1
|
Novelli M, Masini M, Vecoli C, Moscato S, Funel N, Pippa A, Mattii L, Ippolito C, Campani D, Neglia D, Masiello P. Dysregulated insulin secretion is associated with pancreatic β-cell hyperplasia and direct acinar-β-cell trans-differentiation in partially eNOS-deficient mice. Physiol Rep 2022; 10:e15425. [PMID: 35986504 PMCID: PMC9391603 DOI: 10.14814/phy2.15425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/11/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023] Open
Abstract
eNOS-deficient mice were previously shown to develop hypertension and metabolic alterations associated with insulin resistance either in standard dietary conditions (eNOS-/- homozygotes) or upon high-fat diet (HFD) (eNOS+/- heterozygotes). In the latter heterozygote model, the present study investigated the pancreatic morphological changes underlying the abnormal glycometabolic phenotype. C57BL6 wild type (WT) and eNOS+/- mice were fed with either chow or HFD for 16 weeks. After being longitudinally monitored for their metabolic state after 8 and 16 weeks of diet, mice were euthanized and fragments of pancreas were processed for histological, immuno-histochemical and ultrastructural analyses. HFD-fed WT and eNOS+/- mice developed progressive glucose intolerance and insulin resistance. Differently from WT animals, eNOS+/- mice showed a blunted insulin response to a glucose load, regardless of the diet regimen. Such dysregulation of insulin secretion was associated with pancreatic β-cell hyperplasia, as shown by larger islet fractional area and β-cell mass, and higher number of extra-islet β-cell clusters than in chow-fed WT animals. In addition, only in the pancreas of HFD-fed eNOS+/- mice, there was ultrastructural evidence of a number of hybrid acinar-β-cells, simultaneously containing zymogen and insulin granules, suggesting the occurrence of a direct exocrine-endocrine transdifferentiation process, plausibly triggered by metabolic stress associated to deficient endothelial NO production. As suggested by confocal immunofluorescence analysis of pancreatic histological sections, inhibition of Notch-1 signaling, likely due to a reduced NO availability, is proposed as a novel mechanism that could favor both β-cell hyperplasia and acinar-β-cell transdifferentiation in eNOS-deficient mice with impaired insulin response to a glucose load.
Collapse
Affiliation(s)
- Michela Novelli
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Matilde Masini
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Cecilia Vecoli
- Institute of Clinical PhysiologyNational Research Council (CNR)PisaItaly
| | - Stefania Moscato
- Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Interdepartmental Research Centre "Nutraceuticals and Food for Health"University of PisaPisaItaly
| | - Niccola Funel
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Anna Pippa
- Institute of Clinical PhysiologyNational Research Council (CNR)PisaItaly
| | - Letizia Mattii
- Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Interdepartmental Research Centre "Nutraceuticals and Food for Health"University of PisaPisaItaly
| | - Chiara Ippolito
- Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Daniela Campani
- Department of Surgical, Medical and Molecular Pathology, and Critical Care MedicineUniversity of PisaPisaItaly
| | - Danilo Neglia
- Cardiovascular DepartmentFondazione Toscana Gabriele Monasterio per la Ricerca Medica e di Sanità PubblicaPisaItaly
| | - Pellegrino Masiello
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| |
Collapse
|
2
|
