1
|
Liberal Â, Fernandes Â, Ferreira ICFR, Vivar-Quintana AM, Barros L. Effect of different physical pre-treatments on physicochemical and techno-functional properties, and on the antinutritional factors of lentils (Lens culinaris spp). Food Chem 2024; 450:139293. [PMID: 38631207 DOI: 10.1016/j.foodchem.2024.139293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
Lentils have a valuable physicochemical profile, which can be affected by the presence of antinutrients that may impair the benefits arising from their consumption. Different treatments can be used to reduce these undesirable compounds, although they can also affect the general composition and behaviour of the lentils. Thus, the effect of different processing methods on the physicochemical and techno-functional properties, as well as on the antinutritional factors of different lentil varieties was studied. Phytic acid was eliminated during germination, while tannins and trypsin inhibitors are mostly affected by cooking. Functional properties were also altered by processing, these being dependent on the concentration of different nutrients in lentils. All the studied treatments affected the physicochemical profile of lentils and their functional properties. Cooking and germination appear to be the most effective in reducing antinutritional factors and improving the physicochemical profile of the lentils, meeting the current nutritional demands of today's society.
Collapse
Affiliation(s)
- Ângela Liberal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ângela Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | | | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
2
|
Balech R, Maalouf F, Kaur S, Jighly A, Joukhadar R, Alsamman AM, Hamwieh A, Khater LA, Rubiales D, Kumar S. Identification of novel genes associated with herbicide tolerance in Lentil (Lens culinaris ssp. culinaris Medik.). Sci Rep 2024; 14:10215. [PMID: 38702403 PMCID: PMC11068770 DOI: 10.1038/s41598-024-59695-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 04/15/2024] [Indexed: 05/06/2024] Open
Abstract
Weeds pose a major constraint in lentil cultivation, leading to decrease farmers' revenues by reducing the yield and increasing the management costs. The development of herbicide tolerant cultivars is essential to increase lentil yield. Even though herbicide tolerant lines have been identified in lentils, breeding efforts are still limited and lack proper validation. Marker assisted selection (MAS) can increase selection accuracy at early generations. Total 292 lentil accessions were evaluated under different dosages of two herbicides, metribuzin and imazethapyr, during two seasons at Marchouch, Morocco and Terbol, Lebanon. Highly significant differences among accessions were observed for days to flowering (DF) and maturity (DM), plant height (PH), biological yield (BY), seed yield (SY), number of pods per plant (NP), as well as the reduction indices (RI) for PH, BY, SY and NP. A total of 10,271 SNPs markers uniformly distributed along the lentil genome were assayed using Multispecies Pulse SNP chip developed at Agriculture Victoria, Melbourne. Meta-GWAS analysis was used to detect marker-trait associations, which detected 125 SNPs markers associated with different traits and clustered in 85 unique quantitative trait loci. These findings provide valuable insights for initiating MAS programs aiming to enhance herbicide tolerance in lentil crop.
Collapse
Affiliation(s)
- Rind Balech
- International Center for Agricultural Research in the Dry Areas (ICARDA), Terbol, Lebanon.
| | - Fouad Maalouf
- International Center for Agricultural Research in the Dry Areas (ICARDA), Terbol, Lebanon.
| | - Sukhjiwan Kaur
- Department of Energy, AgriBio, Environment and Climate Action, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - Abdulqader Jighly
- Department of Energy, AgriBio, Environment and Climate Action, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - Reem Joukhadar
- Department of Energy, AgriBio, Environment and Climate Action, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | | | | | - Lynn Abou Khater
- International Center for Agricultural Research in the Dry Areas (ICARDA), Terbol, Lebanon
| | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Córdoba, Spain
| | | |
Collapse
|
3
|
Susmitha P, Kumar P, Yadav P, Sahoo S, Kaur G, Pandey MK, Singh V, Tseng TM, Gangurde SS. Genome-wide association study as a powerful tool for dissecting competitive traits in legumes. FRONTIERS IN PLANT SCIENCE 2023; 14:1123631. [PMID: 37645459 PMCID: PMC10461012 DOI: 10.3389/fpls.2023.1123631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/08/2023] [Indexed: 08/31/2023]
Abstract
Legumes are extremely valuable because of their high protein content and several other nutritional components. The major challenge lies in maintaining the quantity and quality of protein and other nutritional compounds in view of climate change conditions. The global need for plant-based proteins has increased the demand for seeds with a high protein content that includes essential amino acids. Genome-wide association studies (GWAS) have evolved as a standard approach in agricultural genetics for examining such intricate characters. Recent development in machine learning methods shows promising applications for dimensionality reduction, which is a major challenge in GWAS. With the advancement in biotechnology, sequencing, and bioinformatics tools, estimation of linkage disequilibrium (LD) based associations between a genome-wide collection of single-nucleotide polymorphisms (SNPs) and desired phenotypic traits has become accessible. The markers from GWAS could be utilized for genomic selection (GS) to predict superior lines by calculating genomic estimated breeding values (GEBVs). For prediction accuracy, an assortment of statistical models could be utilized, such as ridge regression best linear unbiased prediction (rrBLUP), genomic best linear unbiased predictor (gBLUP), Bayesian, and random forest (RF). Both naturally diverse germplasm panels and family-based breeding populations can be used for association mapping based on the nature of the breeding system (inbred or outbred) in the plant species. MAGIC, MCILs, RIAILs, NAM, and ROAM are being used for association mapping in several crops. Several modifications of NAM, such as doubled haploid NAM (DH-NAM), backcross NAM (BC-NAM), and advanced backcross NAM (AB-NAM), have also been used in crops like rice, wheat, maize, barley mustard, etc. for reliable marker-trait associations (MTAs), phenotyping accuracy is equally important as genotyping. Highthroughput genotyping, phenomics, and computational techniques have advanced during the past few years, making it possible to explore such enormous datasets. Each population has unique virtues and flaws at the genomics and phenomics levels, which will be covered in more detail in this review study. The current investigation includes utilizing elite breeding lines as association mapping population, optimizing the choice of GWAS selection, population size, and hurdles in phenotyping, and statistical methods which will analyze competitive traits in legume breeding.
Collapse
Affiliation(s)
- Pusarla Susmitha
- Regional Agricultural Research Station, Acharya N.G. Ranga Agricultural University, Andhra Pradesh, India
| | - Pawan Kumar
- Department of Genetics and Plant Breeding, College of Agriculture, Chaudhary Charan Singh (CCS) Haryana Agricultural University, Hisar, India
| | - Pankaj Yadav
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Rajasthan, India
| | - Smrutishree Sahoo
- Department of Genetics and Plant Breeding, School of Agriculture, Gandhi Institute of Engineering and Technology (GIET) University, Odisha, India
| | - Gurleen Kaur
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Manish K. Pandey
- Department of Genomics, Prebreeding and Bioinformatics, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Varsha Singh
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS, United States
| | - Te Ming Tseng
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS, United States
| | - Sunil S. Gangurde
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| |
Collapse
|
4
|
Topu M, Sesiz U, Bektaş H, Toklu F, Özkan H. Next-Generation-Sequencing-Based Simple Sequence Repeat (SSR) Marker Development and Linkage Mapping in Lentil ( Lens culinaris L.). Life (Basel) 2023; 13:1579. [PMID: 37511954 PMCID: PMC10381664 DOI: 10.3390/life13071579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Simple sequence repeats (SSRs) are highly versatile markers in genetic diversity analysis and plant breeding, making them widely applicable. They hold potential in lentil (Lens culinaris) breeding for genetic diversity analysis, marker-assisted selection (MAS), and linkage mapping. However, the availability and diversity of SSR markers in lentil is limited. We used next-generation sequencing (NGS) technology to develop SSR markers in lentil. NGS allowed us to identify regions of the lentil genome that contained SSRs. Illumina Hiseq-2000 sequencing of the lentil genotype "Karacadağ" resulted in 1,727,734 sequence reads comprising more than 48,390 Mb, and contigs were mined for SSRs, resulting in the identification of a total of 8697 SSR motifs. Among these, dinucleotide repeats were the most abundant (53.38%), followed by trinucleotides (30.38%), hexanucleotides (6.96%), tetranucleotides (6.59%), and pentanucleotides (3.19%). The most frequent repeat in dinucleotides was the TC (21.80%), followed by the GA (17.60%). A total of 2000 primer pairs were designed from these motifs, and 458 SSR markers were validated following their amplified PCR products. A linkage map was constructed using these new SSRs with high linkage disequilibrium (209) and previously known SSRs (11). The highest number of SSR markers (43) was obtained in LG2, while the lowest number of SSR markers (19) was obtained in LG7. The longest linkage group (LG) was LG2 (86.84 cM), whereas the shortest linkage group was LG7 (53.46 cM). The average length between markers ranged from 1.86 cM in LG1 to 2.81 cM in LG7, and the map density was 2.16 cM. The developed SSRs and created linkage map may provide useful information and offer a new library for genetic diversity analyses, linkage mapping studies, and lentil breeding programs.
