1
|
Bartosch AMW, Youth EHH, Hansen S, Kaufman ME, Xiao H, Koo SY, Ashok A, Sivakumar S, Soni RK, Dumitrescu LC, Lam TG, Ropri AS, Lee AJ, Klein HU, Vardarajan BN, Bennett DA, Young-Pearse TL, De Jager PL, Hohman TJ, Sproul AA, Teich AF. ZCCHC17 modulates neuronal RNA splicing and supports cognitive resilience in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533654. [PMID: 36993746 PMCID: PMC10055234 DOI: 10.1101/2023.03.21.533654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
ZCCHC17 is a putative master regulator of synaptic gene dysfunction in Alzheimer's Disease (AD), and ZCCHC17 protein declines early in AD brain tissue, before significant gliosis or neuronal loss. Here, we investigate the function of ZCCHC17 and its role in AD pathogenesis. Co-immunoprecipitation of ZCCHC17 followed by mass spectrometry analysis in human iPSC-derived neurons reveals that ZCCHC17's binding partners are enriched for RNA splicing proteins. ZCCHC17 knockdown results in widespread RNA splicing changes that significantly overlap with splicing changes found in AD brain tissue, with synaptic genes commonly affected. ZCCHC17 expression correlates with cognitive resilience in AD patients, and we uncover an APOE4 dependent negative correlation of ZCCHC17 expression with tangle burden. Furthermore, a majority of ZCCHC17 interactors also co-IP with known tau interactors, and we find significant overlap between alternatively spliced genes in ZCCHC17 knockdown and tau overexpression neurons. These results demonstrate ZCCHC17's role in neuronal RNA processing and its interaction with pathology and cognitive resilience in AD, and suggest that maintenance of ZCCHC17 function may be a therapeutic strategy for preserving cognitive function in the setting of AD pathology.
Collapse
Affiliation(s)
- Anne Marie W. Bartosch
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Elliot H. H. Youth
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Shania Hansen
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Maria E. Kaufman
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Harrison Xiao
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - So Yeon Koo
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Archana Ashok
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Sharanya Sivakumar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Rajesh K. Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, NY 10032
| | - Logan C. Dumitrescu
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Tiffany G. Lam
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Ali S. Ropri
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Annie J. Lee
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY 10032
| | - Hans-Ulrich Klein
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY 10032
| | - Badri N. Vardarajan
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY 10032
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612
| | - Tracy L. Young-Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| | - Philip L. De Jager
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY 10032
| | - Timothy J. Hohman
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Andrew A. Sproul
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Andrew F. Teich
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY 10032
| |
Collapse
|
2
|
Martínez-Hernández J, Parato J, Sharma A, Soleilhac JM, Qu X, Tein E, Sproul A, Andrieux A, Goldberg Y, Moutin MJ, Bartolini F, Peris L. Crosstalk between acetylation and the tyrosination/detyrosination cycle of α-tubulin in Alzheimer’s disease. Front Cell Dev Biol 2022; 10:926914. [PMID: 36092705 PMCID: PMC9459041 DOI: 10.3389/fcell.2022.926914] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Microtubules (MTs) support a variety of neuronal functions, such as maintenance of cell structure, transport, and synaptic plasticity. Neuronal MTs are highly heterogeneous due to several tubulin isotypes and the presence of multiple post-translational modifications, such as detyrosination and acetylation. The tubulin tyrosination/detyrosination cycle is a key player in the maintenance of MT dynamics, as tyrosinated tubulin is associated with more dynamic MTs, while detyrosinated tubulin is linked to longer lived, more stable MTs. Dysfunction of tubulin re-tyrosination was recently correlated to Alzheimer’s disease progression. The implication of tubulin acetylation in Alzheimer’s disease has, however, remained controversial. Here, we demonstrate that tubulin acetylation accumulates in post-mortem brain tissues from Alzheimer’s disease patients and human neurons harboring the Alzheimer’s familial APP-V717I mutation. We further show that tubulin re-tyrosination, which is defective in Alzheimer’s disease, can control acetylated tubulin in primary neurons irrespective of the levels of the enzymes regulating tubulin acetylation, suggesting that reduced MT dynamics associated with impaired tubulin re-tyrosination might contribute to the accumulation of tubulin acetylation that we detected in Alzheimer’s disease.
Collapse
Affiliation(s)
- José Martínez-Hernández
- Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, Université Grenoble Alpes, Grenoble, France
| | - Julie Parato
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
- Department of Natural Sciences, SUNY Empire State College, Brooklyn, NY, United States
| | - Aditi Sharma
- Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, Université Grenoble Alpes, Grenoble, France
| | - Jean-Marc Soleilhac
- Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, Université Grenoble Alpes, Grenoble, France
| | - Xiaoyi Qu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Ellen Tein
- Taub Institute for Research Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
| | - Andrew Sproul
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
- Taub Institute for Research Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
| | - Annie Andrieux
- Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, Université Grenoble Alpes, Grenoble, France
| | - Yves Goldberg
- Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, Université Grenoble Alpes, Grenoble, France
| | - Marie-Jo Moutin
- Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, Université Grenoble Alpes, Grenoble, France
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
- *Correspondence: Leticia Peris, ; Francesca Bartolini,
| | - Leticia Peris
- Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, Université Grenoble Alpes, Grenoble, France
- *Correspondence: Leticia Peris, ; Francesca Bartolini,
| |
Collapse
|
3
|
Singh K, Martinez MG, Lin J, Gregory J, Nguyen TU, Abdelaal R, Kang K, Brennand K, Grünweller A, Ouyang Z, Phatnani H, Kielian M, Wendel HG. Transcriptional and Translational Dynamics of Zika and Dengue Virus Infection. Viruses 2022; 14:1418. [PMID: 35891396 PMCID: PMC9316442 DOI: 10.3390/v14071418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
Zika virus (ZIKV) and dengue virus (DENV) are members of the Flaviviridae family of RNA viruses and cause severe disease in humans. ZIKV and DENV share over 90% of their genome sequences, however, the clinical features of Zika and dengue infections are very different reflecting tropism and cellular effects. Here, we used simultaneous RNA sequencing and ribosome footprinting to define the transcriptional and translational dynamics of ZIKV and DENV infection in human neuronal progenitor cells (hNPCs). The gene expression data showed induction of aminoacyl tRNA synthetases (ARS) and the translation activating PIM1 kinase, indicating an increase in RNA translation capacity. The data also reveal activation of different cell stress responses, with ZIKV triggering a BACH1/2 redox program, and DENV activating the ATF/CHOP endoplasmic reticulum (ER) stress program. The RNA translation data highlight activation of polyamine metabolism through changes in key enzymes and their regulators. This pathway is needed for eIF5A hypusination and has been implicated in viral translation and replication. Concerning the viral RNA genomes, ribosome occupancy readily identified highly translated open reading frames and a novel upstream ORF (uORF) in the DENV genome. Together, our data highlight both the cellular stress response and the activation of RNA translation and polyamine metabolism during DENV and ZIKV infection.
Collapse
Affiliation(s)
- Kamini Singh
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA;
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Albert Einstein Cancer, Center, Bronx, NY 10461, USA;
| | - Maria Guadalupe Martinez
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.G.M.); (R.A.); (M.K.)
- Global Innovation, Boehringer Ingelheim Animal Health, 69800 Saint-Priest, France
| | - Jianan Lin
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 and Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - James Gregory
- Department of Neurology, Vagelos College of Physicians & Surgeons of Columbia University, New York, NY 10032, USA; (J.G.); (K.K.); (H.P.)
