1
|
Cui X, Vervaeke P, Gao Y, Opsomer L, Sun Q, Snoeck J, Devriendt B, Zhong Z, Sanders NN. Immunogenicity and biodistribution of lipid nanoparticle formulated self-amplifying mRNA vaccines against H5 avian influenza. NPJ Vaccines 2024; 9:138. [PMID: 39097672 PMCID: PMC11298010 DOI: 10.1038/s41541-024-00932-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/17/2024] [Indexed: 08/05/2024] Open
Abstract
This study reports on the immunogenicity and biodistribution of H5 hemagglutinin (HA)-based self-amplifying (sa) mRNA vaccines in mice. Four sa-mRNA vaccines encoding either a secreted full-length HA, a secreted HA head domain, a secreted HA stalk domain, or a full-length membrane-anchored HA were investigated. All vaccines elicited an adaptive immune response. However, the full-length HA sa-RNA vaccines demonstrated superior performance compared to head and stalk domain vaccines. The antibody titers positively correlated with the vaccine dose. Cellular immune responses and antigen-specific IgA antibodies in the lungs were also observed. The comparison of the sa-mRNA vaccines encoding the secreted and membrane-anchored full-length HA revealed that anchoring of the HA to the membrane significantly enhanced the antibody and cellular responses. In addition to the injection site, the intramuscularly injected sa-mRNA-LNPs were also detected in the draining lymph nodes, spleen, and to a lesser extent, in the lung, kidney, liver, and heart.
Collapse
Affiliation(s)
- Xiaole Cui
- Laboratory of Gene Therapy, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium
| | - Pieter Vervaeke
- Laboratory of Gene Therapy, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium
| | - Ya Gao
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, B-9820, Merelbeke, Belgium
| | - Lisa Opsomer
- Laboratory of Gene Therapy, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium
| | - Qing Sun
- Laboratory of Gene Therapy, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium
| | - Janne Snoeck
- Laboratory of Gene Therapy, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium
| | - Bert Devriendt
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, B-9820, Merelbeke, Belgium
| | - Zifu Zhong
- Department of Pharmaceutics, Ghent University, Ghent, Belgium.
- Cancer Research Institute (CRIG), Ghent University, 9000, Ghent, Belgium.
| | - Niek N Sanders
- Laboratory of Gene Therapy, Faculty of Veterinary Medicine, Ghent University, B-9820, Merelbeke, Belgium.
- Cancer Research Institute (CRIG), Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
2
|
Rani S, Sharma U, Deshmukh MP, Kumar V, Sharma KC, Malik M, Subramaniyan V. Immunomodulatory and AntiOxidant Potential of Polyherbal Dhatryadi Rasayana in the Form of Churna and Granules. ACS OMEGA 2024; 9:14781-14790. [PMID: 38585048 PMCID: PMC10993241 DOI: 10.1021/acsomega.3c06784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 04/09/2024]
Abstract
Dhatryadi Rasayana revitalizes the human body and helps in maintaining health with the elimination of ill effects of various diseases. The effective delivery systems for Rasayana may affect the profound effect of active principles in the body. The present study deals with investigation and evaluation of phytochemical constituents, physicochemical characteristics, along with antioxidant and immunomodulatory effects of Dhatryadi Rasayana in churna (powder) and granule formulations. Dhatryadi Rasayana churna and its granules were studied for various physicochemical parameters, e.g., moisture content, ash-value, acid-insoluble ash content, water-soluble extractive, alcohol-soluble extractive, bulk density, tapped density, angle of repose, Carr's index, Hausner's ratio, total sugar, reducing sugar, non-reducing sugar, heavy metals, total microbial load, etc. In vitro antioxidant potential of Dhatryadi Rasayana churna and its granules was determined by scavenging the DPPH and FRAP assays. The immunomodulatory activities of Dhatryadi Rasayana churna and its granules were studied in Wistar albino rats and the complete blood count (CBC), delayed-type hypersensitivity reaction (DTH), and hemagglutination antibody titer were assessed. Dhatryadi Rasayana churna contained alkaloids (0.50 ± 0.298% w/w), tannins (9.84 ± 1.527% w/w), saponins (4.18 ± 2.126% w/w), and flavonoids (9.34 ± 1.026% w/w), while its granules contained 11.08 ± 2.468% w/w total tannins, 2.40 ± 1.132% w/w alkaloids, and 12.46 ± 2.645% w/w total flavonoids. The DPPH scavenging effect was determined by IC50 (churna - 23.89 μg/mL; granules - 9.33 μg/mL), and the antioxidant capacity assessed by FRAP was 77.0 mmol/100 g equivalent of ascorbic acid for churna and 50 mmol/100 g equivalent of ascorbic acid for granules. Dhatryadi Rasayana churna and its granules reflected a significant immunostimulatory effect on both the cell-mediated and humoral immune systems in Wistar albino rats. Moreover, churna and granules of Dhatryadi Rasayana revealed significant antioxidant and immunomodulatory activities and these may be applied for treating different diseases as well as improving the immunity of the body.
Collapse
Affiliation(s)
- Sheenam Rani
- P.G.
Department of Rasa Shastra and Bhaishajya Kalpana, Rishikul Campus, Uttarakhand Ayurved University, Dehradun, Uttarakhand 249404, India
| | - Usha Sharma
- P.G.
Department of Rasa Shastra and Bhaishajya Kalpana, Rishikul Campus, Uttarakhand Ayurved University, Dehradun, Uttarakhand 249404, India
| | - Manish Purushottam Deshmukh
- Deputy
Director (Interdisciplinary Research), Datta
Meghe institute of Higher Education & Research, Sawangi, Wardha, Maharashtra 442001, India
| | - Vipin Kumar
- Department
of Pharmaceutical Sciences, Gurukul Kangri
(Deemed to be University), Haridwar, Uttarakhand 249404, India
| | - Khem Chand Sharma
- P.G.
Department of Rasa Shastra and Bhaishajya Kalpana, Rishikul Campus, Uttarakhand Ayurved University, Dehradun, Uttarakhand 249404, India
| | - Mayank
Kumar Malik
- Department
of Chemistry, Gurukul Kangri (Deemed to
be University), Haridwar, Uttarakhand 249404, India
| | - Vetriselvan Subramaniyan
- Pharmacology
Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, Selangor 47500, Malaysia
- School of
Bioengineering and Biosciences, Lovely Professional
University, Phagwara, Punjab 144001, India
| |
Collapse
|
3
|
Mahallawi WH, Khabour OF. Pandemic H1N1 influenza virus triggers a strong T helper cell response in human nasopharynx-associated lymphoid tissues. Saudi J Biol Sci 2024; 31:103941. [PMID: 38327659 PMCID: PMC10847369 DOI: 10.1016/j.sjbs.2024.103941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/13/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024] Open
Abstract
The pH1N1 belongs to influenza A family that is sometimes transmitted to humans via contact with pigs. Human tonsillar immune cells are widely used as in vitro models to study responses to influenza viruses. In the current study, human memory (M) and naïve (N) T cells responses in mononuclear cells of tonsil (TMCs) and peripheral blood (PBMCs) were stimulated by pH1N1/sH1N1, and then stained for estimation of T cells proliferation index. Individuals with an anti-pH1N1 hemagglutination (HA) inhibition (HAI) titer of forty or greater exhibited stronger HA-specific M-CD4+ T cells responses to pH1N1 in TMCs/PBMCs than those with an HAI titer of less than forty (P < 0.01). In addition, a positive correlation was observed between proliferation indices of M-CD4+ T cells induced by exposure to sH1N1/pH1N1 (p < 0.01). Moreover, a strong correlation (p < 0.001) was detected between subjects' age and their HA-specific M-CD4+ T cells induced by pH1N1 exposure, indicating that this response was age-dependent. Finally, stimulation of TMCs with pH1N1-HA resulted in a significant M-CD8+ T cells response (p < 0.05). In conclusion, pH1N1 HA elicits a strong M-CD4+ T cells response in TMCs. Additionally, this response correlates with the response to sH1N1 suggesting cross-reactivity in T cells epitopes directed against HAs of both viral strains.
