1
|
Guo T, Liu J, Chen L, Bian Z, Zheng G, Feng B. Sex differences in zymosan-induced behavioral visceral hypersensitivity and colorectal afferent sensitization. Am J Physiol Gastrointest Liver Physiol 2024; 326:G133-G146. [PMID: 38050686 PMCID: PMC11208018 DOI: 10.1152/ajpgi.00081.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Sex differences in visceral nociception have been reported in clinical and preclinical studies, but the potential differences in sensory neural encoding of the colorectum between males and females are not well understood. In this study, we systematically assessed sex differences in colorectal neural encoding by conducting high-throughput optical recordings in intact dorsal root ganglia (DRGs) from control and visceral hypersensitive mice. We found an apparent sex difference in zymosan-induced behavioral visceral hypersensitivity: enhanced visceromotor responses to colorectal distension were observed only in male mice, not in female mice. In addition, a higher number of mechanosensitive colorectal afferents were identified per mouse in the zymosan-treated male group than in the saline-treated male group, whereas the mechanosensitive afferents identified per mouse were comparable between the zymosan- and saline-treated female groups. The increased number of identified afferents in zymosan-treated male mice was predominantly from thoracolumbar (TL) innervation, which agrees with the significant increase in the TL afferent proportion in the zymosan group as compared with the control group in male mice. In contrast, female mice showed no difference in the proportion of colorectal neurons between saline- and zymosan-treated groups. Our results revealed a significant sex difference in colorectal afferent innervation and sensitization in the context of behavioral visceral hypersensitivity, which could drive differential clinical symptoms in male and female patients.NEW & NOTEWORTHY We used high-throughput GCaMP6f recordings to study 2,275 mechanosensitive colorectal afferents in mice. Our results revealed significant sex differences in the zymosan-induced behavioral visceral hypersensitivity, which were present in male but not female mice. Male mice also showed sensitization of colorectal afferents in the thoracolumbar pathway, whereas female mice did not. These findings highlight sex differences in sensory neural anatomy and function of the colorectum, with implications for sex-specific therapies for treating visceral pain.
Collapse
Affiliation(s)
- Tiantian Guo
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States
| | - Jia Liu
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States
| | - Longtu Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States
| | - Zichao Bian
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States
| | - Guoan Zheng
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States
| |
Collapse
|
2
|
Liu J, Ganeshbabu N, Shalaby N, Chen L, Guo T, Feng B. Targeting Two-Pore-Domain Potassium Channels by Mechanical Stretch Instantaneously Modulates Action Potential Transmission in Mouse Sciatic Nerves. ACS Chem Neurosci 2021; 12:3558-3566. [PMID: 34423641 DOI: 10.1021/acschemneuro.1c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Recent reports indicate dominant roles of TRAAK and TREK-1 channels, i.e., mechanosensitive two-pore-domain potassium channels (K2P) at the nodes of Ranvier for action potential repolarization in mammalian peripheral nerves. Functional changes in mammalian peripheral nerve conduction by mechanical stretch studied by recording compound action potentials lack the necessary resolution to detect subtle neuromodulatory effects on conduction velocity. In this study, we developed a novel in vitro approach that enables single-fiber recordings from individual mouse sciatic nerve axons while delivering computer-controlled stepped stretch to the sciatic nerve trunk. Axial stretch instantaneously increased the conduction delay in both myelinated A-fibers and unmyelinated C-fibers. Increases in conduction delay linearly correlated with increases in axial stretch ratio for both A- and C-fibers. The slope of the increase in conduction delay versus stretch ratio was steeper in C-fibers than in A-fibers. Moderate axial stretch (14-19% of in vitro length) reversibly blocked 37.5% of unmyelinated C-fibers but none of the eight myelinated A-fibers tested. Application of arachidonic acid, an agonist to TRAAK and TREK-1 to sciatic nerve trunk, blocks axonal transmission in both A- and C-fibers with delayed onset and prolonged block. Also, the application of an antagonist ruthenium red showed a tendency of suppressing the stretch-evoked increase in conduction delay. These results could draw focused research on pharmacological and mechanical activation of K2P channels as a novel neuromodulatory strategy to achieve peripheral nerve block.
