1
|
Teppan J, Schwanzer J, Rittchen S, Bärnthaler T, Lindemann J, Nayak B, Reiter B, Luschnig P, Farzi A, Heinemann A, Sturm E. The disrupted molecular circadian clock of monocytes and macrophages in allergic inflammation. Front Immunol 2024; 15:1408772. [PMID: 38863703 PMCID: PMC11165079 DOI: 10.3389/fimmu.2024.1408772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024] Open
Abstract
Introduction Macrophage dysfunction is a common feature of inflammatory disorders such as asthma, which is characterized by a strong circadian rhythm. Methods and results We monitored the protein expression pattern of the molecular circadian clock in human peripheral blood monocytes from healthy, allergic, and asthmatic donors during a whole day. Monocytes cultured of these donors allowed us to examine circadian protein expression in human monocyte-derived macrophages, M1- and M2- polarized macrophages. In monocytes, particularly from allergic asthmatics, the oscillating expression of circadian proteins CLOCK, BMAL, REV ERBs, and RORs was significantly altered. Similar changes in BMAL1 were observed in polarized macrophages from allergic donors and in tissue-resident macrophages from activated precision cut lung slices. We confirmed clock modulating, anti-inflammatory, and lung-protective properties of the inverse ROR agonist SR1001 by reduced secretion of macrophage inflammatory protein and increase in phagocytosis. Using a house dust mite model, we verified the therapeutic effect of SR1001 in vivo. Discussion Overall, our data suggest an interaction between the molecular circadian clock and monocytes/macrophages effector function in inflammatory lung diseases. The use of SR1001 leads to inflammatory resolution in vitro and in vivo and represents a promising clock-based therapeutic approach for chronic pulmonary diseases such as asthma.
Collapse
Affiliation(s)
- Julia Teppan
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Juliana Schwanzer
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Sonja Rittchen
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Thomas Bärnthaler
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Jörg Lindemann
- Department of Surgery, Division of Thoracic and Hyperbaric Surgery, Medical University of Graz, Graz, Austria
| | - Barsha Nayak
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Bernhard Reiter
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Graz, Austria
| | - Petra Luschnig
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Aitak Farzi
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Eva Sturm
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
2
|
Dirr L, Cleeves S, Ramón Roth I, Li L, Fiebig T, Ve T, Häussler S, Braun A, von Itzstein M, Führing JI. Tetramerization is essential for the enzymatic function of the Pseudomonas aeruginosa virulence factor UDP-glucose pyrophosphorylase. mBio 2024; 15:e0211423. [PMID: 38470050 PMCID: PMC11005391 DOI: 10.1128/mbio.02114-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
Multidrug-resistant bacteria such as the opportunistic pathogen Pseudomonas aeruginosa, which causes life-threatening infections especially in immunocompromised individuals and cystic fibrosis patients, pose an increasing threat to public health. In the search for new treatment options, P. aeruginosa uridine diphosphate-glucose pyrophosphorylase (PaUGP) has been proposed as a novel drug target because it is required for the biosynthesis of important virulence factors and linked to pathogenicity in animal models. Here, we show that UGP-deficient P. aeruginosa exhibits severely reduced virulence against human lung tissue and cells, emphasizing the enzyme's suitability as a drug target. To establish a basis for the development of selective PaUGP inhibitors, we solved the product-bound crystal structure of tetrameric PaUGP and conducted a comprehensive structure-function analysis, identifying key residues at two different molecular interfaces that are essential for tetramer integrity and catalytic activity and demonstrating that tetramerization is pivotal for PaUGP function. Importantly, we show that part of the PaUGP oligomerization interface is uniquely conserved across bacterial UGPs but does not exist in the human enzyme, therefore representing an allosteric site that may be targeted to selectively inhibit bacterial UGPs.IMPORTANCEInfections with the opportunistic bacterial pathogen Pseudomonas aeruginosa are becoming increasingly difficult to treat due to multidrug resistance. Here, we show that the enzyme uridine diphosphate-glucose pyrophosphorylase (UGP) is involved in P. aeruginosa virulence toward human lung tissue and cells, making it a potential target for the development of new antibacterial drugs. Our exploration of P. aeruginosa (Pa)UGP structure-function relationships reveals that the activity of PaUGP depends on the formation of a tetrameric enzyme complex. We found that a molecular interface involved in tetramer formation is conserved in all bacterial UGPs but not in the human enzyme, and therefore hypothesize that it provides an ideal point of attack to selectively inhibit bacterial UGPs and exploit them as drug targets.
Collapse
Affiliation(s)
- Larissa Dirr
- Institute for Glycomics, Gold Coast Campus, Griffith University, Gold Coast, Queensland, Australia
| | - Sven Cleeves
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Isabel Ramón Roth
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Linghui Li
- Institute for Glycomics, Gold Coast Campus, Griffith University, Gold Coast, Queensland, Australia
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Thomas Ve
- Institute for Glycomics, Gold Coast Campus, Griffith University, Gold Coast, Queensland, Australia
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Mark von Itzstein
- Institute for Glycomics, Gold Coast Campus, Griffith University, Gold Coast, Queensland, Australia
| | - Jana I. Führing
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Eberlein V, Rosencrantz S, Finkensieper J, Besecke JK, Mansuroglu Y, Kamp JC, Lange F, Dressman J, Schopf S, Hesse C, Thoma M, Fertey J, Ulbert S, Grunwald T. Mucosal immunization with a low-energy electron inactivated respiratory syncytial virus vaccine protects mice without Th2 immune bias. Front Immunol 2024; 15:1382318. [PMID: 38646538 PMCID: PMC11026718 DOI: 10.3389/fimmu.2024.1382318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/18/2024] [Indexed: 04/23/2024] Open
Abstract
The respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract infections associated with numerous hospitalizations. Recently, intramuscular (i.m.) vaccines against RSV have been approved for elderly and pregnant women. Noninvasive mucosal vaccination, e.g., by inhalation, offers an alternative against respiratory pathogens like RSV. Effective mucosal vaccines induce local immune responses, potentially resulting in the efficient and fast elimination of respiratory viruses after natural infection. To investigate this immune response to an RSV challenge, low-energy electron inactivated RSV (LEEI-RSV) was formulated with phosphatidylcholine-liposomes (PC-LEEI-RSV) or 1,2-dioleoyl-3-trimethylammonium-propane and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DD-LEEI-RSV) for vaccination of mice intranasally. As controls, LEEI-RSV and formalin-inactivated-RSV (FI-RSV) were used via i.m. vaccination. The RSV-specific immunogenicity of the different vaccines and their protective efficacy were analyzed. RSV-specific IgA antibodies and a statistically significant reduction in viral load upon challenge were detected in mucosal DD-LEEI-RSV-vaccinated animals. Alhydrogel-adjuvanted LEEI-RSV i.m. showed a Th2-bias with enhanced IgE, eosinophils, and lung histopathology comparable to FI-RSV. These effects were absent when applying the mucosal vaccines highlighting the potential of DD-LEEI-RSV as an RSV vaccine candidate and the improved performance of this mucosal vaccine candidate.