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA
| | - Trang Uyen Nguyen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Albert Einstein Cancer, Center, Bronx, NY 10461, USA;
| | - Rawan Abdelaal
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.G.M.); (R.A.); (M.K.)
| | - Kristy Kang
- Department of Neurology, Vagelos College of Physicians & Surgeons of Columbia University, New York, NY 10032, USA; (J.G.); (K.K.); (H.P.)
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA
| | - Kristen Brennand
- Division of Molecular Psychiatry, Departments of Psychiatry and Genetics, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Arnold Grünweller
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, 35032 Marburg, Germany;
| | - Zhengqing Ouyang
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA;
| | - Hemali Phatnani
- Department of Neurology, Vagelos College of Physicians & Surgeons of Columbia University, New York, NY 10032, USA; (J.G.); (K.K.); (H.P.)
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.G.M.); (R.A.); (M.K.)
| | - Hans-Guido Wendel
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
4
|
Retroviral infection of human neurospheres and use of stem Cell EVs to repair cellular damage. Sci Rep 2022; 12:2019. [PMID: 35132117 PMCID: PMC8821538 DOI: 10.1038/s41598-022-05848-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/05/2022] [Indexed: 12/18/2022] Open
Abstract
HIV-1 remains an incurable infection that is associated with substantial economic and epidemiologic impacts. HIV-associated neurocognitive disorders (HAND) are commonly linked with HIV-1 infection; despite the development of combination antiretroviral therapy (cART), HAND is still reported to affect at least 50% of HIV-1 infected individuals. It is believed that the over-amplification of inflammatory pathways, along with release of toxic viral proteins from infected cells, are primarily responsible for the neurological damage that is observed in HAND; however, the underlying mechanisms are not well-defined. Therefore, there is an unmet need to develop more physiologically relevant and reliable platforms for studying these pathologies. In recent years, neurospheres derived from induced pluripotent stem cells (iPSCs) have been utilized to model the effects of different neurotropic viruses. Here, we report the generation of neurospheres from iPSC-derived neural progenitor cells (NPCs) and we show that these cultures are permissive to retroviral (e.g. HIV-1, HTLV-1) replication. In addition, we also examine the potential effects of stem cell derived extracellular vesicles (EVs) on HIV-1 damaged cells as there is abundant literature supporting the reparative and regenerative properties of stem cell EVs in the context of various CNS pathologies. Consistent with the literature, our data suggests that stem cell EVs may modulate neuroprotective and anti-inflammatory properties in damaged cells. Collectively, this study demonstrates the feasibility of NPC-derived neurospheres for modeling HIV-1 infection and, subsequently, highlights the potential of stem cell EVs for rescuing cellular damage induced by HIV-1 infection.
Collapse
|
5
|
Rab35 and glucocorticoids regulate APP and BACE1 trafficking to modulate Aβ production. Cell Death Dis 2021; 12:1137. [PMID: 34876559 PMCID: PMC8651661 DOI: 10.1038/s41419-021-04433-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/08/2021] [Accepted: 11/23/2021] [Indexed: 11/08/2022]
Abstract
Chronic stress and elevated glucocorticoids (GCs), the major stress hormones, are risk factors for Alzheimer’s disease (AD) and promote AD pathomechanisms, including overproduction of toxic amyloid-β (Aβ) peptides and intraneuronal accumulation of hyperphosphorylated Tau protein. The latter is linked to downregulation of the small GTPase Rab35, which mediates Tau degradation via the endolysosomal pathway. Whether Rab35 is also involved in Aβ overproduction remains an open question. Here, we find that hippocampal Rab35 levels are decreased not only by stress/GC but also by aging, another AD risk factor. Moreover, we show that Rab35 negatively regulates Aβ production by sorting amyloid precursor protein (APP) and β-secretase (BACE1) out of the endosomal network, where they interact to produce Aβ. Interestingly, Rab35 coordinates distinct intracellular trafficking steps for BACE1 and APP, mediated by its effectors OCRL and ACAP2, respectively. Finally, we demonstrate that Rab35 overexpression prevents the amyloidogenic trafficking of APP and BACE1 induced by high GC levels. These studies identify Rab35 as a key regulator of APP processing and suggest that its downregulation may contribute to stress-related and AD-related amyloidogenesis.
Collapse
|
6
|
Álvarez Z, Kolberg-Edelbrock AN, Sasselli IR, Ortega JA, Qiu R, Syrgiannis Z, Mirau PA, Chen F, Chin SM, Weigand S, Kiskinis E, Stupp SI. Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury. Science 2021; 374:848-856. [PMID: 34762454 DOI: 10.1126/science.abh3602] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Z Álvarez
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA.,Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - A N Kolberg-Edelbrock
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - I R Sasselli
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA.,Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - J A Ortega
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA.,The Ken & Ruth Davee Department of Neurology, Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - R Qiu
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA.,Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Z Syrgiannis
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA.,Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - P A Mirau
- Materials and Manufacturing Directorate, Nanostructured and Biological Materials Branch, Air Force Research Laboratories, Wright-Patterson AFB, OH 45433, USA
| | - F Chen
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
| | - S M Chin
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA.,Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - S Weigand
- DuPont-Northwestern-Dow Collaborative Access Team Synchrotron Research Center, Northwestern University, DND-CAT, Argonne, IL 60439, USA
| | - E Kiskinis
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA.,The Ken & Ruth Davee Department of Neurology, Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - S I Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA.,Department of Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.,Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.,Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
7
|
Meng Y, Zhang T, Zheng R, Ding S, Yang J, Liu R, Jiang Y, Jiang W. Depletion of Demethylase KDM6 Enhances Early Neuroectoderm Commitment of Human PSCs. Front Cell Dev Biol 2021; 9:702462. [PMID: 34568320 PMCID: PMC8455897 DOI: 10.3389/fcell.2021.702462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022] Open
Abstract
Epigenetic modifications play a crucial role in neurogenesis, learning, and memory, but the study of their role in early neuroectoderm commitment from pluripotent inner cell mass is relatively lacking. Here we utilized the system of directed neuroectoderm differentiation from human embryonic stem cells and identified that KDM6B, an enzyme responsible to erase H3K27me3, was the most upregulated enzyme of histone methylation during neuroectoderm differentiation by transcriptome analysis. We then constructed KDM6B-null embryonic stem cells and found strikingly that the pluripotent stem cells with KDM6B knockout exhibited much higher neuroectoderm induction efficiency. Furthermore, we constructed a series of embryonic stem cell lines knocking out the other H3K27 demethylase KDM6A, and depleting both KDM6A and KDM6B, respectively. These cell lines together confirmed that KDM6 impeded early neuroectoderm commitment. By RNA-seq, we found that the expression levels of a panel of WNT genes were significantly affected upon depletion of KDM6. Importantly, the result that WNT agonist and antagonist could abolish the differential neuroectoderm induction due to manipulating KDM6 further demonstrated that WNT was the major downstream of KDM6 during early neural induction. Moreover, we found that the chemical GSK-J1, an inhibitor of KDM6, could enhance neuroectoderm induction from both embryonic stem cells and induced pluripotent stem cells. Taken together, our findings not only illustrated the important role of the histone methylation modifier KDM6 in early neurogenesis, providing insights into the precise epigenetic regulation in cell fate determination, but also showed that the inhibitor of KDM6 could facilitate neuroectoderm differentiation from human pluripotent stem cells.
