1
|
Pidon H, Ruge-Wehling B, Will T, Habekuß A, Wendler N, Oldach K, Maasberg-Prelle A, Korzun V, Stein N. High-resolution mapping of Ryd4 Hb, a major resistance gene to Barley yellow dwarf virus from Hordeum bulbosum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:60. [PMID: 38409375 PMCID: PMC10896957 DOI: 10.1007/s00122-024-04542-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/05/2024] [Indexed: 02/28/2024]
Abstract
KEY MESSAGE We mapped Ryd4Hb in a 66.5 kbp interval in barley and dissociated it from a sublethality factor. These results will enable a targeted selection of the resistance in barley breeding. Virus diseases are causing high yield losses in crops worldwide. The Barley yellow dwarf virus (BYDV) complex is responsible for one of the most widespread and economically important viral diseases of cereals. While no gene conferring complete resistance (immunity) has been uncovered in the primary gene pool of barley, sources of resistance were searched and identified in the wild relative Hordeum bulbosum, representing the secondary gene pool of barley. One such locus, Ryd4Hb, has been previously introgressed into barley, and was allocated to chromosome 3H, but is tightly linked to a sublethality factor that prevents the incorporation and utilization of Ryd4Hb in barley varieties. To solve this problem, we fine-mapped Ryd4Hb and separated it from this negative factor. We narrowed the Ryd4Hb locus to a corresponding 66.5 kbp physical interval in the barley 'Morex' reference genome. The region comprises a gene from the nucleotide-binding and leucine-rich repeat immune receptor family, typical of dominant virus resistance genes. The closest homolog to this Ryd4Hb candidate gene is the wheat Sr35 stem rust resistance gene. In addition to the fine mapping, we reduced the interval bearing the sublethality factor to 600 kbp in barley. Aphid feeding experiments demonstrated that Ryd4Hb provides a resistance to BYDV rather than to its vector. The presented results, including the high-throughput molecular markers, will permit a more targeted selection of the resistance in breeding, enabling the use of Ryd4Hb in barley varieties.
Collapse
Affiliation(s)
- Hélène Pidon
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France.
| | - Brigitte Ruge-Wehling
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Sanitz, Germany
| | - Torsten Will
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Antje Habekuß
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | | | | | | | | | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Göttingen, Germany.
| |
Collapse
|
2
|
Fuerst D, Shermeister B, Mandel T, Hübner S. Evolutionary Conservation and Transcriptome Analyses Attribute Perenniality and Flowering to Day-Length Responsive Genes in Bulbous Barley (Hordeum bulbosum). Genome Biol Evol 2022; 15:6855281. [PMID: 36449556 PMCID: PMC9840211 DOI: 10.1093/gbe/evac168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
Rapid population growth and dramatic climatic turnovers are challenging global crop production. These challenges are spurring plant breeders to enhance adaptation and sustainability of major crops. One intriguing approach is to turn annual systems into perennial ones, yet long-term classical breeding efforts to induce perenniality have achieved limited success. Here, we report the results of our investigation of the genetic basis of bulb formation in the nonmodel organism Hordeum bulbosum, a perennial species closely related to barley. To identify candidate genes that regulate bulb formation in H. bulbosum, we applied two complementary approaches. First, we explored the evolutionary conservation of expressed genes among annual Poaceae species. Next, we assembled a reference transcriptome for H. bulbosum and conducted a differential expression (DE) analysis before and after stimulating bulb initiation. Low conservation was identified in genes related to perenniality in H. bulbosum compared with other species, including bulb development and sugar accumulation genes. We also inspected these genes using a DE analysis, which enabled identification of additional genes responsible for bulb initiation and flowering regulation. We propose a molecular model for the regulation of bulb formation involving storage organ development and starch biosynthesis genes. The high conservation observed along a major part of the pathway between H. bulbosum and barley suggests a potential for the application of biotechnological techniques to accelerate breeding toward perenniality in barley.