Collapse
Affiliation(s)
- Valentina Eberlein
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
| | - Sophia Rosencrantz
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
- Fraunhofer Institute for Applied Polymer Research (IAP), Potsdam, Germany
| | - Julia Finkensieper
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
| | - Joana Kira Besecke
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
- Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology (FEP), Dresden, Germany
| | - Yaser Mansuroglu
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
| | - Jan-Christopher Kamp
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Franziska Lange
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
| | - Jennifer Dressman
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
| | - Simone Schopf
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
- Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology (FEP), Dresden, Germany
| | - Christina Hesse
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Martin Thoma
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
- Fraunhofer Institute for Manufacturing Engineering and Automation (IPA), Stuttgart, Germany
| | - Jasmin Fertey
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
| | - Sebastian Ulbert
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
| | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
| |
Collapse
|
4
|
Bierwagen J, Wiegand M, Laakmann K, Danov O, Limburg H, Herbel SM, Heimerl T, Dorna J, Jonigk D, Preußer C, Bertrams W, Braun A, Sewald K, Schulte LN, Bauer S, Pogge von Strandmann E, Böttcher-Friebertshäuser E, Schmeck B, Jung AL. Bacterial vesicles block viral replication in macrophages via TLR4-TRIF-axis. Cell Commun Signal 2023; 21:65. [PMID: 36978183 PMCID: PMC10045439 DOI: 10.1186/s12964-023-01086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
Gram-negative bacteria naturally secrete nano-sized outer membrane vesicles (OMVs), which are important mediators of communication and pathogenesis. OMV uptake by host cells activates TLR signalling via transported PAMPs. As important resident immune cells, alveolar macrophages are located at the air-tissue interface where they comprise the first line of defence against inhaled microorganisms and particles. To date, little is known about the interplay between alveolar macrophages and OMVs from pathogenic bacteria. The immune response to OMVs and underlying mechanisms are still elusive. Here, we investigated the response of primary human macrophages to bacterial vesicles (Legionella pneumophila, Klebsiella pneumoniae, Escherichia coli, Salmonella enterica, Streptococcus pneumoniae) and observed comparable NF-κB activation across all tested vesicles. In contrast, we describe differential type I IFN signalling with prolonged STAT1 phosphorylation and strong Mx1 induction, blocking influenza A virus replication only for Klebsiella, E.coli and Salmonella OMVs. OMV-induced antiviral effects were less pronounced for endotoxin-free Clear coli OMVs and Polymyxin-treated OMVs. LPS stimulation could not mimic this antiviral status, while TRIF knockout abrogated it. Importantly, supernatant from OMV-treated macrophages induced an antiviral response in alveolar epithelial cells (AEC), suggesting OMV-induced intercellular communication. Finally, results were validated in an ex vivo infection model with primary human lung tissue. In conclusion, Klebsiella, E.coli and Salmonella OMVs induce antiviral immunity in macrophages via TLR4-TRIF-signaling to reduce viral replication in macrophages, AECs and lung tissue. These gram-negative bacteria induce antiviral immunity in the lung through OMVs, with a potential decisive and tremendous impact on bacterial and viral coinfection outcome. Video Abstract.
Collapse
Affiliation(s)
- Jeff Bierwagen
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Marie Wiegand
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Katrin Laakmann
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Olga Danov
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Hannah Limburg
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Stefanie Muriel Herbel
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Jens Dorna
- Institute for Immunology, Philipps-University Marburg, Marburg, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Christian Preußer
- Institute for Tumor Immunology and Core Facility - Extracellular Vesicles, Philipps-University Marburg, Marburg, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Leon N Schulte
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Stefan Bauer
- Institute for Immunology, Philipps-University Marburg, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology and Core Facility - Extracellular Vesicles, Philipps-University Marburg, Marburg, Germany
| | | | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany
- Department of Pulmonary and Critical Care Medicine, Philipps-University Marburg, Marburg, Germany
- Member of the German Center for Infectious Disease Research (DZIF), Marburg, Germany
| | - Anna Lena Jung
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany.
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
5
|
Meineke R, Stelz S, Busch M, Werlein C, Kühnel M, Jonigk D, Rimmelzwaan GF, Elbahesh H. FDA-Approved Inhibitors of RTK/Raf Signaling Potently Impair Multiple Steps of In Vitro and Ex Vivo Influenza A Virus Infections. Viruses 2022; 14:2058. [PMID: 36146864 PMCID: PMC9504178 DOI: 10.3390/v14092058] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Influenza virus (IV) infections pose a burden on global public health with significant morbidity and mortality. The limited range of currently licensed IV antiviral drugs is susceptible to the rapid rise of resistant viruses. In contrast, FDA-approved kinase inhibitors can be repurposed as fast-tracked host-targeted antivirals with a higher barrier of resistance. Extending our recent studies, we screened 21 FDA-approved small-molecule kinase inhibitors (SMKIs) and identified seven candidates as potent inhibitors of pandemic and seasonal IV infections. These SMKIs were further validated in a biologically and clinically relevant ex vivo model of human precision-cut lung slices. We identified steps of the virus infection cycle affected by these inhibitors (entry, replication, egress) and found that most SMKIs affected both entry and egress. Based on defined and overlapping targets of these inhibitors, the candidate SMKIs target receptor tyrosine kinase (RTK)-mediated activation of Raf/MEK/ERK pathways to limit influenza A virus infection. Our data and the established safety profiles of these SMKIs support further clinical investigations and repurposing of these SMKIs as host-targeted influenza therapeutics.
Collapse
Affiliation(s)
- Robert Meineke
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine in Hannover (TiHo), Bünteweg 17, 30559 Hannover, Germany
| | - Sonja Stelz
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine in Hannover (TiHo), Bünteweg 17, 30559 Hannover, Germany
| | - Maximilian Busch
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine in Hannover (TiHo), Bünteweg 17, 30559 Hannover, Germany
| | - Christopher Werlein
- Institute of Pathology, Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Mark Kühnel
- Institute of Pathology, Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine in Hannover (TiHo), Bünteweg 17, 30559 Hannover, Germany
| | - Husni Elbahesh
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine in Hannover (TiHo), Bünteweg 17, 30559 Hannover, Germany
| |
Collapse
|
6
|
Cramer N, Nawrot ML, Wege L, Dorda M, Sommer C, Danov O, Wronski S, Braun A, Jonigk D, Fischer S, Munder A, Tümmler B. Competitive fitness of Pseudomonas aeruginosa isolates in human and murine precision-cut lung slices. Front Cell Infect Microbiol 2022; 12:992214. [PMID: 36081773 PMCID: PMC9446154 DOI: 10.3389/fcimb.2022.992214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic respiratory infections with the gram-negative bacterium Pseudomonas aeruginosa are an important co-morbidity for the quality of life and prognosis of people with cystic fibrosis (CF). Such long-term colonization, sometimes lasting up to several decades, represents a unique opportunity to investigate pathogen adaptation processes to the host. Our studies aimed to resolve if and to what extent the bacterial adaptation to the CF airways influences the fitness of the pathogen to grow and to persist in the lungs. Marker-free competitive fitness experiments of serial P. aeruginosa isolates differentiated by strain-specific SNPs, were performed with murine and human precision cut lung slices (PCLS). Serial P. aeruginosa isolates were selected from six mild and six severe CF patient courses, respectively. MPCLS or hPCLS were inoculated with a mixture of equal numbers of the serial isolates of one course. The temporal change of the composition of the bacterial community during competitive growth was quantified by multi-marker amplicon sequencing. Both ex vivo models displayed a strong separation of fitness traits between mild and severe courses. Whereas the earlier isolates dominated the competition in the severe courses, intermediate and late isolates commonly won the competition in the mild courses. The status of the CF lung disease rather than the bacterial genotype drives the adaptation of P. aeruginosa during chronic CF lung infection. This implies that the disease status of the lung habitat governed the adaptation of P. aeruginosa more strongly than the underlying bacterial clone-type and its genetic repertoire.