Collapse
Affiliation(s)
- Waleed H. Mahallawi
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Omar F. Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
4
|
Aikawa NE, Borba EF, Balbi VA, Sallum AME, Buscatti IM, Campos LMA, Kozu KT, Garcia CC, Capão ASV, de Proença ACT, Leon EP, da Silva Duarte AJ, Lopes MH, Silva CA, Bonfá E. Safety and immunogenicity of influenza A(H3N2) component vaccine in juvenile systemic lupus erythematosus. Adv Rheumatol 2023; 63:55. [PMID: 38017564 DOI: 10.1186/s42358-023-00339-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023] Open
Abstract
INTRODUCTION Seasonal influenza A (H3N2) virus is an important cause of morbidity and mortality in the last 50 years in population that is greater than the impact of H1N1. Data assessing immunogenicity and safety of this virus component in juvenile systemic lupus erythematosus (JSLE) is lacking in the literature. OBJECTIVE To evaluate short-term immunogenicity and safety of influenza A/Singapore (H3N2) vaccine in JSLE. METHODS 24 consecutive JSLE patients and 29 healthy controls (HC) were vaccinated with influenza A/Singapore/INFIMH-16-0019/2016(H3N2)-like virus. Influenza A (H3N2) seroprotection (SP), seroconversion (SC), geometric mean titers (GMT), factor increase in GMT (FI-GMT) titers were assessed before and 4 weeks post-vaccination. Disease activity, therapies and adverse events (AE) were also evaluated. RESULTS JSLE patients and controls were comparable in current age [14.5 (10.1-18.3) vs. 14 (9-18.4) years, p = 0.448] and female sex [21 (87.5%) vs. 19 (65.5%), p = 0.108]. Before vaccination, JSLE and HC had comparable SP rates [22 (91.7%) vs. 25 (86.2%), p = 0.678] and GMT titers [102.3 (95% CI 75.0-139.4) vs. 109.6 (95% CI 68.2-176.2), p = 0.231]. At D30, JSLE and HC had similar immune response, since no differences were observed in SP [24 (100%) vs. 28 (96.6%), p = 1.000)], SC [4 (16.7%) vs. 9 (31.0%), p = 0.338), GMT [162.3 (132.9-198.3) vs. 208.1 (150.5-287.8), p = 0.143] and factor increase in GMT [1.6 (1.2-2.1) vs. 1.9 (1.4-2.5), p = 0.574]. SLEDAI-2K scores [2 (0-17) vs. 2 (0-17), p = 0.765] and therapies remained stable throughout the study. Further analysis of possible factors influencing vaccine immune response among JSLE patients demonstrated similar GMT between patients with SLEDAI < 4 compared to SLEDAI ≥ 4 (p = 0.713), as well as between patients with and without current use of prednisone (p = 0.420), azathioprine (p = 1.0), mycophenolate mofetil (p = 0.185), and methotrexate (p = 0.095). No serious AE were reported in both groups and most of them were asymptomatic (58.3% vs. 44.8%, p = 0.958). Local and systemic AE were alike in both groups (p > 0.05). CONCLUSION This is the first study that identified adequate immune protection against H3N2-influenza strain with additional vaccine-induced increment of immune response and an adequate safety profile in JSLE. ( www. CLINICALTRIALS gov , NCT03540823).
Collapse
Affiliation(s)
- Nadia Emi Aikawa
- Pediatric Rheumatology Unit, Instituto da Criança e do Adolescente, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455, 3Rd Floor, room 3190 - Cerqueira Cesar, São Paulo, SP, CEP 05403-010, Brazil.
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Eduardo Ferreira Borba
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Verena Andrade Balbi
- Pediatric Rheumatology Unit, Instituto da Criança e do Adolescente, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455, 3Rd Floor, room 3190 - Cerqueira Cesar, São Paulo, SP, CEP 05403-010, Brazil
| | - Adriana Maluf Elias Sallum
- Pediatric Rheumatology Unit, Instituto da Criança e do Adolescente, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455, 3Rd Floor, room 3190 - Cerqueira Cesar, São Paulo, SP, CEP 05403-010, Brazil
| | - Izabel Mantovani Buscatti
- Pediatric Rheumatology Unit, Instituto da Criança e do Adolescente, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455, 3Rd Floor, room 3190 - Cerqueira Cesar, São Paulo, SP, CEP 05403-010, Brazil
| | - Lucia Maria Arruda Campos
- Pediatric Rheumatology Unit, Instituto da Criança e do Adolescente, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455, 3Rd Floor, room 3190 - Cerqueira Cesar, São Paulo, SP, CEP 05403-010, Brazil
| | - Kátia Tomie Kozu
- Pediatric Rheumatology Unit, Instituto da Criança e do Adolescente, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455, 3Rd Floor, room 3190 - Cerqueira Cesar, São Paulo, SP, CEP 05403-010, Brazil
| | - Cristiana Couto Garcia
- Laboratory of Respiratory, Exanthematic Viruses, Enterovirus and Viral Emergencies, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Integrated Research Group On Biomarkers. René Rachou Institute, FIOCRUZ Minas, Belo Horizonte, MG, Brazil
| | - Artur Silva Vidal Capão
- Laboratory of Respiratory, Exanthematic Viruses, Enterovirus and Viral Emergencies, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Adriana Coracini Tonacio de Proença
- Department of Infectious and Parasitic Diseases, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Elaine Pires Leon
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Alberto José da Silva Duarte
- Clinical Laboratory Division - Department of Pathology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Marta Heloisa Lopes
- Department of Infectious and Parasitic Diseases, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Clovis Artur Silva
- Pediatric Rheumatology Unit, Instituto da Criança e do Adolescente, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455, 3Rd Floor, room 3190 - Cerqueira Cesar, São Paulo, SP, CEP 05403-010, Brazil
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Eloisa Bonfá
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
5
|
Pasoto SG, Borba EF, Formiga FFC, do Nascimento Pedrosa T, Aikawa NE, de Siqueira MAMT, Capão ASV, de Proença ACT, Fuller R, Yuki EFN, Leon EP, de Oliveira Martins VA, Lopes MH, da Silva Duarte AJ, da Silva CAA, Bonfa E. Robust immunogenicity to the H3N2 component of influenza A vaccine in primary Sjögren syndrome. Clin Rheumatol 2023; 42:2419-2425. [PMID: 37306813 DOI: 10.1007/s10067-023-06666-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Influenza A (H3N2) virus is the major cause of morbidity/mortality due to seasonal influenza over 50 years. Data about the safety/immunogenicity of influenza A/Singapore (H3N2) vaccine are scarce in primary Sjögren syndrome (pSS). METHODS Twenty-one consecutive pSS patients and 42 HC (healthy control individuals) were immunized with influenza A/Singapore/INFIMH-16-0019/2016 (H3N2)-like virus. Rates of SP (seroprotection) and SC (seroconversion), GMT (geometric mean titers), FI-GMT (factor increase in GMT), ESSDAI (EULAR Sjögren's Syndrome Disease Activity Index), and adverse events were appraised before and 4 weeks post-vaccination. RESULTS pSS and HC had similar mean age (51.2 ± 14.2 vs. 50.6 ± 12.1 years, p = 0.886). Pre-vaccination SP rates were high in pSS and HC (90.5% vs. 71.4%, p = 0.114), and GMT were higher in pSS [80.0 (52.4-160.0) vs. 40.0 (20.0-80.0), p = 0.001]. The percentage of influenza vaccination in the preceding two years was elevated and similar in pSS and HC (94.1% vs. 94.6%, p = 1.000). GMT values augmented in both groups four weeks after vaccination and persisted higher in the first group [160.0 (80.0-320.0) vs. 80.0 (40.0-80.0), p < 0.001] with equivalent FI-GMT [1.4 (1.0-2.8) vs. 1.4 (1.0-2.0), p = 0.410]. Both groups had low and similar SC rates (19.0% vs. 9.5%, p = 0.423). ESSDAI values persisted steadily during the study (p = 0.313). No serious adverse events have occurred. CONCLUSION The novel demonstration that the influenza A/Singapore (H3N2) vaccine induces a different pattern of immunogenicity from other influenza A constituents in pSS, featured by a desirable high pre- and post-vaccination immunogenicity, is in line with reported differences in immune responses between strains in trivalent vaccines and may be related to pre-existing immunity. CLINICALTRIALS gov: #NCT03540823. Key Points • This prospective study demonstrated a robust pre- and post-vaccination immunogenicity to influenza A/Singapore/INFIMH-16-0019/2016 (H3N2)-like virus in primary Sjögren's syndrome (pSS). • This high immunogenicity pattern may be related to pre-existing immunization, or else it is related to immunogenicity differences of each strain. • This vaccine had an adequate safety profile in pSS, with no impact on disease activity.