Peng C, Tu G, Yu L, Wu P, Zhang X, Li Z, Li Z, Yu X. Murine Chronic Pancreatitis Model Induced by Partial Ligation of the Pancreatic Duct Encapsulates the Profile of Macrophage in Human Chronic Pancreatitis. Front Immunol 2022; 13:840887. [PMID: 35432336 PMCID: PMC9011002 DOI: 10.3389/fimmu.2022.840887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Immune responses are an integral part of the pathogenesis of pancreatitis. Studies applying the mouse model of pancreatitis induced by partial ligation of the pancreatic duct to explore the pancreatic immune microenvironment are still lacking. The aim of the present study is to explore the macrophage profile and associated regulatory mechanisms in mouse pancreatitis, as well as the correlation with human chronic pancreatitis (CP). In the present study, the mouse model of pancreatitis was induced by partial ligation of the pancreatic duct. Mice in the acute phase were sacrificed at 0, 4, 8, 16, 32, 72 h after ligation, while mice in the chronic phase were sacrificed at 7, 14, 21, 28 days after ligation. We found that the pancreatic pathological score, expression of TNF-α and IL-6 were elevated over time and peaked at 72h in the acute phase, while in the chronic phase, the degree of pancreatic fibrosis peaked at day 21 after ligation. Pancreatic M1 macrophages and pyroptotic macrophages showed a decreasing trend over time, whereas M2 macrophages gradually rose and peaked at day 21. IL-4 is involved in the development of CP and is mainly derived from pancreatic stellate cells (PSCs). The murine pancreatitis model constructed by partial ligation of the pancreatic duct, especially the CP model, can ideally simulate human CP caused by obstructive etiologies in terms of morphological alterations and immune microenvironment characteristics.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Guangping Tu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Li Yu
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Peng Wu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xianlin Zhang
- Department of General Surgery, Renhe Hospital, Three Gorges University, Yichang, China
| | - Zheng Li
- Department of General Surgery, Renhe Hospital, Three Gorges University, Yichang, China
| | - Zhiqiang Li
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiao Yu, ; Zhiqiang Li,
| | - Xiao Yu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiao Yu, ; Zhiqiang Li,
| |
Collapse
|
3
|
Hendley AM, Rao AA, Leonhardt L, Ashe S, Smith JA, Giacometti S, Peng XL, Jiang H, Berrios DI, Pawlak M, Li LY, Lee J, Collisson EA, Anderson MS, Fragiadakis GK, Yeh JJ, Ye CJ, Kim GE, Weaver VM, Hebrok M. Single-cell transcriptome analysis defines heterogeneity of the murine pancreatic ductal tree. eLife 2021; 10:e67776. [PMID: 34009124 PMCID: PMC8184217 DOI: 10.7554/elife.67776] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/18/2021] [Indexed: 12/25/2022] Open
Abstract
To study disease development, an inventory of an organ's cell types and understanding of physiologic function is paramount. Here, we performed single-cell RNA-sequencing to examine heterogeneity of murine pancreatic duct cells, pancreatobiliary cells, and intrapancreatic bile duct cells. We describe an epithelial-mesenchymal transitory axis in our three pancreatic duct subpopulations and identify osteopontin as a regulator of this fate decision as well as human duct cell dedifferentiation. Our results further identify functional heterogeneity within pancreatic duct subpopulations by elucidating a role for geminin in accumulation of DNA damage in the setting of chronic pancreatitis. Our findings implicate diverse functional roles for subpopulations of pancreatic duct cells in maintenance of duct cell identity and disease progression and establish a comprehensive road map of murine pancreatic duct cell, pancreatobiliary cell, and intrapancreatic bile duct cell homeostasis.