Collapse
Affiliation(s)
- Nina Cramer
- Clinical Research Group ‘Pseudomonas Genomics’, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- *Correspondence: Nina Cramer,
| | - Marie Luise Nawrot
- Clinical Research Group ‘Pseudomonas Genomics’, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Lion Wege
- Clinical Research Group ‘Pseudomonas Genomics’, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Hannover Medical School, Hannover, Germany
| | - Marie Dorda
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Charline Sommer
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Olga Danov
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Sabine Wronski
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Armin Braun
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Danny Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Sebastian Fischer
- Clinical Research Group ‘Pseudomonas Genomics’, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Antje Munder
- Clinical Research Group ‘Pseudomonas Genomics’, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Clinical Research Group ‘Pseudomonas Genomics’, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Hesse C, Beneke V, Konzok S, Diefenbach C, Bülow Sand JM, Rønnow SR, Karsdal MA, Jonigk D, Sewald K, Braun A, Leeming DJ, Wollin L. Nintedanib modulates type III collagen turnover in viable precision-cut lung slices from bleomycin-treated rats and patients with pulmonary fibrosis. Respir Res 2022; 23:201. [PMID: 35927669 PMCID: PMC9351157 DOI: 10.1186/s12931-022-02116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 07/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aberrant extracellular matrix (ECM) deposition and remodelling is important in the disease pathogenesis of pulmonary fibrosis (PF). We characterised neoepitope biomarkers released by ECM turnover in lung tissue from bleomycin-treated rats and patients with PF and analysed the effects of two antifibrotic drugs: nintedanib and pirfenidone. METHODS Precision-cut lung slices (PCLS) were prepared from bleomycin-treated rats or patients with PF. PCLS were incubated with nintedanib or pirfenidone for 48 h, and levels of neoepitope biomarkers of type I, III and VI collagen formation or degradation (PRO-C1, PRO-C3, PRO-C6 and C3M) as well as fibronectin (FBN-C) were assessed in the culture supernatants. RESULTS In rat PCLS, incubation with nintedanib led to a reduction in C3M, reflecting type III collagen degradation. In patient PCLS, incubation with nintedanib reduced the levels of PRO-C3 and C3M, thus showing effects on both formation and degradation of type III collagen. Incubation with pirfenidone had a marginal effect on PRO-C3. There were no other notable effects of either nintedanib or pirfenidone on the other neoepitope biomarkers studied. CONCLUSIONS This study demonstrated that nintedanib modulates neoepitope biomarkers of type III collagen turnover and indicated that C3M is a promising translational neoepitope biomarker of PF in terms of therapy assessment.
Collapse
Affiliation(s)
- Christina Hesse
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Member of German Center for Lung Research (DZL), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
| | - Valerie Beneke
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Member of German Center for Lung Research (DZL), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
| | - Sebastian Konzok
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Member of German Center for Lung Research (DZL), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
| | - Claudia Diefenbach
- Translational Medicine + Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | | | | | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of German Center for Lung Research (DZL), Hannover, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Member of German Center for Lung Research (DZL), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Member of German Center for Lung Research (DZL), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
| | | | - Lutz Wollin
- Translational Medicine + Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany.
| |
Collapse
|
8
|
Färber I, Krüger J, Rocha C, Armando F, von Köckritz-Blickwede M, Pöhlmann S, Braun A, Baumgärtner W, Runft S, Krüger N. Investigations on SARS-CoV-2 Susceptibility of Domestic and Wild Animals Using Primary Cell Culture Models Derived from the Upper and Lower Respiratory Tract. Viruses 2022; 14:v14040828. [PMID: 35458558 PMCID: PMC9032458 DOI: 10.3390/v14040828] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Several animal species are susceptible to SARS-CoV-2 infection, as documented by case reports and serological and in vivo infection studies. However, the susceptibility of many animal species remains unknown. Furthermore, the expression patterns of SARS-CoV-2 entry factors, such as the receptor angiotensin-converting enzyme 2 (ACE2), as well as transmembrane protease serine subtype 2 (TMPRSS2) and cathepsin L (CTSL), cellular proteases involved in SARS-CoV-2 spike protein activation, are largely unexplored in most species. Here, we generated primary cell cultures from the respiratory tract of domestic and wildlife animals to assess their susceptibility to SARS-CoV-2 infection. Additionally, the presence of ACE2, TMPRSS2 and CTSL within respiratory tract compartments was investigated in a range of animals, some with unknown susceptibility to SARS-CoV-2. Productive viral replication was observed in the nasal mucosa explants and precision-cut lung slices from dogs and hamsters, whereas culture models from ferrets and multiple ungulate species were non-permissive to infection. Overall, whereas TMPRSS2 and CTSL were equally expressed in the respiratory tract, the expression levels of ACE2 were more variable, suggesting that a restricted availability of ACE2 may contribute to reduced susceptibility. Summarized, the experimental infection of primary respiratory tract cell cultures, as well as an analysis of entry-factor distribution, enable screening for SARS-CoV-2 animal reservoirs.
Collapse
Affiliation(s)
- Iris Färber
- Department of Pathology, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany; (I.F.); (J.K.); (F.A.); (S.R.)
| | - Johannes Krüger
- Department of Pathology, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany; (I.F.); (J.K.); (F.A.); (S.R.)
| | - Cheila Rocha
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (C.R.); (S.P.); (N.K.)
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany; (I.F.); (J.K.); (F.A.); (S.R.)
| | - Maren von Köckritz-Blickwede
- Department of Biochemistry, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany;
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (C.R.); (S.P.); (N.K.)
- Faculty of Biology and Psychology, Georg-August-University, 37073 Göttingen, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 30625 Hannover, Germany;
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany; (I.F.); (J.K.); (F.A.); (S.R.)
