1
|
Patial M, Navathe S, He X, Kamble U, Kumar M, Joshi AK, Singh PK. Novel resistance loci for quantitative resistance to Septoria tritici blotch in Asian wheat (Triticum aestivum) via genome-wide association study. BMC PLANT BIOLOGY 2024; 24:846. [PMID: 39251916 PMCID: PMC11382471 DOI: 10.1186/s12870-024-05547-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Septoria tritici blotch (STB) disease causes yield losses of up to 50 per cent in susceptible wheat cultivars and can reduce wheat production. In this study, genomic architecture for adult-plant STB resistance in a Septoria Association Mapping Panel (SAMP) having 181 accessions and genomic regions governing STB resistance in a South Asian wheat panel were looked for. RESULTS Field experiments during the period from 2019 to 2021 revealed those certain accessions, namely BGD52 (CHIR7/ANB//CHIR1), BGD54 (CHIR7/ANB//CHIR1), IND92 (WH 1218), IND8 (DBW 168), and IND75 (PBW 800), exhibited a high level of resistance. Genetic analysis revealed the presence of 21 stable quantitative trait nucleotides (QTNs) associated with resistance to STB (Septoria tritici blotch) on all wheat chromosomes, except for 2D, 3A, 3D, 4A, 4D, 5D, 6B, 6D, and 7A. These QTNs were predominantly located in chromosome regions previously identified as associated with STB resistance. Three Quantitative Trait Loci (QTNs) were found to have significant phenotypic effects in field evaluations. These QTNs are Q.STB.5A.1, Q.STB.5B.1, and Q.STB.5B.3. Furthermore, it is possible that the QTNs located on chromosomes 1A (Q.STB.1A.1), 2A (Q.STB_DH.2A.1, Q.STB.2A.3), 2B (Q.STB.2B.4), 5A (Q.STB.5A.1, Q.STB.5A.2), and 7B (Q.STB.7B.2) could potentially be new genetic regions associated with resistance. CONCLUSION Our findings demonstrate the importance of Asian bread wheat as a source of STB resistance alleles and novel stable QTNs for wheat breeding programs aiming to develop long-lasting and wide-ranging resistance to Zymoseptoria tritici in wheat cultivars.
Collapse
Affiliation(s)
- Madhu Patial
- ICAR-Indian Agricultural Research Institute, Regional Station, Shimla, 171004, India
| | - Sudhir Navathe
- Agharkar Research Institute, G.G. Agharkar Road, Pune, 411004, India
| | - Xinyao He
- International Maize and Wheat Improvement Centre (CIMMYT) Apdo, Postal 6-641, Mexico City, Mexico
| | - Umesh Kamble
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| | - Manjeet Kumar
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Arun Kumar Joshi
- Borlaug Institute for South Asia, NASC Complex, G-2, B-Block, New Delhi, 110012, India
| | - Pawan Kumar Singh
- International Maize and Wheat Improvement Centre (CIMMYT) Apdo, Postal 6-641, Mexico City, Mexico.
| |
Collapse
|
2
|
Mandal R, He X, Singh G, Kabir MR, Joshi AK, Singh PK. Screening of CIMMYT and South Asian Bread Wheat Germplasm Reveals Marker-Trait Associations for Seedling Resistance to Septoria Nodorum Blotch. Genes (Basel) 2024; 15:890. [PMID: 39062669 PMCID: PMC11276481 DOI: 10.3390/genes15070890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Wheat (Triticum aestivum L.) production is adversely impacted by Septoria nodorum blotch (SNB), a fungal disease caused by Parastagonospora nodorum. Wheat breeders are constantly up against this biotic challenge as they try to create resistant cultivars. The genome-wide association study (GWAS) has become an efficient tool for identifying molecular markers linked with SNB resistance. This technique is used to acquire an understanding of the genetic basis of resistance and to facilitate marker-assisted selection. In the current study, a total of 174 bread wheat accessions from South Asia and CIMMYT were assessed for SNB reactions at the seedling stage in three greenhouse experiments at CIMMYT, Mexico. The results indicated that 129 genotypes were resistant to SNB, 39 were moderately resistant, and only 6 were moderately susceptible. The Genotyping Illumina Infinium 15K Bead Chip was used, and 11,184 SNP markers were utilized to identify marker-trait associations (MTAs) after filtering. Multiple tests confirmed the existence of significant MTAs on chromosomes 5B, 5A, and 3D, and the ones at Tsn1 on 5B were the most stable and conferred the highest phenotypic variation. The resistant genotypes identified in this study could be cultivated in South Asian countries as a preventative measure against the spread of SNB. This work also identified molecular markers of SNB resistance that could be used in future wheat breeding projects.
Collapse
Affiliation(s)
- Rupsanatan Mandal
- Visiting Scientist, International Maize and Wheat Improvement Center (CIMMYT), Texcoco 56237, Mexico;
- Department of Genetics and Plant Breeding, Uttar Banga Krishi Viswavidyalaya, Cooch Behar 736165, India
| | - Xinyao He
- International Maize and Wheat Improvement Centre, Texcoco 56237, Mexico;
| | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, India;
| | | | - Arun Kumar Joshi
- International Maize and Wheat Improvement Center (CIMMYT)-India Office, New Delhi 110012, India;
- Borlaug Institute for South Asia, New Delhi 110012, India
| | - Pawan Kumar Singh
- International Maize and Wheat Improvement Centre, Texcoco 56237, Mexico;
| |
Collapse
|
3
|
See PT, Iagallo EM, Marathamuthu KA, Wood B, Aboukhaddour R, Moffat CS. A New ToxA Haplotype in the Wheat Fungal Pathogen Bipolaris sorokiniana. PHYTOPATHOLOGY 2024; 114:1525-1532. [PMID: 38530294 DOI: 10.1094/phyto-10-23-0370-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The necrotrophic effector ToxA is a well-studied virulence factor produced by several fungal necrotrophs. Initially cloned from the wheat tan spot pathogen Pyrenophora tritici-repentis in 1996, ToxA was found almost a decade later in another fungal pathogen, Parastagonospora nodorum, and its sister species, Parastagonospora pseudonodorum. In 2018, ToxA was detected in a third wheat fungal pathogenic species, Bipolaris sorokiniana, which causes spot blotch disease. However, unlike the case with P. tritici-repentis and P. nodorum, the ToxA in B. sorokiniana has only been investigated in recent years. In this report, five Australian B. sorokiniana isolates were assessed for the presence of ToxA. Four isolates were found to contain ToxA. While one isolate harbored the previously reported ToxA haplotype sequence (ToxA19), three isolates contain a different haplotype, designated herein as ToxA25, which has a nonsynonymous mutation resulting in an amino acid change of glycine to arginine at position 168. Both B. sorokiniana ToxA isoforms, when heterologously expressed in Escherichia coli, exhibited the classic ToxA necrosis-inducing activity on ToxA-sensitive Tsn1 cultivars. Preliminary analysis of the B. sorokiniana isolates in Australian wheat cultivars showed that isolates with ToxA19, ToxA25, or ToxA-deficient displayed various degrees of virulence, with the most aggressive isolates observed for those producing ToxA. Differences in spot blotch disease severity between Tsn1 and tsn1 cultivars were observed; however, this was not limited to the ToxA-producing isolates. The overall results suggest that the virulence of the Australian B. sorokiniana isolates is diverse, with the significance of ToxA-Tsn1 interactions depending on individual isolates.
