activity. To fill this void, we propose a novel method to quantify NVC using electroencephalogram (EEG) and near-infrared spectroscopy (NIRS) data. NEW METHOD Since EEG and NIRS measure physiologic changes occurring at different time scales, we bring them into a common dynamical time frame (DTF). To achieve this, we partition both signals into one-second epochs and calculate the standard deviation of the EEG and the average value of the NIRS for each epoch. We then quantify the NVC by calculating spectral coherence between the two signals in the DTF. The resulting NVC will have a low resolution with all of its content localized below 1Hz. RESULTS After validating this framework on simulated data, we applied this approach to EEG and NIRS signals collected from four term infants undergoing therapeutic hypothermia for neonatal encephalopathy. Two of these infants showed no evidence of structural brain injury, and the other two died during the course of the therapy. The intact survivors showed emergence of NVC during hypothermia and/or after rewarming. In contrast, the two critically ill infants, who subsequently died, lacked this feature. COMPARISON WITH EXISTING METHODS Existing methods quantify NVC by averaging neurovascular signals based on certain events (for example seizure) in the EEG activity, whereas our approach quantifies coupling between spontaneous background EEG and NIRS. CONCLUSION Real-time continuous monitoring of NVC may be a promising physiologic signal for cerebral monitoring in future.
Collapse
Affiliation(s)
- R B Govindan
- Division of Fetal and Transitional Medicine, Fetal Medicine Institute, Children's National Health System, 111 Michigan Ave NW, Washington, DC 20010, USA.
| | - An Massaro
- Division of Neonatology, Children's National, 111 Michigan Ave NW, Washington, DC 20010, USA
| | - Taeun Chang
- Division of Neurology, Children's National, 111 Michigan Ave NW, Washington, DC 20010, USA
| | - Gilbert Vezina
- Division of Diagnostic Imaging and Radiology, Children's National, 111 Michigan Ave NW, Washington, DC 20010, USA
| | - Adré du Plessis
- Division of Fetal and Transitional Medicine, Fetal Medicine Institute, Children's National Health System, 111 Michigan Ave NW, Washington, DC 20010, USA
| |
Collapse
|
27
|
Dehaes M, Cheng HH, Buckley EM, Lin PY, Ferradal S, Williams K, Vyas R, Hagan K, Wigmore D, McDavitt E, Soul JS, Franceschini MA, Newburger JW, Ellen Grant P. Perioperative cerebral hemodynamics and oxygen metabolism in neonates with single-ventricle physiology. BIOMEDICAL OPTICS EXPRESS 2015; 6:4749-67. [PMID: 26713191 PMCID: PMC4679251 DOI: 10.1364/boe.6.004749] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/01/2015] [Accepted: 11/03/2015] [Indexed: 05/03/2023]
Abstract
Congenital heart disease (CHD) patients are at risk for neurodevelopmental delay. The etiology of these delays is unclear, but abnormal prenatal cerebral maturation and postoperative hemodynamic instability likely play a role. A better understanding of these factors is needed to improve neurodevelopmental outcome. In this study, we used bedside frequency-domain near infrared spectroscopy (FDNIRS) and diffuse correlation spectroscopy (DCS) to assess cerebral hemodynamics and oxygen metabolism in neonates with single-ventricle (SV) CHD undergoing surgery and compared them to controls. Our goals were 1) to compare cerebral hemodynamics between unanesthetized SV and healthy neonates, and 2) to determine if FDNIRS-DCS could detect alterations in cerebral hemodynamics beyond cerebral hemoglobin oxygen saturation (SO 2). Eleven SV neonates were recruited and compared to 13 controls. Preoperatively, SV patients showed decreased cerebral blood flow (CBFi ), cerebral oxygen metabolism (CMRO 2i ) and SO 2; and increased oxygen extraction fraction (OEF) compared to controls. Compared to preoperative values, unstable postoperative SV patients had decreased CMRO 2i and CBFi , which returned to baseline when stable. However, SO 2 showed no difference between unstable and stable states. Preoperative SV neonates are flow-limited and show signs of impaired cerebral development compared to controls. FDNIRS-DCS shows potential to improve assessment of cerebral development and postoperative hemodynamics compared to SO 2 alone.