Collapse
Affiliation(s)
- Jia Liu
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Storrs, Connecticut 06269, United States
| | - Nishanth Ganeshbabu
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Noha Shalaby
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Storrs, Connecticut 06269, United States
| | - Longtu Chen
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Storrs, Connecticut 06269, United States
| | - Tiantian Guo
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Storrs, Connecticut 06269, United States
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
3
|
Guo T, Patel S, Shah D, Chi L, Emadi S, Pierce DM, Han M, Brumovsky PR, Feng B. Optical clearing reveals TNBS-induced morphological changes of VGLUT2-positive nerve fibers in mouse colorectum. Am J Physiol Gastrointest Liver Physiol 2021; 320:G644-G657. [PMID: 33533318 PMCID: PMC8238166 DOI: 10.1152/ajpgi.00363.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/12/2021] [Accepted: 01/27/2021] [Indexed: 01/31/2023]
Abstract
Colorectal hypersensitivity and sensitization of both mechanosensitive and mechanically insensitive afferents develop after intracolonic instillation of 2,4,6-trinitrobenzenesulfonic acid (TNBS) in the mouse, a model of postinfectious irritable bowel syndrome. In mice in which ∼80% of extrinsic colorectal afferents were labeled genetically using the promotor for vesicular glutamate transporter type 2 (VGLUT2), we systematically quantified the morphology of VGLUT2-positive axons in mouse colorectum 7-28 days following intracolonic TNBS treatment. After removal, the colorectum was distended (20 mmHg), fixed with paraformaldehyde, and optically cleared to image VGLUT2-positive axons throughout the colorectal wall thickness. We conducted vector path tracing of individual axons to allow systematic quantification of nerve fiber density and shape. Abundant VGLUT2-positive nerve fibers were present in most layers of the colorectum, except the serosal and longitudinal muscular layers. A small percentage of VGLUT2-positive myenteric plexus neurons was also detected. Intracolonic TNBS treatment significantly reduced the number of VGLUT2-positive nerve fibers in submucosal, myenteric plexus, and mucosal layers at day 7 post-TNBS, which mostly recovered by day 28. We also found that almost all fibers in the submucosa were meandering and curvy, with ∼10% showing pronounced curviness (quantified by the linearity index). TNBS treatment resulted in a significant reduction of the proportions of pronounced curvy fibers in the rectal region at 28 days post-TNBS. Altogether, the present morphological study reveals profound changes in the distribution of VGLUT2-positive fibers in mouse colorectum undergoing TNBS-induced colitis and draws attention to curvy fibers in the submucosa with potential roles in visceral nociception.NEW & NOTEWORTHY We conducted genetic labeling and optical clearing to visualize extrinsic sensory nerve fibers in whole-mount colorectum, which revealed widespread presence of axons in the submucosal layer. Remarkably, axons in the submucosa were meandering and curvy, in contrast to axons in other layers generally aligned with the basal tissues. Intracolonic TNBS treatment led to pronounced changes of nerve fiber density and curviness, suggesting nerve fiber morphologies as potentially contributing factors to sensory sensitization.
Collapse
Affiliation(s)
- Tiantian Guo
- Department of Biomedical Engineering, University of Connecticut, Mansfield, Connecticut
| | - Shivam Patel
- Department of Physiology and Neurobiology, University of Connecticut, Mansfield, Connecticut
| | - Dhruv Shah
- Department of Molecular and Cell Biology, University of Connecticut, Mansfield, Connecticut
| | - Ling Chi
- Department of Physiology and Neurobiology, University of Connecticut, Mansfield, Connecticut
| | - Sharareh Emadi
- Department of Biomedical Engineering, University of Connecticut, Mansfield, Connecticut
| | - David M Pierce
- Department of Biomedical Engineering, University of Connecticut, Mansfield, Connecticut
- Department of Mechanical Engineering, University of Connecticut, Mansfield, Connecticut
| | - Martin Han
- Department of Biomedical Engineering, University of Connecticut, Mansfield, Connecticut
| | - Pablo R Brumovsky
- Instituto de Investigaciones en Medicina Traslacional, National Scientific and Technical Research Council, Austral University, Buenos Aires, Argentina
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Mansfield, Connecticut
- Department of Physiology and Neurobiology, University of Connecticut, Mansfield, Connecticut
| |
Collapse
|
4
|
Bian Z, Guo T, Jiang S, Chen L, Liu J, Zheng G, Feng B. High-Throughput Functional Characterization of Visceral Afferents by Optical Recordings From Thoracolumbar and Lumbosacral Dorsal Root Ganglia. Front Neurosci 2021; 15:657361. [PMID: 33776645 PMCID: PMC7991386 DOI: 10.3389/fnins.2021.657361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022] Open
Abstract
Functional understanding of visceral afferents is important for developing the new treatment to visceral hypersensitivity and pain. The sparse distribution of visceral afferents in dorsal root ganglia (DRGs) has challenged conventional electrophysiological recordings. Alternatively, Ca2+ indicators like GCaMP6f allow functional characterization by optical recordings. Here we report a turnkey microscopy system that enables simultaneous Ca2+ imaging at two parallel focal planes from intact DRG. By using consumer-grade optical components, the microscopy system is cost-effective and can be made broadly available without loss of capacity. It records low-intensity fluorescent signals at a wide field of view (1.9 × 1.3 mm) to cover a whole mouse DRG, with a high pixel resolution of 0.7 micron/pixel, a fast frame rate of 50 frames/sec, and the capability of remote focusing without perturbing the sample. The wide scanning range (100 mm) of the motorized sample stage allows convenient recordings of multiple DRGs in thoracic, lumbar, and sacral vertebrae. As a demonstration, we characterized mechanical neural encoding of visceral afferents innervating distal colon and rectum (colorectum) in GCaMP6f mice driven by VGLUT2 promotor. A post-processing routine is developed for conducting unsupervised detection of visceral afferent responses from GCaMP6f recordings, which also compensates the motion artifacts caused by mechanical stimulation of the colorectum. The reported system offers a cost-effective solution for high-throughput recordings of visceral afferent activities from a large volume of DRG tissues. We anticipate a wide application of this microscopy system to expedite our functional understanding of visceral innervations.