Collapse
Affiliation(s)
- Dana Fuerst
- Galilee Research Institute (MIGAL), Tel-Hai College, Upper Galilee, Israel
| | - Bar Shermeister
- Galilee Research Institute (MIGAL), Tel-Hai College, Upper Galilee, Israel
| | - Tali Mandel
- Galilee Research Institute (MIGAL), Tel-Hai College, Upper Galilee, Israel
| | | |
Collapse
|
3
|
Chapman EA, Thomsen HC, Tulloch S, Correia PMP, Luo G, Najafi J, DeHaan LR, Crews TE, Olsson L, Lundquist PO, Westerbergh A, Pedas PR, Knudsen S, Palmgren M. Perennials as Future Grain Crops: Opportunities and Challenges. FRONTIERS IN PLANT SCIENCE 2022; 13:898769. [PMID: 35968139 PMCID: PMC9372509 DOI: 10.3389/fpls.2022.898769] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Perennial grain crops could make a valuable addition to sustainable agriculture, potentially even as an alternative to their annual counterparts. The ability of perennials to grow year after year significantly reduces the number of agricultural inputs required, in terms of both planting and weed control, while reduced tillage improves soil health and on-farm biodiversity. Presently, perennial grain crops are not grown at large scale, mainly due to their early stages of domestication and current low yields. Narrowing the yield gap between perennial and annual grain crops will depend on characterizing differences in their life cycles, resource allocation, and reproductive strategies and understanding the trade-offs between annualism, perennialism, and yield. The genetic and biochemical pathways controlling plant growth, physiology, and senescence should be analyzed in perennial crop plants. This information could then be used to facilitate tailored genetic improvement of selected perennial grain crops to improve agronomic traits and enhance yield, while maintaining the benefits associated with perennialism.
Collapse
Affiliation(s)
| | | | - Sophia Tulloch
- Department of Raw Materials, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Pedro M. P. Correia
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Guangbin Luo
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Javad Najafi
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | - Lennart Olsson
- Lund University Centre for Sustainability Studies, Lund, Sweden
| | - Per-Olof Lundquist
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna Westerbergh
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pai Rosager Pedas
- Department of Raw Materials, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Søren Knudsen
- Department of Raw Materials, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
4
|
Generation of Doubled Haploid Barley by Interspecific Pollination with Hordeum bulbosum. Methods Mol Biol 2021; 2287:215-226. [PMID: 34270032 DOI: 10.1007/978-1-0716-1315-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The generation of doubled haploid barley plants by means of the so-called "Bulbosum" method has been practiced for meanwhile five decades. It rests upon the pollination of barley by its wild relative Hordeum bulbosum. This can result in the formation of hybrid embryos whose further development is typically associated with the loss of the pollinator's chromosomes. In recent years, this principle has, however, only rarely been used owing to the availability of efficient methods of anther and microspore culture. On the other hand, immature pollen-derived embryogenesis is to some extent prone to segregation bias in the resultant populations of haploids, which is due to its genotype dependency. Therefore, the principle of uniparental genome elimination has more recently regained increasing interest within the plant research and breeding community. The development of the present protocol relied on the use of the spring-type barley cultivar Golden Promise. The protocol is the result of a series of comparative experiments, which have addressed various methodological facets. The most influential ones included the method of emasculation, the temperature at flowering and early embryo development, the method, point in time and concentration of auxin administration for the stimulation of caryopsis development, the developmental stage at embryo dissection, as well as the nutrient medium used for embryo rescue. The present protocol allows the production of haploid barley plants at an efficiency of ca. 25% of the pollinated florets.
Collapse
|
5
|
Mascher M, Wicker T, Jenkins J, Plott C, Lux T, Koh CS, Ens J, Gundlach H, Boston LB, Tulpová Z, Holden S, Hernández-Pinzón I, Scholz U, Mayer KFX, Spannagl M, Pozniak CJ, Sharpe AG, Šimková H, Moscou MJ, Grimwood J, Schmutz J, Stein N. Long-read sequence assembly: a technical evaluation in barley. THE PLANT CELL 2021; 33:1888-1906. [PMID: 33710295 PMCID: PMC8290290 DOI: 10.1093/plcell/koab077] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/28/2021] [Indexed: 05/19/2023]
Abstract
Sequence assembly of large and repeat-rich plant genomes has been challenging, requiring substantial computational resources and often several complementary sequence assembly and genome mapping approaches. The recent development of fast and accurate long-read sequencing by circular consensus sequencing (CCS) on the PacBio platform may greatly increase the scope of plant pan-genome projects. Here, we compare current long-read sequencing platforms regarding their ability to rapidly generate contiguous sequence assemblies in pan-genome studies of barley (Hordeum vulgare). Most long-read assemblies are clearly superior to the current barley reference sequence based on short-reads. Assemblies derived from accurate long reads excel in most metrics, but the CCS approach was the most cost-effective strategy for assembling tens of barley genomes. A downsampling analysis indicated that 20-fold CCS coverage can yield very good sequence assemblies, while even five-fold CCS data may capture the complete sequence of most genes. We present an updated reference genome assembly for barley with near-complete representation of the repeat-rich intergenic space. Long-read assembly can underpin the construction of accurate and complete sequences of multiple genomes of a species to build pan-genome infrastructures in Triticeae crops and their wild relatives.