Collapse
Affiliation(s)
- Mathieu Dehaes
- Fetal Neonatal Neuroimaging & Developmental Science Center, Division of Newborn Medicine, Boston Children’s Hospital & Harvard Medical School, Boston, MA 02115,
USA
- Mathieu Dehaes is currently at University of Montréal and Centre Hospitalier Universitaire Sainte-Justine, Montréal (QC), H3T 1C5,
Canada
- Mathieu Dehaes and Henry H. Cheng contributed equally to this work
| | - Henry H. Cheng
- Department of Cardiology, Boston Children’s Hospital & Harvard Medical School, Boston, MA 02115,
USA
- Mathieu Dehaes and Henry H. Cheng contributed equally to this work
| | - Erin M. Buckley
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129,
USA
- Erin M. Buckley is currently at Georgia Institute of Technology, Atlanta, GA 30322,
USA
| | - Pei-Yi Lin
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129,
USA
| | - Silvina Ferradal
- Fetal Neonatal Neuroimaging & Developmental Science Center, Division of Newborn Medicine, Boston Children’s Hospital & Harvard Medical School, Boston, MA 02115,
USA
| | - Kathryn Williams
- Department of Cardiology, Boston Children’s Hospital & Harvard Medical School, Boston, MA 02115,
USA
| | - Rutvi Vyas
- Fetal Neonatal Neuroimaging & Developmental Science Center, Division of Newborn Medicine, Boston Children’s Hospital & Harvard Medical School, Boston, MA 02115,
USA
| | - Katherine Hagan
- Fetal Neonatal Neuroimaging & Developmental Science Center, Division of Newborn Medicine, Boston Children’s Hospital & Harvard Medical School, Boston, MA 02115,
USA
| | - Daniel Wigmore
- Department of Cardiology, Boston Children’s Hospital & Harvard Medical School, Boston, MA 02115,
USA
| | - Erica McDavitt
- Department of Cardiology, Boston Children’s Hospital & Harvard Medical School, Boston, MA 02115,
USA
| | - Janet S. Soul
- Department of Neurology, Boston Children’s Hospital & Harvard Medical School, Boston, MA 02115,
USA
| | - Maria Angela Franceschini
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129,
USA
| | - Jane W. Newburger
- Department of Cardiology, Boston Children’s Hospital & Harvard Medical School, Boston, MA 02115,
USA
| | - P. Ellen Grant
- Fetal Neonatal Neuroimaging & Developmental Science Center, Division of Newborn Medicine, Boston Children’s Hospital & Harvard Medical School, Boston, MA 02115,
USA
| |
Collapse
|
28
|
Milej D, Janusek D, Gerega A, Wojtkiewicz S, Sawosz P, Treszczanowicz J, Weigl W, Liebert A. Optimization of the method for assessment of brain perfusion in humans using contrast-enhanced reflectometry: multidistance time-resolved measurements. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:106013. [PMID: 26509415 DOI: 10.1117/1.jbo.20.10.106013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/06/2015] [Indexed: 05/24/2023]
Abstract
The aim of the study was to determine optimal measurement conditions for assessment of brain perfusion with the use of optical contrast agent and time-resolved diffuse reflectometry in the near-infrared wavelength range. The source-detector separation at which the distribution of time of flights (DTOF) of photons provided useful information on the inflow of the contrast agent to the intracerebral brain tissue compartments was determined. Series of Monte Carlo simulations was performed in which the inflow and washout of the dye in extra- and intracerebral tissue compartments was modeled and the DTOFs were obtained at different source-detector separations. Furthermore, tests on diffuse phantoms were carried out using a time-resolved setup allowing the measurement of DTOFs at 16 source-detector separations. Finally, the setup was applied in experiments carried out on the heads of adult volunteers during intravenous injection of indocyanine green. Analysis of statistical moments of the measured DTOFs showed that the source-detector separation of 6 cm is recommended for monitoring of inflow of optical contrast to the intracerebral brain tissue compartments with the use of continuous wave reflectometry, whereas the separation of 4 cm is enough when the higher-order moments of DTOFs are available.
Collapse
Affiliation(s)
- Daniel Milej
- Polish Academy of Sciences, Nalecz Institute of Biocybernetics and Biomedical Engineering, 4Ks. Trojdena Street 02-109 Warsaw, Poland
| | - Dariusz Janusek
- Polish Academy of Sciences, Nalecz Institute of Biocybernetics and Biomedical Engineering, 4Ks. Trojdena Street 02-109 Warsaw, Poland
| | - Anna Gerega
- Polish Academy of Sciences, Nalecz Institute of Biocybernetics and Biomedical Engineering, 4Ks. Trojdena Street 02-109 Warsaw, Poland
| | - Stanislaw Wojtkiewicz
- Polish Academy of Sciences, Nalecz Institute of Biocybernetics and Biomedical Engineering, 4Ks. Trojdena Street 02-109 Warsaw, Poland
| | - Piotr Sawosz
- Polish Academy of Sciences, Nalecz Institute of Biocybernetics and Biomedical Engineering, 4Ks. Trojdena Street 02-109 Warsaw, Poland
| | - Joanna Treszczanowicz
- Warsaw Praski Hospital, Department of Intensive Care and Anesthesiology, 67 Al. Solidarnosci Street, 03-401 Warsaw, Poland
| | - Wojciech Weigl
- Warsaw Praski Hospital, Department of Intensive Care and Anesthesiology, 67 Al. Solidarnosci Street, 03-401 Warsaw, PolandcUppsala University, Department of Surgical Sciences/Anesthesiology and Intensive Care, 751 85 Uppsala, Sweden
| | - Adam Liebert
- Polish Academy of Sciences, Nalecz Institute of Biocybernetics and Biomedical Engineering, 4Ks. Trojdena Street 02-109 Warsaw, Poland
| |
Collapse
|
29
|
Kerz T, Beyer C, Huthmann A, Kalasauskas D, Amr AN, Boor S, Welschehold S. Continuous-wave near-infrared spectroscopy is not related to brain tissue oxygen tension. J Clin Monit Comput 2015; 30:641-7. [DOI: 10.1007/s10877-015-9755-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/17/2015] [Indexed: 01/21/2023]