Collapse
Affiliation(s)
- Yajing Meng
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Tianzhe Zhang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ran Zheng
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Song Ding
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jie Yang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ran Liu
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
8
|
Tian R, Abarientos A, Hong J, Hashemi SH, Yan R, Dräger N, Leng K, Nalls MA, Singleton AB, Xu K, Faghri F, Kampmann M. Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat Neurosci 2021; 24:1020-1034. [PMID: 34031600 PMCID: PMC8254803 DOI: 10.1038/s41593-021-00862-0] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 04/23/2021] [Indexed: 02/08/2023]
Abstract
Single-cell transcriptomics provide a systematic map of gene expression in different human cell types. The next challenge is to systematically understand cell-type-specific gene function. The integration of CRISPR-based functional genomics and stem cell technology enables the scalable interrogation of gene function in differentiated human cells. Here we present the first genome-wide CRISPR interference and CRISPR activation screens in human neurons. We uncover pathways controlling neuronal response to chronic oxidative stress, which is implicated in neurodegenerative diseases. Unexpectedly, knockdown of the lysosomal protein prosaposin strongly sensitizes neurons, but not other cell types, to oxidative stress by triggering the formation of lipofuscin, a hallmark of aging, which traps iron, generating reactive oxygen species and triggering ferroptosis. We also determine transcriptomic changes in neurons after perturbation of genes linked to neurodegenerative diseases. To enable the systematic comparison of gene function across different human cell types, we establish a data commons named CRISPRbrain.
Collapse
Affiliation(s)
- Ruilin Tian
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Biophysics Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| | - Anthony Abarientos
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Jason Hong
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Sayed Hadi Hashemi
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rui Yan
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Nina Dräger
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Kun Leng
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, LLC, Glen Echo, MD, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Faraz Faghri
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, LLC, Glen Echo, MD, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
9
|
Li A, Cartwright S, Yu A, Ho SM, Schrode N, Deans PM, Matos MR, Garcia MF, Townsley KG, Zhang B, Brennand KJ. Using the dCas9-KRAB system to repress gene expression in hiPSC-derived NGN2 neurons. STAR Protoc 2021; 2:100580. [PMID: 34151300 PMCID: PMC8188621 DOI: 10.1016/j.xpro.2021.100580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
We describe a CRISPR inhibition (CRISPRi) protocol to repress endogenous gene expression (e.g., ATP6V1A) in human induced pluripotent stem cell-derived NGN2-induced glutamatergic neurons. CRISPRi enables efficient and precise gene repression of one or multiple target genes via delivering gRNA(s) to direct a dCas9-KRAB fusion protein to the gene(s) of interest. This protocol can also be adapted for gene activation and high-throughput gene manipulation, allowing assessment of the transcriptomic and phenotypic impact of candidate gene(s) associated with neurodevelopment or brain disease. For complete details on the use and execution of this protocol, please refer to Ho et al. (2017) and Wang et al. (2021).
Collapse
Affiliation(s)
- Aiqun Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Samuel Cartwright
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Alex Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Seok-Man Ho
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Nadine Schrode
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - P.J. Michael Deans
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Marliette R. Matos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Meilin Fernandez Garcia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Kayla G. Townsley
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Kristen J. Brennand
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| |
Collapse
|
10
|
Anderson NC, Chen PF, Meganathan K, Afshar Saber W, Petersen AJ, Bhattacharyya A, Kroll KL, Sahin M. Balancing serendipity and reproducibility: Pluripotent stem cells as experimental systems for intellectual and developmental disorders. Stem Cell Reports 2021; 16:1446-1457. [PMID: 33861989 PMCID: PMC8190574 DOI: 10.1016/j.stemcr.2021.03.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) and their differentiation into neural lineages is a revolutionary experimental system for studying neurological disorders, including intellectual and developmental disabilities (IDDs). However, issues related to variability and reproducibility have hindered translating preclinical findings into drug discovery. Here, we identify areas for improvement by conducting a comprehensive review of 58 research articles that utilized iPSC-derived neural cells to investigate genetically defined IDDs. Based upon these findings, we propose recommendations for best practices that can be adopted by research scientists as well as journal editors.
Collapse
Affiliation(s)
- Nickesha C Anderson
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pin-Fang Chen
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kesavan Meganathan
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Wardiya Afshar Saber
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA.
| | - Kristen L Kroll
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Mustafa Sahin
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Neurospheres: a potential in vitro model for the study of central nervous system disorders. Mol Biol Rep 2021; 48:3649-3663. [PMID: 33765252 DOI: 10.1007/s11033-021-06301-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/18/2021] [Indexed: 02/08/2023]
Abstract
Neurogenesis was believed to end after the period of embryonic development. However, the possibility of obtaining an expressive number of cells with functional neuronal characteristics implied a great advance in experimental research. New techniques have emerged to demonstrate that the birth of new neurons continues to occur in the adult brain. Two main rich sources of these cells are the subventricular zone (SVZ) and the subgranular zone of the hippocampal dentate gyrus (SGZ) where adult neural stem cells (aNSCs) have the ability to proliferate and differentiate into mature cell lines. The cultivation of neurospheres is a method to isolate, maintain and expand neural stem cells (NSCs) and has been used extensively by several research groups to analyze the biological properties of NSCs and their potential use in injured brains from animal models. Throughout this review, we highlight the areas where this type of cell culture has been applied and the advantages and limitations of using this model in experimental studies for the neurological clinical scenario.
Collapse
|
12
|
Patterns of Herpes Simplex Virus 1 Infection in Neural Progenitor Cells. J Virol 2020; 94:JVI.00994-20. [PMID: 32493817 PMCID: PMC7394888 DOI: 10.1128/jvi.00994-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
This study employed human induced pluripotent stem cells (hiPSCs) to model the interaction of HSV-1 with NPCs, which reside in the neurogenic niches of the CNS and play a fundamental role in adult neurogenesis. Herein, we provide evidence that in NPCs infected at an MOI as low as 0.001, HSV-1 can establish a latent state, suggesting that (i) a variant of classical HSV-1 latency can be established during earlier stages of neuronal differentiation and (ii) neurogenic niches in the brain may constitute additional sites of viral reactivation. Lytic HSV-1 infections impaired NPC migration, which represents a critical step in neurogenesis. A difference in susceptibility to HSV-1 infection between two-dimensional (2D) and three-dimensional (3D) NPC cultures was observed, highlighting the potential value of 3D cultures for modeling host-pathogen interactions. Together, our results are relevant in light of observations relating HSV-1 infection to postencephalitic cognitive dysfunction. Herpes simplex virus 1 (HSV-1) can induce damage in brain regions that include the hippocampus and associated limbic structures. These neurogenic niches are important because they are associated with memory formation and are highly enriched with neural progenitor cells (NPCs). The susceptibility and fate of HSV-1-infected NPCs are largely unexplored. We differentiated human induced pluripotent stem cells (hiPSCs) into NPCs to generate two-dimensional (2D) and three-dimensional (3D) culture models to examine the interaction of HSV-1 with NPCs. Here, we show that (i) NPCs can be efficiently infected by HSV-1, but infection does not result in cell death of most NPCs, even at high multiplicities of infection (MOIs); (ii) limited HSV-1 replication and gene expression can be detected in the infected NPCs; (iii) a viral silencing mechanism is established in NPCs exposed to the antivirals (E)-5-(2-bromovinyl)-2′-deoxyuridine (5BVdU) and alpha interferon (IFN-α) and when the antivirals are removed, spontaneous reactivation can occur at low frequency; (iv) HSV-1 impairs the ability of NPCs to migrate in a dose-dependent fashion in the presence of 5BVdU plus IFN-α; and (v) 3D cultures of NPCs are less susceptible to HSV-1 infection than 2D cultures. These results suggest that NPC pools could be sites of HSV-1 reactivation in the central nervous system (CNS). Finally, our results highlight the potential value of hiPSC-derived 3D cultures to model HSV-1–NPC interaction. IMPORTANCE This study employed human induced pluripotent stem cells (hiPSCs) to model the interaction of HSV-1 with NPCs, which reside in the neurogenic niches of the CNS and play a fundamental role in adult neurogenesis. Herein, we provide evidence that in NPCs infected at an MOI as low as 0.001, HSV-1 can establish a latent state, suggesting that (i) a variant of classical HSV-1 latency can be established during earlier stages of neuronal differentiation and (ii) neurogenic niches in the brain may constitute additional sites of viral reactivation. Lytic HSV-1 infections impaired NPC migration, which represents a critical step in neurogenesis. A difference in susceptibility to HSV-1 infection between two-dimensional (2D) and three-dimensional (3D) NPC cultures was observed, highlighting the potential value of 3D cultures for modeling host-pathogen interactions. Together, our results are relevant in light of observations relating HSV-1 infection to postencephalitic cognitive dysfunction.