Collapse
Affiliation(s)
- Audrey M Hendley
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
- Center for Bioengineering and Tissue Regeneration, University of California, San FranciscoSan FranciscoUnited States
| | - Arjun A Rao
- CoLabs, University of California, San FranciscoSan FranciscoUnited States
- Bakar ImmunoX Initiative, University of California, San FranciscoSan FranciscoUnited States
| | - Laura Leonhardt
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Sudipta Ashe
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Jennifer A Smith
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Simone Giacometti
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Xianlu L Peng
- Department of Pharmacology, University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Honglin Jiang
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
| | - David I Berrios
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Mathias Pawlak
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's HospitalBostonUnited States
| | - Lucia Y Li
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Jonghyun Lee
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Eric A Collisson
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
| | - Mark S Anderson
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Gabriela K Fragiadakis
- CoLabs, University of California, San FranciscoSan FranciscoUnited States
- Bakar ImmunoX Initiative, University of California, San FranciscoSan FranciscoUnited States
- Department of Medicine, Division of Rheumatology, University of California, San FranciscoSan FranciscoUnited States
| | - Jen Jen Yeh
- Department of Pharmacology, University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel HillChapel HillUnited States
- Department of Surgery, University of North Carolina at Chapel HillChapel HillUnited States
| | - Chun Jimmie Ye
- Parker Institute for Cancer ImmunotherapySan FranciscoUnited States
| | - Grace E Kim
- Department of Pathology, University of California, San FranciscoSan FranciscoUnited States
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, University of California, San FranciscoSan FranciscoUnited States
| | - Matthias Hebrok
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
4
|
Pancreatic duct ligation reduces premalignant pancreatic lesions in a Kras model of pancreatic adenocarcinoma in mice. Sci Rep 2020; 10:18344. [PMID: 33110094 PMCID: PMC7591874 DOI: 10.1038/s41598-020-74947-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic duct ligation (PDL) in the murine model has been described as an exocrine pancreatic atrophy-inducing procedure. However, its influence has scarcely been described on premalignant lesions. This study describes the histological changes of premalignant lesions and the gene expression in a well-defined model of pancreatic ductal adenocarcinoma by PDL. Selective ligation of the splenic lobe of the pancreas was performed in Ptf1a-Cre(+/ki); K-ras LSLG12Vgeo(+/ki) mice (PDL-Kras mice). Three experimental groups were evaluated: PDL group, controls and shams. The presence and number of premalignant lesions (PanIN 1–3 and Atypical Flat Lesions—AFL) in proximal (PP) and distal (DP) pancreas were studied for each group over time. Microarray analysis was performed to find differentially expressed genes (DEG) between PP and PD. Clinical human specimens after pancreaticoduodenectomy with ductal occlusion were also evaluated. PDL-Kras mice showed an intense pattern of atrophy in DP which was shrunk to a minimal portion of tissue. Mice in control and sham groups had a 7 and 10-time increase respectively of risk of high-grade PanIN 2 and 3 and AFL in their DP than PDL-Kras mice. Furthermore, PDL-Kras mice had significantly less PanIN 1 and 2 and AFL lesions in DP compared to PP. We identified 38 DEGs comparing PP and PD. Among them, several mapped to protein secretion and digestion while others such as Nupr1 have been previously associated with PanIN and PDAC. PDL in Ptf1a-Cre(+/ki); K-ras LSLG12Vgeo(+/ki) mice induces a decrease in the presence of premalignant lesions in the ligated DP. This could be a potential line of research of interest in some cancerous risk patients.
Collapse
|
5
|
Swain SM, Romac JMJ, Shahid RA, Pandol SJ, Liedtke W, Vigna SR, Liddle RA. TRPV4 channel opening mediates pressure-induced pancreatitis initiated by Piezo1 activation. J Clin Invest 2020; 130:2527-2541. [PMID: 31999644 PMCID: PMC7190979 DOI: 10.1172/jci134111] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/23/2020] [Indexed: 12/24/2022] Open
Abstract
Elevated pressure in the pancreatic gland is the central cause of pancreatitis following abdominal trauma, surgery, endoscopic retrograde cholangiopancreatography, and gallstones. In the pancreas, excessive intracellular calcium causes mitochondrial dysfunction, premature zymogen activation, and necrosis, ultimately leading to pancreatitis. Although stimulation of the mechanically activated, calcium-permeable ion channel Piezo1 in the pancreatic acinar cell is the initial step in pressure-induced pancreatitis, activation of Piezo1 produces only transient elevation in intracellular calcium that is insufficient to cause pancreatitis. Therefore, how pressure produces a prolonged calcium elevation necessary to induce pancreatitis is unknown. We demonstrate that Piezo1 activation in pancreatic acinar cells caused a prolonged elevation in intracellular calcium levels, mitochondrial depolarization, intracellular trypsin activation, and cell death. Notably, these effects were dependent on the degree and duration of force applied to the cell. Low or transient force was insufficient to activate these pathological changes, whereas higher and prolonged application of force triggered sustained elevation in intracellular calcium, leading to enzyme activation and cell death. All of these pathological events were rescued in acinar cells treated with a Piezo1 antagonist and in acinar cells from mice with genetic deletion of Piezo1. We discovered that Piezo1 stimulation triggered transient receptor potential vanilloid subfamily 4 (TRPV4) channel opening, which was responsible for the sustained elevation in intracellular calcium that caused intracellular organelle dysfunction. Moreover, TRPV4 gene-KO mice were protected from Piezo1 agonist- and pressure-induced pancreatitis. These studies unveil a calcium signaling pathway in which a Piezo1-induced TRPV4 channel opening causes pancreatitis.