Collapse
Affiliation(s)
- Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland 06466, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig 04103, Germany
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zürich, Zürich 8008, Switzerland
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806
| | | | - Thomas Lux
- PGSB–Plant Genome and Systems Biology, Helmholtz Center Munich–German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Chu Shin Koh
- Global Institute for Food Security, University of Saskatchewan, Saskatoon SK S7N 4L8, Canada
| | - Jennifer Ens
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon SK S7N 5A8, Canada
| | - Heidrun Gundlach
- PGSB–Plant Genome and Systems Biology, Helmholtz Center Munich–German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Lori B Boston
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806
| | - Zuzana Tulpová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc 78371, Czech Republic
| | - Samuel Holden
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| | | | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland 06466, Germany
| | - Klaus F X Mayer
- PGSB–Plant Genome and Systems Biology, Helmholtz Center Munich–German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Manuel Spannagl
- PGSB–Plant Genome and Systems Biology, Helmholtz Center Munich–German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Curtis J Pozniak
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon SK S7N 5A8, Canada
| | - Andrew G Sharpe
- Global Institute for Food Security, University of Saskatchewan, Saskatoon SK S7N 4L8, Canada
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc 78371, Czech Republic
| | - Matthew J Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland 06466, Germany
- Center for Integrated Breeding Research (CiBreed), Georg-August-University Göttingen, Göttingen 37073, Germany
| |
Collapse
|
6
|
Pidon H, Wendler N, Habekuβ A, Maasberg A, Ruge-Wehling B, Perovic D, Ordon F, Stein N. High-resolution mapping of Rym14 Hb, a wild relative resistance gene to barley yellow mosaic disease. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:823-833. [PMID: 33263784 PMCID: PMC7925471 DOI: 10.1007/s00122-020-03733-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/18/2020] [Indexed: 05/11/2023]
Abstract
We mapped the Rym14Hb resistance locus to barley yellow mosaic disease in a 2Mbp interval. The co-segregating markers will be instrumental for marker-assisted selection in barley breeding. Barley yellow mosaic disease is caused by Barley yellow mosaic virus and Barley mild mosaic virus and leads to severe yield losses in barley (Hordeum vulgare) in Central Europe and East-Asia. Several resistance loci are used in barley breeding. However, cases of resistance-breaking viral strains are known, raising concerns about the durability of those genes. Rym14Hb is a dominant major resistance gene on chromosome 6HS, originating from barley's secondary genepool wild relative Hordeum bulbosum. As such, the resistance mechanism may represent a case of non-host resistance, which could enhance its durability. A susceptible barley variety and a resistant H. bulbosum introgression line were crossed to produce a large F2 mapping population (n = 7500), to compensate for a ten-fold reduction in recombination rate compared to intraspecific barley crosses. After high-throughput genotyping, the Rym14Hb locus was assigned to a 2Mbp telomeric interval on chromosome 6HS. The co-segregating markers developed in this study can be used for marker-assisted introgression of this locus into barley elite germplasm with a minimum of linkage drag.
Collapse
Affiliation(s)
- Hélène Pidon
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466, Seeland, Germany.
| | - Neele Wendler
- KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, 37574, Einbeck, Germany
| | - Antje Habekuβ
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI), Erwin-Baur-Straße 27, 06484, Quedlinburg, Germany
| | - Anja Maasberg
- KWS LOCHOW GMBH, Ferdinand-von-Lochow-Straße 5, 29303, Bergen, Germany
| | - Brigitte Ruge-Wehling
- Institute for Breeding Research On Agricultural Crops, Julius Kühn Institute (JKI), Groß Lüsewitz, Rudolf-Schick-Platz 3a, 18190, Sanitz, Germany
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI), Erwin-Baur-Straße 27, 06484, Quedlinburg, Germany
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI), Erwin-Baur-Straße 27, 06484, Quedlinburg, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466, Seeland, Germany.
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Von Siebold Straße 8, 37075, Göttingen, Germany.