Collapse
|
13
|
Neuronal impact of patient-specific aberrant NRXN1α splicing. Nat Genet 2019; 51:1679-1690. [PMID: 31784728 PMCID: PMC7451045 DOI: 10.1038/s41588-019-0539-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/25/2019] [Indexed: 02/08/2023]
Abstract
NRXN1 undergoes extensive alternative splicing, and non-recurrent heterozygous deletions in NRXN1 are strongly associated with neuropsychiatric disorders. We establish that human induced pluripotent stem cell (hiPSC)-derived neurons represent well the diversity of NRXN1α alternative splicing observed in the human brain, cataloguing 123 high-confidence in-frame human NRXN1α isoforms. Patient-derived NRXN1+/− hiPSC-neurons show greater than two-fold reduction of half of the wild-type NRXN1α isoforms and express dozens of novel isoforms expressed from the mutant allele. Reduced neuronal activity in patient-derived NRXN1+/− hiPSC-neurons is ameliorated by overexpression of individual control isoforms in a genotype-dependent manner, whereas individual mutant isoforms decrease neuronal activity levels in control hiPSC-neurons. In a genotype-dependent manner, the phenotypic impact of patient-specific NRXN1+/− mutations can occur through a reduction in wild-type NRXN1α isoform levels as well as the presence of mutant NRXN1α isoforms.
Collapse
|
14
|
Yang G, Shcheglovitov A. Probing disrupted neurodevelopment in autism using human stem cell-derived neurons and organoids: An outlook into future diagnostics and drug development. Dev Dyn 2019; 249:6-33. [PMID: 31398277 DOI: 10.1002/dvdy.100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorders (ASDs) represent a spectrum of neurodevelopmental disorders characterized by impaired social interaction, repetitive or restrictive behaviors, and problems with speech. According to a recent report by the Centers for Disease Control and Prevention, one in 68 children in the US is diagnosed with ASDs. Although ASD-related diagnostics and the knowledge of ASD-associated genetic abnormalities have improved in recent years, our understanding of the cellular and molecular pathways disrupted in ASD remains very limited. As a result, no specific therapies or medications are available for individuals with ASDs. In this review, we describe the neurodevelopmental processes that are likely affected in the brains of individuals with ASDs and discuss how patient-specific stem cell-derived neurons and organoids can be used for investigating these processes at the cellular and molecular levels. Finally, we propose a discovery pipeline to be used in the future for identifying the cellular and molecular deficits and developing novel personalized therapies for individuals with idiopathic ASDs.
Collapse
Affiliation(s)
- Guang Yang
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah.,Neuroscience Graduate Program, University of Utah, Salt Lake City, Utah
| | - Alex Shcheglovitov
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah.,Neuroscience Graduate Program, University of Utah, Salt Lake City, Utah
| |
Collapse
|
15
|
Bowles KR, Tcw J, Qian L, Jadow BM, Goate AM. Reduced variability of neural progenitor cells and improved purity of neuronal cultures using magnetic activated cell sorting. PLoS One 2019; 14:e0213374. [PMID: 30917153 PMCID: PMC6436701 DOI: 10.1371/journal.pone.0213374] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/19/2019] [Indexed: 02/07/2023] Open
Abstract
Genetic and epigenetic variability between iPSC-derived neural progenitor cells (NPCs) combined with differences in investigator technique and selection protocols contributes to variability between NPC lines, which subsequently impacts the quality of differentiated neuronal cultures. We therefore sought to develop an efficient method to reduce this variability in order to improve the purity of NPC and neuronal cultures. Here, we describe a magnetic activated cell sorting (MACS) method for enriching NPC cultures for CD271-/CD133+ cells at both early (<2–3) and late (>10) passage. MACS results in a similar sorting efficiency to fluorescence activated cell sorting (FACS), while achieving an increased yield of live cells and reduced cellular stress. Furthermore, neurons derived from MACS NPCs showed greater homogeneity between cell lines compared to those derived from unsorted NPCs. We conclude that MACS is a cheap technique for incorporation into standard NPC differentiation and maintenance protocols in order to improve culture homogeneity and consistency.
Collapse
Affiliation(s)
- Kathryn R Bowles
- Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.,Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Julia Tcw
- Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.,Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Lu Qian
- Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.,Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Benjamin M Jadow
- Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.,Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Alison M Goate
- Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.,Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.,Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| |
Collapse
|
16
|
Altered neuronal migratory trajectories in human cerebral organoids derived from individuals with neuronal heterotopia. Nat Med 2019; 25:561-568. [DOI: 10.1038/s41591-019-0371-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/18/2019] [Indexed: 12/11/2022]
|
17
|
Wilkinson B, Evgrafov O, Zheng D, Hartel N, Knowles JA, Graham NA, Ichida J, Coba MP. Endogenous Cell Type-Specific Disrupted in Schizophrenia 1 Interactomes Reveal Protein Networks Associated With Neurodevelopmental Disorders. Biol Psychiatry 2019; 85:305-316. [PMID: 29961565 PMCID: PMC6251761 DOI: 10.1016/j.biopsych.2018.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 04/03/2018] [Accepted: 05/03/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Disrupted in schizophrenia 1 (DISC1) has been implicated in a number of psychiatric diseases along with neurodevelopmental phenotypes such as the proliferation and differentiation of neural progenitor cells. While there has been significant effort directed toward understanding the function of DISC1 through the determination of its protein-protein interactions within an in vitro setting, endogenous interactions involving DISC1 within a cell type-specific setting relevant to neural development remain unclear. METHODS Using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) genome engineering technology, we inserted an endogenous 3X-FLAG tag at the C-terminus of the canonical DISC1 gene in human induced pluripotent stem cells (iPSCs). We further differentiated these cells and used affinity purification to determine protein-protein interactions involving DISC1 in iPSC-derived neural progenitor cells and astrocytes. RESULTS We were able to determine 151 novel cell type-specific proteins present in DISC1 endogenous interactomes. The DISC1 interactomes can be clustered into several subcomplexes that suggest novel DISC1 cell-specific functions. In addition, the DISC1 interactome in iPSC-derived neural progenitor cells associates in a connected network containing proteins found to harbor de novo mutations in patients affected by schizophrenia and contains a subset of novel interactions that are known to harbor syndromic mutations in neurodevelopmental disorders. CONCLUSIONS Endogenous DISC1 interactomes within iPSC-derived human neural progenitor cells and astrocytes are able to provide context to DISC1 function in a cell type-specific setting relevant to neural development and enables the integration of psychiatric disease risk factors within a set of defined molecular functions.