Collapse
Affiliation(s)
- Zichao Bian
- Department of Biomedical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Tiantian Guo
- Department of Biomedical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Shaowei Jiang
- Department of Biomedical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Longtu Chen
- Department of Biomedical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Jia Liu
- Department of Biomedical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Guoan Zheng
- Department of Biomedical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Mansfield, CT, United States
| |
Collapse
|
5
|
Zhao Y, Siri S, Feng B, Pierce DM. Computational Modeling of Mouse Colorectum Capturing Longitudinal and Through-thickness Biomechanical Heterogeneity. J Mech Behav Biomed Mater 2021; 113:104127. [PMID: 33125950 PMCID: PMC8053306 DOI: 10.1016/j.jmbbm.2020.104127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 09/03/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022]
Abstract
Mechanotransduction, the encoding of local mechanical stresses and strains at sensory endings into neural action potentials at the viscera, plays a critical role in evoking visceral pain, e.g., in the distal colon and rectum (colorectum). The wall of the colorectum is structurally heterogeneous, including two major composites: the inner consists of muscular and submucosal layers, and the outer consists of circular muscular, intermuscular, longitudinal muscular, and serosal layers. In fact the colorectum presents biomechanical heterogenity across both the longitudinal and through-thickness directions thus highlighting the differential roles of sensory nerve endings within different regions of the colorectum in visceral mechanotransduction. We determined constitutive models and model parameters for individual layers of the colorectum from three longitudinal locations (colonic, intermediate, and distal) using nonlinear optimization to fit our experimental results from biaxial extension tests on layer-separated colorectal tissues (mouse model, 7×7 mm2, Siri et al., Am. J. Physiol. Gastrointest. Liver Physiol. 316, G473-G481 and 317, G349-G358), and quantified the thicknesses of the layers. In this study we also quantified the residual stretches stemming from separating colorectal specimens into inner and outer composites and we completed new pressure-diameter mechanical testing to provide an additional validation case. We implemented the constitutive equations and created two-layered, 3-D finite element models using FEBio (University of Utah), and incorporated the residual stretches. We validated the modeling framework by comparing FE-predicted results for both biaxial extension testing of bulk specimens of colorectum and pressure-diameter testing of bulk segments against corresponding experimental results independent of those used in our model fitting. We present the first theoretical framework to simulate the biomechanics of distal colorectum, including both longitudinal and through-thickness heterogeneity, based on constitutive modeling of biaxial extension tests of colon tissues from mice. Our constitutive models and modeling framework facilitate analyses of both fundamental questions (e.g., the impact of organ/tissue biomechanics on mechanotransduction of the sensory nerve endings, structure-function relationships, and growth and remodeling in health and disease) and specific applications (e.g., device design, minimally invasive surgery, and biomedical research).
Collapse
Affiliation(s)
- Y Zhao
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - S Siri
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - B Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - D M Pierce
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
6
|
Maier F, Siri S, Santos S, Chen L, Feng B, Pierce DM. The heterogeneous morphology of networked collagen in distal colon and rectum of mice quantified via nonlinear microscopy. J Mech Behav Biomed Mater 2020; 113:104116. [PMID: 33049619 DOI: 10.1016/j.jmbbm.2020.104116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
Visceral pain from the distal colon and rectum (colorectum) is a major complaint of patients with irritable bowel syndrome. Mechanotransduction of colorectal distension/stretch appears to play a critical role in visceral nociception, and further understanding requires improved knowledge of the micromechanical environments at different sub-layers of the colorectum. In this study, we conducted nonlinear imaging via second harmonic generation to quantify the thickness of each distinct through-thickness layer of the colorectum, as well as the principal orientations, corresponding dispersions in orientations, and the distributions of diameters of collagen fibers within each of these layers. From C57BL/6 mice of both sexes (8-16 weeks of age, 25-35 g), we dissected the distal 30 mm of the large bowel including the colorectum, divided these into three even segments, and harvested specimens (~8 × 8 mm2) from each segment. We stretched the specimens either by colorectal distension to 20 mmHg (reference) or 80 mmHg (deformed) or by biaxial stretch to 10 mN (reference) or 80 mN (deformed), and fixed them with 4% paraformaldehyde. We then conducted SHG imaging through the wall thickness and analyzed post-hoc using custom-built software to quantify the orientations of collagen fibers in all distinct layers. We also quantified the thickness of each layer of the colorectum, and the corresponding distributions of collagen density and diameters of fibers. We found collagen concentrated in the submucosal layer. The average diameter of collagen fibers was greatest in the submucosal layer, followed by the serosal and muscular layers. Collagen fibers aligned with muscle fibers in the two muscular layers, whereas their orientation varied greatly with location in the serosal layer. In colonic segments, thick collagen fibers in the submucosa presented two major orientations aligned approximately ±30° to the axial direction, and form a patterned network. Our results indicate the submucosa is likely the principal passive load-bearing structure of the colorectum. In addition, afferent endings in those collagen-rich regions present likely candidates of colorectal nociceptors to encode noxious distension/stretch.