Collapse
Affiliation(s)
- Mustafa Topu
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, 01330 Adana, Turkey
| | - Uğur Sesiz
- Department of Field Crops, Faculty of Agriculture, Çukurova University, 01330 Adana, Turkey
- Department of Field Crops, Faculty of Agriculture, Şırnak University, 73300 Şırnak, Turkey
| | - Harun Bektaş
- Department of Agricultural Biotechnology, Faculty of Agriculture, Siirt University, 56100 Siirt, Turkey
| | - Faruk Toklu
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, 01330 Adana, Turkey
- Department of Field Crops, Faculty of Agriculture, Çukurova University, 01330 Adana, Turkey
| | - Hakan Özkan
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, 01330 Adana, Turkey
- Department of Field Crops, Faculty of Agriculture, Çukurova University, 01330 Adana, Turkey
| |
Collapse
|
5
|
Rajpal VR, Singh A, Kathpalia R, Thakur RK, Khan MK, Pandey A, Hamurcu M, Raina SN. The Prospects of gene introgression from crop wild relatives into cultivated lentil for climate change mitigation. FRONTIERS IN PLANT SCIENCE 2023; 14:1127239. [PMID: 36998696 PMCID: PMC10044020 DOI: 10.3389/fpls.2023.1127239] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/22/2023] [Indexed: 05/31/2023]
Abstract
Crop wild relatives (CWRs), landraces and exotic germplasm are important sources of genetic variability, alien alleles, and useful crop traits that can help mitigate a plethora of abiotic and biotic stresses and crop yield reduction arising due to global climatic changes. In the pulse crop genus Lens, the cultivated varieties have a narrow genetic base due to recurrent selections, genetic bottleneck and linkage drag. The collection and characterization of wild Lens germplasm resources have offered new avenues for the genetic improvement and development of stress-tolerant, climate-resilient lentil varieties with sustainable yield gains to meet future food and nutritional requirements. Most of the lentil breeding traits such as high-yield, adaptation to abiotic stresses and resistance to diseases are quantitative and require the identification of quantitative trait loci (QTLs) for marker assisted selection and breeding. Advances in genetic diversity studies, genome mapping and advanced high-throughput sequencing technologies have helped identify many stress-responsive adaptive genes, quantitative trait loci (QTLs) and other useful crop traits in the CWRs. The recent integration of genomics technologies with plant breeding has resulted in the generation of dense genomic linkage maps, massive global genotyping, large transcriptomic datasets, single nucleotide polymorphisms (SNPs), expressed sequence tags (ESTs) that have advanced lentil genomic research substantially and allowed for the identification of QTLs for marker-assisted selection (MAS) and breeding. Assembly of lentil and its wild species genomes (~4Gbp) opens up newer possibilities for understanding genomic architecture and evolution of this important legume crop. This review highlights the recent strides in the characterization of wild genetic resources for useful alleles, development of high-density genetic maps, high-resolution QTL mapping, genome-wide studies, MAS, genomic selections, new databases and genome assemblies in traditionally bred genus Lens for future crop improvement amidst the impending global climate change.
Collapse
Affiliation(s)
- Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Apekshita Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, U.P., India
| | - Renu Kathpalia
- Department of Botany, Kirori Mal College, University of Delhi, Delhi, India
| | - Rakesh Kr. Thakur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, U.P., India
| | - Mohd. Kamran Khan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Türkiye
| | - Anamika Pandey
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Türkiye
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Türkiye
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, U.P., India
| |
Collapse
|
6
|
Dwivedi SL, Garcia-Oliveira AL, Govindaraj M, Ortiz R. Biofortification to avoid malnutrition in humans in a changing climate: Enhancing micronutrient bioavailability in seed, tuber, and storage roots. FRONTIERS IN PLANT SCIENCE 2023; 14:1119148. [PMID: 36794214 PMCID: PMC9923027 DOI: 10.3389/fpls.2023.1119148] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Malnutrition results in enormous socio-economic costs to the individual, their community, and the nation's economy. The evidence suggests an overall negative impact of climate change on the agricultural productivity and nutritional quality of food crops. Producing more food with better nutritional quality, which is feasible, should be prioritized in crop improvement programs. Biofortification refers to developing micronutrient -dense cultivars through crossbreeding or genetic engineering. This review provides updates on nutrient acquisition, transport, and storage in plant organs; the cross-talk between macro- and micronutrients transport and signaling; nutrient profiling and spatial and temporal distribution; the putative and functionally characterized genes/single-nucleotide polymorphisms associated with Fe, Zn, and β-carotene; and global efforts to breed nutrient-dense crops and map adoption of such crops globally. This article also includes an overview on the bioavailability, bioaccessibility, and bioactivity of nutrients as well as the molecular basis of nutrient transport and absorption in human. Over 400 minerals (Fe, Zn) and provitamin A-rich cultivars have been released in the Global South. Approximately 4.6 million households currently cultivate Zn-rich rice and wheat, while ~3 million households in sub-Saharan Africa and Latin America benefit from Fe-rich beans, and 2.6 million people in sub-Saharan Africa and Brazil eat provitamin A-rich cassava. Furthermore, nutrient profiles can be improved through genetic engineering in an agronomically acceptable genetic background. The development of "Golden Rice" and provitamin A-rich dessert bananas and subsequent transfer of this trait into locally adapted cultivars are evident, with no significant change in nutritional profile, except for the trait incorporated. A greater understanding of nutrient transport and absorption may lead to the development of diet therapy for the betterment of human health.
Collapse
Affiliation(s)
| | - Ana Luísa Garcia-Oliveira
- International Maize and Wheat Research Center, Centro Internacional de Mejoramiento de Maíz. y Trigo (CIMMYT), Nairobi, Kenya
- Department of Molecular Biology, College of Biotechnology, CCS Haryana Agricultural University, Hissar, India
| | - Mahalingam Govindaraj
- HarvestPlus Program, Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Rodomiro Ortiz
- Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
7
|
Sa KJ, Park H, Jang SJ, Lee JK. Association Mapping of Amylose Content in Maize RIL Population Using SSR and SNP Markers. PLANTS (BASEL, SWITZERLAND) 2023; 12:239. [PMID: 36678952 PMCID: PMC9865990 DOI: 10.3390/plants12020239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The ratio of amylose to amylopectin in maize kernel starch is important for the appearance, structure, and quality of food products and processing. This study aimed to identify quantitative trait loci (QTLs) controlling amylose content in maize through association mapping with simple sequence repeat (SSR) and single-nucleotide polymorphism (SNP) markers. The average value of amylose content for an 80-recombinant-inbred-line (RIL) population was 8.8 ± 0.7%, ranging from 2.1 to 15.9%. We used two different analyses-Q + K and PCA + K mixed linear models (MLMs)-and found 38 (35 SNP and 3 SSR) and 32 (29 SNP and 3 SSR) marker-trait associations (MTAs) associated with amylose content. A total of 34 (31 SNP and 3 SSR) and 28 (25 SNP and 3 SSR) MTAs were confirmed in the Q + K and PCA + K MLMs, respectively. This study detected some candidate genes for amylose content, such as GRMZM2G118690-encoding BBR/BPC transcription factor, which is used for the control of seed development and is associated with the amylose content of rice. GRMZM5G830776-encoding SNARE-interacting protein (KEULE) and the uncharacterized marker PUT-163a-18172151-1376 were significant with higher R2 value in two difference methods. GRMZM2G092296 were also significantly associated with amylose content in this study. This study focused on amylose content using a RIL population derived from dent and waxy inbred lines using molecular markers. Future studies would be of benefit for investigating the physical linkage between starch synthesis genes using SNP and SSR markers, which would help to build a more detailed genetic map and provide new insights into gene regulation of agriculturally important traits.
Collapse
Affiliation(s)
- Kyu Jin Sa
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyeon Park
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - So Jung Jang
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ju Kyong Lee
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
8
|
Popoola JO, Ojuederie OB, Aworunse OS, Adelekan A, Oyelakin AS, Oyesola OL, Akinduti PA, Dahunsi SO, Adegboyega TT, Oranusi SU, Ayilara MS, Omonhinmin CA. Nutritional, functional, and bioactive properties of african underutilized legumes. FRONTIERS IN PLANT SCIENCE 2023; 14:1105364. [PMID: 37123863 PMCID: PMC10141332 DOI: 10.3389/fpls.2023.1105364] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Globally, legumes are vital constituents of diet and perform critical roles in maintaining well-being owing to the dense nutritional contents and functional properties of their seeds. While much emphasis has been placed on the major grain legumes over the years, the neglected and underutilized legumes (NULs) are gaining significant recognition as probable crops to alleviate malnutrition and give a boost to food security in Africa. Consumption of these underutilized legumes has been associated with several health-promoting benefits and can be utilized as functional foods due to their rich dietary fibers, vitamins, polyunsaturated fatty acids (PUFAs), proteins/essential amino acids, micro-nutrients, and bioactive compounds. Despite the plethora of nutritional benefits, the underutilized legumes have not received much research attention compared to common mainstream grain legumes, thus hindering their adoption and utilization. Consequently, research efforts geared toward improvement, utilization, and incorporation into mainstream agriculture in Africa are more convincing than ever. This work reviews some selected NULs of Africa (Adzuki beans (Vigna angularis), African yam bean (Sphenostylis stenocarpa), Bambara groundnut (Vigna subterranea), Jack bean (Canavalia ensiformis), Kidney bean (Phaseolus vulgaris), Lima bean (Phaseolus lunatus), Marama bean (Tylosema esculentum), Mung bean, (Vigna radiata), Rice bean (Vigna Umbellata), and Winged bean (Psophocarpus tetragonolobus)), and their nutritional, and functional properties. Furthermore, we highlight the prospects and current challenges associated with the utilization of the NULs and discusses the strategies to facilitate their exploitation as not only sources of vital nutrients, but also their integration for the development of cheap and accessible functional foods.