Collapse
Affiliation(s)
- Pao Theen See
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Elyce M Iagallo
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Kalai A Marathamuthu
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Blake Wood
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Reem Aboukhaddour
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, Alberta, Canada
| | - Caroline S Moffat
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
4
|
Kokhmetova A, Bolatbekova A, Zeleneva Y, Malysheva A, Bastaubayeva S, Bakhytuly K, Dutbayev Y, Tsygankov V. Identification of Wheat Septoria tritici Resistance Genes in Wheat Germplasm Using Molecular Markers. PLANTS (BASEL, SWITZERLAND) 2024; 13:1113. [PMID: 38674522 PMCID: PMC11054562 DOI: 10.3390/plants13081113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Zymoseptoria tritici (Z. tritici) is the main threat to global food security; it is a fungal disease that presents one of the most serious threats to wheat crops, causing severe yield losses worldwide, including in Kazakhstan. The pathogen leads to crop losses reaching from 15 to 50%. The objectives of this study were to (1) evaluate a wheat collection for Z. tritici resistance during the adult plant and seedling growth stages, (2) identify the sources of resistance genes that provide resistance to Z. tritici using molecular markers linked to Stb genes, and (3) identify potentially useful resistant wheat genotypes among cultivars and advanced breeding lines. This study evaluated 60 winter and spring wheat genotypes for Z. tritici resistance. According to the field reactions, 22 entries (35.7%) showed ≤10% disease severity in both years. The resistant reaction to a mix of Z. tritici isolates in the seedling stage was associated with adult plant resistance to disease in four wheat entries. The resistance of Rosinka 3 was due to the presence of Stb8; Omskaya 18 showed an immune reaction in the field and a moderately susceptible reaction in the seedling stage, possibly provided by a combination of the Stb7 and Stb2 genes. The high resistance in both the adult and seedling stages of Omskaya 29 and KR11-03 was due to the Stb4 and Stb2 genes and, possibly, due to the presence of unknown genes. A linked marker analysis revealed the presence of several Stb genes. The proportion of wheat entries with Stb genes was quite high at twenty-seven of the genotypes tested (45.0%), including four from Kazakhstan, nine from Russia, nine from the CIMMYT-ICARDA-IWWIP program, and five from the CIMMYT-SEPTMON nursery. Among the sixty entries, ten (16.7%) carried the resistance genes Stb2 and Stb8, and the gene Stb4 was found in seven cultivars (11.6%). Marker-assisted selection can be efficiently applied to develop wheat cultivars with effective Stb gene combinations that would directly assist in developing durable resistance in Kazakhstan. Resistant genotypes could also be used as improved parents in crossing programs to develop new wheat cultivars.
Collapse
Affiliation(s)
- Alma Kokhmetova
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.B.); (A.M.); (K.B.)
| | - Ardak Bolatbekova
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.B.); (A.M.); (K.B.)
| | - Yuliya Zeleneva
- All-Russian Research Institute of Plant Protection, Pushkin, St. Petersburg 196608, Russia;
| | - Angelina Malysheva
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.B.); (A.M.); (K.B.)
| | - Sholpan Bastaubayeva
- Kazakh Research Institute of Agriculture and Plant Growing, Almalybak 040909, Kazakhstan;
| | - Kanat Bakhytuly
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.B.); (A.M.); (K.B.)
| | - Yerlan Dutbayev
- Department of Horticulture, Plant Protection and Quarantine, Faculty of Agrobiology, Kazakh National Agrarian Research University, Almaty 050000, Kazakhstan;
| | | |
Collapse
|
5
|
Navathe S, He X, Kamble U, Kumar M, Patial M, Singh G, Singh GP, Joshi AK, Singh PK. Assessment of Indian wheat germplasm for Septoria nodorum blotch and tan spot reveals new QTLs conferring resistance along with recessive alleles of Tsn1 and Snn3. FRONTIERS IN PLANT SCIENCE 2023; 14:1223959. [PMID: 37881616 PMCID: PMC10597639 DOI: 10.3389/fpls.2023.1223959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023]
Abstract
The leaf blight diseases, Septoria nodorum blotch (SNB), and tan spot (TS) are emerging due to changing climatic conditions in the northern parts of India. We screened 296 bread wheat cultivars released in India over the past 20 years for seedling resistance against SNB (three experiments) and TS (two experiments). According to a genome-wide association study, six QTLs on chromosome arms 1BL, 2AS, 5BL, and 6BL were particularly significant for SNB across all three years, of which Q.CIM.snb.1BL, Q.CIM.snb.2AS1, Q.CIM.snb.2AS.2, and Q.CIM.snb.6BL appeared novel. In contrast, those on 5BS and 5BL may correspond to Snn3 and Tsn1, respectively. The allelic combination of tsn1/snn3 conferred resistance to SNB, whereas that of Tsn1/Snn3 conferred high susceptibility. As for TS, Tsn1 was the only stably significant locus identified in this panel. Several varieties like PBW 771, DBW 277, and HD 3319, were identified as highly resistant to both diseases that can be used in future wheat improvement programs as resistant donors.