|
30
|
Selb J, Boas DA, Chan ST, Evans KC, Buckley EM, Carp SA. Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia. NEUROPHOTONICS 2014; 1:015005. [PMID: 25453036 PMCID: PMC4247161 DOI: 10.1117/1.nph.1.1.015005] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/12/2014] [Accepted: 06/25/2014] [Indexed: 05/18/2023]
Abstract
Near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) are two diffuse optical technologies for brain imaging that are sensitive to changes in hemoglobin concentrations and blood flow, respectively. Measurements for both modalities are acquired on the scalp, and therefore hemodynamic processes in the extracerebral vasculature confound the interpretation of cortical hemodynamic signals. The sensitivity of NIRS to the brain versus the extracerebral tissue and the contrast-to-noise ratio (CNR) of NIRS to cerebral hemodynamic responses have been well characterized, but the same has not been evaluated for DCS. This is important to assess in order to understand their relative capabilities in measuring cerebral physiological changes. We present Monte Carlo simulations on a head model that demonstrate that the relative brain-to-scalp sensitivity is about three times higher for DCS (0.3 at 3 cm) than for NIRS (0.1 at 3 cm). However, because DCS has higher levels of noise due to photon-counting detection, the CNR is similar for both modalities in response to a physiologically realistic simulation of brain activation. Even so, we also observed higher CNR of the hemodynamic response during graded hypercapnia in adult subjects with DCS than with NIRS.
Collapse
Affiliation(s)
- Juliette Selb
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Optics Division, 149 13th Street, Charlestown, Massachusetts 02129, United States
- Address all correspondence to: Juliette Selb, E-mail:
| | - David A. Boas
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Optics Division, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Suk-Tak Chan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Optics Division, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Karleyton C. Evans
- Massachusetts General Hospital, Harvard Medical School, Department of Psychiatry, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Erin M. Buckley
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Optics Division, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Stefan A. Carp
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Optics Division, 149 13th Street, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
31
|
Buckley EM, Parthasarathy AB, Grant PE, Yodh AG, Franceschini MA. Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects. NEUROPHOTONICS 2014; 1:011009. [PMID: 25593978 PMCID: PMC4292799 DOI: 10.1117/1.nph.1.1.011009] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Diffuse correlation spectroscopy (DCS) is an emerging optical modality used to measure cortical cerebral blood flow. This outlook presents a brief overview of the technology, summarizing the advantages and limitations of the method, and describing its recent applications to animal, adult, and infant cohorts. At last, the paper highlights future applications where DCS may play a pivotal role individualizing patient management and enhancing our understanding of neurovascular coupling, activation, and brain development.
Collapse
Affiliation(s)
- Erin M. Buckley
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts 02129
- Address all correspondence to: Erin M. Buckley,
| | - Ashwin B. Parthasarathy
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania 19104
| | - P. Ellen Grant
- Boston Children’s Hospital, Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston, Massachusetts 02115
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania 19104
| | - Maria Angela Franceschini
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts 02129
| |
Collapse
|
32
|
Jackson PA, Kennedy DO. The application of near infrared spectroscopy in nutritional intervention studies. Front Hum Neurosci 2013; 7:473. [PMID: 23964231 PMCID: PMC3741577 DOI: 10.3389/fnhum.2013.00473] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/29/2013] [Indexed: 11/29/2022] Open
Abstract
Functional near infrared spectroscopy (NIRS) is a non-invasive optical imaging technique used to monitor cerebral blood flow (CBF) and by proxy neuronal activation. The use of NIRS in nutritional intervention studies is a relatively novel application of this technique, with only a small, but growing, number of trials published to date. These trials—in which the effects on CBF following administration of dietary components such as caffeine, polyphenols and omega-3 polyunsaturated fatty acids are assessed—have successfully demonstrated NIRS as a sensitive measure of change in hemodynamic response during cognitive tasks in both acute and chronic treatment intervention paradigms. The existent research in this area has been limited by the constraints of the technique itself however advancements in the measurement technology, paired with studies endeavoring increased sophistication in number and locations of channels over the head should render the use of NIRS in nutritional interventions particularly valuable in advancing our understanding of the effects of nutrients and dietary components on the brain.
Collapse
Affiliation(s)
- Philippa A Jackson
- Faculty of Health and Life Sciences, Brain, Performance and Nutrition Research Centre, Northumbria University Newcastle upon Tyne, UK
| | | |
Collapse
|