Collapse
Affiliation(s)
- Sandra Gofinet Pasoto
- Rheumatology Division, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil.
| | - Eduardo Ferreira Borba
- Rheumatology Division, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | - Francisco Fellipe Claudino Formiga
- Rheumatology Division, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | - Tatiana do Nascimento Pedrosa
- Rheumatology Division, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | - Nadia Emi Aikawa
- Rheumatology Division, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
- Pediatric Rheumatology Unit, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | | | - Artur Silva Vidal Capão
- Laboratory of Respiratory Virus and Measles, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Adriana Coracini Tonacio de Proença
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | - Ricardo Fuller
- Rheumatology Division, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | - Emily Figueiredo Neves Yuki
- Rheumatology Division, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | - Elaine Pires Leon
- Rheumatology Division, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | - Victor Adriano de Oliveira Martins
- Rheumatology Division, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | - Marta Heloisa Lopes
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | - Alberto José da Silva Duarte
- Clinical Laboratory Division, Department of Pathology, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | - Clovis Artur Almeida da Silva
- Pediatric Rheumatology Unit, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | - Eloisa Bonfa
- Rheumatology Division, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| |
Collapse
|
6
|
Beicht J, Kubinski M, Zdora I, Puff C, Biermann J, Gerlach T, Baumgärtner W, Sutter G, Osterhaus ADME, Prajeeth CK, Rimmelzwaan GF. Induction of humoral and cell-mediated immunity to the NS1 protein of TBEV with recombinant Influenza virus and MVA affords partial protection against lethal TBEV infection in mice. Front Immunol 2023; 14:1177324. [PMID: 37483628 PMCID: PMC10360051 DOI: 10.3389/fimmu.2023.1177324] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Tick-borne encephalitis virus (TBEV) is one of the most relevant tick-transmitted neurotropic arboviruses in Europe and Asia and the causative agent of tick-borne encephalitis (TBE). Annually more than 10,000 TBE cases are reported despite having vaccines available. In Europe, the vaccines FSME-IMMUN® and Encepur® based on formaldehyde-inactivated whole viruses are licensed. However, demanding vaccination schedules contribute to sub-optimal vaccination uptake and breakthrough infections have been reported repeatedly. Due to its immunogenic properties as well as its role in viral replication and disease pathogenesis, the non-structural protein 1 (NS1) of flaviviruses has become of interest for non-virion based flavivirus vaccine candidates in recent years. Methods Therefore, immunogenicity and protective efficacy of TBEV NS1 expressed by neuraminidase (NA)-deficient Influenza A virus (IAV) or Modified Vaccinia virus Ankara (MVA) vectors were investigated in this study. Results With these recombinant viral vectors TBEV NS1-specific antibody and T cell responses were induced. Upon heterologous prime/boost regimens partial protection against lethal TBEV challenge infection was afforded in mice. Discussion This supports the inclusion of NS1 as a vaccine component in next generation TBEV vaccines.
Collapse
Affiliation(s)
- Jana Beicht
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Mareike Kubinski
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience, Hannover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jeannine Biermann
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Thomas Gerlach
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience, Hannover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hannover, Germany
| | - Gerd Sutter
- Division of Virology, Institute for Infectious Diseases and Zoonoses, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Albert D. M. E. Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Chittappen Kandiyil Prajeeth
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
7
|
Hemann EA, Knoll ML, Wilkins CR, Subra C, Green R, García-Sastre A, Thomas PG, Trautmann L, Ireton RC, Loo YM, Gale M. A Small Molecule RIG-I Agonist Serves as an Adjuvant to Induce Broad Multifaceted Influenza Virus Vaccine Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1247-1256. [PMID: 36939421 PMCID: PMC10149148 DOI: 10.4049/jimmunol.2300026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/10/2023] [Indexed: 03/21/2023]
Abstract
Retinoic acid-inducible gene I (RIG-I) is essential for activating host cell innate immunity to regulate the immune response against many RNA viruses. We previously identified that a small molecule compound, KIN1148, led to the activation of IFN regulatory factor 3 (IRF3) and served to enhance protection against influenza A virus (IAV) A/California/04/2009 infection. We have now determined direct binding of KIN1148 to RIG-I to drive expression of IFN regulatory factor 3 and NF-κB target genes, including specific immunomodulatory cytokines and chemokines. Intriguingly, KIN1148 does not lead to ATPase activity or compete with ATP for binding but activates RIG-I to induce antiviral gene expression programs distinct from type I IFN treatment. When administered in combination with a vaccine against IAV, KIN1148 induces both neutralizing Ab and IAV-specific T cell responses compared with vaccination alone, which induces comparatively poor responses. This robust KIN1148-adjuvanted immune response protects mice from lethal A/California/04/2009 and H5N1 IAV challenge. Importantly, KIN1148 also augments human CD8+ T cell activation. Thus, we have identified a small molecule RIG-I agonist that serves as an effective adjuvant in inducing noncanonical RIG-I activation for induction of innate immune programs that enhance adaptive immune protection of antiviral vaccination.
Collapse
Affiliation(s)
- Emily A. Hemann
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Megan L. Knoll
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - Courtney R. Wilkins
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - Caroline Subra
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, and the U.S. Military HIV Research Program, Bethesda, Maryland, USA
| | - Richard Green
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Department of Medicine, Division of Infectious Diseases, Department of Pathology, Molecular and Cell-Based Medicine, The Tisch Cancer Institute, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Lydie Trautmann
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, and the U.S. Military HIV Research Program, Bethesda, Maryland, USA
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Renee C. Ireton
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - Yueh-Ming Loo
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Makau DN, Prieto C, Martínez-Lobo FJ, Paploski IAD, VanderWaal K. Predicting Antigenic Distance from Genetic Data for PRRSV-Type 1: Applications of Machine Learning. Microbiol Spectr 2023; 11:e0408522. [PMID: 36511691 PMCID: PMC9927307 DOI: 10.1128/spectrum.04085-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
The control of porcine reproductive and respiratory syndrome (PRRS) remains a significant challenge due to the genetic and antigenic variability of the causative virus (PRRSV). Predominantly, PRRSV management includes using vaccines and live virus inoculations to confer immunity against PRRSV on farms. While understanding cross-protection among strains is crucial for the continued success of these interventions, understanding how genetic diversity translates to antigenic diversity remains elusive. We developed machine learning algorithms to estimate antigenic distance in silico, based on genetic sequence data, and identify differences in specific amino acid sites associated with antigenic differences between viruses. First, we obtained antigenic distance estimates derived from serum neutralization assays cross-reacting PRRSV monospecific antisera with virus isolates from 27 PRRSV1 viruses circulating in Europe. Antigenic distances were weakly to moderately associated with ectodomain amino acid distance for open reading frames (ORFs) 2 to 4 (ρ < 0.2) and ORF5 (ρ = 0.3), respectively. Dividing the antigenic distance values at the median, we then categorized the sera-virus pairs into two levels: low and high antigenic distance (dissimilarity). In the machine learning models, we used amino acid distances in the ectodomains of ORFs 2 to 5 and site-wise amino acid differences between the viruses as potential predictors of antigenic dissimilarity. Using mixed-effect gradient boosting models, we estimated the antigenic distance (high versus low) between serum-virus pairs with an accuracy of 81% (95% confidence interval, 76 to 85%); sensitivity and specificity were 86% and 75%, respectively. We demonstrate that using sequence data we can estimate antigenic distance and potential cross-protection between PRRSV1 strains. IMPORTANCE Understanding cross-protection between cocirculating PRRSV1 strains is crucial to reducing losses associated with PRRS outbreaks on farms. While experimental studies to determine cross-protection are instrumental, these in vivo studies are not always practical or timely for the many cocirculating and emerging PRRSV strains. In this study, we demonstrate the ability to rapidly estimate potential immunologic cross-reaction between different PRRSV1 strains in silico using sequence data routinely collected by production systems. These models can provide fast turn-around information crucial for improving PRRS management decisions such as selecting vaccines/live virus inoculation to be used on farms and assessing the risk of outbreaks by emerging strains on farms previously exposed to certain PRRSV strains and vaccine development among others.