Collapse
Affiliation(s)
- Jacob Olagbenro Popoola
- Pure and Applied Biology Programme, College of Agriculture, Engineering and Science, Bowen University, Iwo, Osun, Nigeria
- Department of Biological Sciences/Biotechnology Cluster, Covenant University, Ota, Ogun, Nigeria
- *Correspondence: Jacob Olagbenro Popoola, ; Omena B. Ojuederie,
| | - Omena B. Ojuederie
- Department of Biological Sciences, Kings University, Ode-Omu, Osun, Nigeria
- Food Security and Safety Focus, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- *Correspondence: Jacob Olagbenro Popoola, ; Omena B. Ojuederie,
| | | | - Aminat Adelekan
- Department of Chemical and Food Sciences, College of Natural and Applied Sciences, Bells University of Technology, Ota, Ogun, Nigeria
| | - Abiodun S. Oyelakin
- Department of Pure and Applied Botany, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Olusola Luke Oyesola
- Department of Biological Sciences/Biotechnology Cluster, Covenant University, Ota, Ogun, Nigeria
| | - Paul A. Akinduti
- Department of Biological Sciences/Biotechnology Cluster, Covenant University, Ota, Ogun, Nigeria
| | - Samuel Olatunde Dahunsi
- Microbiology Programme, College of Agriculture, Engineering and Science, Bowen University, Iwo, Osun, Nigeria
- The Radcliffe Institute for Advanced Study, Harvard University, Cambridge, MA, United States
| | - Taofeek T. Adegboyega
- Food Security and Safety Focus, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Biology Unit, Faculty of Science, Air Force Institute of Technology, Kaduna, Nigeria
| | - Solomon U. Oranusi
- Department of Biological Sciences/Biotechnology Cluster, Covenant University, Ota, Ogun, Nigeria
| | - Modupe S. Ayilara
- Department of Biological Sciences, Kings University, Ode-Omu, Osun, Nigeria
- Food Security and Safety Focus, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Conrad A. Omonhinmin
- Department of Biological Sciences/Biotechnology Cluster, Covenant University, Ota, Ogun, Nigeria
| |
Collapse
|
9
|
Tziouvalekas M, Tigka E, Kargiotidou A, Beslemes D, Irakli M, Pankou C, Arabatzi P, Aggelakoudi M, Tokatlidis I, Mavromatis A, Qin R, Noulas C, Vlachostergios DN. Seed Yield, Crude Protein and Mineral Nutrients of Lentil Genotypes Evaluated across Diverse Environments under Organic and Conventional Farming. PLANTS (BASEL, SWITZERLAND) 2022; 11:3328. [PMID: 36501365 PMCID: PMC9735441 DOI: 10.3390/plants11233328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Lentil is an important legume crop for human and animal dietary needs due to its high nutritional value. The effect of genotype and growing environment was studied on seed yield (SY), crude protein (CP) and mineral nutrients (macro and micronutrients) of five lentil genotypes grown at four diverse locations for two consecutive years under organic and conventional farming. The location within each year was considered as a separate environment (E). Data were subjected to over environment two-way analysis of variance, while a genotype (G) plus genotype × environment (GGE) biplot analysis was performed. Our results indicated the E as the main source of variation (62.3-99.8%) for SY, CP and macronutrients for both farming systems, while for micronutrients it was either the E or the G × E interaction. Different environments were identified as ideal for the parameters studied: E6 (Larissa/Central Greece/2020) produced the higher CP values (organic: 32.0%, conventional: 27.5%) and showed the highest discriminating ability that was attributed to the lowest precipitation during the crucial period of pod filling. E7 (Thessaloniki/Central Macedonia/2020) and E8 (Orestiada/Thrace/2020) had fertile soils and ample soil moisture and were the most discriminating for high micronutrient content under both farming systems. Location Orestiada showed the highest SY for both organic (1.87-2.28 t ha-1) and conventional farming (1.56-2.89 t ha-1) regardless the year of cultivation and is proposed as an ideal location for lentil cultivation or for breeding for high SY. Genotypes explained a low percentage of the total variability; however, two promising genotypes were identified. Cultivar "Samos" demonstrated a wide adaptation capacity exhibiting stable and high SY under both organic and conventional farming, while the red lentil population "03-24L" showed very high level of seed CP, Fe and Mn contents regardless E or farming system. This genetic material could be further exploited as parental material aiming to develop lentil varieties that could be utilized as "functional" food or consist of a significant feed ingredient.
Collapse
Affiliation(s)
- Miltiadis Tziouvalekas
- Institute of Industrial and Forage Crops, Hellenic Agricultural Organization—DEMETER, 41335 Larissa, Greece
| | - Evangelia Tigka
- Institute of Industrial and Forage Crops, Hellenic Agricultural Organization—DEMETER, 41335 Larissa, Greece
| | - Anastasia Kargiotidou
- Institute of Industrial and Forage Crops, Hellenic Agricultural Organization—DEMETER, 41335 Larissa, Greece
| | - Dimitrios Beslemes
- Institute of Industrial and Forage Crops, Hellenic Agricultural Organization—DEMETER, 41335 Larissa, Greece
- ALFA SEEDS SA, 41500 Larissa, Greece
| | - Maria Irakli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization—DEMETER, 57001 Thessaloniki, Greece
| | - Chrysanthi Pankou
- Institute of Industrial and Forage Crops, Hellenic Agricultural Organization—DEMETER, 41335 Larissa, Greece
- Department of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece
| | - Parthena Arabatzi
- Laboratory of Genetics & Plant Breeding, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Aggelakoudi
- Department of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece
| | - Ioannis Tokatlidis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Athanasios Mavromatis
- Laboratory of Genetics & Plant Breeding, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ruijun Qin
- Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR 97838, USA
| | - Christos Noulas
- Institute of Industrial and Forage Crops, Hellenic Agricultural Organization—DEMETER, 41335 Larissa, Greece
| | | |
Collapse
|
10
|
Jha R, Yadav HK, Raiya R, Singh RK, Jha UC, Sathee L, Singh P, Thudi M, Singh A, Chaturvedi SK, Tripathi S. Integrated breeding approaches to enhance the nutritional quality of food legumes. FRONTIERS IN PLANT SCIENCE 2022; 13:984700. [PMID: 36161025 PMCID: PMC9490089 DOI: 10.3389/fpls.2022.984700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/26/2022] [Indexed: 05/31/2023]
Abstract
Global food security, both in terms of quantity and quality remains as a challenge with the increasing population. In parallel, micronutrient deficiency in the human diet leads to malnutrition and several health-related problems collectively known as "hidden hunger" more prominent in developing countries around the globe. Biofortification is a potential tool to fortify grain legumes with micronutrients to mitigate the food and nutritional security of the ever-increasing population. Anti-nutritional factors like phytates, raffinose (RFO's), oxalates, tannin, etc. have adverse effects on human health upon consumption. Reduction of the anti-nutritional factors or preventing their accumulation offers opportunity for enhancing the intake of legumes in diet besides increasing the bioavailability of micronutrients. Integrated breeding methods are routinely being used to exploit the available genetic variability for micronutrients through modern "omic" technologies such as genomics, transcriptomics, ionomics, and metabolomics for developing biofortified grain legumes. Molecular mechanism of Fe/Zn uptake, phytate, and raffinose family oligosaccharides (RFOs) biosynthesis pathways have been elucidated. Transgenic, microRNAs and genome editing tools hold great promise for designing nutrient-dense and anti-nutrient-free grain legumes. In this review, we present the recent efforts toward manipulation of genes/QTLs regulating biofortification and Anti-nutrient accumulation in legumes using genetics-, genomics-, microRNA-, and genome editing-based approaches. We also discuss the success stories in legumes enrichment and recent advances in development of low Anti-nutrient lines. We hope that these emerging tools and techniques will expedite the efforts to develop micronutrient dense legume crop varieties devoid of Anti-nutritional factors that will serve to address the challenges like malnutrition and hidden hunger.
Collapse
Affiliation(s)
- Rintu Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Hemant Kumar Yadav
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rahul Raiya
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rajesh Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Uday Chand Jha
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, India
| | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prashant Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mahendar Thudi
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India
- Shandong Academy of Agricultural Sciences, Jinan, China
- Center for Crop Health, University of Southern Queensland, Toowmba, QLD, Australia
| | - Anshuman Singh
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, India
| | - Sushil Kumar Chaturvedi
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, India
| | - Shailesh Tripathi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
11
|
Fayaz H, Tyagi S, Wani AA, Pandey R, Akhtar S, Bhat MA, Chitikineni A, Varshney RK, Thudi M, Kumar U, Mir RR. Genome-wide association analysis to delineate high-quality SNPs for seed micronutrient density in chickpea (Cicer arietinum L.). Sci Rep 2022; 12:11357. [PMID: 36064952 PMCID: PMC9445022 DOI: 10.1038/s41598-022-14487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Chickpea is the most important nutrient-rich grain legume crop in the world. A diverse core set of 147 chickpea genotypes was genotyped with a Axiom(®)50K CicerSNP array and trait phenotyped in two different environments for four seed micronutrients (Zn, Cu, Fe and Mn). The trait data and high-throughput 50K SNP genotypic data were used for the genome-wide association study (GWAS). The study led to the discovery of genes/QTLs for seed Zn, Cu, Fe and Mn, concentrations in chickpea. The analysis of seed micronutrient data revealed significant differences for all four micronutrient concentrations (P ≤ 0.05). The mean concentrations of seed Zn, Cu, Fe and Mn pooled over the 2 years were 45.9 ppm, 63.8 ppm 146.1 ppm, and 27.0 ppm, respectively. The analysis of results led to the identification of 35 SNPs significantly associated with seed Zn, Cu, Fe and Mn concentrations. Among these 35 marker-trait associations (MTAs), 5 were stable (consistently identified in different environments), 6 were major (explaining more than 15% of the phenotypic variation for an individual trait) and 3 were both major and stable MTAs. A set of 6 MTAs, MTAs (3 for Mn, 2 for Fe, and 1 for Cu) reported by us during the present study have been also reported in the same/almost same genomic regions in earlier studies and therefore declared as validated MTAs. The stable, major and validated MTAs identified during the present study will prove useful in future chickpea molecular breeding programs aimed at enhancing the seed nutrient density of chickpea.
Collapse
Affiliation(s)
- Humara Fayaz
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), Sher-e-Kashmir University of Agricultural Sciences & Technology (SKUAST)-Kashmir, Wadura Campus, Sopore, India
- Cytogenetics and Reproductive Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Sandhya Tyagi
- Division of Plant Physiology, Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Aijaz A Wani
- Cytogenetics and Reproductive Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Renu Pandey
- Division of Plant Physiology, Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Sabina Akhtar
- College of Education, American University in the Emirates, Dubai, UAE
| | - Mohd Ashraf Bhat
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), Sher-e-Kashmir University of Agricultural Sciences & Technology (SKUAST)-Kashmir, Wadura Campus, Sopore, India
| | - Annapurna Chitikineni
- Center of Excellence in Genomics & Systems Biology (CEGSB), Iinternational Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, India
| | - Rajeev Kumar Varshney
- Center of Excellence in Genomics & Systems Biology (CEGSB), Iinternational Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, India
- State Agricultural Biotechnology Centre, Crop & Food Innovation Centre, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Mahendar Thudi
- Center of Excellence in Genomics & Systems Biology (CEGSB), Iinternational Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, India.
- Department of Agricultural Biotechnology and Biotechnology, Rajendra Prasad Central Agricultural University, Pusa, Samasthipur, India.