Collapse
Affiliation(s)
- Sudhir Navathe
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune, India
| | - Xinyao He
- Global Wheat Program, International Maize and Wheat Improvement Centre (CIMMYT), Texcoco, Mexico
| | - Umesh Kamble
- Division of Crop Improvement, ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Manjeet Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Madhu Patial
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Gyanendra Singh
- Division of Crop Improvement, ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Gyanendra Pratap Singh
- Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Arun Kumar Joshi
- International Maize and Wheat Improvement Centre (CIMMYT) & Borlaug Institute for South Asia (BISA), New Delhi, India
| | - Pawan Kumar Singh
- Global Wheat Program, International Maize and Wheat Improvement Centre (CIMMYT), Texcoco, Mexico
| |
Collapse
|
6
|
Peters Haugrud AR, Shi G, Seneviratne S, Running KLD, Zhang Z, Singh G, Szabo-Hever A, Acharya K, Friesen TL, Liu Z, Faris JD. Genome-wide association mapping of resistance to the foliar diseases septoria nodorum blotch and tan spot in a global winter wheat collection. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:54. [PMID: 37337566 PMCID: PMC10276793 DOI: 10.1007/s11032-023-01400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Septoria nodorum blotch (SNB) and tan spot, caused by the necrotrophic fungal pathogens Parastagonospora nodorum and Pyrenophora tritici-repentis, respectively, often occur together as a leaf spotting disease complex on wheat (Triticum aestivum L.). Both pathogens produce necrotrophic effectors (NEs) that contribute to the development of disease. Here, genome-wide association analysis of a diverse panel of 264 winter wheat lines revealed novel loci on chromosomes 5A and 5B associated with sensitivity to the NEs SnTox3 and SnTox5 in addition to the known sensitivity genes for NEs Ptr/SnToxA, SnTox1, SnTox3, and SnTox5. Sensitivity loci for SnTox267 and Ptr ToxB were not detected. Evaluation of the panel with five P. nodorum isolates for SNB development indicated the Snn3-SnTox3 and Tsn1-SnToxA interactions played significant roles in disease development along with additional QTL on chromosomes 2A and 2D, which may correspond to the Snn7-SnTox267 interaction. For tan spot, the Tsc1-Ptr ToxC interaction was associated with disease caused by two isolates, and a novel QTL on chromosome 7D was associated with a third isolate. The Tsn1-ToxA interaction was associated with SNB but not tan spot. Therefore some, but not all, of the previously characterized host gene-NE interactions in these pathosystems play significant roles in disease development in winter wheat. Based on these results, breeders should prioritize the selection of resistance alleles at the Tsc1, Tsn1, Snn3, and Snn7 loci as well as the 2A and 7D QTL to obtain good levels of resistance to SNB and tan spot in winter wheat. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01400-5.
Collapse
Affiliation(s)
- Amanda R. Peters Haugrud
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, , Fargo, ND 58102 USA
| | - Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102 USA
| | - Sudeshi Seneviratne
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102 USA
| | | | - Zengcui Zhang
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, , Fargo, ND 58102 USA
| | - Gurminder Singh
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102 USA
| | - Agnes Szabo-Hever
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, , Fargo, ND 58102 USA
| | - Krishna Acharya
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102 USA
| | - Timothy L. Friesen
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, , Fargo, ND 58102 USA
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102 USA
| | - Justin D. Faris
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, , Fargo, ND 58102 USA
| |
Collapse
|
7
|
See PT, Moffat CS. Profiling the Pyrenophora tritici-repentis secretome: The Pf2 transcription factor regulates the secretion of the effector proteins ToxA and ToxB. Mol Microbiol 2023; 119:612-629. [PMID: 37059688 DOI: 10.1111/mmi.15058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 02/13/2023] [Accepted: 03/19/2023] [Indexed: 04/16/2023]
Abstract
The global wheat disease tan spot is caused by the necrotrophic fungal pathogen Pyrenophora tritici-repentis (Ptr) which secretes necrotrophic effectors to facilitate host plant colonization. We previously reported a role of the Zn2 Cys6 binuclear cluster transcription factor Pf2 in the regulation of the Ptr effector ToxA. Here, we show that Pf2 is also a positive regulator of ToxB, via targeted deletion of PtrPf2 which resulted in reduced ToxB expression and defects in conidiation and pathogenicity. To further investigate the function of Ptr Pf2 in regulating protein secretion, the secretome profiles of two Δptrpf2 mutants of two Ptr races (races 1 and 5) were evaluated using a SWATH-mass spectrometry (MS) quantitative approach. Analysis of the secretomes of the Δptrpf2 mutants from in vitro culture filtrate identified more than 500 secreted proteins, with 25% unique to each race. Of the identified proteins, less than 6% were significantly differentially regulated by Ptr Pf2. Among the downregulated proteins were ToxA and ToxB, specific to race 1 and race 5 respectively, demonstrating the role of Ptr Pf2 as a positive regulator of both effectors. Significant motif sequences identified in both ToxA and ToxB putative promoter regions were further explored via GFP reporter assays.
Collapse
Affiliation(s)
- Pao Theen See
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australian, 6102, Australia
| | - Caroline S Moffat
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australian, 6102, Australia
| |
Collapse
|
8
|
Gupta PK, Vasistha NK, Singh S, Joshi AK. Genetics and breeding for resistance against four leaf spot diseases in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1023824. [PMID: 37063191 PMCID: PMC10096043 DOI: 10.3389/fpls.2023.1023824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
In wheat, major yield losses are caused by a variety of diseases including rusts, spike diseases, leaf spot and root diseases. The genetics of resistance against all these diseases have been studied in great detail and utilized for breeding resistant cultivars. The resistance against leaf spot diseases caused by each individual necrotroph/hemi-biotroph involves a complex system involving resistance (R) genes, sensitivity (S) genes, small secreted protein (SSP) genes and quantitative resistance loci (QRLs). This review deals with resistance for the following four-leaf spot diseases: (i) Septoria nodorum blotch (SNB) caused by Parastagonospora nodorum; (ii) Tan spot (TS) caused by Pyrenophora tritici-repentis; (iii) Spot blotch (SB) caused by Bipolaris sorokiniana and (iv) Septoria tritici blotch (STB) caused by Zymoseptoria tritici.