Collapse
Affiliation(s)
- Dennis N. Makau
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, USA
| | - Cinta Prieto
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | - I. A. D. Paploski
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, USA
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, USA
| |
Collapse
|
9
|
Haralambieva IH, Quach HQ, Ovsyannikova IG, Goergen KM, Grill DE, Poland GA, Kennedy RB. T Cell Transcriptional Signatures of Influenza A/H3N2 Antibody Response to High Dose Influenza and Adjuvanted Influenza Vaccine in Older Adults. Viruses 2022; 14:2763. [PMID: 36560767 PMCID: PMC9786771 DOI: 10.3390/v14122763] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Older adults experience declining influenza vaccine-induced immunity and are at higher risk of influenza and its complications. For this reason, high dose (e.g., Fluzone) and adjuvanted (e.g., Fluad) vaccines are preferentially recommended for people age 65 years and older. However, T cell transcriptional activity shaping the humoral immune responses to Fluzone and Fluad vaccines in older adults is still poorly understood. We designed a study of 234 older adults (≥65 years old) who were randomly allocated to receive Fluzone or Fluad vaccine and provided blood samples at baseline and at Day 28 after immunization. We measured the humoral immune responses (hemagglutination inhibition/HAI antibody titer) to influenza A/H3N2 and performed mRNA-Seq transcriptional profiling in purified CD4+ T cells, in order to identify T cell signatures that might explain differences in humoral immune response by vaccine type. Given the large differences in formulation (higher antigen dose vs adjuvant), our hypothesis was that each vaccine elicited a distinct transcriptomic response after vaccination. Thus, the main focus of our study was to identify the differential gene expression influencing the antibody titer in the two vaccine groups. Our analyses identified three differentially expressed, functionally linked genes/proteins in CD4+ T cells: the calcium/calmodulin dependent serine/threonine kinase IV (CaMKIV); its regulator the TMEM38B/transmembrane protein 38B, involved in maintenance of intracellular Ca2+ release; and the transcriptional coactivator CBP/CREB binding protein, as regulators of transcriptional activity/function in CD4+ T cells that impact differences in immune response by vaccine type. Significantly enriched T cell-specific pathways/biological processes were also identified that point to the importance of genes/proteins involved in Th1/Th2 cell differentiation, IL-17 signaling, calcium signaling, Notch signaling, MAPK signaling, and regulation of TRP cation Ca2+ channels in humoral immunity after influenza vaccination. In summary, we identified the genes/proteins and pathways essential for cell activation and function in CD4+ T cells that are associated with differences in influenza vaccine-induced humoral immunity by vaccine type. These findings provide an additional mechanistic perspective for achieving protective immunity in older adults.
Collapse
Affiliation(s)
| | - Huy Quang Quach
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Krista M. Goergen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Diane E. Grill
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory A. Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard B. Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
10
|
Guo W, Wu D, Li L, Ding S, Meydani SN. Obesity, rather than high fat diet, exacerbates the outcome of influenza virus infection in influenza-sensitized mice. Front Nutr 2022; 9:1018831. [PMID: 36337627 PMCID: PMC9631825 DOI: 10.3389/fnut.2022.1018831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/07/2022] [Indexed: 11/21/2022] Open
Abstract
Introduction Obesity is associated with impaired immune function and increased susceptibility to infection. High fat (HF) diet-induced obesity is a commonly used animal model. However, HF diet itself is known to affect immune function and infection. Thus, it is not discernable which one, HF diet or adiposity, is the major contributor to the observed impairment in immunity and susceptibility to infection in HF diet-induced obesity. We hypothesized that obesity is a major contributor to impaired immune function. Methods and results Weight-matched outbred female CD-1 mice (1-mo) were randomly assigned to either a HF (45%) or a low fat (LF, 10%) diet group. Ten week after feeding their respective diets, weight gain in the mice fed the HF diet varied greatly. Thus, based on the average body weight, mice in HF diet group were divided into two sub-groups: HF lean (HF-L) and HF obese (HF-O). After 25-week, mice were immunized with an influenza A/Puerto Rico/8/34 vaccine and boosted 3-week later. Five week after the booster, mice were infected with influenza A/Puerto Rico/8/34 virus, and body weight was recorded daily for 1 month. HF-O mice exhibited significant weight loss after influenza virus challenge compared to LF and HF-L mice while LF and HF-L mice largely maintained their weight to a similar extent. Conclusion Our findings suggest that obesity, rather than HF diet, per se, may impair the efficacy of influenza vaccination.
Collapse
Affiliation(s)
- Weimin Guo
- Nutritional Immunology Laboratory, JM USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
- *Correspondence: Weimin Guo,
| | - Dayong Wu
- Nutritional Immunology Laboratory, JM USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| | - Lijun Li
- Nutritional Immunology Laboratory, JM USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| | - Samuel Ding
- Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
| | - Simin Nikbin Meydani
- Nutritional Immunology Laboratory, JM USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| |
Collapse
|
11
|
Tian Y, Liu Y, Wang Q, Wen J, Wu Y, Han J, Man C. Stress-Induced Immunosuppression Affects Immune Response to Newcastle Disease Virus Vaccine via Circulating miRNAs. Animals (Basel) 2022; 12:ani12182376. [PMID: 36139236 PMCID: PMC9495071 DOI: 10.3390/ani12182376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Circulating miRNAs play important roles in immune response and stress-induced immunosuppression, but the function and mechanism of stress-induced immunosuppression affecting the NDV vaccine immune response remain unknown. In our study, key timepoints, functions, mechanisms, and potential biomarkers of circulating miRNAs involved in immune response and immunosuppression were discovered, providing a theoretical basis for studying the roles of circulating miRNAs in immune regulation. Abstract Studies have shown that circulating microRNAs (miRNAs) are important players in the immune response and stress-induced immunosuppression. However, the function and mechanism of stress-induced immunosuppression affecting the immune response to the Newcastle disease virus (NDV) vaccine remain largely unknown. This study analyzed the changes of 15 NDV-related circulating miRNAs at different immune stages by qRT-PCR, aiming to explore the key timepoints, potential biomarkers, and mechanisms for the functional regulation of candidate circulating miRNAs under immunosuppressed conditions. The results showed that stress-induced immunosuppression induced differential expressions of the candidate circulating miRNAs, especially at 2 days post immunization (dpi), 14 dpi, and 28 dpi. In addition, stress-induced immunosuppression significantly affected the immune response to NDV vaccine, which was manifested by significant changes in candidate circulating miRNAs at 2 dpi, 5 dpi, and 21 dpi. The featured expressions of candidate circulating miRNAs indicated their potential application as biomarkers in immunity and immunosuppression. Bioinformatics analysis revealed that the candidate circulating miRNAs possibly regulated immune function through key targeted genes, such as Mg2+/Mn2+-dependent 1A (PPM1A) and Nemo-like kinase (NLK), in the MAPK signaling pathway. This study provides a theoretical reference for studying the function and mechanism of circulating miRNAs in immune regulation.
Collapse
|
12
|
Stress-induced immunosuppression affecting avian influenza virus vaccine immune response through miR-20a-5p/NR4A3 pathway in chicken. Vet Microbiol 2022; 273:109546. [PMID: 35994844 DOI: 10.1016/j.vetmic.2022.109546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 01/10/2023]
Abstract
Stress-induced immunosuppression is one of the most common hazards in poultry intensive production, which often leads to vaccination failure and severe economic losses. At present, there is no report about the function and mechanism of circulating miRNA on stress-induced immunosuppression affecting immune response. In this study, the changes of circulating miR-20a-5p under stress-induced immunosuppressive condition were analyzed by qRT-PCR, and the key time points, tissues and mechanisms for functional regulation of miR-20a-5p in the process of stress-induced immunosuppression affecting avian influenza virus (AIV) vaccine immune response were identified. The results showed that stress-induced immunosuppression down-regulated miR-20a-5p and further affected AIV vaccine immune response, in which 5 day post immunization (dpi) was a key time point, and the heart, lung, and proventriculus were the important tissues. The game relationship analysis between miR-20a-5p and its target nuclear receptor subfamily 4 group A member 3 (NR4A3) gene showed that "miR-20a-5p/NR4A3" pathway was the potential key mechanism of this process, especially for heart and lung. This study provides insights into the molecular mechanisms of stress-induced immunosuppression affecting immune response.
Collapse
|
13
|
Adam L, Müller E, Ludwig K, Klenk S, Lauster D, Liese S, Herrmann A, Hackenberger CPR. Design and Functional Analysis of Heterobifunctional Multivalent Phage Capsid Inhibitors Blocking the Entry of Influenza Virus. Bioconjug Chem 2022; 33:1269-1278. [PMID: 35759354 PMCID: PMC9305970 DOI: 10.1021/acs.bioconjchem.2c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
Multiple conjugation
of virus-binding ligands to multivalent carriers
is a prominent strategy to construct highly affine virus binders for
the inhibition of viral entry into host cells. In a previous study,
we introduced rationally designed sialic acid conjugates of bacteriophages
(Qβ) that match the triangular binding site geometry on hemagglutinin
spike proteins of influenza A virions, resulting in effective infection
inhibition in vitro and in vivo.
In this work, we demonstrate that even partially sialylated Qβ
conjugates retain the inhibitory effect despite reduced activity.
These observations not only support the importance of trivalent binding
events in preserving high affinity, as supported by computational
modeling, but also allow us to construct heterobifunctional modalities.
Capsids carrying two different sialic acid ligand–linker structures
showed higher viral inhibition than their monofunctional counterparts.