Collapse
Affiliation(s)
- Sandip M. Swain
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | | | - Rafiq A. Shahid
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | | | | | - Steven R. Vigna
- Department of Medicine, Duke University, Durham, North Carolina, USA
- Department of Cell Biology, Duke University, Durham, North Carolina, USA
| | - Rodger A. Liddle
- Department of Medicine, Duke University, Durham, North Carolina, USA
- Department of Veterans Affairs Health Care System, Durham, North Carolina, USA
| |
Collapse
|
6
|
Camacho-Ramírez A, Mayo-Ossorio MÁ, Pacheco-García JM, Almorza-Gomar D, Ribelles-García A, Belmonte-Núñez A, Prada-Oliveira JA, Pérez-Arana GM. Pancreas is a preeminent source of ghrelin after sleeve gastrectomy in Wistar rats. Histol Histopathol 2020; 35:801-809. [PMID: 31951010 DOI: 10.14670/hh-18-200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Many surgical techniques are employed in the treatment of severe obesity. A main consequence of these techniques is the improvement of type 2 Diabetes mellitus. Ghrelin is a gut hormone released in the gastric fundus and corpus, which has been related to diabetic improvement as mentioned in these papers. Sleeve gastrectomy and Roux-en Y Gastric Bypass are surgical techniques broadly employed in humans; both severely reduce the gastric surface. Paradoxically, the serum level of ghrelin in patients is preserved. We hypothesized about the role of embryonic pancreatic epsilon cells, which have the capacity to release ghrelin. We studied the changes in the epsilon cells and differentiation markers with immunostaining and ghrelin serum level and after surgery. We employed euglycemic male Wistar rats: two surgical groups (Sleeve gastrectomy and Roux-en Y Gastric Bypass) and two control groups. We reported a significant increase of ghrelin epsilon-cells in the pancreas and basal serum after Sleeve gastrectomy versus the control groups. The epsilon cellular increment was related to neogenesis, as the neurogenin-3 marker revealed. The Roux-en Y Gastric Bypass showed neither epsilon cell increase nor basal serum changes in ghrelin release. As a conclusion, we reported that the severe suppression of the fundus gastric produced the recovery of ghrelin released by the epsilon cells, which was indicative of an ontogenic embryonic pancreatic function.