Collapse
Affiliation(s)
- Franz Maier
- Department of Mechanical Engineering, University of Connecticut, CT, 06269, USA
| | - Saeed Siri
- Department of Biomedical Engineering, University of Connecticut, CT, 06269, USA
| | - Stephany Santos
- Department of Biomedical Engineering, University of Connecticut, CT, 06269, USA
| | - Longtu Chen
- Department of Biomedical Engineering, University of Connecticut, CT, 06269, USA
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, CT, 06269, USA.
| | - David M Pierce
- Department of Mechanical Engineering, University of Connecticut, CT, 06269, USA; Department of Biomedical Engineering, University of Connecticut, CT, 06269, USA.
| |
Collapse
|
7
|
Johnson AC, Louwies T, Ligon CO, Greenwood-Van Meerveld B. Enlightening the frontiers of neurogastroenterology through optogenetics. Am J Physiol Gastrointest Liver Physiol 2020; 319:G391-G399. [PMID: 32755304 PMCID: PMC7717115 DOI: 10.1152/ajpgi.00384.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neurogastroenterology refers to the study of the extrinsic and intrinsic nervous system circuits controlling the gastrointestinal (GI) tract. Over the past 5-10 yr there has been an explosion in novel methodologies, technologies and approaches that offer great promise to advance our understanding of the basic mechanisms underlying GI function in health and disease. This review focuses on the use of optogenetics combined with electrophysiology in the field of neurogastroenterology. We discuss how these technologies and tools are currently being used to explore the brain-gut axis and debate the future research potential and limitations of these techniques. Taken together, we consider that the use of these technologies will enable researchers to answer important questions in neurogastroenterology through fundamental research. The answers to those questions will shorten the path from basic discovery to new treatments for patient populations with disorders of the brain-gut axis affecting the GI tract such as irritable bowel syndrome (IBS), functional dyspepsia, achalasia, and delayed gastric emptying.
Collapse
Affiliation(s)
- Anthony C. Johnson
- 1Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma,2Oklahoma City Veterans Affairs Health Care System, Oklahoma City, Oklahoma,3Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tijs Louwies
- 1Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Casey O. Ligon
- 1Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Beverley Greenwood-Van Meerveld
- 1Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma,2Oklahoma City Veterans Affairs Health Care System, Oklahoma City, Oklahoma,4Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
8
|
Guo T, Chen L, Tran K, Ghelich P, Guo YS, Nolta N, Emadi S, Han M, Feng B. Extracellular single-unit recordings from peripheral nerve axons in vitro by a novel multichannel microelectrode array. SENSORS AND ACTUATORS. B, CHEMICAL 2020; 315:128111. [PMID: 32494111 PMCID: PMC7269151 DOI: 10.1016/j.snb.2020.128111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The peripheral nervous system (PNS) is an attractive target for modulation of afferent input (e.g., nociceptive input signaling tissue damage) to the central nervous system. To advance mechanistic understanding of PNS neural encoding and modulation requires single-unit recordings from individual peripheral neurons or axons. This is challenged by multiple connective tissue layers surrounding peripheral nerve fibers that prevent electrical recordings by existing electrodes or electrode arrays. In this study, we developed a novel microelectrode array (MEA) via silicon-based microfabrication that consists of 5 parallel hydrophilic gold electrodes surrounded by silanized hydrophobic surfaces. This novel hydrophilic/hydrophobic surface pattern guides the peripheral nerve filaments to self-align towards the hydrophilic electrodes, which dramatically reduces the technical challenges in conducting single-unit recordings. We validated our MEA by recording simultaneous single-unit action potentials from individual axons in mouse sciatic nerves, including both myelinated A-fibers and unmyelinated C-fibers. We confirmed that our recordings were single units from individual axons by increasing nerve trunk electrical stimulus intensity, which did not alter the spike shape or amplitude. By reducing the technical challenges, our novel MEA will likely allow peripheral single-unit recordings to be adopted by a larger research community and thus expedite our mechanistic understanding of peripheral neural encoding and modulation.
Collapse
Affiliation(s)
- Tiantian Guo
- Department of Biomedical Engineering, University of Connecticut, CT 06269, USA
| | - Longtu Chen
- Department of Biomedical Engineering, University of Connecticut, CT 06269, USA
| | - Khanh Tran
- Department of Biomedical Engineering, University of Connecticut, CT 06269, USA
| | - Pejman Ghelich
- Department of Biomedical Engineering, University of Connecticut, CT 06269, USA
| | - Yi-Syuan Guo
- Department of Biomedical Engineering, University of Connecticut, CT 06269, USA
| | - Nicholas Nolta
- Department of Biomedical Engineering, University of Connecticut, CT 06269, USA
| | - Sharareh Emadi
- Department of Biomedical Engineering, University of Connecticut, CT 06269, USA
| | - Martin Han
- Department of Biomedical Engineering, University of Connecticut, CT 06269, USA
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, CT 06269, USA
| |
Collapse
|
9
|
Feng B, Guo T. Visceral pain from colon and rectum: the mechanotransduction and biomechanics. J Neural Transm (Vienna) 2019; 127:415-429. [PMID: 31598778 DOI: 10.1007/s00702-019-02088-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/28/2019] [Indexed: 12/14/2022]
Abstract
Visceral pain is the cardinal symptom of functional gastrointestinal (GI) disorders such as the irritable bowel syndrome (IBS) and the leading cause of patients' visit to gastroenterologists. IBS-related visceral pain usually arises from the distal colon and rectum (colorectum), an intraluminal environment that differs greatly from environment outside the body in chemical, biological, thermal, and mechanical conditions. Accordingly, visceral pain is different from cutaneous pain in several key psychophysical characteristics, which likely underlies the unsatisfactory management of visceral pain by drugs developed for other types of pain. Colorectal visceral pain is usually elicited from mechanical distension/stretch, rather than from heating, cutting, pinching, or piercing that usually evoke pain from the skin. Thus, mechanotransduction, i.e., the encoding of colorectal mechanical stimuli by sensory afferents, is crucial to the underlying mechanisms of GI-related visceral pain. This review will focus on colorectal mechanotransduction, the process of converting colorectal mechanical stimuli into trains of action potentials by the sensory afferents to inform the central nervous system (CNS). We will summarize neurophysiological studies on afferent encoding of colorectal mechanical stimuli, highlight recent advances in our understanding of colorectal biomechanics that plays critical roles in mechanotransduction, and review studies on mechano-sensitive ion channels in colorectal afferents. This review calls for focused attention on targeting colorectal mechanotransduction as a new strategy for managing visceral pain, which can also have an added benefit of limited CNS side effects, because mechanotransduction arises from peripheral organs.