Furthermore, capsids carrying a fluorescent dye in addition to sialic
acid ligands were used to track their interaction with cells. These
findings support exploring broader applications as multivalent inhibitors
in the future.
Collapse
Affiliation(s)
- Lutz Adam
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Street 2, 12489 Berlin, Germany
| | - Eva Müller
- Institut für translationale HIV Forschung, Universitätsklinikum Essen, Virchowstree 171, 45147 Essen, Germany
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie und Gerätezentrum BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin 14195, Germany
| | - Simon Klenk
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Street 2, 12489 Berlin, Germany
| | - Daniel Lauster
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Susanne Liese
- Max-Planck Institute for the Physics of Complex Systems, Nöthnitzer Street 38, Dresden 01187, Germany.,Institut für Physik, Universität Augsburg, Augsburg 86159, Germany
| | - Andreas Herrmann
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Street 2, 12489 Berlin, Germany
| |
Collapse
|
14
|
Sun YX, Li ZR, Zhang PJ, Han JH, Di HY, Qin JY, Cong YL. A Single Vaccination of Chimeric Bivalent Virus-Like Particle Vaccine Confers Protection Against H9N2 and H3N2 Avian Influenza in Commercial Broilers and Allows a Strategy of Differentiating Infected from Vaccinated Animals. Front Immunol 2022; 13:902515. [PMID: 35874682 PMCID: PMC9304867 DOI: 10.3389/fimmu.2022.902515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
H9N2 and H3N2 are the two most important subtypes of low pathogenic avian influenza viruses (LPAIV) because of their ongoing threat to the global poultry industry and public health. Although commercially available inactivated H9N2 vaccines are widely used in the affected countries, endemic H9N2 avian influenza remains uncontrolled. In addition, there is no available avian H3N2 vaccine. Influenza virus-like particles (VLPs) are one of the most promising vaccine alternatives to traditional egg-based vaccines. In this study, to increase the immunogenic content of VLPs to reduce production costs, we developed chimeric bivalent VLPs (cbVLPs) co-displaying hemagglutinin (HA) and neuraminidase (NA) of H9N2 and H3N2 viruses with the Gag protein of bovine immunodeficiency virus (BIV) as the inner core using the Bac-to-Bac baculovirus expression system. The results showed that a single immunization of chickens with 40μg/0.3mL cbVLPs elicited an effective immune response and provided complete protection against H9N2 and H3N2 viruses. More importantly, cbVLPs with accompanying serological assays can successfully accomplish the strategy of differentiating infected animals from vaccinated animals (DIVA), making virus surveillance easier. Therefore, this cbVLP vaccine candidate would be a promising alternative to conventional vaccines, showing great potential for commercial development.
Collapse
Affiliation(s)
- Yi-xue Sun
- Laboratory of Infectious Diseases, College of Veterinary Medicine; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
- Jilin Research and Development Center of Biomedical Engineering, Changchun University, Changchun, China
| | - Zheng-rong Li
- Laboratory of Infectious Diseases, College of Veterinary Medicine; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Peng-ju Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Yan-long Cong, ; orcid.org/0000-0001-9497-4882
| | - Jin-hong Han
- Laboratory of Infectious Diseases, College of Veterinary Medicine; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Hai-yang Di
- Department of Disease Prevention and Control, Zoological and Botanical Garden of Changchun, Changchun, China
| | - Jia-yi Qin
- Laboratory of Infectious Diseases, College of Veterinary Medicine; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Yan-long Cong
- Laboratory of Infectious Diseases, College of Veterinary Medicine; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
- *Correspondence: Yan-long Cong, ; orcid.org/0000-0001-9497-4882
| |
Collapse
|
15
|
Robinson E, Schulein C, Jacobson BT, Jones K, Sago J, Huber V, Jutila M, Bimczok D, Rynda-Apple A. Pathophysiology of Influenza D Virus Infection in Specific-Pathogen-Free Lambs with or without Prior Mycoplasma ovipneumoniae Exposure. Viruses 2022; 14:1422. [PMID: 35891403 PMCID: PMC9321583 DOI: 10.3390/v14071422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Polymicrobial pneumonias occur frequently in cattle, swine, and sheep, resulting in major economic losses. Individual pathogens comprising these complex infections may be mild on their own but can instead exhibit synergism or increase host susceptibility. Two examples of such pathogens, Mycoplasma ovipneumoniae (M. ovipneumoniae) and influenza D viruses (IDVs), naturally infect domestic sheep. In sheep, the role of M. ovipneumoniae in chronic nonprogressive pneumonia is well-established, but the pathogenesis of IDV infection has not previously been studied. We utilized a specific-pathogen-free sheep flock to study the clinical response to IDV infection in naïve vs. M. ovipneumoniae-exposed lambs. Lambs were inoculated intranasally with M. ovipneumoniae or mock infection, followed after four weeks by infection with IDV. Pathogen shedding was tracked, and immunological responses were evaluated by measuring acute phase response and IDV-neutralizing antibody titers. While lamb health statuses remained subclinical, M. ovipneumoniae-exposed lambs had significantly elevated body temperatures during IDV infection compared to M. ovipneumoniae-naïve, IDV-infected lambs. Moreover, we found a positive correlation between prior M. ovipneumoniae burden, early-infection IDV shedding, and IDV-neutralizing antibody response. Our findings suggest that IDV infection may not induce clinical symptoms in domestic sheep, but previous M. ovipneumoniae exposure may promote mild IDV-associated inflammation.
Collapse
Affiliation(s)
- Ema Robinson
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Clyde Schulein
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - B. Tegner Jacobson
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Kerri Jones
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Jonathon Sago
- Montana State Veterinary Diagnostic Laboratory, 1911 West Lincoln Street, Bozeman, MT 59718, USA;
| | - Victor Huber
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA;
| | - Mark Jutila
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Diane Bimczok
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Agnieszka Rynda-Apple
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| |
Collapse
|
16
|
Investigation of Avian Influenza H5N6 Virus-like Particles as a Broad-Spectrum Vaccine Candidate against H5Nx Viruses. Viruses 2022; 14:v14050925. [PMID: 35632667 PMCID: PMC9143382 DOI: 10.3390/v14050925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) clade 2.3.4.4 viruses have been reported to be the source of infections in several outbreaks in the past decades. In a previous study, we screened out a broad-spectrum virus strain, H5N6-Sichuan subtype, by using a lentiviral pseudovirus system. In this project, we aimed to investigate the potential of H5N6 virus-like particles (VLPs) serving as a broad-spectrum vaccine candidate against H5Nx viruses. We cloned the full-length M1 gene and H5, N6 genes derived from the H5N6-Sichuan into pFASTBac vector and generated the VLPs using the baculovirus-insect cell system. H5N6 VLPs were purified by sucrose gradient centrifugation, and the presence of H5, N6 and M1 proteins was verified by Western blot and SDS-PAGE. The hemagglutination titer of H5N6 VLPs after purification reached 5120 and the particle structure remained as viewed by electron microscopy. The H5N6 VLPs and 293T mammalian cell-expressed H5+N6 proteins were sent for mice immunization. Antisera against the H5+N6 protein showed 80 to 320 neutralizing antibody titers to various H5Nx pseudoviruses. In contrast, H5N6 VLPs not only elicited higher neutralizing antibody titers, ranging from 640 to 1280, but also induced higher IL-2, IL-4, IL-5, IFN-γ and TNF production, thus indicating that H5N6 VLPs may be a potential vaccine candidate for broad-spectrum H5Nx avian influenza vaccines.
Collapse
|
17
|
Labombarde JG, Pillai MR, Wehenkel M, Lin CY, Keating R, Brown SA, Crawford JC, Brice DC, Castellaw AH, Mandarano AH, Guy CS, Mejia JR, Lewis CD, Chang TC, Oshansky CM, Wong SS, Webby RJ, Yan M, Li Q, Marion TN, Thomas PG, McGargill MA. Induction of broadly reactive influenza antibodies increases susceptibility to autoimmunity. Cell Rep 2022; 38:110482. [PMID: 35263574 PMCID: PMC9036619 DOI: 10.1016/j.celrep.2022.110482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/19/2022] [Accepted: 02/11/2022] [Indexed: 11/03/2022] Open
Abstract
Infection and vaccination repeatedly expose individuals to antigens that are conserved between influenza virus subtypes. Nevertheless, antibodies recognizing variable influenza epitopes greatly outnumber antibodies reactive against conserved epitopes. Elucidating factors contributing to the paucity of broadly reactive influenza antibodies remains a major obstacle for developing a universal influenza vaccine. Here, we report that inducing broadly reactive influenza antibodies increases autoreactive antibodies in humans and mice and exacerbates disease in four distinct models of autoimmune disease. Importantly, transferring broadly reactive influenza antibodies augments disease in the presence of inflammation or autoimmune susceptibility. Further, broadly reactive influenza antibodies spontaneously arise in mice with defects in B cell tolerance. Together, these data suggest that self-tolerance mechanisms limit the prevalence of broadly reactive influenza antibodies, which can exacerbate disease in the context of additional risk factors.