Collapse
Affiliation(s)
- Alonso Camacho-Ramírez
- Surgery Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain.,Biomedical Science Research and Innovation Institute (INIBICA), Puerta del Mar University Hospital, Cádiz, Spain.,Asociación Gaditana de Apoyo al Investigador AGAI, Cádiz, Spain
| | - María Ángeles Mayo-Ossorio
- Surgery Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain.,Biomedical Science Research and Innovation Institute (INIBICA), Puerta del Mar University Hospital, Cádiz, Spain
| | - José Manuel Pacheco-García
- Surgery Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain.,Biomedical Science Research and Innovation Institute (INIBICA), Puerta del Mar University Hospital, Cádiz, Spain
| | - David Almorza-Gomar
- Biomedical Science Research and Innovation Institute (INIBICA), Puerta del Mar University Hospital, Cádiz, Spain.,Department of Operative Statistic and Research, University of Cádiz, Cádiz, Spain
| | - Antonio Ribelles-García
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Cádiz, Cádiz, Spain.,Sustainable Social Development Research Institute (INDESS), University of Cádiz, Cádiz, Spain
| | - Ana Belmonte-Núñez
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Cádiz, Cádiz, Spain
| | - J Arturo Prada-Oliveira
- Biomedical Science Research and Innovation Institute (INIBICA), Puerta del Mar University Hospital, Cádiz, Spain.,Asociación Gaditana de Apoyo al Investigador AGAI, Cádiz, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Cádiz, Cádiz, Spain.
| | - Gonzalo M Pérez-Arana
- Biomedical Science Research and Innovation Institute (INIBICA), Puerta del Mar University Hospital, Cádiz, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Cádiz, Cádiz, Spain.,Asociación Gaditana de Apoyo al Investigador AGAI, Cádiz, Spain
| |
Collapse
|
7
|
Nakajima C, Kamimoto K, Miyajima K, Matsumoto M, Okazaki Y, Kobayashi-Hattori K, Shimizu M, Yamane T, Oishi Y, Iwatsuki K. A Method for Identifying Mouse Pancreatic Ducts. Tissue Eng Part C Methods 2019; 24:480-485. [PMID: 29993334 PMCID: PMC6088256 DOI: 10.1089/ten.tec.2018.0127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Proper identification of pancreatic ducts is a major challenge for researchers performing partial duct ligation (PDL), because pancreatic ducts, which are covered with acinar cells, are translucent and thin. Although damage to pancreatic ducts may activate quiescent ductal stem cells, which may allow further investigation into ductal stem cells for therapeutic use, there is a lack of effective techniques to visualize pancreatic ducts. In this study, we report a new method for identifying pancreatic ducts. First, we aimed to visualize pancreatic ducts using black, waterproof fountain pen ink. We injected the ink into pancreatic ducts through the bile duct. The flow of ink was observed in pancreatic ducts, revealing their precise architecture. Next, to visualize pancreatic ducts in live animals, we injected fluorescein-labeled bile acid, cholyl-lysyl-fluorescein into the mouse tail vein. The fluorescent probe clearly marked not only the bile duct but also pancreatic ducts when observed with a fluorescent microscope. To confirm whether the pancreatic duct labeling was successful, we performed PDL on Neurogenin3 (Ngn3)-GFP transgenic mice. As a result, acinar tissue is lost. PDL tail pancreas becomes translucent almost completely devoid of acinar cells. Furthermore, strong activation of Ngn3 expression was observed in the ligated part of the adult mouse pancreas at 7 days after PDL.