Collapse
Affiliation(s)
- Bin Feng
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269-3247, USA.
| | - Tiantian Guo
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269-3247, USA
| |
Collapse
|
10
|
Siri S, Maier F, Santos S, Pierce DM, Feng B. Load-bearing function of the colorectal submucosa and its relevance to visceral nociception elicited by mechanical stretch. Am J Physiol Gastrointest Liver Physiol 2019; 317:G349-G358. [PMID: 31268771 PMCID: PMC6774086 DOI: 10.1152/ajpgi.00127.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mechanical distension beyond a particular threshold evokes visceral pain from distal colon and rectum (colorectum), and thus biomechanics plays a central role in visceral nociception. In this study we focused on the layered structure of the colorectum through the wall thickness and determined the biomechanical properties of layer-separated colorectal tissue. We harvested the distal 30 mm of mouse colorectum and dissected this tissue into inner and outer composite layers. The inner composite consists of the mucosa and submucosa, whereas the outer composite includes the muscular layers and serosa. We divided each composite axially into three 10-mm-long segments and conducted biaxial mechanical extension tests and opening-angle measurements for each tissue segment. In addition, we quantified the thickness of the rich collagen network in the submucosa by nonlinear imaging via second-harmonic generation (SHG). Our results reveal that the inner composite is slightly stiffer in the axial direction, whereas the outer composite is stiffer circumferentially. The stiffness of the inner composite in the axial direction is about twice that in the circumferential direction, consistent with the orientations of collagen fibers in the submucosa approximately ±30° to the axial direction. Submucosal thickness measured by SHG showed no difference from proximal to distal colorectum under the load-free condition, which likely contributes to the comparable tension stiffness of the inner composite along the colorectum. This, in turn, strongly indicates the submucosa as the load-bearing structure of the colorectum. This further implies nociceptive roles for the colorectal afferent endings in the submucosa, which likely encode tissue-injurious mechanical distension.NEW & NOTEWORTHY Visceral pain from distal colon and rectum (colorectum) is usually elicited from mechanical distension/stretch, rather than from heating, cutting, or pinching, which usually evoke pain from the skin. We conducted layer-separated biomechanical tests on mouse colorectum and identified an unexpected role of submucosa as the load-bearing structure of the colorectum. Outcomes of this study will focus attention on sensory nerve endings in the submucosa that likely encode tissue-injurious distension/stretch to cause visceral pain.
Collapse
Affiliation(s)
- Saeed Siri
- 1Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - Franz Maier
- 2Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut
| | - Stephany Santos
- 1Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - David M. Pierce
- 1Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut,2Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut
| | - Bin Feng
- 1Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
11
|
Loeza-Alcocer E, McPherson TP, Gold MS. Peripheral GABA receptors regulate colonic afferent excitability and visceral nociception. J Physiol 2019; 597:3425-3439. [PMID: 31077379 DOI: 10.1113/jp278025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS While the presence of GABA receptors on primary afferents has been well described, most functional analyses have focused on the regulation of transmitter release from central terminals and/or signalling in the sensory neuron cell body. Evidence that GABA receptors are transported to peripheral terminals and that there are several sources of GABA in the colon raise the possibility that GABA signalling in the periphery may influence colonic afferent excitability. GABAA and GABAB are present and functional in the colon, where exogenous agonists decrease the excitability of colonic afferents and suppress visceral nociception. Endogenous GABA release within the colon is sufficient to establish the resting excitability of colonic afferents as well as the behavioural response to noxious stimulation of the colon, primarily via GABAA receptors. Peripheral GABA receptors may serve as a viable target for the treatment of visceral pain. ABSTRACT It is well established that GABA receptors at the central terminals of primary afferent fibres regulate afferent input to the superficial dorsal horn. However, the extent to which peripheral GABA signalling may also regulate afferent input remains to be determined. The colon was used to explore this issue because of the numerous endogenous sources of GABA that have been described in this tissue. The influence of GABA signalling on colonic afferent excitability was assessed in an ex vivo mouse colorectum pelvic nerve preparation where test compounds were applied to the receptive field. The visceromotor response (VMR) evoked by noxious colorectal distension was used to assess the impact of GABA signalling on visceral nociception, where test compounds were applied directly to the colon. Application of either GABAA or GABAB receptor agonists attenuated the colonic afferent response to colon stretch. Conversely, GABAA and GABAB receptor antagonists increased the stretch response. However, while the noxious distension-induced VMR was attenuated in the presence of GABAA and GABAB receptor agonists, the VMR was only consistently increased by GABAA receptor antagonists. These results suggest that GABA receptors are present and functional in the peripheral terminals of colonic afferents and activation of these receptors via endogenous GABA release contributes to the establishment of colonic afferent excitability and visceral nociception. These results suggest that increasing peripheral GABA receptor signalling could be used to treat visceral pain.