Collapse
Affiliation(s)
- Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
- Murdoch’s Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA, Australia
- Borlaug Institute for South Asia (BISA), National Agricultural Science Complex (NASC), Dev Prakash Shastri (DPS) Marg, New Delhi, India
| | - Neeraj Kumar Vasistha
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
- Department of Genetics-Plant Breeding and Biotechnology, Dr Khem Singh Gill, Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, India
| | - Sahadev Singh
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Arun Kumar Joshi
- Borlaug Institute for South Asia (BISA), National Agricultural Science Complex (NASC), Dev Prakash Shastri (DPS) Marg, New Delhi, India
- The International Maize and Wheat Improvement Center (CIMMYT), National Agricultural Science Complex (NASC), Dev Prakash Shastri (DPS) Marg, New Delhi, India
| |
Collapse
|
9
|
Lin M, Ficke A, Dieseth JA, Lillemo M. Genome-wide association mapping of septoria nodorum blotch resistance in Nordic winter and spring wheat collections. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4169-4182. [PMID: 36151405 PMCID: PMC9734210 DOI: 10.1007/s00122-022-04210-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/29/2022] [Indexed: 05/05/2023]
Abstract
A new QTL for SNB, QSnb.nmbu-2AS, was found in both winter and spring wheat panels that can greatly advance SNB resistance breeding Septoria nodorum blotch (SNB), caused by the necrotrophic fungal pathogen Parastagonospora nodorum, is the dominant leaf blotch pathogen of wheat in Norway. Resistance/susceptibility to SNB is a quantitatively inherited trait, which can be partly explained by the interactions between wheat sensitivity loci (Snn) and corresponding P. nodorum necrotrophic effectors (NEs). Two Nordic wheat association mapping panels were assessed for SNB resistance in the field over three to four years: a spring wheat and a winter wheat panel (n = 296 and 102, respectively). Genome-wide association studies found consistent SNB resistance associated with quantitative trait loci (QTL) on eleven wheat chromosomes, and ten of those QTL were common in the spring and winter wheat panels. One robust QTL on the short arm of chromosome 2A, QSnb.nmbu-2AS, was significantly detected in both the winter and spring wheat panels. For winter wheat, using the four years of SNB field severity data in combination with five years of historical data, the effect of QSnb.nmbu-2AS was confirmed in seven of the nine years, while for spring wheat, the effect was confirmed for all tested years including the historical data from 2014 to 2015. However, lines containing the resistant haplotype are rare in both Nordic spring (4.0%) and winter wheat cultivars (15.7%), indicating the potential of integrating this QTL in SNB resistance breeding programs. In addition, clear and significant additive effects were observed by stacking resistant alleles of the detected QTL, suggesting that marker-assisted selection can greatly facilitate SNB resistance breeding.
Collapse
Affiliation(s)
- Min Lin
- Department of Plant Sciences, Norwegian University of Life Sciences, Post Box 5003, NO-1432, ÅS, Norway
| | - Andrea Ficke
- Division of Biotechnology and Plant Health, Norwegian Inst. of Bioeconomy Research, P.O. Box 115, NO-1431, ÅS, Norway
| | - Jon Arne Dieseth
- Graminor, AS, Bjørke Gård, Hommelstadvegen 60, NO-2322, Ridabu, Norway
| | - Morten Lillemo
- Department of Plant Sciences, Norwegian University of Life Sciences, Post Box 5003, NO-1432, ÅS, Norway.
| |
Collapse
|
10
|
Peters Haugrud AR, Zhang Z, Friesen TL, Faris JD. Genetics of resistance to septoria nodorum blotch in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3685-3707. [PMID: 35050394 DOI: 10.1007/s00122-022-04036-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/23/2021] [Indexed: 05/12/2023]
Abstract
Septoria nodorum blotch (SNB) is a foliar disease of wheat caused by the necrotrophic fungal pathogen Parastagonospora nodorum. Research over the last two decades has shown that the wheat-P. nodorum pathosystem mostly follows an inverse gene-for-gene model. The fungus produces necrotrophic effectors (NEs) that interact with specific host gene products encoded by dominant sensitivity (S) genes. When a compatible interaction occurs, a 'defense response' in the host leads to programmed cell death thereby provided dead/dying cells from which the pathogen, being a necrotroph, can acquire nutrients allowing it to grow and sporulate. To date, nine S gene-NE interactions have been characterized in this pathosystem. Five NE-encoding genes, SnTox1, SnTox3, SnToxA, SnTox5, and SnTox267, have been cloned along with three host S genes, Tsn1, Snn1, and Snn3-D1. Studies have shown that P. nodorum hijacks multiple and diverse host targets to cause disease. SNB resistance is often quantitative in nature because multiple compatible interactions usually occur concomitantly. NE gene expression plays a key role in disease severity, and the effect of each compatible interaction can vary depending on the other existing compatible interactions. Numerous SNB-resistance QTL have been identified in addition to the known S genes, and more research is needed to understand the nature of these resistance loci. Marker-assisted elimination of S genes through conventional breeding practices and disruption of S genes using gene editing techniques are both effective strategies for the development of SNB-resistant wheat cultivars, which will become necessary as the global demand for sustenance grows.
Collapse
Affiliation(s)
| | - Zengcui Zhang
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Timothy L Friesen
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Justin D Faris
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA.
| |
Collapse
|
11
|
Nannuru VKR, Windju SS, Belova T, Dieseth JA, Alsheikh M, Dong Y, McCartney CA, Henriques MA, Buerstmayr H, Michel S, Meuwissen THE, Lillemo M. Genetic architecture of fusarium head blight disease resistance and associated traits in Nordic spring wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2247-2263. [PMID: 35597885 PMCID: PMC9271104 DOI: 10.1007/s00122-022-04109-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/19/2022] [Indexed: 05/05/2023]
Abstract
This study identified a significant number of QTL that are associated with FHB disease resistance in NMBU spring wheat panel by conducting genome-wide association study. Fusarium head blight (FHB) is a widely known devastating disease of wheat caused by Fusarium graminearum and other Fusarium species. FHB resistance is quantitative, highly complex and divided into several resistance types. Quantitative trait loci (QTL) that are effective against several of the resistance types give valuable contributions to resistance breeding. A spring wheat panel of 300 cultivars and breeding lines of Nordic and exotic origins was tested in artificially inoculated field trials and subjected to visual FHB assessment in the years 2013-2015, 2019 and 2020. Deoxynivalenol (DON) content was measured on harvested grain samples, and anther extrusion (AE) was assessed in separate trials. Principal component analysis based on 35 and 25 K SNP arrays revealed the existence of two subgroups, dividing the panel into European and exotic lines. We employed a genome-wide association study to detect QTL associated with FHB traits and identify marker-trait associations that consistently influenced FHB resistance. A total of thirteen QTL were identified showing consistent effects across FHB resistance traits and environments. Haplotype analysis revealed a highly significant QTL on 7A, Qfhb.nmbu.7A.2, which was further validated on an independent set of breeding lines. Breeder-friendly KASP markers were developed for this QTL that can be used in marker-assisted selection. The lines in the wheat panel harbored from zero to five resistance alleles, and allele stacking showed that resistance can be significantly increased by combining several of these resistance alleles. This information enhances breeders´ possibilities for genomic prediction and to breed cultivars with improved FHB resistance.