- Correspondence: ; Tel.: +49-511-953-8620; Fax: +49-511-953-8675
| | - Sandra Runft
- Department of Pathology, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany; (I.F.); (J.K.); (F.A.); (S.R.)
| | - Nadine Krüger
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (C.R.); (S.P.); (N.K.)
| |
Collapse
|
9
|
Obernolte H, Niehof M, Braubach P, Fieguth HG, Jonigk D, Pfennig O, Tschernig T, Warnecke G, Braun A, Sewald K. Cigarette smoke alters inflammatory genes and the extracellular matrix - investigations on viable sections of peripheral human lungs. Cell Tissue Res 2021; 387:249-260. [PMID: 34820703 PMCID: PMC8821047 DOI: 10.1007/s00441-021-03553-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/04/2021] [Indexed: 12/03/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex chronic respiratory disorder often caused by cigarette smoke. Cigarette smoke contains hundreds of toxic substances. In our study, we wanted to identify initial mechanisms of cigarette smoke induced changes in the distal lung. Viable slices of human lungs were exposed 24 h to cigarette smoke condensate, and the dose–response profile was analyzed. Non-toxic condensate concentrations and lipopolysaccharide were used for further experiments. COPD-related protein and gene expression was measured. Cigarette smoke condensate did not induce pro-inflammatory cytokines and most inflammation-associated genes. In contrast, lipopolysaccharide significantly induced IL-1α, IL-1β, TNF-α and IL-8 (proteins) and IL1B, IL6, and TNF (genes). Interestingly, cigarette smoke condensate induced metabolism- and extracellular matrix–associated proteins and genes, which were not influenced by lipopolysaccharide. Also, a significant regulation of CYP1A1 and CYP1B1, as well as MMP9 and MMP9/TIMP1 ratio, was observed which resembles typical findings in COPD. In conclusion, our data show that cigarette smoke and lipopolysaccharide induce significant responses in human lung tissue ex vivo, giving first hints that COPD starts early in smoking history.
Collapse
Affiliation(s)
- Helena Obernolte
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Monika Niehof
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Peter Braubach
- Institute for Pathology, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | | | - Danny Jonigk
- Institute for Pathology, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Olaf Pfennig
- KRH Klinikum Siloah-Oststadt-Heidehaus, Hannover, Germany
| | - Thomas Tschernig
- Institute for Anatomy and Cell Biology, Saarland University, Homburg Saar, Germany
| | - Gregor Warnecke
- Division of Cardiac, Thoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.
| |
Collapse
|
10
|
Organophosphorus pesticides exhibit compound specific effects in rat precision-cut lung slices (PCLS): mechanisms involved in airway response, cytotoxicity, inflammatory activation and antioxidative defense. Arch Toxicol 2021; 96:321-334. [PMID: 34778934 PMCID: PMC8748323 DOI: 10.1007/s00204-021-03186-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022]
Abstract
Organophosphorus compound pesticides (OP) are widely used in pest control and might be misused for terrorist attacks. Although acetylcholinesterase (AChE) inhibition is the predominant toxic mechanism, OP may induce pneumonia and formation of lung edema after poisoning and during clinical treatment as life-threatening complication. To investigate the underlying mechanisms, rat precision-cut lung slices (PCLS) were exposed to the OP parathion, malathion and their biotransformation products paraoxon and malaoxon (100–2000 µmol/L). Airway response, metabolic activity, release of LDH, cytokine expression and oxidative stress response were analyzed. A concentration-dependent inhibition of airway relaxation was observed after exposure with the oxon but not with the thion-OP. In contrast, cytotoxic effects were observed for both forms in higher concentrations. Increased cytokine expression was observed after exposure to parathion and paraoxon (IL-6, GM-CSF, MIP-1α) and IL-6 expression was dependent on NFκB activation. Intracellular GSH levels were significantly reduced by all four tested OP but an increase in GSSG and HO-1 expression was predominantly observed after malaoxon exposure. Pretreatment with the antioxidant N-acetylcysteine reduced malaoxon but not paraoxon-induced cytotoxicity. PCLS as a 3D lung model system revealed OP-induced effects depending on the particular OP. The experimental data of this study contribute to a better understanding of OP toxicity on cellular targets and may be a possible explanation for the variety of clinical outcomes induced by different OP.
Collapse
|
11
|
Hempel T, Elez K, Krüger N, Raich L, Shrimp JH, Danov O, Jonigk D, Braun A, Shen M, Hall MD, Pöhlmann S, Hoffmann M, Noé F. Synergistic inhibition of SARS-CoV-2 cell entry by otamixaban and covalent protease inhibitors: pre-clinical assessment of pharmacological and molecular properties. Chem Sci 2021; 12:12600-12609. [PMID: 34703545 PMCID: PMC8494051 DOI: 10.1039/d1sc01494c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022] Open
Abstract
SARS-CoV-2, the cause of the COVID-19 pandemic, exploits host cell proteins for viral entry into human lung cells. One of them, the protease TMPRSS2, is required to activate the viral spike protein (S). Even though two inhibitors, camostat and nafamostat, are known to inhibit TMPRSS2 and block cell entry of SARS-CoV-2, finding further potent therapeutic options is still an important task. In this study, we report that a late-stage drug candidate, otamixaban, inhibits SARS-CoV-2 cell entry. We show that otamixaban suppresses TMPRSS2 activity and SARS-CoV-2 infection of a human lung cell line, although with lower potency than camostat or nafamostat. In contrast, otamixaban inhibits SARS-CoV-2 infection of precision cut lung slices with the same potency as camostat. Furthermore, we report that otamixaban's potency can be significantly enhanced by (sub-) nanomolar nafamostat or camostat supplementation. Dominant molecular TMPRSS2-otamixaban interactions are assessed by extensive 109 μs of atomistic molecular dynamics simulations. Our findings suggest that combinations of otamixaban with supplemental camostat or nafamostat are a promising option for the treatment of COVID-19.
Collapse
Affiliation(s)
- Tim Hempel
- Department of Mathematics and Computer Science, Freie Universität Berlin Berlin Germany
- Department of Physics, Freie Universität Berlin Berlin Germany
| | - Katarina Elez
- Department of Mathematics and Computer Science, Freie Universität Berlin Berlin Germany
| | - Nadine Krüger
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research Göttingen Germany
| | - Lluís Raich
- Department of Mathematics and Computer Science, Freie Universität Berlin Berlin Germany
| | - Jonathan H Shrimp
- National Center for Advancing Translational Sciences, National Institutes of Health Rockville MD USA
| | - Olga Danov
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR) Hannover Germany
| | - Danny Jonigk
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR) Hannover Germany
- Institute of Pathology, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Hannover Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR) Hannover Germany
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health Rockville MD USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health Rockville MD USA
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research Göttingen Germany
- Faculty of Biology and Psychology, University Göttingen Göttingen Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research Göttingen Germany
- Faculty of Biology and Psychology, University Göttingen Göttingen Germany
| | - Frank Noé
- Department of Mathematics and Computer Science, Freie Universität Berlin Berlin Germany
- Department of Physics, Freie Universität Berlin Berlin Germany
- Department of Chemistry, Rice University Houston TX USA
| |
Collapse
|
12
|
Brouns I, Verckist L, Pintelon I, Timmermans JP, Adriaensen D. Pulmonary Sensory Receptors. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2021; 233:1-65. [PMID: 33950466 DOI: 10.1007/978-3-030-65817-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Inge Brouns
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium.