Collapse
Affiliation(s)
- Brent Wilkinson
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Oleg Evgrafov
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - DongQing Zheng
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90033, USA
| | - Nicolas Hartel
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90033, USA
| | - James A. Knowles
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Nicholas A. Graham
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90033, USA
| | - Justin Ichida
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA,Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC
| | - Marcelo P. Coba
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA,Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA,Corresponding Author: Marcelo P. Coba, Keck School of Medicine, University of Southern California, Zilkha Neurogenetic Institute, 1501 San Pablo St, Los Angeles, CA 90033, USA. Phone: 323-442-4345.
| |
Collapse
|
18
|
Sun J, Carlson-Stevermer J, Das U, Shen M, Delenclos M, Snead AM, Koo SY, Wang L, Qiao D, Loi J, Petersen AJ, Stockton M, Bhattacharyya A, Jones MV, Zhao X, McLean PJ, Sproul AA, Saha K, Roy S. CRISPR/Cas9 editing of APP C-terminus attenuates β-cleavage and promotes α-cleavage. Nat Commun 2019; 10:53. [PMID: 30604771 PMCID: PMC6318289 DOI: 10.1038/s41467-018-07971-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022] Open
Abstract
CRISPR/Cas9 guided gene-editing is a potential therapeutic tool, however application to neurodegenerative disease models has been limited. Moreover, conventional mutation correction by gene-editing would only be relevant for the small fraction of neurodegenerative cases that are inherited. Here we introduce a CRISPR/Cas9-based strategy in cell and animal models to edit endogenous amyloid precursor protein (APP) at the extreme C-terminus and reciprocally manipulate the amyloid pathway, attenuating APP-β-cleavage and Aβ production, while up-regulating neuroprotective APP-α-cleavage. APP N-terminus and compensatory APP-homologues remain intact, with no apparent effects on neurophysiology in vitro. Robust APP-editing is seen in human iPSC-derived neurons and mouse brains with no detectable off-target effects. Our strategy likely works by limiting APP and BACE-1 approximation, and we also delineate mechanistic events that abrogates APP/BACE-1 convergence in this setting. Our work offers conceptual proof for a selective APP silencing strategy. Gene editing strategies are typically designed to correct mutant genes, but most neurodegenerative diseases are sporadic. Here the authors describe a strategy to selectively edit the C-terminus of APP and attenuate amyloid-β production, while upregulating neuroprotective α-cleavage.
Collapse
Affiliation(s)
- Jichao Sun
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Jared Carlson-Stevermer
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, Madison, WI, 53706, USA.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N. Orchard, Madison, WI, 53715, USA
| | - Utpal Das
- Department of Neuroscience, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Minjie Shen
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA
| | - Marion Delenclos
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Amanda M Snead
- Taub Institute for Research on Alzheimer's and the Aging Brain, Columbia University Medical Center, 630W 168th St, New York, NY, 10032, USA
| | - So Yeon Koo
- Taub Institute for Research on Alzheimer's and the Aging Brain, Columbia University Medical Center, 630W 168th St, New York, NY, 10032, USA
| | - Lina Wang
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Dianhua Qiao
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Jonathan Loi
- Department of Neuroscience, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Andrew J Petersen
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA
| | - Michael Stockton
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA
| | - Mathew V Jones
- Department of Neuroscience, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA.,Department of Neuroscience, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Pamela J McLean
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Andrew A Sproul
- Taub Institute for Research on Alzheimer's and the Aging Brain, Columbia University Medical Center, 630W 168th St, New York, NY, 10032, USA.,Department of Pathology and Cell Biology, Columbia University Medical Center, 630W 168th St, New York, NY, 10032, USA
| | - Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, Madison, WI, 53706, USA.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N. Orchard, Madison, WI, 53715, USA
| | - Subhojit Roy
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA. .,Department of Neuroscience, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA.
| |
Collapse
|
19
|
Readhead B, Hartley BJ, Eastwood BJ, Collier DA, Evans D, Farias R, He C, Hoffman G, Sklar P, Dudley JT, Schadt EE, Savić R, Brennand KJ. Expression-based drug screening of neural progenitor cells from individuals with schizophrenia. Nat Commun 2018; 9:4412. [PMID: 30356048 PMCID: PMC6200740 DOI: 10.1038/s41467-018-06515-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022] Open
Abstract
A lack of biologically relevant screening models hinders the discovery of better treatments for schizophrenia (SZ) and other neuropsychiatric disorders. Here we compare the transcriptional responses of 8 commonly used cancer cell lines (CCLs) directly with that of human induced pluripotent stem cell (hiPSC)-derived neural progenitor cells (NPCs) from 12 individuals with SZ and 12 controls across 135 drugs, generating 4320 unique drug-response transcriptional signatures. We identify those drugs that reverse post-mortem SZ-associated transcriptomic signatures, several of which also differentially regulate neuropsychiatric disease-associated genes in a cell type (hiPSC NPC vs. CCL) and/or a diagnosis (SZ vs. control)-dependent manner. Overall, we describe a proof-of-concept application of transcriptomic drug screening to hiPSC-based models, demonstrating that the drug-induced gene expression differences observed with patient-derived hiPSC NPCs are enriched for SZ biology, thereby revealing a major advantage of incorporating cell type and patient-specific platforms in drug discovery. Unbiased large scale screening of small molecules for drug discovery in psychiatric disease is technically challenging and financially costly. Here, Readhead and colleagues integrate in silico and in vitro approaches to design and conduct transcriptomic drug screening in schizophrenia patient-derived neural cells, in order to survey novel pathologies and points of intervention.
Collapse
Affiliation(s)
- Benjamin Readhead
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85287-5001, USA
| | - Brigham J Hartley
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - David A Collier
- Eli Lilly and Company Ltd, Erl Wood Manor, Surrey, UK.,Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK
| | - David Evans
- Eli Lilly and Company Ltd, Erl Wood Manor, Surrey, UK
| | - Richard Farias
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ching He
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gabriel Hoffman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pamela Sklar
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joel T Dudley
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Sema4, a Mount Sinai venture, Stamford, Connecticut, USA.
| | - Radoslav Savić
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Sema4, a Mount Sinai venture, Stamford, Connecticut, USA.
| | - Kristen J Brennand
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
20
|
Ziller MJ, Ortega JA, Quinlan KA, Santos DP, Gu H, Martin EJ, Galonska C, Pop R, Maidl S, Di Pardo A, Huang M, Meltzer HY, Gnirke A, Heckman CJ, Meissner A, Kiskinis E. Dissecting the Functional Consequences of De Novo DNA Methylation Dynamics in Human Motor Neuron Differentiation and Physiology. Cell Stem Cell 2018; 22:559-574.e9. [PMID: 29551301 DOI: 10.1016/j.stem.2018.02.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 12/18/2017] [Accepted: 02/23/2018] [Indexed: 01/10/2023]
Abstract
The somatic DNA methylation (DNAme) landscape is established early in development but remains highly dynamic within focal regions that overlap with gene regulatory elements. The significance of these dynamic changes, particularly in the central nervous system, remains unresolved. Here, we utilize a powerful human embryonic stem cell differentiation model for the generation of motor neurons (MNs) in combination with genetic mutations in the de novo DNAme machinery. We quantitatively dissect the role of DNAme in directing somatic cell fate with high-resolution genome-wide bisulfite-, bulk-, and single-cell-RNA sequencing. We find defects in neuralization and MN differentiation in DNMT3A knockouts (KO) that can be rescued by the targeting of DNAme to key developmental loci using catalytically inactive dCas9. We also find decreased dendritic arborization and altered electrophysiological properties in DNMT3A KO MNs. Our work provides a list of DNMT3A-regulated targets and a mechanistic link between de novo DNAme, cellular differentiation, and human MN function.