- University of Southern Queensland (USQ), Toowoomba, Australia.
| | - Upendra Kumar
- Department of Molecular Biology, Biotechnology and Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), Sher-e-Kashmir University of Agricultural Sciences & Technology (SKUAST)-Kashmir, Wadura Campus, Sopore, India.
| |
Collapse
|
12
|
Roorkiwal M, Bhandari A, Barmukh R, Bajaj P, Valluri VK, Chitikineni A, Pandey S, Chellapilla B, Siddique KHM, Varshney RK. Genome-wide association mapping of nutritional traits for designing superior chickpea varieties. FRONTIERS IN PLANT SCIENCE 2022; 13:843911. [PMID: 36082300 PMCID: PMC9445663 DOI: 10.3389/fpls.2022.843911] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Micronutrient malnutrition is a serious concern in many parts of the world; therefore, enhancing crop nutrient content is an important challenge. Chickpea (Cicer arietinum L.), a major food legume crop worldwide, is a vital source of protein and minerals in the vegetarian diet. This study evaluated a diverse set of 258 chickpea germplasm accessions for 12 key nutritional traits. A significant variation was observed for several nutritional traits, including crude protein (16.56-24.64/100 g), β-Carotene (0.003-0.104 mg/100 g), calcium (60.69-176.55 mg/100 g), and folate (0.413-6.537 mg/kg). These data, combined with the available whole-genome sequencing data for 318,644 SNPs, were used in genome-wide association studies comprising single-locus and multi-locus models. We also explored the effect of varying the minor allele frequency (MAF) levels and heterozygosity. We identified 62 significant marker-trait associations (MTAs) explaining up to 28.63% of the phenotypic variance (PV), of which nine were localized within genes regulating G protein-coupled receptor signaling pathway, proteasome assembly, intracellular signal transduction, and oxidation-reduction process, among others. The significant effect MTAs were located primarily on Ca1, Ca3, Ca4, and Ca6. Importantly, varying the level of heterozygosity was found to significantly affect the detection of associations contributing to traits of interest. We further identified seven promising accessions (ICC10399, ICC1392, ICC1710, ICC2263, ICC1431, ICC4182, and ICC16915) with superior agronomic performance and high nutritional content as potential donors for developing nutrient-rich, high-yielding chickpea varieties. Validation of the significant MTAs with higher PV could identify factors controlling the nutrient acquisition and facilitate the design of biofortified chickpeas for the future.
Collapse
Affiliation(s)
- Manish Roorkiwal
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- Khalifa Center for Genetic Engineering and Biotechnology (KCGEB), United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Aditi Bhandari
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rutwik Barmukh
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Prasad Bajaj
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Vinod Kumar Valluri
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Annapurna Chitikineni
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sarita Pandey
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Bharadwaj Chellapilla
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- ICAR- Indian Agricultural Research Institute (IARI), New Delhi, India
| | | | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
13
|
Srungarapu R, Mahendrakar MD, Mohammad LA, Chand U, Jagarlamudi VR, Kondamudi KP, Kudapa H, Samineni S. Genome-Wide Association Analysis Reveals Trait-Linked Markers for Grain Nutrient and Agronomic Traits in Diverse Set of Chickpea Germplasm. Cells 2022; 11:cells11152457. [PMID: 35954301 PMCID: PMC9367858 DOI: 10.3390/cells11152457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Chickpea is an inexpensive source of protein, minerals, and vitamins to the poor people living in arid and semi-arid regions of Southern Asia and Sub-Saharan Africa. New chickpea cultivars with enhanced levels of protein, Fe and Zn content are a medium-term strategy for supplying essential nutrients for human health and reducing malnutrition. In the current study, a chickpea reference set of 280 accessions, including landraces, breeding lines, and advanced cultivars, was evaluated for grain protein, Fe, Zn content and agronomic traits over two seasons. Using a mid-density 5k SNP array, 4603 highly informative SNPs distributed across the chickpea genome were used for GWAS analysis. Population structure analysis revealed three subpopulations (K = 3). Linkage disequilibrium (LD) was extensive, and LD decay was relatively low. A total of 20 and 46 marker-trait associations (MTAs) were identified for grain nutrient and agronomic traits, respectively, using FarmCPU and BLINK models. Of which seven SNPs for grain protein, twelve for Fe, and one for Zn content were distributed on chromosomes 1, 4, 6, and 7. The marker S4_4477846 on chr4 was found to be co-associated with grain protein over seasons. The markers S1_11613376 and S1_2772537 co-associated with grain Fe content under NSII and pooled seasons and S7_9379786 marker under NSI and pooled seasons. The markers S4_31996956 co-associated with grain Fe and days to maturity. SNP annotation of associated markers were found to be related to gene functions of metal ion binding, transporters, protein kinases, transcription factors, and many more functions involved in plant metabolism along with Fe and protein homeostasis. The identified significant MTAs has potential use in marker-assisted selection for developing nutrient-rich chickpea cultivars after validation in the breeding populations.
Collapse
Affiliation(s)
- Rajasekhar Srungarapu
- Accelerated Crop Improvement, Chickpea Breeding, International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, India
- Department of Molecular Biology and Biotechnology, Acharya N.G. Ranga Agricultural University, Guntur 522034, India
| | - Mahesh Damodhar Mahendrakar
- Accelerated Crop Improvement, Chickpea Breeding, International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, India
| | - Lal Ahamed Mohammad
- Department of Genetics and Plant Breeding, Acharya N.G. Ranga Agricultural University, Guntur 522034, India
| | - Uttam Chand
- Accelerated Crop Improvement, Chickpea Breeding, International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, India
| | - Venkata Ramana Jagarlamudi
- Department of Genetics and Plant Breeding, Acharya N.G. Ranga Agricultural University, Guntur 522034, India
| | - Kiran Prakash Kondamudi
- Department of Statistics and Computer Applications, Acharya N.G. Ranga Agricultural University, Guntur 522034, India
| | - Himabindu Kudapa
- Genomics, Pre-Breeding and Bioinformatics, International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, India
| | - Srinivasan Samineni
- Accelerated Crop Improvement, Chickpea Breeding, International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, India
- Correspondence:
| |
Collapse
|
14
|
Langyan S, Yadava P, Khan FN, Bhardwaj R, Tripathi K, Bhardwaj V, Bhardwaj R, Gautam RK, Kumar A. Nutritional and Food Composition Survey of Major Pulses Toward Healthy, Sustainable, and Biofortified Diets. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.878269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The world's food demand is increasing rapidly due to fast population growth that has posed a challenge to meeting the requirements of nutritionally balanced diets. Pulses could play a major role in the human diet to combat these challenges and provide nutritional and physiological benefits. Pulses such as chickpeas, green gram, peas, horse gram, beans, lentils, black gram, etc., are rich sources of protein (190–260 g kg−1), carbohydrates (600–630 g kg−1), dietary fibers, and bioactive compounds. There are many health benefits of phytochemicals present in pulses, like flavonoids, phenolics, tannins, phytates, saponins, lectins, oxalates, phytosterols peptides, and enzyme inhibitors. Some of them have anti-inflammatory, anti-ulcerative, anti-microbial, and anti-cancer effects. Along with these, pulses are also rich in vitamins and minerals. In this review, we highlight the potential role of pulses in global food systems and diets, their nutritional value, health benefits, and prospects for biofortification of major pulses. The food composition databases with respect to pulses, effect of processing techniques, and approaches for improvement of nutritional profile of pulses are elaborated.
Collapse
|
15
|
Mir RA, Nazir M, Naik S, Mukhtar S, Ganai BA, Zargar SM. Utilizing the underutilized plant resources for development of life style foods: Putting nutrigenomics to use. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:128-138. [PMID: 34998100 DOI: 10.1016/j.plaphy.2021.12.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Sufficient amount of minerals, vitamins, and proteins in human diet play indispensable role in maintaining the active metabolism for better human health. All the essential nutrients that are requisite for an individual's survival are acquired from plants as well as animals. Micronutrients and macronutrients directly influence the metabolic pathways and their deficiencies play a substantial role in development of manifold disorders. In addition to environmental factors, quality and quantity of foods are key factors in maintaining the human health. Transition from healthy to diseased state is concurrent with the pattern of gene expression that is largely influenced by nutrition and environment. A combined approach to study the influence of nutrition on expression of numerous genes can be well explored through nutrigenomic studies. Nutrigenomics includes studies wherein applied genomics is used to investigate nutritional science to understand the compartmentalization of genes that influence the cause of diet-related complications. This review describes the role of underutilized crops as frontline foods to circumvent the health complications through the nutrigenomic studies. Further dynamics of nutrigenomic tools to study the impact of nutrition on the changing pattern of genome stability and gene expression for developing precise safety measures against wide range of health ailments linked to metabolic networks. Additionally, this review provides detailed information on nutrigenomic studies undertaken to unravel the potential of underutilized crops to augment the human health and to carry the agronomic/genomic approaches to enhance nutritional profile of underutilized crops to overcome diet-related disorders.
Collapse
Affiliation(s)
- Rakeeb Ahmad Mir
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185131, India
| | - Muslima Nazir
- Centre of Research for Development, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Samiullah Naik
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, 190025, India
| | - Shazia Mukhtar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, 190025, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, 190025, India.
| |
Collapse
|
16
|
Tiwari M, Singh B, Min D, Jagadish SVK. Omics Path to Increasing Productivity in Less-Studied Crops Under Changing Climate-Lentil a Case Study. FRONTIERS IN PLANT SCIENCE 2022; 13:813985. [PMID: 35615121 PMCID: PMC9125188 DOI: 10.3389/fpls.2022.813985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/04/2022] [Indexed: 05/08/2023]
Abstract
Conventional breeding techniques for crop improvement have reached their full potential, and hence, alternative routes are required to ensure a sustained genetic gain in lentils. Although high-throughput omics technologies have been effectively employed in major crops, less-studied crops such as lentils have primarily relied on conventional breeding. Application of genomics and transcriptomics in lentils has resulted in linkage maps and identification of QTLs and candidate genes related to agronomically relevant traits and biotic and abiotic stress tolerance. Next-generation sequencing (NGS) complemented with high-throughput phenotyping (HTP) technologies is shown to provide new opportunities to identify genomic regions and marker-trait associations to increase lentil breeding efficiency. Recent introduction of image-based phenotyping has facilitated to discern lentil responses undergoing biotic and abiotic stresses. In lentil, proteomics has been performed using conventional methods such as 2-D gel electrophoresis, leading to the identification of seed-specific proteome. Metabolomic studies have led to identifying key metabolites that help differentiate genotypic responses to drought and salinity stresses. Independent analysis of differentially expressed genes from publicly available transcriptomic studies in lentils identified 329 common transcripts between heat and biotic stresses. Similarly, 19 metabolites were common across legumes, while 31 were common in genotypes exposed to drought and salinity stress. These common but differentially expressed genes/proteins/metabolites provide the starting point for developing high-yielding multi-stress-tolerant lentils. Finally, the review summarizes the current findings from omic studies in lentils and provides directions for integrating these findings into a systems approach to increase lentil productivity and enhance resilience to biotic and abiotic stresses under changing climate.