| | - Line Verckist
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| |
Collapse
|
13
|
The serotonin reuptake inhibitor Fluoxetine inhibits SARS-CoV-2 in human lung tissue. Sci Rep 2021; 11:5890. [PMID: 33723270 PMCID: PMC7961020 DOI: 10.1038/s41598-021-85049-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 02/23/2021] [Indexed: 01/21/2023] Open
Abstract
To circumvent time-consuming clinical trials, testing whether existing drugs are effective inhibitors of SARS-CoV-2, has led to the discovery of Remdesivir. We decided to follow this path and screened approved medications "off-label" against SARS-CoV-2. Fluoxetine inhibited SARS-CoV-2 at a concentration of 0.8 µg/ml significantly in these screenings, and the EC50 was determined with 387 ng/ml. Furthermore, Fluoxetine reduced viral infectivity in precision-cut human lung slices showing its activity in relevant human tissue targeted in severe infections. Fluoxetine treatment resulted in a decrease in viral protein expression. Fluoxetine is a racemate consisting of both stereoisomers, while the S-form is the dominant serotonin reuptake inhibitor. We found that both isomers show similar activity on the virus, indicating that the R-form might specifically be used for SARS-CoV-2 treatment. Fluoxetine inhibited neither Rabies virus, human respiratory syncytial virus replication nor the Human Herpesvirus 8 or Herpes simplex virus type 1 gene expression, indicating that it acts virus-specific. Moreover, since it is known that Fluoxetine inhibits cytokine release, we see the role of Fluoxetine in the treatment of SARS-CoV-2 infected patients of risk groups.
Collapse
|
14
|
Hoffmann M, Hofmann-Winkler H, Smith JC, Krüger N, Arora P, Sørensen LK, Søgaard OS, Hasselstrøm JB, Winkler M, Hempel T, Raich L, Olsson S, Danov O, Jonigk D, Yamazoe T, Yamatsuta K, Mizuno H, Ludwig S, Noé F, Kjolby M, Braun A, Sheltzer JM, Pöhlmann S. Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBioMedicine 2021; 65:103255. [PMID: 33676899 PMCID: PMC7930809 DOI: 10.1016/j.ebiom.2021.103255] [Citation(s) in RCA: 215] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Antivirals are needed to combat the COVID-19 pandemic, which is caused by SARS-CoV-2. The clinically-proven protease inhibitor Camostat mesylate inhibits SARS-CoV-2 infection by blocking the virus-activating host cell protease TMPRSS2. However, antiviral activity of Camostat mesylate metabolites and potential viral resistance have not been analyzed. Moreover, antiviral activity of Camostat mesylate in human lung tissue remains to be demonstrated. METHODS We used recombinant TMPRSS2, reporter particles bearing the spike protein of SARS-CoV-2 or authentic SARS-CoV-2 to assess inhibition of TMPRSS2 and viral entry, respectively, by Camostat mesylate and its metabolite GBPA. FINDINGS We show that several TMPRSS2-related proteases activate SARS-CoV-2 and that two, TMPRSS11D and TMPRSS13, are robustly expressed in the upper respiratory tract. However, entry mediated by these proteases was blocked by Camostat mesylate. The Camostat metabolite GBPA inhibited recombinant TMPRSS2 with reduced efficiency as compared to Camostat mesylate. In contrast, both inhibitors exhibited similar antiviral activity and this correlated with the rapid conversion of Camostat mesylate into GBPA in the presence of serum. Finally, Camostat mesylate and GBPA blocked SARS-CoV-2 spread in human lung tissue ex vivo and the related protease inhibitor Nafamostat mesylate exerted augmented antiviral activity. INTERPRETATION Our results suggest that SARS-CoV-2 can use TMPRSS2 and closely related proteases for spread in the upper respiratory tract and that spread in the human lung can be blocked by Camostat mesylate and its metabolite GBPA. FUNDING NIH, Damon Runyon Foundation, ACS, NYCT, DFG, EU, Berlin Mathematics center MATH+, BMBF, Lower Saxony, Lundbeck Foundation, Novo Nordisk Foundation.
Collapse
Affiliation(s)
- Markus Hoffmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany; Faculty of Biology and Psychology, University Göttingen, 37073 Göttingen, Germany.
| | - Heike Hofmann-Winkler
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Joan C Smith
- Google, Inc., New York City, NY 10011, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Nadine Krüger
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Prerna Arora
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany; Faculty of Biology and Psychology, University Göttingen, 37073 Göttingen, Germany
| | - Lambert K Sørensen
- Department of Forensic Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Ole S Søgaard
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
| | | | - Michael Winkler
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Tim Hempel
- Freie Universität Berlin, Department of Mathematics and Computer Science, Berlin, Germany; Freie Universität Berlin, Department of Physics, Berlin, Germany
| | - Lluís Raich
- Freie Universität Berlin, Department of Mathematics and Computer Science, Berlin, Germany
| | - Simon Olsson
- Freie Universität Berlin, Department of Mathematics and Computer Science, Berlin, Germany; Chalmers University of Technology, Department of Computer Science and Engineering, Göteborg, Sweden
| | - Olga Danov
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Nikolai-Fuchs-Strasse 1, 30625 Hannover, Germany
| | - Danny Jonigk
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Nikolai-Fuchs-Strasse 1, 30625 Hannover, Germany; Institute of Pathology, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Takashi Yamazoe
- Discovery Technology Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka 618-8585, Japan
| | - Katsura Yamatsuta
- Discovery Technology Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka 618-8585, Japan
| | - Hirotaka Mizuno
- Discovery Technology Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka 618-8585, Japan
| | - Stephan Ludwig
- Institute of Virology (IVM), Westfälische Wilhelms-Universität, 48149 Münster, Germany; Cluster of Excellence "Cells in Motion", Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Frank Noé
- Freie Universität Berlin, Department of Mathematics and Computer Science, Berlin, Germany; Freie Universität Berlin, Department of Physics, Berlin, Germany; Rice University, Department of Chemistry, Houston, TX, USA
| | - Mads Kjolby
- Danish Diabetes Academy and DANDRITE, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Nikolai-Fuchs-Strasse 1, 30625 Hannover, Germany
| | - Jason M Sheltzer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany; Faculty of Biology and Psychology, University Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
15
|
Danov O, Wolff M, Bartel S, Böhlen S, Obernolte H, Wronski S, Jonigk D, Hammer B, Kovacevic D, Reuter S, Krauss-Etschmann S, Sewald K. Cigarette Smoke Affects Dendritic Cell Populations, Epithelial Barrier Function, and the Immune Response to Viral Infection With H1N1. Front Med (Lausanne) 2020; 7:571003. [PMID: 33240904 PMCID: PMC7678748 DOI: 10.3389/fmed.2020.571003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/25/2020] [Indexed: 01/21/2023] Open
Abstract
Smokers with apparently “healthy” lungs suffer from more severe and frequent viral respiratory infections, but the mechanisms underlying this observation are still unclear. Epithelial cells and dendritic cells (DC) form the first line of defense against inhaled noxes such as smoke or viruses. We therefore aimed to obtain insight into how cigarette smoke affects DCs and epithelial cells and how this influences the response to viral infection. Female C57BL/6J mice were exposed to cigarette smoke (CS) for 1 h daily for 24 days and then challenged i.n. with the viral mimic and Toll-like receptor 3 (TLR3) ligand poly (I:C) after the last exposure. DC subpopulations were analyzed 24 h later in whole lung homogenates by flow cytometry. Calu-3 cells or human precision-cut lung slices (PCLS) cultured at air-liquid interface were exposed to CS or air and subsequently inoculated with influenza H1N1. At 48 h post infection cytokines were analyzed by multiplex technology. Cytotoxic effects were measured by release of lactate dehydrogenase (LDH) and confocal imaging. In Calu-3 cells the trans-epithelial electrical resistance (TEER) was assessed. Smoke exposure of mice increased numbers of inflammatory and plasmacytoid DCs in lung tissue. Additional poly (I:C) challenge further increased the population of inflammatory DCs and conventional DCs, especially CD11b+ cDCs. Smoke exposure led to a loss of the barrier function in Calu-3 cells, which was further exaggerated by additional influenza H1N1 infection. Influenza H1N1-induced secretion of antiviral cytokines (IFN-α2a, IFN-λ, interferon-γ-induced protein 10 [IP-10]), pro-inflammatory cytokine IL-6, as well as T cell-associated cytokines (e.g., I-TAC) were completely suppressed in both Calu-3 cells and human PCLS after smoke exposure. In summary, cigarette smoke exposure increased the number of inflammatory DCs in the lung and disrupted epithelial barrier functions, both of which was further enhanced by viral stimulation. Additionally, the antiviral immune response to influenza H1N1 was strongly suppressed by smoke. These data suggest that smoke impairs protective innate mechanisms in the lung, which could be responsible for the increased susceptibility to viral infections in “healthy” smokers.