Collapse
Affiliation(s)
- Michael J Ziller
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Juan A Ortega
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Katharina A Quinlan
- Department of Biomedical and Pharmaceutical Sciences, George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
| | - David P Santos
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hongcang Gu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eric J Martin
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Christina Galonska
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Ramona Pop
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Susanne Maidl
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Alba Di Pardo
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mei Huang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Herbert Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andreas Gnirke
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - C J Heckman
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alexander Meissner
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
21
|
Brennand KJ. Personalized medicine in a dish: the growing possibility of neuropsychiatric disease drug discovery tailored to patient genetic variants using stem cells. Stem Cell Investig 2017; 4:91. [PMID: 29270417 DOI: 10.21037/sci.2017.10.05] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 10/27/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Kristen J Brennand
- Departments of Genetics and Genomics, Neuroscience, and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
22
|
Flaherty E, Deranieh RM, Artimovich E, Lee IS, Siegel AJ, Levy DL, Nestor MW, Brennand KJ. Patient-derived hiPSC neurons with heterozygous CNTNAP2 deletions display altered neuronal gene expression and network activity. NPJ SCHIZOPHRENIA 2017; 3:35. [PMID: 28970473 PMCID: PMC5624885 DOI: 10.1038/s41537-017-0033-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 08/04/2017] [Accepted: 08/11/2017] [Indexed: 12/16/2022]
Abstract
Variants in CNTNAP2, a member of the neurexin family of genes that function as cell adhesion molecules, have been associated with multiple neuropsychiatric conditions such as schizophrenia, autism spectrum disorder and intellectual disability; animal studies indicate a role for CNTNAP2 in axon guidance, dendritic arborization and synaptogenesis. We previously reprogrammed fibroblasts from a family trio consisting of two carriers of heterozygous intragenic CNTNAP2 deletions into human induced pluripotent stem cells (hiPSCs) and described decreased migration in the neural progenitor cells (NPCs) differentiated from the affected CNTNAP2 carrier in this trio. Here, we report the effect of this heterozygous intragenic deletion in CNTNAP2 on global gene expression and neuronal activity in the same cohort. Our findings suggest that heterozygous CNTNAP2 deletions affect genes involved in neuronal development and neuronal activity; however, these data reflect only one family trio and therefore more deletion carriers, with a variety of genetic backgrounds, will be needed to understand the molecular mechanisms underlying CNTNAP2 deletions.
Collapse
Affiliation(s)
- Erin Flaherty
- Departments of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rania M Deranieh
- Hussman Institute for Autism, 801W. Baltimore St., Baltimore, MD, 21201, USA
| | - Elena Artimovich
- Hussman Institute for Autism, 801W. Baltimore St., Baltimore, MD, 21201, USA
| | - Inkyu S Lee
- Departments of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Arthur J Siegel
- Internal Medicine Department, McLean Hospital, Belmont, MA, 02478, USA
| | - Deborah L Levy
- Psychology Research Laboratory, McLean Hospital, Belmont, MA, 02478, USA
| | - Michael W Nestor
- Hussman Institute for Autism, 801W. Baltimore St., Baltimore, MD, 21201, USA.
| | - Kristen J Brennand
- Departments of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Departments of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
23
|
Zhou T, Tan L, Cederquist GY, Fan Y, Hartley BJ, Mukherjee S, Tomishima M, Brennand KJ, Zhang Q, Schwartz RE, Evans T, Studer L, Chen S. High-Content Screening in hPSC-Neural Progenitors Identifies Drug Candidates that Inhibit Zika Virus Infection in Fetal-like Organoids and Adult Brain. Cell Stem Cell 2017; 21:274-283.e5. [PMID: 28736217 PMCID: PMC5553280 DOI: 10.1016/j.stem.2017.06.017] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 05/02/2017] [Accepted: 06/28/2017] [Indexed: 12/21/2022]
Abstract
Zika virus (ZIKV) infects fetal and adult human brain and is associated with serious neurological complications. To date, no therapeutic treatment is available to treat ZIKV-infected patients. We performed a high-content chemical screen using human pluripotent stem cell-derived cortical neural progenitor cells (hNPCs) and found that hippeastrine hydrobromide (HH) and amodiaquine dihydrochloride dihydrate (AQ) can inhibit ZIKV infection in hNPCs. Further validation showed that HH also rescues ZIKV-induced growth and differentiation defects in hNPCs and human fetal-like forebrain organoids. Finally, HH and AQ inhibit ZIKV infection in adult mouse brain in vivo. Strikingly, HH suppresses viral propagation when administered to adult mice with active ZIKV infection, highlighting its therapeutic potential. Our approach highlights the power of stem cell-based screens and validation in human forebrain organoids and mouse models in identifying drug candidates for treating ZIKV infection and related neurological complications in fetal and adult patients.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Lei Tan
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Gustav Y Cederquist
- The Center for Stem Cell Biology, New York, NY 10065, USA; Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Weill-Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Yujie Fan
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Brigham J Hartley
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Suranjit Mukherjee
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Mark Tomishima
- The Center for Stem Cell Biology, New York, NY 10065, USA; Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Kristen J Brennand
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Qisheng Zhang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, NC 27599, USA
| | - Robert E Schwartz
- Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Physiology Biophysics and Systems Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, New York, NY 10065, USA; Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA.
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
24
|
Schutte RJ, Xie Y, Ng NN, Figueroa P, Pham AT, O'Dowd DK. Astrocyte-enriched feeder layers from cryopreserved cells support differentiation of spontaneously active networks of human iPSC-derived neurons. J Neurosci Methods 2017; 294:91-101. [PMID: 28746822 DOI: 10.1016/j.jneumeth.2017.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Human induced pluripotent stem cell (hiPSC)-derived neuronal cultures are a useful tool for studying the mechanisms of neurological disorders and developing novel therapeutics. While plating hiPSC-derived neuronal progenitors onto glial feeder layers prepared from rodent cortex has been reported to promote functional differentiation of neuronal networks, this has not been examined in detail. NEW METHOD Here we describe a method of using cryopreserved cells from primary cultures for generation of mouse astrocyte-enriched, neuron-free feeder layers that grow from 10% to 100% confluence in 1 week. RESULTS Electrophysiological analysis demonstrated that compared to biochemical substrates alone, astrocyte-enriched feeder layers support more rapid differentiation of hiPSC-derived progenitors into excitable neurons that form spontaneously active networks in culture. There was a positive correlation between the degree of astroglial confluence at the time of progenitor plating and the average frequency of postsynaptic currents 3 weeks after plating. One disadvantage to plating on 100% confluent feeder layers was a high incidence of the astroglial layer with the overlying neurons detaching from the coverslips during transfer to the recording chamber. COMPARISON WITH EXISTING METHOD(S) Prevailing methods using primary glial feeder layers can result in possible contamination with rodent neurons and an unpredictable rate of growth. We provide a reliable method of generating mouse astroglial feeder layers from cryopreserved primary cultures to support differentiation of hiPSC-derived neurons. CONCLUSIONS The ability to make astrocyte-enriched feeder layers of defined confluence from cryopreserved primary cultures will facilitate the use of human stem cell derived neuronal cultures for disease modeling.