| |
Collapse
|
7
|
Hoseinzadeh P, Ruge-Wehling B, Schweizer P, Stein N, Pidon H. High Resolution Mapping of a Hordeum bulbosum-Derived Powdery Mildew Resistance Locus in Barley Using Distinct Homologous Introgression Lines. FRONTIERS IN PLANT SCIENCE 2020; 11:225. [PMID: 32194602 PMCID: PMC7063055 DOI: 10.3389/fpls.2020.00225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/13/2020] [Indexed: 05/17/2023]
Abstract
Powdery mildew caused by Blumeria graminis f. sp. hordei (Bgh) is one of the main foliar diseases in barley (Hordeum vulgare L.; Hv). Naturally occurring resistance genes used in barley breeding are a cost effective and environmentally sustainable strategy to minimize the impact of pathogens, however, the primary gene pool of H. vulgare contains limited diversity owing to recent domestication bottlenecks. To ensure durable resistance against this pathogen, more genes are required that could be unraveled by investigation of secondary barley gene-pool. A large set of Hordeum bulbosum (Hb) introgression lines (ILs) harboring a diverse set of desirable resistance traits have been developed and are being routinely used as source of novel diversity in gene mapping studies. Nevertheless, this strategy is often compromised by a lack of recombination between the introgressed fragment and the orthologous chromosome of the barley genome. In this study, we fine-mapped a Hb gene conferring resistance to barley powdery mildew. The initial genotyping of two Hb ILs mapping populations with differently sized 2HS introgressions revealed severely reduced interspecific recombination in the region of the introgressed segment, preventing precise localization of the gene. To overcome this difficulty, we developed an alternative strategy, exploiting intraspecific recombination by crossing two Hv/Hb ILs with collinear Hb introgressions, one of which carries a powdery mildew resistance gene, while the other doesn't. The intraspecific recombination rate in the Hb-introgressed fragment of 2HS was approximately 20 times higher than it was in the initial simple ILs mapping populations. Using high-throughput genotyping-by-sequencing (GBS), we allocated the resistance gene to a 1.4 Mb interval, based on an estimate using the Hv genome as reference, in populations of only 103 and 146 individuals, respectively, similar to what is expected at this locus in barley. The most likely candidate resistance gene within this interval is part of the coiled-coil nucleotide-binding-site leucine-rich-repeat (CC-NBS-LLR) gene family, which is over-represented among genes conferring strong dominant resistance to pathogens. The reported strategy can be applied as a general strategic approach for identifying genes underlying traits of interest in crop wild relatives.
Collapse
Affiliation(s)
- Parastoo Hoseinzadeh
- Genomics of Genetic Resources, Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Brigitte Ruge-Wehling
- Institute for Breeding Research on Agricultural Crops, Julius Kühn Institute (JKI), Sanitz, Germany
| | - Patrick Schweizer
- Pathogen-Stress Genomics, Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Nils Stein
- Genomics of Genetic Resources, Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Department of Crop Sciences, Center for Integrated Breeding Research (CiBreed), Georg-August-University, Göttingen, Germany
| | - Hélène Pidon
- Genomics of Genetic Resources, Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
8
|
Wang W, He J, Chen S, Peng P, Zhong W, Wang X, Zhang T, Li Y. Construction of a high-density genetic map and fine mapping of a candidate gene locus for a novel branched-spike mutant in barley. PLoS One 2020; 15:e0227617. [PMID: 31914168 PMCID: PMC6948822 DOI: 10.1371/journal.pone.0227617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 12/24/2019] [Indexed: 11/19/2022] Open
Abstract
A Yunnan branched-spike (Ynbs) barley mutant is useful for study of the genetic mechanisms underlying variation in barley spike architecture. In the current study, a mutant (Ynbs-1), a recombinant inbred line (RIL-1), and a cultivar (BDM-8) were used as parents to develop populations. Ynbs-1 exhibits typical branched spike, whereas the others exhibit six-row spike. Genetic analysis on their F1, F2 and F3 populations showed that one recessive gene is responsible for the branched spike trait. SLAF marker generated from specific locus amplified fragment sequencing (SLAF-seq) was used to genotype the populations. A high-density genetic map of barley was constructed using 14,348 SLAF markers, which covered all 7 chromosomes at 1,347.44 cM in length with an average marker density of 0.09 cM between adjacent markers. Linkage analysis of the branched-spike trait using the genetic map indicated that branched spike trait in the Ynbs-1 is controlled by single locus on chromosome 2H at the interval between 65.00 and 65.47 cM that is flanked by Marker310119 and Marker2679451. Several candidate genes that may be responsible for barley multiple-spikelet degeneration, single-floret spikelet increase and seed set rate decrease were identified in the region. The high-density genetic map and the gene locus revealed in this study provide valuable information for elucidating the genetic mechanism of spike branching in barley.
Collapse
Affiliation(s)
- Weibin Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Junyu He
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shengwei Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
- * E-mail:
| | - Peng Peng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wei Zhong
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xintian Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Tingting Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yuping Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
9
|
Abstract
Understanding how crop plants evolved from their wild relatives and spread around the world can inform about the origins of agriculture. Here, we review how the rapid development of genomic resources and tools has made it possible to conduct genetic mapping and population genetic studies to unravel the molecular underpinnings of domestication and crop evolution in diverse crop species. We propose three future avenues for the study of crop evolution: establishment of high-quality reference genomes for crops and their wild relatives; genomic characterization of germplasm collections; and the adoption of novel methodologies such as archaeogenetics, epigenomics, and genome editing.
Collapse
Affiliation(s)
- Mona Schreiber
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Seeland, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.
| |
Collapse
|
10
|
Towards the Development of Perennial Barley for Cold Temperate Climates—Evaluation of Wild Barley Relatives as Genetic Resources. SUSTAINABILITY 2018. [DOI: 10.3390/su10061969] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|