Collapse
Affiliation(s)
- Olga Danov
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Centre for Immune Mediated Diseases (CIMD), Hanover, Germany
| | - Martin Wolff
- Early Origins of Chronic Lung Diseases, Priority Area Asthma and Allergy, Research Center Borstel - Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Sabine Bartel
- Early Origins of Chronic Lung Diseases, Priority Area Asthma and Allergy, Research Center Borstel - Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Department of Pathology and Medical Biology, University Medical Center Groningen, GRIAC Research Institute, University of Groningen, Groningen, Netherlands
| | - Sebastian Böhlen
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Centre for Immune Mediated Diseases (CIMD), Hanover, Germany
| | - Helena Obernolte
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Centre for Immune Mediated Diseases (CIMD), Hanover, Germany
| | - Sabine Wronski
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Centre for Immune Mediated Diseases (CIMD), Hanover, Germany
| | - Danny Jonigk
- Department of Pathology, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hanover, Germany
| | - Barbara Hammer
- Early Origins of Chronic Lung Diseases, Priority Area Asthma and Allergy, Research Center Borstel - Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Draginja Kovacevic
- Early Origins of Chronic Lung Diseases, Priority Area Asthma and Allergy, Research Center Borstel - Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Sebastian Reuter
- Early Origins of Chronic Lung Diseases, Priority Area Asthma and Allergy, Research Center Borstel - Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Department of Pulmonary Medicine, University Medical Center Essen - Ruhrlandklinik, Essen, Germany
| | - Susanne Krauss-Etschmann
- Early Origins of Chronic Lung Diseases, Priority Area Asthma and Allergy, Research Center Borstel - Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Asthma Research, Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Centre for Immune Mediated Diseases (CIMD), Hanover, Germany
| |
Collapse
|
16
|
Herbert J, Laskin DL, Gow AJ, Laskin JD. Chemical warfare agent research in precision-cut tissue slices-a useful alternative approach. Ann N Y Acad Sci 2020; 1480:44-53. [PMID: 32808309 DOI: 10.1111/nyas.14459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 02/04/2023]
Abstract
The use of chemical warfare agents (CWAs) in military conflicts and against civilians is a recurrent problem. Despite ongoing CWA research using in vitro or in vivo models, progress to elucidate mechanisms of toxicity and to develop effective therapies, decontamination procedures, and general countermeasures is still limited. Novel scientific approaches to address these questions are needed to expand perspectives on existing knowledge and gain new insights. To achieve this, the use of ex vivo techniques like precision-cut tissue slices (PCTSs) can be a valuable approach. Existing studies employing this economical and relatively easy to implement method show model suitability and comparability with the use of in vitro and in vivo models. In this article, we review research on CWAs in PCTSs to illustrate the advantages of the approach and to promote future applications.
Collapse
Affiliation(s)
- Julia Herbert
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
17
|
Pearson H, Todd EJAA, Ahrends M, Hover SE, Whitehouse A, Stacey M, Lippiat JD, Wilkens L, Fieguth HG, Danov O, Hesse C, Barr JN, Mankouri J. TMEM16A/ANO1 calcium-activated chloride channel as a novel target for the treatment of human respiratory syncytial virus infection. Thorax 2020; 76:64-72. [PMID: 33109690 PMCID: PMC7803913 DOI: 10.1136/thoraxjnl-2020-215171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
Introduction Human respiratory syncytial virus (HRSV) is a common cause of respiratory tract infections (RTIs) globally and is one of the most fatal infectious diseases for infants in developing countries. Of those infected, 25%–40% aged ≤1 year develop severe lower RTIs leading to pneumonia and bronchiolitis, with ~10% requiring hospitalisation. Evidence also suggests that HRSV infection early in life is a major cause of adult asthma. There is no HRSV vaccine, and the only clinically approved treatment is immunoprophylaxis that is expensive and only moderately effective. New anti-HRSV therapeutic strategies are therefore urgently required. Methods It is now established that viruses require cellular ion channel functionality to infect cells. Here, we infected human lung epithelial cell lines and ex vivo human lung slices with HRSV in the presence of a defined panel of chloride (Cl−) channel modulators to investigate their role during the HRSV life-cycle. Results We demonstrate the requirement for TMEM16A, a calcium-activated Cl− channel, for HRSV infection. Time-of-addition assays revealed that the TMEM16A blockers inhibit HRSV at a postentry stage of the virus life-cycle, showing activity as a postexposure prophylaxis. Another important negative-sense RNA respiratory pathogen influenza virus was also inhibited by the TMEM16A-specific inhibitor T16Ainh-A01. Discussion These findings reveal TMEM16A as an exciting target for future host-directed antiviral therapeutics.