Collapse
Affiliation(s)
- Emanuel Loeza-Alcocer
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Thomas P McPherson
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael S Gold
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Guo T, Bian Z, Trocki K, Chen L, Zheng G, Feng B. Optical recording reveals topological distribution of functionally classified colorectal afferent neurons in intact lumbosacral DRG. Physiol Rep 2019; 7:e14097. [PMID: 31087524 PMCID: PMC6513768 DOI: 10.14814/phy2.14097] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 01/18/2023] Open
Abstract
Neuromodulation as a non-drug alternative for managing visceral pain in irritable bowel syndrome (IBS) may target sensitized afferents of distal colon and rectum (colorectum), especially their somata in the dorsal root ganglion (DRG). Developing selective DRG stimulation to manage visceral pain requires knowledge of the topological distribution of colorectal afferent somata which are sparsely distributed in the DRG. Here, we implemented GCaMP6f to conduct high-throughput optical recordings of colorectal afferent activities in lumbosacral DRG, that is, optical electrophysiology. Using a mouse ex vivo preparation with distal colorectum and L5-S1 DRG in continuity, we recorded 791 colorectal afferents' responses to graded colorectal distension (15, 30, 40, and 60 mmHg) and/or luminal shear flow (20-30 mL/min), then functionally classified them into four mechanosensitive classes, and determined the topological distribution of their somata in the DRG. Of the 791 colorectal afferents, 90.8% were in the L6 DRG, 8.3% in the S1 DRG, and only 0.9% in the L5 DRG. L6 afferents had all four classes: 29% mucosal, 18.4% muscular-mucosal, 34% low-threshold (LT) muscular, and 18.2% high-threshold (HT) muscular afferents. S1 afferents only had three classes: 19.7% mucosal, 34.8% LT muscular, and 45.5% HT muscular afferents. All seven L5 afferents were HT muscular. In L6 DRG, somata of HT muscular afferents were clustered in the caudal region whereas somata of the other classes did not cluster in specific regions. Outcomes of this study can directly inform the design and improvement of next-generation neuromodulation devices that target the DRG to alleviate visceral pain in IBS patients.
Collapse
Affiliation(s)
- Tiantian Guo
- Department of Biomedical EngineeringUniversity of ConnecticutStorrsConnecticut
| | - Zichao Bian
- Department of Biomedical EngineeringUniversity of ConnecticutStorrsConnecticut
| | - Kyle Trocki
- Department of Biomedical EngineeringUniversity of ConnecticutStorrsConnecticut
| | - Longtu Chen
- Department of Biomedical EngineeringUniversity of ConnecticutStorrsConnecticut
| | - Guoan Zheng
- Department of Biomedical EngineeringUniversity of ConnecticutStorrsConnecticut
| | - Bin Feng
- Department of Biomedical EngineeringUniversity of ConnecticutStorrsConnecticut
| |
Collapse
|
13
|
Feng B, Chen L, Ilham SJ. A review on ultrasonic neuromodulation of the peripheral nervous system: enhanced or suppressed activities? APPLIED SCIENCES-BASEL 2019; 9. [PMID: 34113463 PMCID: PMC8188893 DOI: 10.3390/app9081637] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ultrasonic (US) neuromodulation has emerged as a promising therapeutic means by delivering focused energy deep into the tissue. Low-intensity ultrasound (US) directly activates and/or inhibits neurons in the central nervous system (CNS). US neuromodulation of the peripheral nervous system (PNS) is less developed and rarely used clinically. Literature on the neuromodulatory effects of US on the PNS is controversy with some documenting enhanced neural activities, some showing suppressed activities, and others reporting mixed effects. US, with different range of intensity and strength, is likely to generate distinct physical effects in the stimulated neuronal tissues, which underlies different experimental outcomes in the literature. In this review, we summarize all the major reports that documented the effects of US on peripheral nerve endings, axons, and/or somata in the dorsal root ganglion. In particular, we thoroughly discuss the potential impacts by the following key parameters to the study outcomes of PNS neuromodulation by the US: frequency, pulse repetition frequency, duty cycle, intensity, metrics for peripheral neural activities, and type of biological preparations used in the studies. Potential mechanisms of peripheral US neuromodulation are summarized to provide a plausible interpretation to the seemly contradictory effects of enhanced and suppressed neural activities from US neuromodulation.