Collapse
Affiliation(s)
- Chiemi Nakajima
- 1 Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| | - Kenji Kamimoto
- 2 Department of Developmental Biology, Washington University School of Medicine in St. Louis , St. Louis, Missouri
| | - Katsuhiro Miyajima
- 1 Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| | - Masahito Matsumoto
- 3 Department of Advanced Diabetic Therapeutics and Metabolic Endocrinology, Juntendo University , Tokyo, Japan
| | - Yasushi Okazaki
- 3 Department of Advanced Diabetic Therapeutics and Metabolic Endocrinology, Juntendo University , Tokyo, Japan .,4 Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Center, Juntendo University , Tokyo, Japan
| | - Kazuo Kobayashi-Hattori
- 5 Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| | - Makoto Shimizu
- 5 Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| | - Takumi Yamane
- 1 Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| | - Yuichi Oishi
- 1 Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| | - Ken Iwatsuki
- 1 Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| |
Collapse
|
8
|
Coppens V, Leuckx G, Heremans Y, Staels W, Verdonck Y, Baeyens L, De Leu N, Heimberg H. Semi-automated digital measurement as the method of choice for beta cell mass analysis. PLoS One 2018; 13:e0191249. [PMID: 29408875 PMCID: PMC5800540 DOI: 10.1371/journal.pone.0191249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/02/2018] [Indexed: 12/20/2022] Open
Abstract
Pancreas injury by partial duct ligation (PDL) activates beta cell differentiation and proliferation in adult mouse pancreas but remains controversial regarding the anticipated increase in beta cell volume. Several reports unable to show beta cell volume augmentation in PDL pancreas used automated digital image analysis software. We hypothesized that fully automatic beta cell morphometry without manual micrograph artifact remediation introduces bias and therefore might be responsible for reported discrepancies and controversy. However, our present results prove that standard digital image processing with automatic thresholding is sufficiently robust albeit less sensitive and less adequate to demonstrate a significant increase in beta cell volume in PDL versus Sham-operated pancreas. We therefore conclude that other confounding factors such as quality of surgery, selection of samples based on relative abundance of the transcription factor Neurogenin 3 (Ngn3) and tissue processing give rise to inter-laboratory inconsistencies in beta cell volume quantification in PDL pancreas.
Collapse
Affiliation(s)
- Violette Coppens
- Beta cell Neogenesis, Vrije Universiteit Brussel, Brussels, Belgium
- Collaborative Antwerp Psychiatric Research Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
- University Department of Psychiatry, Campus Duffel, Duffel, Belgium
| | - Gunter Leuckx
- Beta cell Neogenesis, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yves Heremans
- Beta cell Neogenesis, Vrije Universiteit Brussel, Brussels, Belgium
| | - Willem Staels
- Beta cell Neogenesis, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Pediatrics, Division of Pediatric Endocrinology, Ghent University, Hospital and Department of Pediatrics and Genetics, Ghent, Belgium
| | - Yannick Verdonck
- Beta cell Neogenesis, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc Baeyens
- Beta cell Neogenesis, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nico De Leu
- Beta cell Neogenesis, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Department of Endocrinology, Algemeen Stedelijk Ziekenhuis Aalst, Aalst, Belgium
| | - Harry Heimberg
- Beta cell Neogenesis, Vrije Universiteit Brussel, Brussels, Belgium
- * E-mail:
| |
Collapse
|
9
|
Schawkat K, Kühn W, Inderbitzin D, Gloor B, Heverhagen JT, Runge VM, Christe A. Diagnostic Value and Interreader Agreement of the Pancreaticolienal Gap in Pancreatic Cancer on MDCT. PLoS One 2016; 11:e0166003. [PMID: 27893776 PMCID: PMC5125578 DOI: 10.1371/journal.pone.0166003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/21/2016] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE The aim of this retrospective study was to evaluate the diagnostic value and measure interreader agreement of the pancreaticolienal gap (PLG) in the assessment of imaging features of pancreatic carcinoma (PC) on contrast-enhanced multi-detector computed tomography (CE-MDCT). MATERIALS AND METHODS CE-MDCT studies in the portal venous phase were retrospectively reviewed for 66 patients with PC. The age- and gender-matched control group comprised 103 healthy individuals. Three radiologists with different levels of experience independently measured the PLG (the minimum distance of the pancreatic tail to the nearest border of the spleen) in the axial plane. The interreader agreement of the PLG and the receiver operating characteristic (ROC) curve was used to calculate the accuracy of the technique. RESULTS While the control group (n = 103) showed a median PLG of 3 mm (Range: 0 - 39mm) the PC patients had a significantly larger PLG of 15mm (Range: 0 - 53mm)(p < 0.0001). A ROC curve demonstrated a cutoff-value of >12 mm for PC, with a sensitivity of 58.2% (95% CI = 45.5-70.1), specificity of 84.0% (95% CI = 75.6-90.4) and an area under the ROC curve of 0.714 (95% CI = 0.641 to 0.780). The mean interreader agreement showed correlation coefficient r of 0.9159. The extent of the PLG did not correlate with tumor stage but did correlate with pancreatic density (fatty involution) and age, the density decreased by 4.1 HU and the PLG increased by 0.8 mm within every 10 y. CONCLUSION The significant interreader agreement supports the use of the PLG as a characterizing feature of pancreatic cancer independent of the tumor stage on an axial plane. The increase in the PLG with age may represent physiological atrophy of the pancreatic tail.