Collapse
Affiliation(s)
| | | | - Mareike Ahrends
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hanover, Germany
| | | | | | | | - Jonathan D Lippiat
- University of Leeds, Leeds, UK.,School of Biomedical Sciences, University of Leeds, Leeds, UK
| | | | | | - Olga Danov
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hanover, Germany
| | - Christina Hesse
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hanover, Germany
| | | | | |
Collapse
|
18
|
Bartucci R, Paramanandana A, Boersma YL, Olinga P, Salvati A. Comparative study of nanoparticle uptake and impact in murine lung, liver and kidney tissue slices. Nanotoxicology 2020; 14:847-865. [PMID: 32536243 DOI: 10.1080/17435390.2020.1771785] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
To determine responses to nanoparticles in a more comprehensive way, current efforts in nanosafety aim at combining the analysis of multiple endpoints and comparing outcomes in different models. To this end, here we used tissue slices from mice as 3D ex vivo models and performed for the first time a comparative study of uptake and impact in liver, lung, and kidney slices exposed under the same conditions to silica, carboxylated and amino-modified polystyrene. In all organs, only exposure to amino-modified polystyrene induced toxicity, with stronger effects in kidneys and lungs. Uptake and distribution studies by confocal microscopy confirmed nanoparticle uptake in all slices, and, in line with what observed in vivo, preferential accumulation in the macrophages. However, uptake levels in kidneys were minimal, despite the strong impact observed when exposed to the amino-modified polystyrene. On the contrary, nanoparticle uptake and accumulation in macrophages were particularly evident in lung slices. Thus, tissue digestion was used to recover all cells from lung slices at different exposure times and to determine by flow cytometry detailed uptake kinetics in lung macrophages and all other cells, confirming higher uptake by the macrophages. Finally, the expression levels of a panel of targets involved in inflammation and macrophage polarization were measured to determine potential effects induced in lung and liver tissue. Overall, this comparative study allowed us to determine uptake and impact of nanoparticles in real tissue and identify important differences in outcomes in the organs in which nanoparticles distribute.
Collapse
Affiliation(s)
- Roberta Bartucci
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.,Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.,Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Abhimata Paramanandana
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Ykelien L Boersma
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Anna Salvati
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
19
|
Alsafadi HN, Uhl FE, Pineda RH, Bailey KE, Rojas M, Wagner DE, Königshoff M. Applications and Approaches for Three-Dimensional Precision-Cut Lung Slices. Disease Modeling and Drug Discovery. Am J Respir Cell Mol Biol 2020; 62:681-691. [PMID: 31991090 PMCID: PMC7401444 DOI: 10.1165/rcmb.2019-0276tr] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/28/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic lung diseases (CLDs), such as chronic obstructive pulmonary disease, interstitial lung disease, and lung cancer, are among the leading causes of morbidity globally and impose major health and financial burdens on patients and society. Effective treatments are scarce, and relevant human model systems to effectively study CLD pathomechanisms and thus discover and validate potential new targets and therapies are needed. Precision-cut lung slices (PCLS) from healthy and diseased human tissue represent one promising tool that can closely recapitulate the complexity of the lung's native environment, and recently, improved methodologies and accessibility to human tissue have led to an increased use of PCLS in CLD research. Here, we discuss approaches that use human PCLS to advance our understanding of CLD development, as well as drug discovery and validation for CLDs. PCLS enable investigators to study complex interactions among different cell types and the extracellular matrix in the native three-dimensional architecture of the lung. PCLS further allow for high-resolution (live) imaging of cellular functions in several dimensions. Importantly, PCLS can be derived from diseased lung tissue upon lung surgery or transplantation, thus allowing the study of CLDs in living human tissue. Moreover, CLDs can be modeled in PCLS derived from normal lung tissue to mimic the onset and progression of CLDs, complementing studies in end-stage diseased tissue. Altogether, PCLS are emerging as a remarkable tool to further bridge the gap between target identification and translation into clinical studies, and thus open novel avenues for future precision medicine approaches.
Collapse
Affiliation(s)
- Hani N. Alsafadi
- Lung Bioengineering and Regeneration, Department of Experimental Medical Science
- Wallenberg Center for Molecular Medicine
- Lund Stem Cell Center, Faculty of Medicine, and
- Helmholtz Zentrum Munich, Lung Repair and Regeneration, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Franziska E. Uhl
- Wallenberg Center for Molecular Medicine
- Vascular Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ricardo H. Pineda
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| | - Kolene E. Bailey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| | - Mauricio Rojas
- Division of Respiratory, Allergy and Critical Care Medicine, The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Darcy E. Wagner
- Lung Bioengineering and Regeneration, Department of Experimental Medical Science
- Wallenberg Center for Molecular Medicine
- Lund Stem Cell Center, Faculty of Medicine, and
- Helmholtz Zentrum Munich, Lung Repair and Regeneration, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Melanie Königshoff
- Helmholtz Zentrum Munich, Lung Repair and Regeneration, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| |
Collapse
|
20
|
Chen Z, Yu L, Cai X, Ye F, Jin P. Toll-like receptor 4/nuclear factor-kappa B pathway is involved in activating microphages by polysaccharides isolated from Fagopyrum esculentum. Bioengineered 2020; 10:538-547. [PMID: 31661653 PMCID: PMC6844372 DOI: 10.1080/21655979.2019.1682214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Buckwheat polysaccharide fractions (BPFs) isolated from seeds of Fagopyrum esculentum have shown extensive immunomodulatory activities including activation of immune system. In this study, the immuno-modulation effects of BPFs on microphages were investigated. The obtained results show that BPFs can activate microphages as indicated by significant increases in the activity of inducible nitric oxide synthase (12.6 ± 1.30 U/mg prot), nuclear factor-kappa B (NF-κB) protein levels, and secretion of nitric oxide (NO) (21.5 ± 1.20 μmol/ml) and tumor necrosis factor-alpha (TNF-α) (71.2 ± 18.20 pg/ml). Moreover, blocking toll-like receptor 4 (TLR4)/NF-κB pathway using a specific antibody to TLR4 or inhibitor of NF-κB led to the significant inhibitory immuno-modulation effect on microphages as indicated by the decrease in the secretion level of NO and TNF-α. It is demonstrated that BPFs can activate microphages and TLR4/NF-κB pathway is involved in the induction of NO and TNF-α in macrophages by BPFs.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Gastroenterology, Third Affiliated Hospital of Wenzhou Medical University, Rui'an People's Hospital, Rui'an, China
| | - Leilei Yu
- Department of Gastroenterology, Third Affiliated Hospital of Wenzhou Medical University, Rui'an People's Hospital, Rui'an, China
| | - Xiaoniao Cai
- Department of Gastroenterology, Third Affiliated Hospital of Wenzhou Medical University, Rui'an People's Hospital, Rui'an, China
| | - Fangpeng Ye
- Department of Gastroenterology, Third Affiliated Hospital of Wenzhou Medical University, Rui'an People's Hospital, Rui'an, China
| | - Peisheng Jin
- Department of Gastroenterology, Third Affiliated Hospital of Wenzhou Medical University, Rui'an People's Hospital, Rui'an, China
| |
Collapse
|
21
|
Delgado SJ, Dehmel S, Twisterling E, Wichmann J, Jonigk D, Warnecke G, Braubach P, Fieguth HG, Wilkens L, Dahlmann F, Kaup FJ, Eggel A, Knauf S, Sewald K, Braun A. Disruptive anti-IgE inhibitors prevent mast cell-dependent early airway response in viable atopic lung tissue. J Allergy Clin Immunol 2019; 145:719-722.e1. [PMID: 31858993 DOI: 10.1016/j.jaci.2019.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/02/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Sharon Jiménez Delgado
- Fraunhofer Institute for Toxicology and Experimental Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH) research network, Hannover, Germany
| | - Susann Dehmel
- Fraunhofer Institute for Toxicology and Experimental Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH) research network, Hannover, Germany
| | - Elaine Twisterling
- Fraunhofer Institute for Toxicology and Experimental Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH) research network, Hannover, Germany; German Primate Center GmbH, Leibniz-Institute for Primate Research, Goettingen, Germany
| | - Judy Wichmann
- Fraunhofer Institute for Toxicology and Experimental Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH) research network, Hannover, Germany; German Primate Center GmbH, Leibniz-Institute for Primate Research, Goettingen, Germany
| | - Danny Jonigk
- Institute for Pathology, Hannover Medical School, Hannover, Germany, Member of the German Center for Lung Research (DZL), Hannover, Germany, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Research Network, Hannover, Germany
| | - Gregor Warnecke
- Institute for Pathology, Hannover Medical School, Hannover, Germany, Member of the German Center for Lung Research (DZL), Hannover, Germany, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Research Network, Hannover, Germany
| | - Peter Braubach
- Institute for Pathology, Hannover Medical School, Hannover, Germany, Member of the German Center for Lung Research (DZL), Hannover, Germany, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Research Network, Hannover, Germany
| | - Hans-Gerd Fieguth
- Institute of Pathology, Klinikum Region Hannover (KRH), Hannover, Germany
| | - Ludwig Wilkens
- Institute of Pathology, Klinikum Region Hannover (KRH), Hannover, Germany
| | - Franziska Dahlmann
- Fraunhofer Institute for Toxicology and Experimental Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH) research network, Hannover, Germany
| | - Franz-Josef Kaup
- German Primate Center GmbH, Leibniz-Institute for Primate Research, Goettingen, Germany
| | - Alexander Eggel
- Department of Rheumatology, Immunology and Allergology, University Hospital Bern, Bern, Switzerland
| | - Sascha Knauf
- German Primate Center GmbH, Leibniz-Institute for Primate Research, Goettingen, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH) research network, Hannover, Germany.