Collapse
Affiliation(s)
- Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Correspondence: ; Tel.: (001-860-486-6435)
| | - Longtu Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Sheikh J. Ilham
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
14
|
Siri S, Maier F, Chen L, Santos S, Pierce DM, Feng B. Differential biomechanical properties of mouse distal colon and rectum innervated by the splanchnic and pelvic afferents. Am J Physiol Gastrointest Liver Physiol 2019; 316:G473-G481. [PMID: 30702901 PMCID: PMC6483024 DOI: 10.1152/ajpgi.00324.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Visceral pain is one of the principal complaints of patients with irritable bowel syndrome, and this pain is reliably evoked by mechanical distension and stretch of distal colon and rectum (colorectum). This study focuses on the biomechanics of the colorectum that could play critical roles in mechanical neural encoding. We harvested the distal 30 mm of the colorectum from mice, divided evenly into three 10-mm-long segments (colonic, intermediate and rectal), and conducted biaxial mechanical stretch tests and opening-angle measurements for each tissue segment. In addition, we determined the collagen fiber orientations and contents across the thickness of the colorectal wall by nonlinear imaging via second harmonic generation (SHG). Our results reveal a progressive increase in tissue compliance and prestress from colonic to rectal segments, which supports prior electrophysiological findings of distinct mechanical neural encodings by afferents in the lumbar splanchnic nerves (LSN) and pelvic nerves (PN) that dominate colonic and rectal innervations, respectively. The colorectum is significantly more viscoelastic in the circumferential direction than in the axial direction. In addition, our SHG results reveal a rich collagen network in the submucosa and orients approximately ±30° to the axial direction, consistent with the biaxial test results presenting almost twice the stiffness in axial direction versus the circumferential direction. Results from current biomechanical study strongly indicate the prominent roles of local tissue biomechanics in determining the differential mechanical neural encoding functions in different regions of the colorectum. NEW & NOTEWORTHY Mechanical distension and stretch-not heat, cutting, or pinching-reliably evoke pain from distal colon and rectum. We report different local mechanics along the longitudinal length of the colorectum, which is consistent with the existing literature on distinct mechanotransduction of afferents innervating proximal and distal regions of the colorectum. This study draws attention to local mechanics as a potential determinant factor for mechanical neural encoding of the colorectum, which is crucial in visceral nociception.
Collapse
Affiliation(s)
- Saeed Siri
- 1Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - Franz Maier
- 2Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut
| | - Longtu Chen
- 1Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - Stephany Santos
- 2Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut
| | - David M. Pierce
- 1Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut,2Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut
| | - Bin Feng
- 1Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
15
|
Meng Y, Dong L, Sun B, Luo P, Zhang G, Rong W. In Vitro Characterization of the Electrophysiological Properties of Colonic Afferent Fibers in Rats. J Vis Exp 2017. [PMID: 28994815 DOI: 10.3791/56090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Dysfunction of the colonic sensory nerves has been implicated in the pathophysiology of several common conditions, including functional and inflammatory bowel diseases and diabetes. Here, we describe a protocol for the in vitro characterization of the electrophysiological properties of colonic afferents in rats. The colorectum, with the intact pelvic ganglion (PG) attached, is removed from the rat; superfused with carbogenated Krebs solution in the recording chamber; and cannulated at the oral and anal ends to allow for distension. A fine nerve bundle emanating from the PG is identified, and the multiunit afferent nerve activity is recorded using a suction electrode. Distension of the colonic segment elicits gradual increases in multiunit discharge. A principal component analysis is conducted to differentiate the low-threshold, the high-threshold, and the wide-dynamic range afferent fibers. Chemical sensitivity of colonic afferents can be studied through the bath or intraluminal administration of test compounds. This protocol can be modified for application to other species, such as mice and guinea pigs, and to study the differences in the electrophysiological properties of thoracolumbar/hypogastric and lumbosacral/pelvic afferents of the descending colon in normal and pathological conditions.
Collapse
Affiliation(s)
- Youqiang Meng
- Hongqiao International Institute of Medical Research, Tongren Hospital and Department of Physiology, Faculty of Basic Medical Sciences, Shanghai Jiaotong University School of Medicine
| | - Li Dong
- Hongqiao International Institute of Medical Research, Tongren Hospital and Department of Physiology, Faculty of Basic Medical Sciences, Shanghai Jiaotong University School of Medicine
| | - Biying Sun
- Hongqiao International Institute of Medical Research, Tongren Hospital and Department of Physiology, Faculty of Basic Medical Sciences, Shanghai Jiaotong University School of Medicine
| | - Ping Luo
- Hongqiao International Institute of Medical Research, Tongren Hospital and Department of Physiology, Faculty of Basic Medical Sciences, Shanghai Jiaotong University School of Medicine
| | - Guohua Zhang
- Hongqiao International Institute of Medical Research, Tongren Hospital and Department of Physiology, Faculty of Basic Medical Sciences, Shanghai Jiaotong University School of Medicine
| | - Weifang Rong
- Hongqiao International Institute of Medical Research, Tongren Hospital and Department of Physiology, Faculty of Basic Medical Sciences, Shanghai Jiaotong University School of Medicine;
| |
Collapse
|
16
|
Chen L, Ilham SJ, Guo T, Emadi S, Feng B. In vitro multichannel single-unit recordings of action potentials from mouse sciatic nerve. Biomed Phys Eng Express 2017; 3:045020. [PMID: 29568573 PMCID: PMC5858727 DOI: 10.1088/2057-1976/aa7efa] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Electrode arrays interfacing with peripheral nerves are essential for neuromodulation devices targeting peripheral organs to relieve symptoms. To modulate (i.e., single-unit recording and stimulating) individual peripheral nerve axons remains a technical challenge. Here, we report an in vitro setup to allow simultaneous single-unit recordings from multiple mouse sciatic nerve axons. The sciatic nerve (~30 mm) was harvested and transferred to a tissue chamber, the ~5mm distal end pulled into an adjacent recording chamber filled with paraffin oil. A custom-built multi-wire electrode array was used to interface with split fine nerve filaments. Single-unit action potentials were evoked by electrical stimulation and recorded from 186 axons, of which 49.5% were classed A-type with conduction velocities (CV) greater than 1 m/s and 50.5% were C-type (CV < 1 m/s). The single-unit recordings had no apparent bias towards A- or C-type axons, were robust and repeatable for over 60 minutes, and thus an ideal opportunity to assess different neuromodulation strategies targeting peripheral nerves. For instance, ultrasonic modulation of action potential transmission was assessed using the setup, indicating increased nerve conduction velocity following ultrasound stimulus. This setup can also be used to objectively assess the design of next-generation electrode arrays interfacing with peripheral nerves.