Collapse
Affiliation(s)
| | | | - Tatiana Belova
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, 0318, Blindern, Norway
| | | | | | - Yanhong Dong
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Curt A McCartney
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Maria Antonia Henriques
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Hermann Buerstmayr
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, University of Natural Resources and Life Sciences Vienna, 3430, Tulln, Austria
| | - Sebastian Michel
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, University of Natural Resources and Life Sciences Vienna, 3430, Tulln, Austria
| | - Theodorus H E Meuwissen
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Morten Lillemo
- Department of Plant Sciences, Norwegian University of Life Sciences, 1432, Ås, Norway.
| |
Collapse
|
12
|
John E, Jacques S, Phan HTT, Liu L, Pereira D, Croll D, Singh KB, Oliver RP, Tan KC. Variability in an effector gene promoter of a necrotrophic fungal pathogen dictates epistasis and effector-triggered susceptibility in wheat. PLoS Pathog 2022; 18:e1010149. [PMID: 34990464 PMCID: PMC8735624 DOI: 10.1371/journal.ppat.1010149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/26/2021] [Indexed: 12/31/2022] Open
Abstract
The fungus Parastagonospora nodorum uses proteinaceous necrotrophic effectors (NEs) to induce tissue necrosis on wheat leaves during infection, leading to the symptoms of septoria nodorum blotch (SNB). The NEs Tox1 and Tox3 induce necrosis on wheat possessing the dominant susceptibility genes Snn1 and Snn3B1/Snn3D1, respectively. We previously observed that Tox1 is epistatic to the expression of Tox3 and a quantitative trait locus (QTL) on chromosome 2A that contributes to SNB resistance/susceptibility. The expression of Tox1 is significantly higher in the Australian strain SN15 compared to the American strain SN4. Inspection of the Tox1 promoter region revealed a 401 bp promoter genetic element in SN4 positioned 267 bp upstream of the start codon that is absent in SN15, called PE401. Analysis of the world-wide P. nodorum population revealed that a high proportion of Northern Hemisphere isolates possess PE401 whereas the opposite was observed in representative P. nodorum isolates from Australia and South Africa. The presence of PE401 removed the epistatic effect of Tox1 on the contribution of the SNB 2A QTL but not Tox3. PE401 was introduced into the Tox1 promoter regulatory region in SN15 to test for direct regulatory roles. Tox1 expression was markedly reduced in the presence of PE401. This suggests a repressor molecule(s) binds PE401 and inhibits Tox1 transcription. Infection assays also demonstrated that P. nodorum which lacks PE401 is more pathogenic on Snn1 wheat varieties than P. nodorum carrying PE401. An infection competition assay between P. nodorum isogenic strains with and without PE401 indicated that the higher Tox1-expressing strain rescued the reduced virulence of the lower Tox1-expressing strain on Snn1 wheat. Our study demonstrated that Tox1 exhibits both 'selfish' and 'altruistic' characteristics. This offers an insight into a complex NE-NE interaction that is occurring within the P. nodorum population. The importance of PE401 in breeding for SNB resistance in wheat is discussed.
Collapse
Affiliation(s)
- Evan John
- Centre for Crop and Disease Management, Curtin University, Bentley, Perth, Western Australia, Australia
- Curtin University, Bentley, Perth, Western Australia, Australia
| | - Silke Jacques
- Centre for Crop and Disease Management, Curtin University, Bentley, Perth, Western Australia, Australia
- Curtin University, Bentley, Perth, Western Australia, Australia
| | - Huyen T. T. Phan
- Centre for Crop and Disease Management, Curtin University, Bentley, Perth, Western Australia, Australia
- Curtin University, Bentley, Perth, Western Australia, Australia
| | - Lifang Liu
- Centre for Crop and Disease Management, Curtin University, Bentley, Perth, Western Australia, Australia
- Curtin University, Bentley, Perth, Western Australia, Australia
| | - Danilo Pereira
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Karam B. Singh
- Centre for Crop and Disease Management, Curtin University, Bentley, Perth, Western Australia, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Floreat, Western Australia, Australia
| | | | - Kar-Chun Tan
- Centre for Crop and Disease Management, Curtin University, Bentley, Perth, Western Australia, Australia
- Curtin University, Bentley, Perth, Western Australia, Australia
| |
Collapse
|
13
|
Francki MG, Walker E, McMullan CJ, Morris WG. Evaluation of Septoria Nodorum Blotch (SNB) Resistance in Glumes of Wheat ( Triticum aestivum L.) and the Genetic Relationship With Foliar Disease Response. Front Genet 2021; 12:681768. [PMID: 34267781 PMCID: PMC8276050 DOI: 10.3389/fgene.2021.681768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Septoria nodorum blotch (SNB) is a necrotrophic disease of wheat prominent in some parts of the world, including Western Australia (WA) causing significant losses in grain yield. The genetic mechanisms for resistance are complex involving multiple quantitative trait loci. In order to decipher comparable or independent regulation, this study identified the genetic control for glume compared to foliar resistance across four environments in WA against 37 different isolates. High proportion of the phenotypic variation across environments was contributed by genotype (84.0% for glume response and 82.7% for foliar response) with genotype-by-environment interactions accounting for a proportion of the variation for both glume and foliar response (14.7 and 16.2%, respectively). Despite high phenotypic correlation across environments, most of the eight and 14 QTL detected for glume and foliar resistance using genome wide association analysis (GWAS), respectively, were identified as environment-specific. QTL for glume and foliar resistance neither co-located nor were in LD in any particular environment indicating autonomous genetic mechanisms control SNB response in adult plants, regulated by independent biological mechanisms and influenced by significant genotype-by- environment interactions. Known Snn and Tsn loci and QTL were compared with 22 environment-specific QTL. None of the eight QTL for glume or the 14 for foliar response were co-located or in linkage disequilibrium with Snn and only one foliar QTL was in LD with Tsn loci on the physical map. Therefore, glume and foliar response to SNB in wheat is regulated by multiple environment-specific loci which function independently, with limited influence of known NE-Snn interactions for disease progression in Western Australian environments. Breeding for stable resistance would consequently rely on recurrent phenotypic selection to capture and retain favorable alleles for both glume and foliar resistance relevant to a particular environment.