Collapse
Affiliation(s)
- Manish Tiwari
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
- *Correspondence: Manish Tiwari,
| | - Baljinder Singh
- National Institute of Plant Genome Research, New Delhi, India
| | - Doohong Min
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - S. V. Krishna Jagadish
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
- S. V. Krishna Jagadish,
| |
Collapse
|
17
|
El Haddad N, Choukri H, Ghanem ME, Smouni A, Mentag R, Rajendran K, Hejjaoui K, Maalouf F, Kumar S. High-Temperature and Drought Stress Effects on Growth, Yield and Nutritional Quality with Transpiration Response to Vapor Pressure Deficit in Lentil. PLANTS (BASEL, SWITZERLAND) 2021; 11:95. [PMID: 35009098 PMCID: PMC8747359 DOI: 10.3390/plants11010095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
High temperature and water deficit are among the major limitations reducing lentil (Lens culinaris Medik.) yield in many growing regions. In addition, increasing atmospheric vapor pressure deficit (VPD) due to global warming causes a severe challenge by influencing the water balance of the plants, thus also affecting growth and yield. In the present study, we evaluated 20 lentil genotypes under field conditions and controlled environments with the following objectives: (i) to investigate the impact of temperature stress and combined temperature-drought stress on traits related to phenology, grain yield, nutritional quality, and canopy temperature under field conditions, and (ii) to examine the genotypic variability for limited transpiration (TRlim) trait in response to increased VPD under controlled conditions. The field experiment results revealed that high-temperature stress significantly affected all parameters compared to normal conditions. The protein content ranged from 23.4 to 31.9%, while the range of grain zinc and iron content varied from 33.1 to 64.4 and 62.3 to 99.3 mg kg-1, respectively, under normal conditions. The grain protein content, zinc and iron decreased significantly by 15, 14 and 15% under high-temperature stress, respectively. However, the impact was more severe under combined temperature-drought stress with a reduction of 53% in protein content, 18% in zinc and 20% in iron. Grain yield declined significantly by 43% in temperature stress and by 49% in the combined temperature-drought stress. The results from the controlled conditions showed a wide variation in TR among studied lentil genotypes. Nine genotypes displayed TRlim at 2.76 to 3.51 kPa, with the genotypes ILL 7833 and ILL 7835 exhibiting the lowest breakpoint. Genotypes with low breakpoints had the ability to conserve water, allowing it to be used at later stages for increased yield. Our results identified promising genotypes including ILL 7835, ILL 7814 and ILL 4605 (Bakria) that could be of great interest in breeding for high yields, protein and micronutrient contents under high-temperature and drought stress. In addition, it was found that the TRlim trait has the potential to select for increased lentil yields under field water-deficit environments.
Collapse
Affiliation(s)
- Noureddine El Haddad
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10112, Morocco; (H.C.); (K.H.)
- Laboratoire de Biotechnologie et de Physiologie Végétales, Centre de Recherche BioBio, Faculté des Sciences, Mohammed V University Rabat, Rabat 10112, Morocco;
| | - Hasnae Choukri
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10112, Morocco; (H.C.); (K.H.)
- Laboratoire de Biotechnologie et de Physiologie Végétales, Centre de Recherche BioBio, Faculté des Sciences, Mohammed V University Rabat, Rabat 10112, Morocco;
| | - Michel Edmond Ghanem
- AgroBioSciences (AgBS) Research Division, Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, Ben Guerir 43150, Morocco;
| | - Abdelaziz Smouni
- Laboratoire de Biotechnologie et de Physiologie Végétales, Centre de Recherche BioBio, Faculté des Sciences, Mohammed V University Rabat, Rabat 10112, Morocco;
| | - Rachid Mentag
- Biotechnology Research Unit, Regional Center of Agricultural Research of Rabat, National Institute of Agricultural Research (INRA), Rabat 10090, Morocco;
| | - Karthika Rajendran
- Vellore Institute of Technology (VIT), VIT School of Agricultural Innovations and Advanced Learning (VAIAL), Vellore 632014, Tamil Nadu, India;
| | - Kamal Hejjaoui
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10112, Morocco; (H.C.); (K.H.)
| | - Fouad Maalouf
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut 1108 2010, Lebanon;
| | - Shiv Kumar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10112, Morocco; (H.C.); (K.H.)
| |
Collapse
|
18
|
Moreira ZPM, Helgason BL, Germida JJ. Assembly and potential transmission of the lens culinaris seed microbiome. FEMS Microbiol Ecol 2021; 97:6484792. [PMID: 34958355 DOI: 10.1093/femsec/fiab166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/22/2021] [Indexed: 11/12/2022] Open
Abstract
Soil is an important source of bacteria and fungi for the plant, but seeds can also provide microbial inocula through heritable or stochastic assembly. Seed-associated microbial communities can potentially interact with the host plant through multiple generations. Here, we assessed the impact of two different soil types on the seed microbiome assembly of seven lentil (Lens culinaris) genotypes under environmentally controlled conditions and examined the vertical transmission of bacterial communities from seed to seed across two generations. Bulk soil microbiomes and seed microbiomes were characterized using high-throughput amplicon sequencing of the bacterial 16S rRNA gene. Our results revealed that bacterial communities in the two soils differed significantly and that bacterial communities associated with seeds were significantly impacted by genotype (15%) in one of the soils. Co-occurrence of amplicon sequence variants (ASVs) between generations suggests members of the genera Cutibacterium, Methylobacterium, Sphingomonas, Streptococcus, and Tepidimonas are transmitted and preserved in lentil genotypes irrespective of the soil in which they were grown. Increasing our knowledge of how microbial communities carried by seeds are assembled, transmitted, and preserved offers a promising way for future breeding programs to consider microbial communities when selecting for more resilient and productive cultivars.
Collapse
Affiliation(s)
- Zayda P Morales Moreira
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Bobbi L Helgason
- Department of Soil Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - James J Germida
- Department of Soil Science, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
19
|
Nayak SN, Aravind B, Malavalli SS, Sukanth BS, Poornima R, Bharati P, Hefferon K, Kole C, Puppala N. Omics Technologies to Enhance Plant Based Functional Foods: An Overview. Front Genet 2021; 12:742095. [PMID: 34858472 PMCID: PMC8631721 DOI: 10.3389/fgene.2021.742095] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022] Open
Abstract
Functional foods are natural products of plants that have health benefits beyond necessary nutrition. Functional foods are abundant in fruits, vegetables, spices, beverages and some are found in cereals, millets, pulses and oilseeds. Efforts to identify functional foods in our diet and their beneficial aspects are limited to few crops. Advances in sequencing and availability of different omics technologies have given opportunity to utilize these tools to enhance the functional components of the foods, thus ensuring the nutritional security. Integrated omics approaches including genomics, transcriptomics, proteomics, metabolomics coupled with artificial intelligence and machine learning approaches can be used to improve the crops. This review provides insights into omics studies that are carried out to find the active components and crop improvement by enhancing the functional compounds in different plants including cereals, millets, pulses, oilseeds, fruits, vegetables, spices, beverages and medicinal plants. There is a need to characterize functional foods that are being used in traditional medicines, as well as utilization of this knowledge to improve the staple foods in order to tackle malnutrition and hunger more effectively.
Collapse
Affiliation(s)
- Spurthi N. Nayak
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - B. Aravind
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Sachin S. Malavalli
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - B. S. Sukanth
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - R. Poornima
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Pushpa Bharati
- Department of Food Science and Nutrition, University of Agricultural Sciences, Dharwad, India
| | - Kathleen Hefferon
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| | - Chittaranjan Kole
- President, International Phytomedomics and Nutriomics Consortium (ipnc.info), Daejeon, South Korea
| | - Naveen Puppala
- New Mexico State University-Agricultural Science Center at Clovis, New Mexico, NM, United States
| |
Collapse
|
20
|
Guerra-García A, Gioia T, von Wettberg E, Logozzo G, Papa R, Bitocchi E, Bett KE. Intelligent Characterization of Lentil Genetic Resources: Evolutionary History, Genetic Diversity of Germplasm, and the Need for Well-Represented Collections. Curr Protoc 2021; 1:e134. [PMID: 34004055 DOI: 10.1002/cpz1.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The genetic and phenotypic characterization of crops allows us to elucidate their evolutionary and domestication history, the genetic basis of important traits, and the use of variation present in landraces and wild relatives to enhance resilience. In this context, we aim to provide an overview of the main genetic resources developed for lentil and their main outcomes, and to suggest protocols for continued work on this important crop. Lens culinaris is the third-most-important cool-season grain and its use is increasing as a quick-cooking, nutritious, plant-based source of protein. L. culinaris was domesticated in the Fertile Crescent, and six additional wild taxa (L. orientalis, L. tomentosus, L. odemensis, L. lamottei, L. ervoides, and L. nigricans) are recognized. Numerous genetic diversity studies have shown that wild relatives present high levels of genetic variation and provide a reservoir of alleles that can be used for breeding programs. Furthermore, the integration of genetics/genomics and breeding techniques has resulted in identification of quantitative trait loci and genes related to attributes of interest. Genetic maps, massive genotyping, marker-assisted selection, and genomic selection are some of the genetic resources generated and applied in lentil. In addition, despite its size (∼4 Gbp) and complexity, the L. culinaris genome has been assembled, allowing a deeper understanding of its architecture. Still, major knowledge gaps exist in lentil, and a deeper understanding and characterization of germplasm resources, including wild relatives, is critical to lentil breeding and improvement. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Recording of lentil seed descriptors Basic Protocol 2: Lentil seed imaging Basic Protocol 3: Lentil seed increase Basic Protocol 4: Recording of primary lentil seed INCREASE descriptors.