Collapse
Affiliation(s)
- Jocelyn G. Labombarde
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,These authors contributed equally
| | - Meenu R. Pillai
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,These authors contributed equally
| | - Marie Wehenkel
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,These authors contributed equally
| | - Chun-Yang Lin
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rachael Keating
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Scott A. Brown
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - David C. Brice
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ashley H. Castellaw
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | | - Clifford S. Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Juan R. Mejia
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Carlessia D. Lewis
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Christine M. Oshansky
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Sook-San Wong
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Present address: Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, P.R. China,Present address: State Key Laboratory of Respiratory Diseases & National Clinical Research Center for Respiratory Disease, Guangzhou, P.R. China,Present address: School of Public Health, The University of Hong Kong, Hong Kong SAR, P.R. China
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mei Yan
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Quan–Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tony N. Marion
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Maureen A. McGargill
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Lead contact,Correspondence:
| |
Collapse
|
18
|
Park SJ, Kang YM, Cho HK, Kim DY, Kim S, Bae Y, Kim J, Kim G, Lee YJ, Kang HM. Cross-protective efficacy of inactivated whole influenza vaccines against Korean Y280 and Y439 lineage H9N2 viruses in mice. Vaccine 2021; 39:6213-6220. [PMID: 34556363 DOI: 10.1016/j.vaccine.2021.09.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022]
Abstract
Since June 2020, the Y280 lineage H9N2 virus, which is distinct from the previously endemic Y439 lineage, has been circulating in poultry in Korea. In this study, we developed two whole inactivated vaccines, rgHS314 and vac564, against the Y280 and Y439 lineages, respectively, and evaluated their immunogenicity and protective efficacy against homologous or heterologous viral challenge in mice. Serum neutralizing antibody titers in the rgHS314-vaccinated group were higher (68 ± 8.4 10log2) than in the vac564-vaccinated group (18 ± 8.4 10log2). In homologous challenge, rgHS314 conferred 100% protection, with no severe clinical signs, no body weight loss, and no viral replication in any tissues tested except the nasal turbinate. Viral replication in the lungs at 1, 3, 5, and 7 days post-infection (dpi) was significantly lower than in the sham group (p < 0.01). By contrast, all mice in the sham group were dead by 8 dpi with severe clinical signs and weight loss. Likewise, vac564 conferred 100% protection with no weight loss and with significantly lower viral replication in the lung than in the sham group at 3 dpi (p < 0.01). However, both vaccines showed partial protection in heterologous challenge. Our results suggest that both the rgHS314 and vac564 vaccines could be candidate vaccines for further evaluation in humans.
Collapse
Affiliation(s)
- Seo-Jeong Park
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Yong-Myung Kang
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Hyun-Kyu Cho
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Do-Young Kim
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Sungyeop Kim
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Youchan Bae
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Jongho Kim
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Gyeongyeob Kim
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Youn-Jeong Lee
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Hyun-Mi Kang
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea.
| |
Collapse
|
19
|
Liu Y, Strohmeier S, González-Domínguez I, Tan J, Simon V, Krammer F, García-Sastre A, Palese P, Sun W. Mosaic Hemagglutinin-Based Whole Inactivated Virus Vaccines Induce Broad Protection Against Influenza B Virus Challenge in Mice. Front Immunol 2021; 12:746447. [PMID: 34603333 PMCID: PMC8481571 DOI: 10.3389/fimmu.2021.746447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/31/2021] [Indexed: 01/04/2023] Open
Abstract
Influenza viruses undergo antigenic changes in the immuno-dominant hemagglutinin (HA) head domain, necessitating annual re-formulation of and re-vaccination with seasonal influenza virus vaccines for continuing protection. We previously synthesized mosaic HA (mHA) proteins of influenza B viruses which redirect the immune response towards the immuno-subdominant conserved epitopes of the HA via sequential immunization. As ~90% of current influenza virus vaccines are manufactured using the inactivated virus platform, we generated and sequentially vaccinated mice with inactivated influenza B viruses displaying either the homologous (same B HA backbones) or the heterologous (different B HA backbones) mosaic HAs. Both approaches induced long-lasting and cross-protective antibody responses showing strong antibody-dependent cellular cytotoxicity (ADCC) activity. We believe the B virus mHA vaccine candidates represent a major step towards a universal influenza B virus vaccine.
Collapse
Affiliation(s)
- Yonghong Liu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Irene González-Domínguez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jessica Tan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
20
|
Nuwarda RF, Alharbi AA, Kayser V. An Overview of Influenza Viruses and Vaccines. Vaccines (Basel) 2021; 9:1032. [PMID: 34579269 PMCID: PMC8473132 DOI: 10.3390/vaccines9091032] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 01/12/2023] Open
Abstract
Influenza remains one of the major public health concerns because it causes annual epidemics and can potentially instigate a global pandemic. Numerous countermeasures, including vaccines and antiviral treatments, are in use against seasonal influenza infection; however, their effectiveness has always been discussed due to the ongoing resistance to antivirals and relatively low and unpredictable efficiency of influenza vaccines compared to other vaccines. The growing interest in vaccines as a promising approach to prevent and control influenza may provide alternative vaccine development options with potentially increased efficiency. In addition to currently available inactivated, live-attenuated, and recombinant influenza vaccines on the market, novel platforms such as virus-like particles (VLPs) and nanoparticles, and new vaccine formulations are presently being explored. These platforms provide the opportunity to design influenza vaccines with improved properties to maximize quality, efficacy, and safety. The influenza vaccine manufacturing process is also moving forward with advancements relating to egg- and cell-based production, purification processes, and studies into the physicochemical attributes and vaccine degradation pathways. These will contribute to the design of more stable, optimized vaccine formulations guided by contemporary analytical testing methods and via the implementation of the latest advances in the field.
Collapse
Affiliation(s)
| | | | - Veysel Kayser
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Sydney, NSW 2006, Australia; (R.F.N.); (A.A.A.)
| |
Collapse
|
21
|
Yeo SJ, Hoang VT, Duong TB, Nguyen NM, Tuong HT, Azam M, Sung HW, Park H. Emergence of a Novel Reassortant H5N3 Avian Influenza Virus in Korean Mallard Ducks in 2018. Intervirology 2021; 65:1-16. [PMID: 34438407 DOI: 10.1159/000517057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 04/29/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The avian influenza (AI) virus causes a highly contagious disease which is common in wild and domestic birds and sporadic in humans. Mutations and genetic reassortments among the 8 negative-sense RNA segments of the viral genome alter its pathogenic potential, demanding well-targeted, active surveillance for infection control. METHODS Wild duck fecal samples were collected during the 2018 bird health annual surveillance in South Korea for tracking variations of the AI virus. One low-pathogenic avian influenza H5N3 reassortment virus (A/mallard duck/South Korea/KNU18-91/2018 [H5N3]) was isolated and genomically characterized by phylogenetic and molecular analyses in this study. RESULTS It was devoid of polybasic amino acids at the hemagglutinin (HA) cleavage site and exhibited a stalk region without deletion in the neuraminidase (NA) gene and NA inhibitor resistance-linked E/D627K/N and D701N marker mutations in the PB2 gene, suggesting its low-pathogenic AI. It showed a potential of a reassortment where only HA originated from the H5N3 poultry virus of China and other genes were derived from Mongolia. In phylogenetic analysis, HA was different from that of the isolate of H5N3 in Korea, 2015. In addition, this novel virus showed adaptation in Madin-Darby canine kidney cells, with 8.05 ± 0.14 log10 50% tissue culture infectious dose (TCID50) /mL at 36 h postinfection. However, it could not replicate in mice well, showing positive growth at 3 days postinfection (dpi) (2.1 ± 0.13 log10 TCID50/mL) but not at 6 dpi. CONCLUSIONS The HA antigenic relationship of A/mallard duck/South Korea/KNU18-91/2018 (H5N3) showed differences toward one of the old low-pathogenic H5N3 viruses in Korea. These results indicated that a novel reassortment low-pathogenic avian influenza H5N3 subtype virus emerged in South Korea in 2018 via novel multiple reassortments with Eurasian viruses, rather than one of old Korean H5N3 strains.