Collapse
Affiliation(s)
- Michael G Francki
- Department of Primary Industries and Regional Development, South Perth, WA, Australia.,State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| | - Esther Walker
- Department of Primary Industries and Regional Development, South Perth, WA, Australia.,State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| | | | - W George Morris
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| |
Collapse
|
14
|
AlTameemi R, Gill HS, Ali S, Ayana G, Halder J, Sidhu JS, Gill US, Turnipseed B, Hernandez JLG, Sehgal SK. Genome-wide association analysis permits characterization of Stagonospora nodorum blotch (SNB) resistance in hard winter wheat. Sci Rep 2021; 11:12570. [PMID: 34131169 PMCID: PMC8206080 DOI: 10.1038/s41598-021-91515-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022] Open
Abstract
Stagonospora nodorum blotch (SNB) is an economically important wheat disease caused by the necrotrophic fungus Parastagonospora nodorum. SNB resistance in wheat is controlled by several quantitative trait loci (QTLs). Thus, identifying novel resistance/susceptibility QTLs is crucial for continuous improvement of the SNB resistance. Here, the hard winter wheat association mapping panel (HWWAMP) comprising accessions from breeding programs in the Great Plains region of the US, was evaluated for SNB resistance and necrotrophic effectors (NEs) sensitivity at the seedling stage. A genome-wide association study (GWAS) was performed to identify single‐nucleotide polymorphism (SNP) markers associated with SNB resistance and effectors sensitivity. We found seven significant associations for SNB resistance/susceptibility distributed over chromosomes 1B, 2AL, 2DS, 4AL, 5BL, 6BS, and 7AL. Two new QTLs for SNB resistance/susceptibility at the seedling stage were identified on chromosomes 6BS and 7AL, whereas five QTLs previously reported in diverse germplasms were validated. Allele stacking analysis at seven QTLs explained the additive and complex nature of SNB resistance. We identified accessions (‘Pioneer-2180’ and ‘Shocker’) with favorable alleles at five of the seven identified loci, exhibiting a high level of resistance against SNB. Further, GWAS for sensitivity to NEs uncovered significant associations for SnToxA and SnTox3, co-locating with previously identified host sensitivity genes (Tsn1 and Snn3). Candidate region analysis for SNB resistance revealed 35 genes of putative interest with plant defense response-related functions. The QTLs identified and validated in this study could be easily employed in breeding programs using the associated markers to enhance the SNB resistance in hard winter wheat.
Collapse
Affiliation(s)
- Rami AlTameemi
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Harsimardeep S Gill
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Shaukat Ali
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Girma Ayana
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jyotirmoy Halder
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jagdeep S Sidhu
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Upinder S Gill
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Brent Turnipseed
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jose L Gonzalez Hernandez
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
15
|
Downie RC, Lin M, Corsi B, Ficke A, Lillemo M, Oliver RP, Phan HTT, Tan KC, Cockram J. Septoria Nodorum Blotch of Wheat: Disease Management and Resistance Breeding in the Face of Shifting Disease Dynamics and a Changing Environment. PHYTOPATHOLOGY 2021; 111:906-920. [PMID: 33245254 DOI: 10.1094/phyto-07-20-0280-rvw] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The fungus Parastagonospora nodorum is a narrow host range necrotrophic fungal pathogen that causes Septoria nodorum blotch (SNB) of cereals, most notably wheat (Triticum aestivum). Although commonly observed on wheat seedlings, P. nodorum infection has the greatest effect on the adult crop. It results in leaf blotch, which limits photosynthesis and thus crop growth and yield. It can also affect the wheat ear, resulting in glume blotch, which directly affects grain quality. Reports of P. nodorum fungicide resistance, the increasing use of reduced tillage agronomic practices, and high evolutionary potential of the pathogen, combined with changes in climate and agricultural environments, mean that genetic resistance to SNB remains a high priority in many regions of wheat cultivation. In this review, we summarize current information on P. nodorum population structure and its implication for improved SNB management. We then review recent advances in the genetics of host resistance to P. nodorum and the necrotrophic effectors it secretes during infection, integrating the genomic positions of these genetic loci by using the recently released wheat reference genome assembly. Finally, we discuss the genetic and genomic tools now available for SNB resistance breeding and consider future opportunities and challenges in crop health management by using the wheat-P. nodorum interaction as a model.
Collapse
Affiliation(s)
- Rowena C Downie
- John Bingham Laboratory, NIAB, Cambridge, CB3 0LE, United Kingdom
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Min Lin
- Norwegian University of Life Sciences, Ås NO-1432, Norway
| | - Beatrice Corsi
- John Bingham Laboratory, NIAB, Cambridge, CB3 0LE, United Kingdom
| | - Andrea Ficke
- Norwegian Institute for Bioeconomy Research, Ås NO-1432, Norway
| | - Morten Lillemo
- Norwegian University of Life Sciences, Ås NO-1432, Norway
| | | | - Huyen T T Phan
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley 6102, Perth, WA, Australia
| | - Kar-Chun Tan
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley 6102, Perth, WA, Australia
| | - James Cockram
- John Bingham Laboratory, NIAB, Cambridge, CB3 0LE, United Kingdom
| |
Collapse
|
16
|
Li D, Walker E, Francki M. Genes Associated with Foliar Resistance to Septoria Nodorum Blotch of Hexaploid Wheat ( Triticum aestivum L.). Int J Mol Sci 2021; 22:ijms22115580. [PMID: 34070394 PMCID: PMC8197541 DOI: 10.3390/ijms22115580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/14/2021] [Accepted: 05/22/2021] [Indexed: 11/25/2022] Open
Abstract
The genetic control of host response to the fungal necrotrophic disease Septoria nodorum blotch (SNB) in bread wheat is complex, involving many minor genes. Quantitative trait loci (QTL) controlling SNB response were previously identified on chromosomes 1BS and 5BL. The aim of this study, therefore, was to align and compare the genetic map representing QTL interval on 1BS and 5BS with the reference sequence of wheat and identify resistance genes (R-genes) associated with SNB response. Alignment of QTL intervals identified significant genome rearrangements on 1BS between parents of the DH population EGA Blanco, Millewa and the reference sequence of Chinese Spring with subtle rearrangements on 5BL. Nevertheless, annotation of genomic intervals in the reference sequence were able to identify and map 13 and 12 R-genes on 1BS and 5BL, respectively. R-genes discriminated co-located QTL on 1BS into two distinct but linked loci. NRC1a and TFIID mapped in one QTL on 1BS whereas RGA and Snn1 mapped in the linked locus and all were associated with SNB resistance but in one environment only. Similarly, Tsn1 and WK35 were mapped in one QTL on 5BL with NETWORKED 1A and RGA genes mapped in the linked QTL interval. This study provided new insights on possible biochemical, cellular and molecular mechanisms responding to SNB infection in different environments and also addressed limitations of using the reference sequence to identify the full complement of functional R-genes in modern varieties.