Collapse
Affiliation(s)
- Ryan J Schutte
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, United States
| | - Yunyao Xie
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, United States
| | - Nathan N Ng
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, United States
| | - Priscilla Figueroa
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, United States
| | - An T Pham
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, United States
| | - Diane K O'Dowd
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, United States.
| |
Collapse
|
25
|
Obiorah IV, Muhammad H, Stafford K, Flaherty EK, Brennand KJ. THC Treatment Alters Glutamate Receptor Gene Expression in Human Stem Cell-Derived Neurons. MOLECULAR NEUROPSYCHIATRY 2017; 3:73-84. [PMID: 29230395 DOI: 10.1159/000477762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/23/2017] [Indexed: 12/21/2022]
Abstract
Given the cognitive and behavioral effects following in utero Δ9-tetrahydrocannabinol (THC) exposure that have been reported in humans and rodents, it is critical to understand the precise consequences of THC on developing human neurons. Here, we utilize excitatory neurons derived from human-induced pluripotent stem cells (hiPSCs), and report that in vitro THC exposure reduced expression of glutamate receptor subunit genes (GRIA1, GRIA2, GRIN2A, and GRIN2B). By expanding these studies across hiPSC-derived neurons from individuals with a variety of genotypes, we believe that a hiPSC-based model will facilitate studies of the interaction of THC exposure and the genetic risk factors underlying neuropsychiatric disease vulnerability.
Collapse
Affiliation(s)
- Ifeanyi V Obiorah
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hamza Muhammad
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Khalifa Stafford
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Erin K Flaherty
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kristen J Brennand
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
26
|
Pistollato F, Canovas-Jorda D, Zagoura D, Price A. Protocol for the Differentiation of Human Induced Pluripotent Stem Cells into Mixed Cultures of Neurons and Glia for Neurotoxicity Testing. J Vis Exp 2017. [PMID: 28654077 PMCID: PMC5608344 DOI: 10.3791/55702] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human pluripotent stem cells can differentiate into various cell types that can be applied to human-based in vitro toxicity assays. One major advantage is that the reprogramming of somatic cells to produce human induced pluripotent stem cells (hiPSCs) avoids the ethical and legislative issues related to the use of human embryonic stem cells (hESCs). HiPSCs can be expanded and efficiently differentiated into different types of neuronal and glial cells, serving as test systems for toxicity testing and, in particular, for the assessment of different pathways involved in neurotoxicity. This work describes a protocol for the differentiation of hiPSCs into mixed cultures of neuronal and glial cells. The signaling pathways that are regulated and/or activated by neuronal differentiation are defined. This information is critical to the application of the cell model to the new toxicity testing paradigm, in which chemicals are assessed based on their ability to perturb biological pathways. As a proof of concept, rotenone, an inhibitor of mitochondrial respiratory complex I, was used to assess the activation of the Nrf2 signaling pathway, a key regulator of the antioxidant-response-element-(ARE)-driven cellular defense mechanism against oxidative stress.
Collapse
Affiliation(s)
- Francesca Pistollato
- Directorate F - Health, Consumers and Reference Materials, Joint Research Centre
| | - David Canovas-Jorda
- Directorate F - Health, Consumers and Reference Materials, Joint Research Centre
| | - Dimitra Zagoura
- Directorate F - Health, Consumers and Reference Materials, Joint Research Centre
| | - Anna Price
- Directorate F - Health, Consumers and Reference Materials, Joint Research Centre;
| |
Collapse
|
27
|
Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH, Perumal TM, Ruderfer DM, Oh EC, Topol A, Shah HR, Klei LL, Kramer R, Pinto D, Gümüş ZH, Cicek AE, Dang KK, Browne A, Lu C, Xie L, Readhead B, Stahl EA, Xiao J, Parvizi M, Hamamsy T, Fullard JF, Wang YC, Mahajan MC, Derry JMJ, Dudley JT, Hemby SE, Logsdon BA, Talbot K, Raj T, Bennett DA, De Jager PL, Zhu J, Zhang B, Sullivan PF, Chess A, Purcell SM, Shinobu LA, Mangravite LM, Toyoshiba H, Gur RE, Hahn CG, Lewis DA, Haroutunian V, Peters MA, Lipska BK, Buxbaum JD, Schadt EE, Hirai K, Roeder K, Brennand KJ, Katsanis N, Domenici E, Devlin B, Sklar P. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci 2016; 19:1442-1453. [PMID: 27668389 PMCID: PMC5083142 DOI: 10.1038/nn.4399] [Citation(s) in RCA: 749] [Impact Index Per Article: 93.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/01/2016] [Indexed: 12/15/2022]
Abstract
Over 100 genetic loci harbor schizophrenia-associated variants, yet how these variants confer liability is uncertain. The CommonMind Consortium sequenced RNA from dorsolateral prefrontal cortex of people with schizophrenia (N = 258) and control subjects (N = 279), creating a resource of gene expression and its genetic regulation. Using this resource, ∼20% of schizophrenia loci have variants that could contribute to altered gene expression and liability. In five loci, only a single gene was involved: FURIN, TSNARE1, CNTN4, CLCN3 or SNAP91. Altering expression of FURIN, TSNARE1 or CNTN4 changed neurodevelopment in zebrafish; knockdown of FURIN in human neural progenitor cells yielded abnormal migration. Of 693 genes showing significant case-versus-control differential expression, their fold changes were ≤ 1.33, and an independent cohort yielded similar results. Gene co-expression implicates a network relevant for schizophrenia. Our findings show that schizophrenia is polygenic and highlight the utility of this resource for mechanistic interpretations of genetic liability for brain diseases.