Collapse
Affiliation(s)
- L Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - S J Ilham
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - T Guo
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - S Emadi
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - B Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
17
|
Nullens S, Deiteren A, Jiang W, Keating C, Ceuleers H, Francque S, Grundy D, De Man JG, De Winter BY. In Vitro Recording of Mesenteric Afferent Nerve Activity in Mouse Jejunal and Colonic Segments. J Vis Exp 2016. [PMID: 27805592 DOI: 10.3791/54576] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Afferent nerves not only convey information concerning normal physiology, but also signal disturbed homeostasis and pathophysiological processes of the different organ systems from the periphery towards the central nervous system. As such, the increased activity or 'sensitization' of mesenteric afferent nerves has been allocated an important role in the pathophysiology of visceral hypersensitivity and abdominal pain syndromes. Mesenteric afferent nerve activity can be measured in vitro in an isolated intestinal segment that is mounted in a purpose-built organ bath and from which the splanchnic nerve is isolated, allowing researchers to directly assess nerve activity adjacent to the gastrointestinal segment. Activity can be recorded at baseline in standardized conditions, during distension of the segment or following the addition of pharmacological compounds delivered intraluminally or serosally. This technique allows the researcher to easily study the effect of drugs targeting the peripheral nervous system in control specimens; besides, it provides crucial information on how neuronal activity is altered during disease. It should be noted however that measuring afferent neuronal firing activity only constitutes one relay station in the complex neuronal signaling cascade, and researchers should bear in mind not to overlook neuronal activity at other levels (e.g., dorsal root ganglia, spinal cord or central nervous system) in order to fully elucidate the complex neuronal physiology in health and disease. Commonly used applications include the study of neuronal activity in response to the administration of lipopolysaccharide, and the study of afferent nerve activity in animal models of irritable bowel syndrome. In a more translational approach, the isolated mouse intestinal segment can be exposed to colonic supernatants from IBS patients. Furthermore, a modification of this technique has been recently shown to be applicable in human colonic specimens.
Collapse
Affiliation(s)
- Sara Nullens
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp
| | - Annemie Deiteren
- Visceral Pain Group, Discipline of Medicine, University of Adelaide
| | - Wen Jiang
- Department of Biomedical Sciences, University of Sheffield
| | - Christopher Keating
- Department of Pharmacy, Pharmacology and Postgraduate Medicine, University of Hertfordshire
| | - Hannah Ceuleers
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital
| | - David Grundy
- Department of Biomedical Sciences, University of Sheffield
| | - Joris G De Man
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp;
| |
Collapse
|
18
|
Feng B, Joyce SC, Gebhart GF. Optogenetic activation of mechanically insensitive afferents in mouse colorectum reveals chemosensitivity. Am J Physiol Gastrointest Liver Physiol 2016; 310:G790-8. [PMID: 26950857 PMCID: PMC4888546 DOI: 10.1152/ajpgi.00430.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/18/2016] [Indexed: 01/31/2023]
Abstract
The sensory innervation of the distal colorectum includes mechanically insensitive afferents (MIAs; ∼25%), which acquire mechanosensitivity in persistent visceral hypersensitivity and thus generate de novo input to the central nervous system. We utilized an optogenetic approach to bypass the process of transduction (generator potential) and focus on transformation (spike initiation) at colorectal MIA sensory terminals, which is otherwise not possible in typical functional studies. From channelrhodopsin2-expressing mice (driven by Advillin-Cre), the distal colorectum with attached pelvic nerve was harvested for ex vivo single-fiber recordings. Afferent receptive fields (RFs) were identified by electrical stimulation and tested for response to mechanical stimuli (probing, stroking, and stretch), and afferents were classified as either MIAs or mechanosensitive afferents (MSAs). All MIA and MSA RFs were subsequently stimulated optically and MIAs were also tested for activation/sensitization with inflammatory soup (IS), acidic hypertonic solution (AHS), and/or bile salts (BS). Responses to pulsed optical stimuli (1-10 Hz) were comparable between MSAs and MIAs whereas 43% of MIAs compared with 86% of MSAs responded tonically to stepped optical stimuli. Tonic-spiking MIAs responded preferentially to AHS (an osmotic stimulus) whereas non-tonic-spiking MIAs responded to IS (an inflammatory stimulus). A significant proportion of MIAs were also sensitized by BS. These results reveal transformation as a critical factor underlying the differences between MIAs (osmosensors vs. inflammatory sensors), revealing a previously unappreciated heterogeneity of MIA endings. The current study draws attention to the sensory encoding of MIA nerve endings that likely contribute to afferent sensitization and thus have important roles in visceral pain.
Collapse
Affiliation(s)
- Bin Feng
- Center for Pain Research, Department of Anesthesiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | |
Collapse
|