Collapse
Affiliation(s)
- Dora Li
- State Agricultural Biotechnology Centre, Murdoch University, South St, Murdoch, WA 6150, Australia; (D.L.); (E.W.)
| | - Esther Walker
- State Agricultural Biotechnology Centre, Murdoch University, South St, Murdoch, WA 6150, Australia; (D.L.); (E.W.)
- Department of Primary Industries and Regional Development, 3 Baron Hay Ct, South Perth, WA 6151, Australia
| | - Michael Francki
- State Agricultural Biotechnology Centre, Murdoch University, South St, Murdoch, WA 6150, Australia; (D.L.); (E.W.)
- Department of Primary Industries and Regional Development, 3 Baron Hay Ct, South Perth, WA 6151, Australia
- Correspondence:
| |
Collapse
|
17
|
Lin M, Stadlmeier M, Mohler V, Tan KC, Ficke A, Cockram J, Lillemo M. Identification and cross-validation of genetic loci conferring resistance to Septoria nodorum blotch using a German multi-founder winter wheat population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:125-142. [PMID: 33047219 PMCID: PMC7813717 DOI: 10.1007/s00122-020-03686-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/12/2020] [Indexed: 05/12/2023]
Abstract
We identified allelic variation at two major loci, QSnb.nmbu-2A.1 and QSnb.nmbu-5A.1, showing consistent and additive effects on SNB field resistance. Validation of QSnb.nmbu-2A.1 across genetic backgrounds further highlights its usefulness for marker-assisted selection. Septoria nodorum blotch (SNB) is a disease of wheat (Triticum aestivum and T. durum) caused by the necrotrophic fungal pathogen Parastagonospora nodorum. SNB resistance is a typical quantitative trait, controlled by multiple quantitative trait loci (QTL) of minor effect. To achieve increased plant resistance, selection for resistance alleles and/or selection against susceptibility alleles must be undertaken. Here, we performed genetic analysis of SNB resistance using an eight-founder German Multiparent Advanced Generation Inter-Cross (MAGIC) population, termed BMWpop. Field trials and greenhouse testing were conducted over three seasons in Norway, with genetic analysis identifying ten SNB resistance QTL. Of these, two QTL were identified over two seasons: QSnb.nmbu-2A.1 on chromosome 2A and QSnb.nmbu-5A.1 on chromosome 5A. The chromosome 2A BMWpop QTL co-located with a robust SNB resistance QTL recently identified in an independent eight-founder MAGIC population constructed using varieties released in the United Kingdom (UK). The validation of this SNB resistance QTL in two independent multi-founder mapping populations, regardless of the differences in genetic background and agricultural environment, highlights the value of this locus in SNB resistance breeding. The second robust QTL identified in the BMWpop, QSnb.nmbu-5A.1, was not identified in the UK MAGIC population. Combining resistance alleles at both loci resulted in additive effects on SNB resistance. Therefore, using marker assisted selection to combine resistance alleles is a promising strategy for improving SNB resistance in wheat breeding. Indeed, the multi-locus haplotypes determined in this study provide markers for efficient tracking of these beneficial alleles in future wheat genetics and breeding activities.
Collapse
Affiliation(s)
- Min Lin
- Department of Plant Sciences, Norwegian University of Life Sciences, Post Box 5003, 1432, Ås, Norway
| | - Melanie Stadlmeier
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Volker Mohler
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Kar-Chun Tan
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Andrea Ficke
- Norwegian Institute of Bioeconomy Research, Høgskoleveien 7, 1433, Ås, Norway
| | - James Cockram
- John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Morten Lillemo
- Department of Plant Sciences, Norwegian University of Life Sciences, Post Box 5003, 1432, Ås, Norway.
| |
Collapse
|
18
|
Miedaner T, Boeven ALGC, Gaikpa DS, Kistner MB, Grote CP. Genomics-Assisted Breeding for Quantitative Disease Resistances in Small-Grain Cereals and Maize. Int J Mol Sci 2020; 21:E9717. [PMID: 33352763 PMCID: PMC7766114 DOI: 10.3390/ijms21249717] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022] Open
Abstract
Generating genomics-driven knowledge opens a way to accelerate the resistance breeding process by family or population mapping and genomic selection. Important prerequisites are large populations that are genomically analyzed by medium- to high-density marker arrays and extensive phenotyping across locations and years of the same populations. The latter is important to train a genomic model that is used to predict genomic estimated breeding values of phenotypically untested genotypes. After reviewing the specific features of quantitative resistances and the basic genomic techniques, the possibilities for genomics-assisted breeding are evaluated for six pathosystems with hemi-biotrophic fungi: Small-grain cereals/Fusarium head blight (FHB), wheat/Septoria tritici blotch (STB) and Septoria nodorum blotch (SNB), maize/Gibberella ear rot (GER) and Fusarium ear rot (FER), maize/Northern corn leaf blight (NCLB). Typically, all quantitative disease resistances are caused by hundreds of QTL scattered across the whole genome, but often available in hotspots as exemplified for NCLB resistance in maize. Because all crops are suffering from many diseases, multi-disease resistance (MDR) is an attractive aim that can be selected by specific MDR QTL. Finally, the integration of genomic data in the breeding process for introgression of genetic resources and for the improvement within elite materials is discussed.
Collapse
Affiliation(s)
- Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599 Stuttgart, Germany; (A.L.G.-C.B.); (D.S.G.); (M.B.K.); (C.P.G.)
| | - Ana Luisa Galiano-Carneiro Boeven
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599 Stuttgart, Germany; (A.L.G.-C.B.); (D.S.G.); (M.B.K.); (C.P.G.)
- Kleinwanzlebener Saatzucht (KWS) SAAT SE & Co. KGaA, 37574 Einbeck, Germany
| | - David Sewodor Gaikpa
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599 Stuttgart, Germany; (A.L.G.-C.B.); (D.S.G.); (M.B.K.); (C.P.G.)
| | - Maria Belén Kistner
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599 Stuttgart, Germany; (A.L.G.-C.B.); (D.S.G.); (M.B.K.); (C.P.G.)