Collapse
Affiliation(s)
- Azalea Guerra-García
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Tania Gioia
- School of Agriculture, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - Eric von Wettberg
- Department of Plant and Soil Sciences and Gund Institute for the Environment, University of Vermont, Burlington, Vermont
| | - Giuseppina Logozzo
- School of Agriculture, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - Roberto Papa
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Elena Bitocchi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Kirstin E Bett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
21
|
Thudi M, Chen Y, Pang J, Kalavikatte D, Bajaj P, Roorkiwal M, Chitikineni A, Ryan MH, Lambers H, Siddique KHM, Varshney RK. Novel Genes and Genetic Loci Associated With Root Morphological Traits, Phosphorus-Acquisition Efficiency and Phosphorus-Use Efficiency in Chickpea. FRONTIERS IN PLANT SCIENCE 2021; 12:636973. [PMID: 34122467 PMCID: PMC8192852 DOI: 10.3389/fpls.2021.636973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/04/2021] [Indexed: 06/05/2023]
Abstract
Chickpea-the second most important grain legume worldwide-is cultivated mainly on marginal soils. Phosphorus (P) deficiency often restricts chickpea yields. Understanding the genetics of traits encoding P-acquisition efficiency and P-use efficiency will help develop strategies to reduce P-fertilizer application. A genome-wide association mapping approach was used to determine loci and genes associated with root architecture, root traits associated with P-acquisition efficiency and P-use efficiency, and any associated proxy traits. Using three statistical models-a generalized linear model (GLM), a mixed linear model (MLM), and a fixed and random model circulating probability unification (FarmCPU) -10, 51, and 40 marker-trait associations (MTAs), respectively were identified. A single nucleotide polymorphism (SNP) locus (Ca1_12310101) on Ca1 associated with three traits, i.e., physiological P-use efficiency, shoot dry weight, and shoot P content was identified. Genes related to shoot P concentration (NAD kinase 2, dynamin-related protein 1C), physiological P-use efficiency (fasciclin-like arabinogalactan protein), specific root length (4-coumarate-CoA ligase 1) and manganese concentration in mature leaves (ABC1 family protein) were identified. The MTAs and novel genes identified in this study can be used to improve P-use efficiency in chickpea.
Collapse
Affiliation(s)
- Mahendar Thudi
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Yinglong Chen
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Jiayin Pang
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Danamma Kalavikatte
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Prasad Bajaj
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Manish Roorkiwal
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Annapurna Chitikineni
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Megan H Ryan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Hans Lambers
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
22
|
Podder R, Glahn RP, Vandenberg A. Dual-Fortified Lentil Products-A Sustainable New Approach to Provide Additional Bioavailable Iron and Zinc in Humans. Curr Dev Nutr 2021; 5:nzab004. [PMID: 33628987 PMCID: PMC7888699 DOI: 10.1093/cdn/nzab004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/04/2021] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Iron (Fe) and zinc (Zn) deficiencies are global health problems affecting 20% and 33% of the world's population, respectively. Lentil (Lens culinaris Medik.), part of the staple food supply in many countries, can be a potential vehicle for Fe and Zn fortification. OBJECTIVE We developed a dual-fortification protocol to fortify 3 milled lentil product types (LPTs) [red-football (RF), red-split (RS), and yellow-split (YS)], with NaFeEDTA and ZnSO4.H2O to increase the bioavailable content of Fe and Zn. METHODS Appropriate Fe and Zn doses were determined to fortify lentils based on RDAs. Relative Fe bioavailability (RFeB%) and phytic acid (PA) content were assessed using an in vitro Caco-2 cell bioassay and PA analysis, respectively. One-factor ANOVA determined the differences in colorimetric score; concentrations of Fe, Zn, and PA; and RFeB% among samples. The least significant difference was calculated with significance level set at P < 0.05. RESULTS Fe and Zn concentration and RFeB% increased and PA concentration decreased significantly in dual-fortified lentils. Dual-fortified lentil samples had higher RFeB% compared with Fe-fortified (single) samples in all 3 LPTs, whereas RFeB% decreased in Zn-fortified (single) RF and YS samples by 43.4% and 36%, respectively. The RF, RS, and YS samples, fortified with 16 mg Fe and 8 mg Zn/100 g of lentils, provided 27 mg Fe and 14 mg Zn, 28 mg Fe and 13.4 mg Zn, and 29.9 mg Fe and 12.1 mg Zn, respectively. RFeB% of RF, RS, and YS lentil samples increased by 91-307%, 114-522%, and 122-520%, respectively. Again, PA concentrations of RF, RS, and YS lentils were reduced by 0.63-0.53, 0.83-0.71, and 0.96-0.79 mg/g, respectively. CONCLUSIONS Dual-fortified lentil consumption can cost-effectively provide a significant part of the daily bioavailable Fe and Zn requirements of people with these 2 globally important micronutrient deficiencies.
Collapse
Affiliation(s)
- Rajib Podder
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Raymond P Glahn
- Robert W Holley Center for Agriculture and Health, Agricultural Research Service, USDA, Ithaca, NY, USA
| | - Albert Vandenberg
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
23
|
Roorkiwal M, Pandey S, Thavarajah D, Hemalatha R, Varshney RK. Molecular Mechanisms and Biochemical Pathways for Micronutrient Acquisition and Storage in Legumes to Support Biofortification for Nutritional Security. FRONTIERS IN PLANT SCIENCE 2021; 12:682842. [PMID: 34163513 PMCID: PMC8215609 DOI: 10.3389/fpls.2021.682842] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/06/2021] [Indexed: 05/10/2023]
Abstract
The world faces a grave situation of nutrient deficiency as a consequence of increased uptake of calorie-rich food that threaten nutritional security. More than half the world's population is affected by different forms of malnutrition. Unhealthy diets associated with poor nutrition carry a significant risk of developing non-communicable diseases, leading to a high mortality rate. Although considerable efforts have been made in agriculture to increase nutrient content in cereals, the successes are insufficient. The number of people affected by different forms of malnutrition has not decreased much in the recent past. While legumes are an integral part of the food system and widely grown in sub-Saharan Africa and South Asia, only limited efforts have been made to increase their nutrient content in these regions. Genetic variation for a majority of nutritional traits that ensure nutritional security in adverse conditions exists in the germplasm pool of legume crops. This diversity can be utilized by selective breeding for increased nutrients in seeds. The targeted identification of precise factors related to nutritional traits and their utilization in a breeding program can help mitigate malnutrition. The principal objective of this review is to present the molecular mechanisms of nutrient acquisition, transport and metabolism to support a biofortification strategy in legume crops to contribute to addressing malnutrition.
Collapse
Affiliation(s)
- Manish Roorkiwal
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Sarita Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Dil Thavarajah
- Plant and Environmental Sciences, Poole Agricultural Center, Clemson University, Clemson, SC, United States
| | - R. Hemalatha
- ICMR-National Institute of Nutrition (NIN), Hyderabad, India
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA, Australia
- *Correspondence: Rajeev K. Varshney, ;
| |
Collapse
|
24
|
Choukri H, Hejjaoui K, El-Baouchi A, El Haddad N, Smouni A, Maalouf F, Thavarajah D, Kumar S. Heat and Drought Stress Impact on Phenology, Grain Yield, and Nutritional Quality of Lentil ( Lens culinaris Medikus). Front Nutr 2020; 7:596307. [PMID: 33330596 PMCID: PMC7719779 DOI: 10.3389/fnut.2020.596307] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
Lentil (Lens culinaris Medikus) is a protein-rich cool-season food legume with an excellent source of protein, prebiotic carbohydrates, minerals, and vitamins. With climate change, heat, and drought stresses have become more frequent and intense in lentil growing areas with a strong influence on phenology, grain yield, and nutritional quality. This study aimed to assess the impact of heat and drought stresses on phenology, grain yield, and nutritional quality of lentil. For this purpose, 100 lentil genotypes from the global collection were evaluated under normal, heat, and combined heat-drought conditions. Analysis of variance revealed significant differences (p < 0.001) among lentil genotypes for phenological traits, yield components, and grain quality traits. Under no stress conditions, mineral concentrations among lentil genotypes varied from 48 to 109 mg kg−1 for iron (Fe) and from 31 to 65 mg kg−1 for zinc (Zn), while crude protein content ranged from 22.5 to 32.0%. Iron, zinc, and crude protein content were significantly reduced under stress conditions, and the effect of combined heat-drought stress was more severe than heat stress alone. A significant positive correlation was observed between iron and zinc concentrations under both no stress and stress conditions. Based on grain yield, crude protein, and iron and zinc concentrations, lentil genotypes were grouped into three clusters following the hierarchical cluster analysis. Promising lentil genotypes with high micronutrient contents, crude protein, and grain yield with the least effect of heat and drought stress were identified as the potential donors for biofortification in the lentil breeding program.
Collapse
Affiliation(s)
- Hasnae Choukri
- Laboratoire de Biotechnologie et de Physiologie Végétales, Faculté des Sciences, Centre de Recherche BioBio, University Mohammed V in Rabat, Rabat, Morocco.,International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Kamal Hejjaoui
- Laboratoire de Biotechnologie et de Physiologie Végétales, Faculté des Sciences, Centre de Recherche BioBio, University Mohammed V in Rabat, Rabat, Morocco.,International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Adil El-Baouchi
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Noureddine El Haddad
- Laboratoire de Biotechnologie et de Physiologie Végétales, Faculté des Sciences, Centre de Recherche BioBio, University Mohammed V in Rabat, Rabat, Morocco.,International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Abdelaziz Smouni
- Laboratoire de Biotechnologie et de Physiologie Végétales, Faculté des Sciences, Centre de Recherche BioBio, University Mohammed V in Rabat, Rabat, Morocco
| | - Fouad Maalouf
- International Center for Agricultural Research in the Dry Areas (ICARDA), Terbol, Lebanon
| | - Dil Thavarajah
- Plant and Environmental Sciences, Pulse Quality and Organic Breeding, Clemson University, Clemson, SC, United States
| | - Shiv Kumar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| |
Collapse
|
25
|
Gaikwad KB, Rani S, Kumar M, Gupta V, Babu PH, Bainsla NK, Yadav R. Enhancing the Nutritional Quality of Major Food Crops Through Conventional and Genomics-Assisted Breeding. Front Nutr 2020; 7:533453. [PMID: 33324668 PMCID: PMC7725794 DOI: 10.3389/fnut.2020.533453] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 09/03/2020] [Indexed: 01/14/2023] Open
Abstract
Nutritional stress is making over two billion world population malnourished. Either our commercially cultivated varieties of cereals, pulses, and oilseed crops are deficient in essential nutrients or the soils in which these crops grow are becoming devoid of minerals. Unfortunately, our major food crops are poor sources of micronutrients required for normal human growth. To overcome the problem of nutritional deficiency, greater emphasis should be laid on the identification of genes/quantitative trait loci (QTLs) pertaining to essential nutrients and their successful deployment in elite breeding lines through marker-assisted breeding. The manuscript deals with information on identified QTLs for protein content, vitamins, macronutrients, micro-nutrients, minerals, oil content, and essential amino acids in major food crops. These QTLs can be utilized in the development of nutrient-rich crop varieties. Genome editing technologies that can rapidly modify genomes in a precise way and will directly enrich the nutritional status of elite varieties could hold a bright future to address the challenge of malnutrition.