Collapse
Affiliation(s)
- Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul, Republic of Korea,
| | - Vui Thi Hoang
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Tuan Bao Duong
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Ngoc Minh Nguyen
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Hien Thi Tuong
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Mudsser Azam
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Haan Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyun Park
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
22
|
Abreu RB, Kirchenbaum GA, Sautto GA, Clutter EF, Ross TM. Impaired memory B-cell recall responses in the elderly following recurrent influenza vaccination. PLoS One 2021; 16:e0254421. [PMID: 34351920 PMCID: PMC8341655 DOI: 10.1371/journal.pone.0254421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/25/2021] [Indexed: 01/13/2023] Open
Abstract
Influenza is a highly contagious viral respiratory disease that affects million of people worldwide each year. Annual vaccination is recommended by the World Health Organization with the goal of reducing influenza severity and limiting transmission through elicitation of antibodies targeting the hemagglutinin (HA) glycoprotein. The antibody response elicited by current seasonal influenza virus vaccines is predominantly strain-specific, but pre-existing influenza virus immunity can greatly impact the serological antibody response to vaccination. However, it remains unclear how B cell memory is shaped by recurrent annual vaccination over the course of multiple seasons, especially in high-risk elderly populations. Here, we systematically profiled the B cell response in young adult (18-34 year old) and elderly (65+ year old) vaccine recipients that received annual split inactivated influenza virus vaccination for 3 consecutive seasons. Specifically, the antibody serological and memory B-cell compartments were profiled for reactivity against current and historical influenza A virus strains. Moreover, multiparametric analysis and antibody landscape profiling revealed a transient increase in strain-specific antibodies in the elderly, but with an impaired recall response of pre-existing memory B-cells, plasmablast (PB) differentiation and long-lasting serological changes. This study thoroughly profiles and compares the immune response to recurrent influenza virus vaccination in young and elderly participants unveiling the pitfalls of current influenza virus vaccines in high-risk populations.
Collapse
Affiliation(s)
- Rodrigo B. Abreu
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
| | - Greg A. Kirchenbaum
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Giuseppe A. Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
| | - Emily F. Clutter
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
23
|
Abstract
BACKGROUND Growing evidence suggests that sleep plays an important role in immunological memory, including antibody responses to vaccination. However, much of the prior research has been carried out in the laboratory limiting the generalizability of the findings. Furthermore, no study has sought to identify sensitive periods prior to or after vaccination where sleep may have a stronger influence on antibody responses. METHODS Eighty-three healthy young adults completed 13 days of sleep diaries and received the trivalent influenza vaccine on day 3 of the study. Measures of self-reported sleep duration, sleep efficiency, and subjective sleep quality were assessed on each day. Antibody levels to the influenza viral strains were quantified at baseline and 1 and 4 months following influenza vaccination. RESULTS Shorter sleep duration, averaged over the collection period, was associated with fewer antibodies to the A/New Caledonia viral strain 1 and 4 months later, independent of baseline antibodies, age, sex, and cohort year. Analyses focused on nightly sleep on the days preceding and after the vaccination revealed that shorter sleep duration on the two nights before the vaccination predicted fewer antibodies 1 and 4 months later. Measures of self-reported sleep efficiency and subjective quality were unrelated to antibody responses to the influenza vaccination. CONCLUSION These findings provide further support for an association between sleep duration and antibody responses to the influenza vaccine and suggest that perhaps sleep on nights prior to vaccination are critical. If replicated, these findings may support sleep as a target for enhancing vaccination efficacy.
Collapse
|
24
|
Walther C, Döring K, Schmidtke M. Comparative in vitro analysis of inhibition of rhinovirus and influenza virus replication by mucoactive secretolytic agents and plant extracts. BMC Complement Med Ther 2020; 20:380. [PMID: 33357221 PMCID: PMC7757078 DOI: 10.1186/s12906-020-03173-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/02/2020] [Indexed: 01/23/2023] Open
Abstract
Background Rhinoviruses and influenza viruses cause millions of acute respiratory infections annually. Symptoms of mild acute respiratory infections are commonly treated with over-the-counter products like ambroxol, bromhexine, and N-acetyl cysteine, as well as of thyme and pelargonium extracts today. Because the direct antiviral activity of these over-the-counter products has not been studied in a systematic way, the current study aimed to compare their inhibitory effect against rhinovirus and influenza virus replication in an in vitro setting. Methods The cytotoxicity of ambroxol, bromhexine, and N-acetyl cysteine, as well as of thyme and pelargonium extracts was analyzed in Madin Darby canine kidney (MDCK) and HeLa Ohio cells. The antiviral effect of these over-the-counter products was compared by analyzing the dose-dependent inhibition (i) of rhinovirus A2- and B14-induced cytopathic effect in HeLa Ohio cells and (ii) of influenza virus A/Hong Kong/68 (subtype H3N2)- and A/Jena/8178/09 (subtype H1N1, pandemic)-induced cytopathic effect in MDCK cells at non-cytotoxic concentrations. To get insights into the mechanism of action of pelargonium extract against influenza virus, we performed time-of-addition assays as well as hemagglutination and neuraminidase inhibition assays. Results N-acetyl cysteine, thyme and pelargonium extract showed no or only marginal cytotoxicity in MDCK and HeLa Ohio cells in the tested concentration range. The 50% cytotoxic concentration of ambroxol and bromhexine was 51.85 and 61.24 μM, respectively. No anti-rhinoviral activity was detected at non-cytotoxic concentrations in this in vitro study setting. Ambroxol, bromhexine, and N-acetyl cysteine inhibited the influenza virus-induced cytopathic effect in MDCK cells no or less than 50%. In contrast, a dose-dependent anti-influenza virus activity of thyme and pelargonium extracts was demonstrated. The time-of addition assays revealed an inhibition of early and late steps of influenza virus replication by pelargonium extract whereas zanamivir acted on late steps only. The proven block of viral neuraminidase activity might explain the inhibition of influenza virus replication when added after viral adsorption. Conclusion The study results indicate a distinct inhibition of influenza A virus replication by thyme and pelargonium extract which might contribute to the beneficial effects of these plant extracts on acute respiratory infections symptoms.
Collapse
Affiliation(s)
- Christin Walther
- Department Medical Microbiology, Section Experimental Virology, Jena University Hospital, Hans-Knöll-Str. 2, D-07745, Jena, Germany
| | - Kristin Döring
- Department Medical Microbiology, Section Experimental Virology, Jena University Hospital, Hans-Knöll-Str. 2, D-07745, Jena, Germany
| | - Michaela Schmidtke
- Department Medical Microbiology, Section Experimental Virology, Jena University Hospital, Hans-Knöll-Str. 2, D-07745, Jena, Germany.
| |
Collapse
|
25
|
Sharma J, Shepardson K, Johns LL, Wellham J, Avera J, Schwarz B, Rynda-Apple A, Douglas T. A Self-Adjuvanted, Modular, Antigenic VLP for Rapid Response to Influenza Virus Variability. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18211-18224. [PMID: 32233444 DOI: 10.1021/acsami.9b21776] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The continuous evolution of influenza A virus (IAV) requires the influenza vaccine formulations to be updated annually to provide adequate protection. Recombinant protein-based vaccines provide safer, faster, and a more scalable alternative to the conventional embryonated egg approach for developing vaccines. However, these vaccines are typically poorer in immunogenicity than the vaccines containing inactivated or attenuated influenza viruses and require administration of a large antigen dosage together with potent adjuvants. The presentation of protein antigens on the surface of virus-like particles (VLP) provides an attractive strategy to rapidly induce stronger antigen-specific immune responses. Here we have examined the immunogenic potential and protective efficacy of P22 VLPs conjugated with multiple copies of the globular head domain of the hemagglutinin (HA) protein from the PR8 strain of IAV in a murine model of influenza pathogenesis. Using a covalent attachment strategy (SpyTag/SpyCatcher), we conjugated the HA globular head, which was recombinantly expressed in a genetically modified E. coli strain and found to refold as a monomer, to preassembled P22 VLPs. Immunization of mice with this P22-HAhead conjugate provided full protection from morbidity and mortality following infection with a homologous IAV strain. Moreover, the P22-HAhead conjugate also elicited an accelerated and enhanced HA head specific IgG response, which was significantly higher than the soluble HA head, or the admixture of P22 and HA head without the need for adjuvants. Thus, our results show that the HA head can be easily prepared by in vitro refolding in a modified E. coli strain, maintaining its intact structure and enabling the induction of a strong immune response when conjugated to P22 VLPs, even when presented as a monomer. These results also demonstrate that the P22 VLPs can be rapidly modified in a modular fashion, resulting in an effective vaccine construct that can generate protective immunity without the need for additional adjuvants.