- Estación Experimental Pergamino, Instituto Nacional de Tecnología Agropecuaria (INTA), CC31, B2700WAA Pergamino, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina
| | - Cathérine Pauline Grote
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599 Stuttgart, Germany; (A.L.G.-C.B.); (D.S.G.); (M.B.K.); (C.P.G.)
| |
Collapse
|
19
|
Lin M, Ficke A, Cockram J, Lillemo M. Genetic Structure of the Norwegian Parastagonospora nodorum Population. Front Microbiol 2020; 11:1280. [PMID: 32612592 PMCID: PMC7309014 DOI: 10.3389/fmicb.2020.01280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/19/2020] [Indexed: 01/27/2023] Open
Abstract
The necrotrophic fungal pathogen Parastagonospora nodorum causes Septoria nodorum blotch (SNB), which is one of the dominating leaf blotch diseases of wheat in Norway. A total of 165 P. nodorum isolates were collected from three wheat growing regions in Norway from 2015 to 2017. These isolates, as well as nine isolates from other countries, were analyzed for genetic variation using 20 simple sequence repeat (SSR) markers. Genetic analysis of the isolate collection indicated that the P. nodorum pathogen population infecting Norwegian spring and winter wheat underwent regular sexual reproduction and exhibited a high level of genetic diversity, with no genetic subdivisions between sampled locations, years or host cultivars. A high frequency of the presence of necrotrophic effector (NE) gene SnToxA was found in Norwegian P. nodorum isolates compared to other parts of Europe, and we hypothesize that the SnToxA gene is the major virulence factor among the three known P. nodorum NE genes (SnToxA, SnTox1, and SnTox3) in the Norwegian pathogen population. While the importance of SNB has declined in much of Europe, Norway has remained as a P. nodorum hotspot, likely due at least in part to local adaptation of the pathogen population to ToxA sensitive Norwegian spring wheat cultivars.
Collapse
Affiliation(s)
- Min Lin
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Andrea Ficke
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - James Cockram
- John Bingham Laboratory, NIAB, Cambridge, United Kingdom
| | - Morten Lillemo
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
20
|
Francki MG, Walker E, McMullan CJ, Morris WG. Multi-Location Evaluation of Global Wheat Lines Reveal Multiple QTL for Adult Plant Resistance to Septoria Nodorum Blotch (SNB) Detected in Specific Environments and in Response to Different Isolates. FRONTIERS IN PLANT SCIENCE 2020; 11:771. [PMID: 32655592 PMCID: PMC7325896 DOI: 10.3389/fpls.2020.00771] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/15/2020] [Indexed: 05/26/2023]
Abstract
The slow rate of genetic gain for improving resistance to Septoria nodorum blotch (SNB) is due to the inherent complex interactions between host, isolates, and environments. Breeding for improved SNB resistance requires evaluation and selection of wheat genotypes consistently expressing low SNB response in different target production environments. The study focused on evaluating 232 genotypes from global origins for resistance to SNB in the flag leaf expressed in different Western Australian environments. The aim was to identify resistant donor germplasm against historical and contemporary pathogen isolates and enhance our knowledge of the genetic basis of genotype-by-environment interactions for SNB response. Australian wheat varieties, inbred lines from Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT), and International Center for Agricultural Research in the Dry Areas (ICARDA), and landraces from discrete regions of the world showed low to moderate phenotypic correlation for disease response amongst genotypes when evaluated with historical and contemporary isolates at two locations across 3 years in Western Australia (WA). Significant (P < 0.001) genotype-by-environment interactions were detected regardless of same or different isolates used as an inoculum source. Joint regression analysis identified 19 genotypes that consistently expressed low disease severity under infection with different isolates in multi-locations. The CIMMYT inbred lines, 30ZJN09 and ZJN12 Qno25, were particularly pertinent as they had low SNB response and highest trait stability at two locations across 3 years. Genome wide association studies detected 20 QTL associated with SNB resistance on chromosomes 1A, 1B, 4B, 5A, 5B, 6A, 7A, 7B, and 7D. QTL on chromosomes 1B and 5B were previously reported in similar genomic regions. Multiple QTL were identified on 1B, 5B, 6A, and 5A and detected in response to SNB infection against different isolates and specific environments. Known SnTox-Snn interactions were either not evident or variable across WA environments and SNB response may involve other multiple complex biological mechanisms.
Collapse
Affiliation(s)
- Michael G. Francki
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| | - Esther Walker
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| | | | - W. George Morris
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| |
Collapse
|
21
|
Lin M, Corsi B, Ficke A, Tan KC, Cockram J, Lillemo M. Genetic mapping using a wheat multi-founder population reveals a locus on chromosome 2A controlling resistance to both leaf and glume blotch caused by the necrotrophic fungal pathogen Parastagonospora nodorum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:785-808. [PMID: 31996971 PMCID: PMC7021668 DOI: 10.1007/s00122-019-03507-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/10/2019] [Indexed: 05/19/2023]
Abstract
KEY MESSAGE A locus on wheat chromosome 2A was found to control field resistance to both leaf and glume blotch caused by the necrotrophic fungal pathogen Parastagonospora nodorum. The necrotrophic fungal pathogen Parastagonospora nodorum is the causal agent of Septoria nodorum leaf blotch and glume blotch, which are common wheat (Triticum aestivum L.) diseases in humid and temperate areas. Susceptibility to Septoria nodorum leaf blotch can partly be explained by sensitivity to corresponding P. nodorum necrotrophic effectors (NEs). Susceptibility to glume blotch is also quantitative; however, the underlying genetics have not been studied in detail. Here, we genetically map resistance/susceptibility loci to leaf and glume blotch using an eight-founder wheat multiparent advanced generation intercross population. The population was assessed in six field trials across two sites and 4 years. Seedling infiltration and inoculation assays using three P. nodorum isolates were also carried out, in order to compare quantitative trait loci (QTL) identified under controlled conditions with those identified in the field. Three significant field resistance QTL were identified on chromosomes 2A and 6A, while four significant seedling resistance QTL were detected on chromosomes 2D, 5B and 7D. Among these, QSnb.niab-2A.3 for field resistance to both leaf blotch and glume blotch was detected in Norway and the UK. Colocation with a QTL for seedling reactions against culture filtrate from a Norwegian P. nodorum isolate indicated the QTL could be caused by a novel NE sensitivity. The consistency of this QTL for leaf blotch at the seedling and adult plant stages and culture filtrate infiltration was confirmed by haplotype analysis. However, opposite effects for the leaf blotch and glume blotch reactions suggest that different genetic mechanisms may be involved.
Collapse
Affiliation(s)
- Min Lin
- Department of Plant Sciences, Norwegian University of Life Sciences, Post Box 5003, 1432, Ås, Norway
| | - Beatrice Corsi
- John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK
| | - Andrea Ficke
- Norwegian Institute of Bioeconomy Research, Høgskoleveien 7, 1433, Ås, Norway
| | - Kar-Chun Tan
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - James Cockram
- John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK
| | - Morten Lillemo
- Department of Plant Sciences, Norwegian University of Life Sciences, Post Box 5003, 1432, Ås, Norway.
| |
Collapse
|