Collapse
Affiliation(s)
- Menachem Fromer
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Panos Roussos
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Psychiatry, JJ Peters Virginia Medical Center, Bronx, New York, USA
| | | | - Jessica S Johnson
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David H Kavanagh
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Douglas M Ruderfer
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Edwin C Oh
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA
- Department of Neurology, Duke University, Durham, North Carolina, USA
| | - Aaron Topol
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hardik R Shah
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lambertus L Klei
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robin Kramer
- Human Brain Collection Core, National Institutes of Health, NIMH, Bethesda, Maryland, USA
| | - Dalila Pinto
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zeynep H Gümüş
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - A Ercument Cicek
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Kristen K Dang
- Systems Biology, Sage Bionetworks, Seattle, Washington, USA
| | - Andrew Browne
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Cong Lu
- Department of Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Lu Xie
- Department of Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Ben Readhead
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eli A Stahl
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jianqiu Xiao
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA
| | - Mahsa Parvizi
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA
| | - Tymor Hamamsy
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John F Fullard
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ying-Chih Wang
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Milind C Mahajan
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Joel T Dudley
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Scott E Hemby
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, North Carolina, USA
| | | | - Konrad Talbot
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Towfique Raj
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Philip L De Jager
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Departments of Neurology and Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jun Zhu
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bin Zhang
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Patrick F Sullivan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Andrew Chess
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shaun M Purcell
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Leslie A Shinobu
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | | | - Hiroyoshi Toyoshiba
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Raquel E Gur
- Neuropsychiatry Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chang-Gyu Hahn
- Neuropsychiatric Signaling Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vahram Haroutunian
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Psychiatry, JJ Peters Virginia Medical Center, Bronx, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mette A Peters
- Systems Biology, Sage Bionetworks, Seattle, Washington, USA
| | - Barbara K Lipska
- Human Brain Collection Core, National Institutes of Health, NIMH, Bethesda, Maryland, USA
| | - Joseph D Buxbaum
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eric E Schadt
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Keisuke Hirai
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Kathryn Roeder
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Department of Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Kristen J Brennand
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA
- Department of Cell Biology and Pediatrics, Duke University, Durham, North Carolina, USA
| | - Enrico Domenici
- Laboratory of Neurogenomic Biomarkers, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pamela Sklar
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
28
|
Kramer N, Rosner M, Kovacic B, Hengstschläger M. Full biological characterization of human pluripotent stem cells will open the door to translational research. Arch Toxicol 2016; 90:2173-2186. [PMID: 27325309 DOI: 10.1007/s00204-016-1763-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/13/2016] [Indexed: 12/13/2022]
Abstract
Since the discovery of human embryonic stem cells (hESC) and human-induced pluripotent stem cells (hiPSC), great hopes were held for their therapeutic application including disease modeling, drug discovery screenings, toxicological screenings and regenerative therapy. hESC and hiPSC have the advantage of indefinite self-renewal, thereby generating an inexhaustible pool of cells with, e.g., specific genotype for developing putative treatments; they can differentiate into derivatives of all three germ layers enabling autologous transplantation, and via donor-selection they can express various genotypes of interest for better disease modeling. Furthermore, drug screenings and toxicological screenings in hESC and hiPSC are more pertinent to identify drugs or chemical compounds that are harmful for human, than a mouse model could predict. Despite continuing research in the wide field of therapeutic applications, further understanding of the underlying basic mechanisms of stem cell function is necessary. Here, we summarize current knowledge concerning pluripotency, self-renewal, apoptosis, motility, epithelial-to-mesenchymal transition and differentiation of pluripotent stem cells.
Collapse
Affiliation(s)
- Nina Kramer
- Institute of Medical Genetics, Medical University of Vienna, Währingerstrasse 10, 1090, Vienna, Austria
| | - Margit Rosner
- Institute of Medical Genetics, Medical University of Vienna, Währingerstrasse 10, 1090, Vienna, Austria
| | - Boris Kovacic
- Institute of Medical Genetics, Medical University of Vienna, Währingerstrasse 10, 1090, Vienna, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Medical University of Vienna, Währingerstrasse 10, 1090, Vienna, Austria.
| |
Collapse
|
29
|
Topol A, Zhu S, Hartley BJ, English J, Hauberg ME, Tran N, Rittenhouse CA, Simone A, Ruderfer DM, Johnson J, Readhead B, Hadas Y, Gochman PA, Wang YC, Shah H, Cagney G, Rapoport J, Gage FH, Dudley JT, Sklar P, Mattheisen M, Cotter D, Fang G, Brennand KJ. Dysregulation of miRNA-9 in a Subset of Schizophrenia Patient-Derived Neural Progenitor Cells. Cell Rep 2016; 15:1024-1036. [PMID: 27117414 PMCID: PMC4856588 DOI: 10.1016/j.celrep.2016.03.090] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/02/2016] [Accepted: 03/27/2016] [Indexed: 01/19/2023] Open
Abstract
Converging evidence indicates that microRNAs (miRNAs) may contribute to disease risk for schizophrenia (SZ). We show that microRNA-9 (miR-9) is abundantly expressed in control neural progenitor cells (NPCs) but also significantly downregulated in a subset of SZ NPCs. We observed a strong correlation between miR-9 expression and miR-9 regulatory activity in NPCs as well as between miR-9 levels/activity, neural migration, and diagnosis. Overexpression of miR-9 was sufficient to ameliorate a previously reported neural migration deficit in SZ NPCs, whereas knockdown partially phenocopied aberrant migration in control NPCs. Unexpectedly, proteomic- and RNA sequencing (RNA-seq)-based analysis revealed that these effects were mediated primarily by small changes in expression of indirect miR-9 targets rather than large changes in direct miR-9 targets; these indirect targets are enriched for migration-associated genes. Together, these data indicate that aberrant levels and activity of miR-9 may be one of the many factors that contribute to SZ risk, at least in a subset of patients.
Collapse
Affiliation(s)
- Aaron Topol
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Shijia Zhu
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, 1425 Madison Avenue, New York, NY 10029, USA
| | - Brigham J Hartley
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Jane English
- Department of Psychiatry, Royal College of Surgeons in Ireland, Beaumont Hospital, Beaumont, Dublin 9, Ireland
| | - Mads E Hauberg
- Department of Biomedicine and Centre for Integrative Sequencing (iSEQ), Aarhus University, Wilhelm Meyers Allé 4, Aarhus 8000 C, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus University, Wilhelm Meyers Allé 4, Aarhus 8000 C, Denmark
| | - Ngoc Tran
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Chelsea Ann Rittenhouse
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Anthony Simone
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Douglas M Ruderfer
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Jessica Johnson
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Ben Readhead
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, 1425 Madison Avenue, New York, NY 10029, USA
| | - Yoav Hadas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Peter A Gochman
- Childhood Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ying-Chih Wang
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, 1425 Madison Avenue, New York, NY 10029, USA
| | - Hardik Shah
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, 1425 Madison Avenue, New York, NY 10029, USA
| | - Gerard Cagney
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Judith Rapoport
- Childhood Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Joel T Dudley
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, 1425 Madison Avenue, New York, NY 10029, USA
| | - Pamela Sklar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Manuel Mattheisen
- Department of Biomedicine and Centre for Integrative Sequencing (iSEQ), Aarhus University, Wilhelm Meyers Allé 4, Aarhus 8000 C, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus University, Wilhelm Meyers Allé 4, Aarhus 8000 C, Denmark
| | - David Cotter
- Department of Psychiatry, Royal College of Surgeons in Ireland, Beaumont Hospital, Beaumont, Dublin 9, Ireland
| | - Gang Fang
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, 1425 Madison Avenue, New York, NY 10029, USA.
| | - Kristen J Brennand
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA.
| |
Collapse
|
30
|
Rapid Ngn2-induction of excitatory neurons from hiPSC-derived neural progenitor cells. Methods 2015; 101:113-24. [PMID: 26626326 DOI: 10.1016/j.ymeth.2015.11.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/18/2015] [Accepted: 11/24/2015] [Indexed: 12/21/2022] Open
Abstract
Since the discovery of somatic reprogramming, human induced pluripotent stem cells (hiPSCs) have been exploited to model a variety of neurological and psychiatric disorders. Because hiPSCs represent an almost limitless source of patient-derived neurons that retain the genetic variations thought to contribute to disease etiology, they have been heralded as a patient-specific platform for high throughput drug screening. However, the utility of current protocols for generating neurons from hiPSCs remains limited by protracted differentiation timelines and heterogeneity of the neuronal phenotypes produced. Neuronal induction via the forced expression of exogenous transcription factors rapidly induces defined populations of functional neurons from fibroblasts and hiPSCs. Here, we describe an adapted protocol that accelerates maturation of functional excitatory neurons from hiPSC-derived neural progenitor cells (NPCs) via lentiviral transduction of Neurogenin 2 (using both mNgn2 and hNGN2). This methodology, relying upon a robust and scalable starting population of hiPSC NPCs, should be readily amenable to scaling for hiPSC-based high-throughput drug screening.
Collapse
|