Collapse
Affiliation(s)
- Kiran B. Gaikwad
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Sushma Rani
- Indian Council of Agricultural Research (ICAR)-National Institute for Plant Biotechnology, New Delhi, India
| | - Manjeet Kumar
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Vikas Gupta
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Prashanth H. Babu
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Naresh Kumar Bainsla
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Rajbir Yadav
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
26
|
Karaca N, Ates D, Nemli S, Ozkuru E, Yilmaz H, Yagmur B, Kartal C, Tosun M, Ozdestan O, Otles S, Kahriman A, Chang P, Tanyolac MB. Identification of SNP Markers Associated with Iron and Zinc Concentrations in Cicer Seeds. Curr Genomics 2020; 21:212-223. [PMID: 33071615 PMCID: PMC7521033 DOI: 10.2174/1389202921666200413150951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/18/2020] [Accepted: 03/27/2020] [Indexed: 12/30/2022] Open
Abstract
Background Cicer reticulatum L. is the wild progenitor of chickpea Cicer arietinum L., the fourth most important pulse crop in the world. Iron (Fe) and zinc (Zn) are vital micronutrients that play crucial roles in sustaining life by acting as co-factors for various proteins. Aims and Objectives
In order to improve micronutrient-dense chickpea lines, this study aimed to investigate variability and detect DNA markers associated with Fe and Zn concentrations in the seeds of 73 cultivated (C. arietinum L.) and 107 C. reticulatum genotypes. Methods
A set of 180 accessions was genotyped using 20,868 single nucleotide polymorphism (SNP) markers obtained from genotyping by sequencing analysis. Results
The results revealed substantial variation in the seed Fe and Zn concentration of the surveyed population. Using STRUCTURE software, the population structure was divided into two groups according to the principal component analysis and neighbor-joining tree analysis. A total of 23 and 16 associated SNP markers related to Fe and Zn concentrations, respectively were identified in TASSEL software by the mixed linear model method. Significant SNP markers found in more than two environments were accepted as more reliable than those that only existed in a single environment. Conclusion
The identified markers can be used in marker-assisted selection in chickpea breeding programs for the improvement of seed Fe and Zn concentrations in the chickpea.
Collapse
Affiliation(s)
- Nur Karaca
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Duygu Ates
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Seda Nemli
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Esin Ozkuru
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Hasan Yilmaz
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Bulent Yagmur
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Canan Kartal
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Muzaffer Tosun
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Ozgul Ozdestan
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Semih Otles
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Abdullah Kahriman
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Peter Chang
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Muhammed Bahattin Tanyolac
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| |
Collapse
|
27
|
Kumar J, Sen Gupta D. Prospects of next generation sequencing in lentil breeding. Mol Biol Rep 2020; 47:9043-9053. [PMID: 33037962 DOI: 10.1007/s11033-020-05891-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/03/2020] [Indexed: 11/28/2022]
Abstract
Lentil is an important food legume crop that has large and complex genome. During past years, considerable attention has been given on the use of next generation sequencing for enriching the genomic resources including identification of SSR and SNP markers, development of unigenes, transcripts, and identification of candidate genes for biotic and abiotic stresses, analysis of genetic diversity and identification of genes/ QTLs for agronomically important traits. However, in other crops including pulses, next generation sequencing has revolutionized the genomic research and helped in genomic assisted breeding rapidly and cost effectively. The present review discuss current status and future prospects of the use NGS based breeding in lentil.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kalyanpur, Kanpur, 208024, India.
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kalyanpur, Kanpur, 208024, India
| |
Collapse
|
28
|
Wu X, Islam ASMF, Limpot N, Mackasmiel L, Mierzwa J, Cortés AJ, Blair MW. Genome-Wide SNP Identification and Association Mapping for Seed Mineral Concentration in Mung Bean ( Vigna radiata L.). Front Genet 2020; 11:656. [PMID: 32670356 PMCID: PMC7327122 DOI: 10.3389/fgene.2020.00656] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 05/29/2020] [Indexed: 01/27/2023] Open
Abstract
Mung bean (Vigna radiata L.) quality is dependent on seed chemical composition, which in turn determines the benefits of its consumption for human health and nutrition. While mung bean is rich in a range of nutritional components, such as protein, carbohydrates and vitamins, it remains less well studied than other legume crops in terms of micronutrients. In addition, mung bean genomics and genetic resources are relatively sparse. The objectives of this research were three-fold, namely: to develop a genome-wide marker system for mung bean based on genotyping by sequencing (GBS), to evaluate diversity of mung beans available to breeders in the United States and finally, to perform a genome-wide association study (GWAS) for nutrient concentrations based on a seven mineral analysis using inductively coupled plasma (ICP) spectroscopy. All parts of our research were performed with 95 cultivated mung bean genotypes chosen from the USDA core collection representing accessions from 13 countries. Overall, we identified a total of 6,486 high quality single nucleotide polymorphisms (SNPs) from the GBS dataset and found 43 marker × trait associations (MTAs) with calcium, iron, potassium, manganese, phosphorous, sulfur or zinc concentrations in mung bean grain produced in either of two consecutive years' field experiments. The MTAs were scattered across 35 genomic regions explaining on average 22% of the variation for each seed nutrient in each year. Most of the gene regions provided valuable candidate loci to use in future breeding of new varieties of mung bean and further the understanding of genetic control of nutritional properties in the crop. Other SNPs identified in this study will serve as important resources to enable marker-assisted selection (MAS) for nutritional improvement in mung bean and to analyze cultivars of mung bean.
Collapse
Affiliation(s)
- Xingbo Wu
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN, United States
| | - A. S. M. Faridul Islam
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN, United States
| | | | - Lucas Mackasmiel
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN, United States
| | - Jerzy Mierzwa
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN, United States
| | - Andrés J. Cortés
- Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, C.I. La Selva, Rionegro, Colombia
- Departamento de Ciencias Forestales, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia – Sede Medellín, Medellín, Colombia
| | - Matthew W. Blair
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN, United States
| |
Collapse
|
29
|
Jha AB, Warkentin TD. Biofortification of Pulse Crops: Status and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2020; 9:E73. [PMID: 31935879 PMCID: PMC7020478 DOI: 10.3390/plants9010073] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 01/08/2023]
Abstract
Biofortification through plant breeding is a sustainable approach to improve the nutritional profile of food crops. The majority of the world's population depends on staple food crops; however, most are low in key micronutrients. Biofortification to improve the nutritional profile of pulse crops has increased importance in many breeding programs in the past decade. The key micronutrients targeted have been iron, zinc, selenium, iodine, carotenoids, and folates. In recent years, several biofortified pulse crops including common beans and lentils have been released by HarvestPlus with global partners in developing countries, which has helped in overcoming micronutrient deficiency in the target population. This review will focus on recent research advances and future strategies for the biofortification of pulse crops.
Collapse
Affiliation(s)
| | - Thomas D. Warkentin
- Crop Development Centre/Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada;
| |
Collapse
|
30
|
Chandra AK, Kumar A, Bharati A, Joshi R, Agrawal A, Kumar S. Microbial-assisted and genomic-assisted breeding: a two way approach for the improvement of nutritional quality traits in agricultural crops. 3 Biotech 2020; 10:2. [PMID: 31824813 DOI: 10.1007/s13205-019-1994-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022] Open
Abstract
Both human and animals, for their nutritional requirements, mainly rely on the plant-based foods, which provide a wide range of nutrients. Minerals, proteins, vitamins are among the nutrients which are essential and need to be available in adequate amount in edible portion of the staple crops. Increasing nutritional content in staple crops either through agronomic biofortification or through conventional plant-breeding strategies continue to be a huge task for scientists around the globe. Although some success has been achieved in recent past, in most cases, we have fallen short of expected targets. To maximize the nutrient uptake and partitioning to different economic part of plants, scientists have employed and tailored several biofortification strategies. But in present agricultural and environmental concerns, these approaches are not much effective. Henceforth, we are highlighting the recent developments and promising aspects of microbial-assisted and genomic-assisted breeding as candidate biofortification approach, that have contributed significantly in increasing nutritional content in grains of different crops. The methods used to date to accomplish nutrient enrichment with recently emerging strategies that we believe could be the most promising and holistic approach for future biofortification program. Results are encouraging, but for future perspective, the existing knowledge about the strategies needs to be confined. Concerted scientific investment are required to widen up these biofortification strategies, so that it could play an important role in ensuring nutritional security of ever-growing population in growing agricultural and environmental constraints.
Collapse
|
31
|
Karaca N, Ates D, Nemli S, Ozkuru E, Yilmaz H, Yagmur B, Kartal C, Tosun M, Ocak OO, Otles S, Kahriman A, Tanyolac MB. Association mapping of magnesium and manganese concentrations in the seeds of C. arietinum and C. reticulatum. Genomics 2019; 112:1633-1642. [PMID: 31669504 DOI: 10.1016/j.ygeno.2019.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/05/2019] [Accepted: 09/16/2019] [Indexed: 12/30/2022]
Abstract
Chickpea (Cicer arietinum L.) is one of the oldest and most important pulse crops grown and consumed all over the world, especially in developing countries. Magnesium (Mg) and manganese (Mn) are essential plant nutrients in terms of human health and many health problems arise in their deficiencies. The objectives of this study were to characterize genetic variability in the seed Mg and Mn concentrations and identify single nucleotide polymorphism (SNP) markers associated with these traits in 107 Cicer reticulatum and 73C. arietinum genotypes, using a genome wide association study. The genotypes were grown in four environments, characterized for Mg and Mn concentrations, and genotyped with 121,841 SNP markers. The population showed three-fold and two-fold variation for the Mg and Mn concentrations, respectively. The population structure was identified using STRUCTURE software, which divided 180 genotypes into two (K = 2) groups. Principal component analysis and neighbor joining tree analysis confirmed the results of STRUCTURE. A total of 4 and 16 consistent SNPs were detected for the Mg and Mn concentrations, respectively. The identified markers can be utilized in breeding of chickpea to increase Mg and Mn levels in order to improve human and livestock nutrition.