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH) research network, Hannover, Germany
| |
Collapse
|
22
|
Danov O, Lasswitz L, Obernolte H, Hesse C, Braun A, Wronski S, Sewald K. Rupintrivir reduces RV-induced T H-2 cytokine IL-4 in precision-cut lung slices (PCLS) of HDM-sensitized mice ex vivo. Respir Res 2019; 20:228. [PMID: 31640701 PMCID: PMC6805592 DOI: 10.1186/s12931-019-1175-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022] Open
Abstract
Background Antiviral drugs such as rupintrivir may have an immune-modulatory effect in experimentally induced allergic asthma with subsequent RV infection. We infected lung slices of house-dust mite (HDM)-sensitized asthmatic mice ex vivo with human rhinovirus (RV) and investigated the effect of the antiviral drug rupintrivir on RV-induced cytokine response in lung tissue of HDM-sensitized mice ex vivo. Methods Mice were sensitized with HDM. Precision-cut lung slices (PCLS) were prepared from HDM-sensitized or non-sensitized mice. Lung slices were infected ex vivo with RV or RV together with rupintrivir. Modulation of immune responses was evaluated by cytokine secretion 48 h post infection. Results In vivo HDM sensitization resulted in a TH-2/TH-17-dominated cytokine response that persisted in PCLS ex vivo. RV infection of PCLS from non-sensitized mice resulted in the induction of an antiviral and pro-inflammatory immune response, as indicated by the secretion of IFN-α, IFN-β, IFN-γ, TNF-α, MCP-1, IP-10, IL-10, and IL-17A. In contrast, PCLS from HDM-sensitized mice showed an attenuated antiviral response, but exaggerated IL-4, IL-6, and IL-10 secretion upon infection. Rupintrivir inhibited exaggerated pro-inflammatory cytokine IL-6 and TH-2 cytokine IL-4 in HDM-sensitized mice. Conclusions In summary, this study demonstrates that treatment with rupintrivir influences virus-induced IL-4 and IL-6 cytokine release under experimental conditions ex vivo. Electronic supplementary material The online version of this article (10.1186/s12931-019-1175-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Olga Danov
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - Lisa Lasswitz
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - Helena Obernolte
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - Christina Hesse
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany.,Institute of Immunology, Hannover Medical School, Carl-Neuberg Strasse 1, 30625, Hannover, Germany
| | - Sabine Wronski
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
23
|
Nonanimal toxicology testing approaches for traditional and deemed tobacco products in a complex regulatory environment: Limitations, possibilities, and future directions. Toxicol In Vitro 2019; 62:104684. [PMID: 31618670 DOI: 10.1016/j.tiv.2019.104684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 11/20/2022]
Abstract
The evaluation of tobacco products is complex due to a multitude of factors including product diversity, limited testing standards, and variability in user behavior. Alternative approaches in current testing paradigms have limitations that generally truncate their applicability beyond screening for hazard identification; this is also true for toxicological evaluations of tobacco products. In a regulatory context, results from tobacco product toxicity assessments are extrapolated to the in vivo condition to assess human health relevance at the individual and population level. A key limitation of alternative approaches is the difficulty and uncertainty in extrapolating results to adverse outcomes relevant to chronic tobacco exposures in humans. This difficulty and uncertainty are increased when comparing toxicological outcomes between tobacco products. Given that the interpretation and quantification of differences in assay results (e.g., mutagenicity) for tobacco product comparison may be inconclusive, the predictive value of these approaches for human risk of relevant downstream pathologies (e.g., carcinogenesis) can be limited. Development and validation of fit-for-purpose alternative approaches that are predictive of human toxicity and dose response assays with adequate sensitivity and specificity for product comparisons would help advance the field of predictive toxicology.
Collapse
|
24
|
Transcriptomic Analysis Reveals Priming of The Host Antiviral Interferon Signaling Pathway by Bronchobini ® Resulting in Balanced Immune Response to Rhinovirus Infection in Mouse Lung Tissue Slices. Int J Mol Sci 2019; 20:ijms20092242. [PMID: 31067687 PMCID: PMC6540047 DOI: 10.3390/ijms20092242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022] Open
Abstract
Rhinovirus (RV) is the predominant virus causing respiratory tract infections. Bronchobini® is a low dose multi component, multi target preparation used to treat inflammatory respiratory diseases such as the common cold, described to ease severity of symptoms such as cough and viscous mucus production. The aim of the study was to assess the efficacy of Bronchobini® in RV infection and to elucidate its mode of action. Therefore, Bronchobini®’s ingredients (BRO) were assessed in an ex vivo model of RV infection using mouse precision-cut lung slices, an organotypic tissue capable to reflect the host immune response to RV infection. Cytokine profiles were assessed using enzyme-linked immunosorbent assay (ELISA) and mesoscale discovery (MSD). Gene expression analysis was performed using Affymetrix microarrays and ingenuity pathway analysis. BRO treatment resulted in the significant suppression of RV-induced antiviral and pro-inflammatory cytokine release. Transcriptome analysis revealed a multifactorial mode of action of BRO, with a strong inhibition of the RV-induced pro-inflammatory and antiviral host response mediated by nuclear factor kappa B (NFkB) and interferon signaling pathways. Interestingly, this was due to priming of these pathways in the absence of virus. Overall, BRO exerted its beneficial anti-inflammatory effect by priming the antiviral host response resulting in a reduced inflammatory response to RV infection, thereby balancing an otherwise excessive inflammatory response.
Collapse
|