Collapse
Affiliation(s)
- Jhanvi Sharma
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kelly Shepardson
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, United States
| | - Laura L Johns
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, United States
| | - Julia Wellham
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, United States
| | - John Avera
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
- Matrivax Research and Development Corporation, Boston, Massachusetts 02118, United Sates
| | - Benjamin Schwarz
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
- Immunity to Pulmonary Pathogens section, Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana 59840, United States
| | - Agnieszka Rynda-Apple
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, United States
| | - Trevor Douglas
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
26
|
Egli A, Saalfrank C, Goldman N, Brunner M, Hollenstein Y, Vogel T, Augustin N, Wüthrich D, Seth-Smith HMB, Roth E, Syedbasha M, Mueller NF, Vogt D, Bauer J, Amar-Sliwa N, Meinel DM, Dubuis O, Naegele M, Tschudin-Sutter S, Buser A, Nickel CH, Zeller A, Ritz N, Battegay M, Stadler T, Schneider-Sliwa R. Identification of influenza urban transmission patterns by geographical, epidemiological and whole genome sequencing data: protocol for an observational study. BMJ Open 2019; 9:e030913. [PMID: 31434783 PMCID: PMC6707652 DOI: 10.1136/bmjopen-2019-030913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Urban transmission patterns of influenza viruses are complex and poorly understood, and multiple factors may play a critical role in modifying transmission. Whole genome sequencing (WGS) allows the description of patient-to-patient transmissions at highest resolution. The aim of this study is to explore urban transmission patterns of influenza viruses in high detail by combining geographical, epidemiological and immunological data with WGS data. METHODS AND ANALYSIS The study is performed at the University Hospital Basel, University Children's Hospital Basel and a network of paediatricians and family doctors in the Canton of Basel-City, Switzerland. The retrospective study part includes an analysis of PCR-confirmed influenza cases from 2013 to 2018. The prospective study parts include (1) a household survey regarding influenza-like illness (ILI) and vaccination against influenza during the 2015/2016 season; (2) an analysis of influenza viruses collected during the 2016/2017 season using WGS-viral genomic sequences are compared with determine genetic relatedness and transmissions; and (3) measurement of influenza-specific antibody titres against all vaccinated and circulated strains during the 2016/2017 season from healthy individuals, allowing to monitor herd immunity across urban quarters. Survey data and PCR-confirmed cases are linked to data from the Statistics Office of the Canton Basel-City and visualised using geo-information system mapping. WGS data will be analysed in the context of patient epidemiological data using phylodynamic analyses, and the obtained herd immunity for each quarter. Profound knowledge on the key geographical, epidemiological and immunological factors influencing urban influenza transmission will help to develop effective counter measurements. ETHICS AND DISSEMINATION The study is registered and approved by the regional ethics committee as an observational study (EKNZ project ID 2015-363 and 2016-01735). It is planned to present the results at conferences and publish the data in scientific journals. TRIAL REGISTRATION NUMBER NCT03010007.
Collapse
Affiliation(s)
- Adrian Egli
- Clinical Microbiology, University Hospital Basel, Basel, Switzerland
- Biomedicine, University of Basel, Basel, Switzerland
- Clinical Research, University of Basel, Basel, Switzerland
| | - Claudia Saalfrank
- Human Geography, Department of Environmental Science, University of Basel, Basel, Switzerland
| | - Nina Goldman
- Human Geography, Department of Environmental Science, University of Basel, Basel, Switzerland
| | - Myrta Brunner
- Human Geography, Department of Environmental Science, University of Basel, Basel, Switzerland
| | | | - Thomas Vogel
- Human Geography, Department of Environmental Science, University of Basel, Basel, Switzerland
| | - Noémie Augustin
- Human Geography, Department of Environmental Science, University of Basel, Basel, Switzerland
| | - Daniel Wüthrich
- Clinical Microbiology, University Hospital Basel, Basel, Switzerland
- Biomedicine, University of Basel, Basel, Switzerland
- Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Helena M B Seth-Smith
- Clinical Microbiology, University Hospital Basel, Basel, Switzerland
- Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Elisa Roth
- Clinical Microbiology, University Hospital Basel, Basel, Switzerland
- Biomedicine, University of Basel, Basel, Switzerland
| | | | - Nicola F Mueller
- Swiss Institute for Bioinformatics, Basel, Switzerland
- Biosystems Science and Engineering, ETH Zurich D-BSSE, Basel, Basel-Stadt, Switzerland
| | - Dominik Vogt
- Biomedicine, University of Basel, Basel, Switzerland
| | - Jan Bauer
- Human Geography, Department of Environmental Science, University of Basel, Basel, Switzerland
| | - Nadezhda Amar-Sliwa
- Human Geography, Department of Environmental Science, University of Basel, Basel, Switzerland
| | - Dominik M Meinel
- Clinical Microbiology, University Hospital Basel, Basel, Switzerland
- Biomedicine, University of Basel, Basel, Switzerland
| | - Olivier Dubuis
- Microbiology, Viollier AG, Allschwil, Basel-Landschaft, Switzerland
| | - Michael Naegele
- Microbiology, Viollier AG, Allschwil, Basel-Landschaft, Switzerland
| | - Sarah Tschudin-Sutter
- Clinical Research, University of Basel, Basel, Switzerland
- Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Andreas Buser
- Blood Donation Center of Both Basel, Basel, Switzerland
| | | | - Andreas Zeller
- Centre for Primary Health Care, University of Basel, Basel, Switzerland
| | - Nicole Ritz
- Pediatric Infectious Diseases and Vaccinology, UKBB Universitats-Kinderspital, Basel, Switzerland
| | - Manuel Battegay
- Clinical Research, University of Basel, Basel, Switzerland
- Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Tanja Stadler
- Swiss Institute for Bioinformatics, Basel, Switzerland
- Biosystems Science and Engineering, ETH Zurich D-BSSE, Basel, Basel-Stadt, Switzerland
| | - Rita Schneider-Sliwa
- Human Geography, Department of Environmental Science, University of Basel, Basel, Switzerland
| |
Collapse
|
27
|
Zimmermann M, Rose N, Lindner JM, Kim H, Gonçalves AR, Callegari I, Syedbasha M, Kaufmann L, Egli A, Lindberg RLP, Kappos L, Traggiai E, Sanderson NSR, Derfuss T. Antigen Extraction and B Cell Activation Enable Identification of Rare Membrane Antigen Specific Human B Cells. Front Immunol 2019; 10:829. [PMID: 31040853 PMCID: PMC6477023 DOI: 10.3389/fimmu.2019.00829] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/28/2019] [Indexed: 11/13/2022] Open
Abstract
Determining antigen specificity is vital for understanding B cell biology and for producing human monoclonal antibodies. We describe here a powerful method for identifying B cells that recognize membrane antigens expressed on cells. The technique depends on two characteristics of the interaction between a B cell and an antigen-expressing cell: antigen-receptor-mediated extraction of antigen from the membrane of the target cell, and B cell activation. We developed the method using influenza hemagglutinin as a model viral membrane antigen, and tested it using acetylcholine receptor (AChR) as a model membrane autoantigen. The technique involves co-culturing B cells with adherent, bioorthogonally labeled cells expressing GFP-tagged antigen, and sorting GFP-capturing, newly activated B cells. Hemagglutinin-specific B cells isolated this way from vaccinated human donors expressed elevated CD20, CD27, CD71, and CD11c, and reduced CD21, and their secreted antibodies blocked hemagglutination and neutralized viral infection. Antibodies cloned from AChR-capturing B cells derived from patients with myasthenia gravis bound specifically to the receptor on cell membrane. The approach is sensitive enough to detect antigen-specific B cells at steady state, and can be adapted for any membrane antigen.
Collapse
Affiliation(s)
- Maria Zimmermann
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Natalie Rose
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - John M Lindner
- Novartis Institute for BioMedical Research, Basel, Switzerland.,BioMed X Innovation Center, Heidelberg, Germany
| | - Hyein Kim
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ana Rita Gonçalves
- Laboratory of Virology, Geneva University Hospitals, Geneva, Switzerland
| | - Ilaria Callegari
- Neuroscience Consortium, Monza Policlinico and Pavia Mondino, University of Pavia, Pavia, Italy
| | | | - Lukas Kaufmann
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Adrian Egli
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Division of Clinical Microbiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Raija L P Lindberg
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Departments of Medicine, Neurologic Clinic and Policlinic, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland
| | | | - Nicholas S R Sanderson
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tobias Derfuss
- Department of Medicine, Neurologic Clinic and Policlinic, University Hospital and University of Basel, Basel, Switzerland
| |
Collapse
|