Collapse
Affiliation(s)
- Nur Karaca
- Ege University, Department of Bioengineering, 35040, Bornova, Izmir, Turkey
| | - Duygu Ates
- Ege University, Department of Bioengineering, 35040, Bornova, Izmir, Turkey
| | - Seda Nemli
- Ege University, Department of Bioengineering, 35040, Bornova, Izmir, Turkey
| | - Esin Ozkuru
- Ege University, Department of Bioengineering, 35040, Bornova, Izmir, Turkey
| | - Hasan Yilmaz
- Ege University, Department of Bioengineering, 35040, Bornova, Izmir, Turkey
| | - Bulent Yagmur
- Ege University, Department of Soil Sciences, 35040, Bornova, Izmir, Turkey
| | - Canan Kartal
- Ege University, Department of Food Engineering, 35040, Bornova, Izmir, Turkey
| | - Muzaffer Tosun
- Ege University, Department of Field Crops, 35040, Bornova, Izmir, Turkey
| | - Ozgul Ozdestan Ocak
- Ege University, Department of Food Engineering, 35040, Bornova, Izmir, Turkey
| | - Semih Otles
- Ege University, Department of Food Engineering, 35040, Bornova, Izmir, Turkey
| | - Abdullah Kahriman
- Harran University, Department of Field Crops, 64000 Sanli Urfa, Turkey
| | | |
Collapse
|
32
|
Pavan S, Bardaro N, Fanelli V, Marcotrigiano AR, Mangini G, Taranto F, Catalano D, Montemurro C, De Giovanni C, Lotti C, Ricciardi L. Genotyping by Sequencing of Cultivated Lentil ( Lens culinaris Medik.) Highlights Population Structure in the Mediterranean Gene Pool Associated With Geographic Patterns and Phenotypic Variables. Front Genet 2019; 10:872. [PMID: 31620173 PMCID: PMC6759463 DOI: 10.3389/fgene.2019.00872] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/20/2019] [Indexed: 11/13/2022] Open
Abstract
Cultivated lentil (Lens culinaris Medik.) is one of the oldest domesticated crops and one of the most important grain legumes worldwide. The Mediterranean Basin holds large part of lentil biodiversity; however, no genetic structure was defined within the Mediterranean gene pool. In this study, we used high-throughput genotyping by sequencing to resolve the genetic structure of the Mediterranean ex situ lentil collection held at the Italian National Research Council. Sequencing of a 188-plex genotyping-by-sequencing library and bioinformatics treatment of data yielded 6,693 single nucleotide polymorphisms. Analysis of nonredundant genotypes with nonparametric and parametric methods highlighted the occurrence of five highly differentiated genetic clusters. Clustering could be related to geographic patterns and phenotypic traits, indicating that post-domestication routes introducing cultivation in Mediterranean countries and selection were major forces shaping lentil population structure. The estimation of the fixation index FST at individual single nucleotide polymorphism loci allowed the identification of distinctive alleles across clusters, suggesting the possibility to set up molecular keys for the assignment of lentil germplasm to specific genetic groups. Finally, significant associations between markers and phenotypic data were identified. Overall, the results of this study are of major importance for lentil conservation genetics and breeding and provide insights on the lentil evolutionary history.
Collapse
Affiliation(s)
- Stefano Pavan
- Department of Soil, Plant and Food Science, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy.,Institute of Biomedical Technologies, National Research Council (CNR), Bari, Italy
| | - Nicoletta Bardaro
- Department of Soil, Plant and Food Science, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Valentina Fanelli
- Department of Soil, Plant and Food Science, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Angelo Raffaele Marcotrigiano
- Department of Soil, Plant and Food Science, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Giacomo Mangini
- Department of Soil, Plant and Food Science, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Francesca Taranto
- Department of Soil, Plant and Food Science, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy.,CREA Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| | - Domenico Catalano
- Institute of Biomedical Technologies, National Research Council (CNR), Bari, Italy
| | - Cinzia Montemurro
- Department of Soil, Plant and Food Science, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Claudio De Giovanni
- Department of Soil, Plant and Food Science, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Concetta Lotti
- Department of Agricultural, Food and Environmental Sciences, University of Foggia, Foggia, Italy
| | - Luigi Ricciardi
- Department of Soil, Plant and Food Science, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
33
|
Khazaei H, Subedi M, Nickerson M, Martínez-Villaluenga C, Frias J, Vandenberg A. Seed Protein of Lentils: Current Status, Progress, and Food Applications. Foods 2019; 8:E391. [PMID: 31487958 PMCID: PMC6769807 DOI: 10.3390/foods8090391] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 11/17/2022] Open
Abstract
Grain legumes are widely recognized as staple sources of dietary protein worldwide. Lentil seeds are an excellent source of plant-based proteins and represent a viable alternative to animal and soybean proteins for food processing formulations. Lentil proteins provide not only dietary amino acids but are also a source of bioactive peptides that provide health benefits. This review focuses on the current knowledge of seed protein, extraction and isolation methods, bioactive peptides, and food applications of lentil protein. Lentil is the most rapidly expanding crop for direct human consumption, and has potential for greater impact as a protein source for food processing applications. Improvements in lentil protein quality, amino acid composition, and processing fractions will enhance the nutritional quality of this rapidly expanding crop globally.
Collapse
Affiliation(s)
- Hamid Khazaei
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| | - Maya Subedi
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Mike Nickerson
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Cristina Martínez-Villaluenga
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Jose Antonio Novais 10, 28040 Madrid, Spain
| | - Juana Frias
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Jose Antonio Novais 10, 28040 Madrid, Spain
| | - Albert Vandenberg
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
34
|
Kumar H, Singh A, Dikshit HK, Mishra GP, Aski M, Meena MC, Kumar S. Genetic dissection of grain iron and zinc concentrations in lentil (Lens culinaris Medik.). J Genet 2019. [DOI: 10.1007/s12041-019-1112-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Rehman HM, Cooper JW, Lam HM, Yang SH. Legume biofortification is an underexploited strategy for combatting hidden hunger. PLANT, CELL & ENVIRONMENT 2019; 42:52-70. [PMID: 29920691 DOI: 10.1111/pce.13368] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 06/07/2018] [Indexed: 05/03/2023]
Abstract
Legumes are the world's primary source of dietary protein and are particularly important for those in developing economies. However, the biofortification potential of legumes remains underexploited. Legumes offer a diversity of micronutrients and amino acids, exceeding or complementing the profiles of cereals. As such, the enhancement of legume nutritional composition presents an appealing target for addressing the "hidden hunger" of global micronutrient malnutrition. Affecting ~2 billion people, micronutrient malnutrition causes severe health effects ranging from stunted growth to reduced lifespan. An increased availability of micronutrient-enriched legumes, particularly to those in socio-economically deprived areas, would serve the dual functions of ameliorating hidden hunger and increasing the positive health effects associated with legumes. Here, we give an updated overview of breeding approaches for the nutritional improvement of legumes, and crucially, we highlight the importance of considering nutritional improvement in a wider ecological context. Specifically, we review the potential of the legume microbiome for agronomic trait improvement and highlight the need for increased genetic, biochemical, and environmental data resources. Finally, we state that such resources should be complemented by an international and multidisciplinary initiative that will drive crop improvement and, most importantly, ensure that research outcomes benefit those who need them most.
Collapse
Affiliation(s)
- Hafiz Mamoon Rehman
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, Korea
- Center for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - James William Cooper
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Lanarkshire, G12 8QQ, UK
| | - Hon-Ming Lam
- Center for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, Korea
| |
Collapse
|
36
|
Relative Bioavailability of Iron in Bangladeshi Traditional Meals Prepared with Iron-Fortified Lentil Dal. Nutrients 2018; 10:nu10030354. [PMID: 29543712 PMCID: PMC5872772 DOI: 10.3390/nu10030354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 12/14/2022] Open
Abstract
Due to low Fe bioavailability and low consumption per meal, lentil must be fortified to contribute significant bioavailable Fe in the Bangladeshi diet. Moreover, since red lentil is dehulled prior to consumption, an opportunity exists at this point to fortify lentil with Fe. Thus, in the present study, lentil was Fe-fortified (using a fortificant Fe concentration of 2800 µg g−1) and used in 30 traditional Bangladeshi meals with broad differences in concentrations of iron, phytic acid (PA), and relative Fe bioavailability (RFeB%). Fortification with NaFeEDTA increased the iron concentration in lentil from 60 to 439 µg g−1 and resulted in a 79% increase in the amount of available Fe as estimated by Caco-2 cell ferritin formation. Phytic acid levels were reduced from 6.2 to 4.6 mg g−1 when fortified lentil was added, thereby reducing the PA:Fe molar ratio from 8.8 to 0.9. This effect was presumably due to dephytinization of fortified lentil during the fortification process. A significant (p ≤ 0.01) Pearson correlation was observed between Fe concentration and RFeB% and between RFeB% and PA:Fe molar ratio in meals with fortified lentil, but not for the meal with unfortified lentil. In conclusion, fortified lentil can contribute significant bioavailable Fe to populations at risk of Fe deficiency.
Collapse
|
37
|
Khazaei H, Fedoruk M, Caron CT, Vandenberg A, Bett KE. Single Nucleotide Polymorphism Markers Associated with Seed Quality Characteristics of Cultivated Lentil. THE PLANT GENOME 2018; 11:170051. [PMID: 29505642 DOI: 10.3835/plantgenome2017.06.0051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The dimensions of lentil ( Medik.) seeds are important quality parameters that are major determinants of market preference, cooking time, and post-harvest milling quality. Knowledge of the genetic control of traits related to seed dimensions would be useful for crop improvement. The principal aim of this study was to identify single nucleotide polymorphism (SNP) markers linked to genes that control seed diameter, seed thickness, and seed plumpness. Association mapping analysis with SNP markers was used to study the seed dimensions of 138 diverse cultivated lentil accessions grown at two locations in Saskatchewan, Canada, in 2011 and 2012. Six marker-trait associations were shown to be significant for the studied seed dimension characteristics. Two SNP markers closely associated with seed diameter across locations and years identified in previous work were validated in this study. Three additional marker-seed thickness associations were identified. Using the association mapping strategy, we confirmed the presence of two genomic regions controlling seed diameter and plumpness. This information can be used worldwide as a resource for lentil seed quality improvement programs.
Collapse
|