Collapse
Affiliation(s)
- Khoschy Schawkat
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Wolfgang Kühn
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Daniel Inderbitzin
- Department of Visceral and Transplantion Surgery, Inselspital, University Hospital Bern, Bern, Switzerland
- Department of Surgery, Tiefenau Hospital, Bern, Switzerland
| | - Beat Gloor
- Department of Visceral and Transplantion Surgery, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Johannes T. Heverhagen
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Val Murray Runge
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Andreas Christe
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, University Hospital Bern, Bern, Switzerland
- Department of Radiology, Tiefenau Hospital, Bern, Switzerland
| |
Collapse
|
10
|
De Groef S, Staels W, Van Gassen N, Lemper M, Yuchi Y, Sojoodi M, Bussche L, Heremans Y, Leuckx G, De Leu N, Van de Casteele M, Baeyens L, Heimberg H. Sources of beta cells inside the pancreas. Diabetologia 2016; 59:1834-7. [PMID: 27053238 DOI: 10.1007/s00125-016-3879-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/16/2015] [Indexed: 11/29/2022]
Abstract
The generation of beta(-like) cells to compensate for their absolute or relative shortage in type 1 and type 2 diabetes is an obvious therapeutic strategy. Patients first received grafts of donor islet cells over 25 years ago, but this procedure has not become routine in clinical practice because of a donor cell shortage and (auto)immune problems. Transplantation of differentiated embryonic and induced pluripotent stem cells may overcome some but not all the current limitations. Reprogramming exocrine cells towards functional beta(-like) cells would offer an alternative abundant and autologous source of beta(-like) cells. This review focuses on work by our research group towards achieving such a source of cells. It summarises a presentation given at the 'Can we make a better beta cell?' symposium at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Amin Ardestani and Kathrin Maedler, DOI: 10.1007/s00125-016-3892-9 , and by Heiko Lickert and colleagues, DOI: 10.1007/s00125-016-3949-9 ) and a commentary by the Session Chair, Shanta Persaud (DOI: 10.1007/s00125-016-3870-2 ).
Collapse
Affiliation(s)
- Sofie De Groef
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, B1090, Brussels, Belgium
| | - Willem Staels
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, B1090, Brussels, Belgium
| | - Naomi Van Gassen
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, B1090, Brussels, Belgium
| | - Marie Lemper
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, B1090, Brussels, Belgium
| | - Yixing Yuchi
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, B1090, Brussels, Belgium
| | - Mozhdeh Sojoodi
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, B1090, Brussels, Belgium
| | - Leen Bussche
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, B1090, Brussels, Belgium
| | - Yves Heremans
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, B1090, Brussels, Belgium
| | - Gunter Leuckx
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, B1090, Brussels, Belgium
| | - Nico De Leu
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, B1090, Brussels, Belgium
| | - Mark Van de Casteele
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, B1090, Brussels, Belgium
| | - Luc Baeyens
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, B1090, Brussels, Belgium
| | - Harry Heimberg
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, B1090, Brussels, Belgium.
| |
Collapse
|
11
|
Sojoodi M, Stradiot L, Tanaka K, Heremans Y, Leuckx G, Besson V, Staels W, Van de Casteele M, Marazzi G, Sassoon D, Heimberg H, Bonfanti P. The zinc finger transcription factor PW1/PEG3 restrains murine beta cell cycling. Diabetologia 2016; 59:1474-1479. [PMID: 27130279 PMCID: PMC4901110 DOI: 10.1007/s00125-016-3954-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 03/15/2016] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS Pw1 or paternally-expressed gene 3 (Peg3) encodes a zinc finger transcription factor that is widely expressed during mouse embryonic development and later restricted to multiple somatic stem cell lineages in the adult. The aim of the present study was to define Pw1 expression in the embryonic and adult pancreas and investigate its role in the beta cell cycle in Pw1 wild-type and mutant mice. METHODS We analysed PW1 expression by immunohistochemistry in pancreas of nonpregant and pregnant mice and following injury by partial duct ligation. Its role in the beta cell cycle was studied in vivo using a novel conditional knockout mouse and in vitro by lentivirus-mediated gene knockdown. RESULTS We showed that PW1 is expressed in early pancreatic progenitors at E9.5 but becomes progressively restricted to fully differentiated beta cells as they become established after birth and withdraw from the cell cycle. Notably, PW1 expression declines when beta cells are induced to proliferate and loss of PW1 function activates the beta cell cycle. CONCLUSIONS/INTERPRETATION These results indicate that PW1 is a co-regulator of the beta cell cycle and can thus be considered a novel therapeutic target in diabetes.
Collapse
Affiliation(s)
- Mozhdeh Sojoodi
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Leslie Stradiot
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Karo Tanaka
- Stem Cells and Regenerative Medicine Team, Institute of Cardiology and Nutrition, Inserm UMRS-1166, University Pierre and Marie Curie (Paris VI), Paris, France
| | - Yves Heremans
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Gunter Leuckx
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Vanessa Besson
- Stem Cells and Regenerative Medicine Team, Institute of Cardiology and Nutrition, Inserm UMRS-1166, University Pierre and Marie Curie (Paris VI), Paris, France
| | - Willem Staels
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Mark Van de Casteele
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Giovanna Marazzi
- Stem Cells and Regenerative Medicine Team, Institute of Cardiology and Nutrition, Inserm UMRS-1166, University Pierre and Marie Curie (Paris VI), Paris, France
| | - David Sassoon
- Stem Cells and Regenerative Medicine Team, Institute of Cardiology and Nutrition, Inserm UMRS-1166, University Pierre and Marie Curie (Paris VI), Paris, France
| | - Harry Heimberg
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Paola Bonfanti
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
- Institute of Child Health, University College London, 30 Guilford Street, WC1N 1EH, London, UK.
- Institute of Immunity and Transplantation, University College London, London, UK.
| |
Collapse
|
12
|
STAT3 modulates β-cell cycling in injured mouse pancreas and protects against DNA damage. Cell Death Dis 2016; 7:e2272. [PMID: 27336716 PMCID: PMC5143397 DOI: 10.1038/cddis.2016.171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/22/2022]
Abstract
Partial pancreatic duct ligation (PDL) of mouse pancreas induces a doubling of the β-cell mass mainly through proliferation of pre-existing and newly formed β-cells. The molecular mechanism governing this process is still largely unknown. Given the inflammatory nature of PDL and inflammation-induced signaling via the signal transducer and activator of transcription 3 (STAT3), the activation and the role of STAT3 in PDL-induced β-cell proliferation were investigated. Duct ligation stimulates the expression of several cytokines that can act as ligands inducing STAT3 signaling and phosphorylation in β-cells. β-Cell cycling increased by conditional β-cell-specific Stat3 knockout and decreased by STAT3 activation through administration of interleukin-6. In addition, the level of DNA damage in β-cells of PDL pancreas increased after deletion of Stat3. These data indicate a role for STAT3 in maintaining a steady state in the β-cell, by modulating its cell cycle and protection from DNA damage.
Collapse
|