1
|
Gu Q, Yin S, Tong X, Rui F, Zhu Y, Ma X, Huang R, Wu C, Li J. Current research insights into the role of CTLA-4 in hepatitis B virus (HBV) infection. J Viral Hepat 2024; 31:557-564. [PMID: 38771314 DOI: 10.1111/jvh.13958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Chronic hepatitis B virus (HBV) infection is a significant global public health concern, and the clearance of HBV is closely linked to the activity of HBV-specific T cells, which is regulated by various co-suppressor molecules. Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) is among these co-suppressor molecules which induces T cell exhaustion by competitively inhibiting CD28 and dampening the function of HBV-specific T cells. CTLA-4 also plays a role in the regulation of T helper (Th) cell differentiation and influences cytokine release. In addition, CTLA-4 can impact glucose metabolism in hepatocellular carcinoma through its interaction with T regulatory (Treg) cells. This review aims to provide a comprehensive overview of the existing literature related to the role of CTLA-4 in HBV patients across different subsets of T cells. Additionally, we propose a discussion on the possible mechanisms through which CTLA-4 may contribute to HBV infection, as well as the development of HBV-induced cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Qi Gu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Shengxia Yin
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Xin Tong
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Fajuan Rui
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yixuan Zhu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoyan Ma
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Rui Huang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Chao Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Koch RL, Stanton JB, McClatchy S, Churchill GA, Craig SW, Williams DN, Johns ME, Chase KR, Thiesfeldt DL, Flynt JC, Pazdro R. Discovery of genomic loci for liver health and steatosis reveals overlap with glutathione redox genetics. Redox Biol 2024; 75:103248. [PMID: 38917671 PMCID: PMC11254179 DOI: 10.1016/j.redox.2024.103248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/27/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver condition in the United States, encompassing a wide spectrum of liver pathologies including steatosis, steatohepatitis, fibrosis, and cirrhosis. Despite its high prevalence, there are no medications currently approved by the Food and Drug Administration for the treatment of NAFLD. Recent work has suggested that NAFLD has a strong genetic component and identifying causative genes will improve our understanding of the molecular mechanisms contributing to NAFLD and yield targets for future therapeutic investigations. Oxidative stress is known to play an important role in NAFLD pathogenesis, yet the underlying mechanisms accounting for disturbances in redox status are not entirely understood. To better understand the relationship between the glutathione redox system and signs of NAFLD in a genetically-diverse population, we measured liver weight, serum biomarkers aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and graded liver pathology in a large cohort of Diversity Outbred mice. We compared hepatic endpoints to those of the glutathione redox system previously measured in the livers and kidneys of the same mice, and we screened for statistical and genetic associations using the R/qtl2 software. We discovered several novel genetic loci associated with markers of liver health, including loci that were associated with both liver steatosis and glutathione redox status. Candidate genes within each locus point to possible new mechanisms underlying the complex relationship between NAFLD and the glutathione redox system, which could have translational implications for future studies targeting NAFLD pathology.
Collapse
Affiliation(s)
- Rebecca L Koch
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - James B Stanton
- Department of Pathology, University of Georgia, Athens, GA, USA, 30602
| | | | | | - Steven W Craig
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - Darian N Williams
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - Mallory E Johns
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - Kylah R Chase
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - Dana L Thiesfeldt
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - Jessica C Flynt
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - Robert Pazdro
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602.
| |
Collapse
|
3
|
Tratnig-Frankl M, Luft N, Magistro G, Priglinger S, Ohlmann A, Kassumeh S. Hepatocyte Growth Factor Modulates Corneal Endothelial Wound Healing In Vitro. Int J Mol Sci 2024; 25:9382. [PMID: 39273330 PMCID: PMC11395100 DOI: 10.3390/ijms25179382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
In this study, we assessed the impact of hepatocyte growth factor (HGF) on corneal endothelial cells (CECs), finding that HGF concentrations of 100-250 ng/mL significantly increased CEC proliferation by 30%, migration by 32% and improved survival under oxidative stress by 28% compared to untreated controls (p < 0.05). The primary objective was to identify non-fibrotic pharmacological strategies to enhance corneal endothelial regeneration, addressing a critical need in conditions like Fuchs' endothelial dystrophy (FED), where donor tissue is scarce. To confirm the endothelial nature of the cultured CECs, Na+/K+-ATPase immunohistochemistry was performed. Proliferation rates were determined through BrdU incorporation assays, while cell migration was assessed via scratch assays. Cell viability was evaluated under normal and oxidative stress conditions using WST-1 assays. To ensure that HGF treatment did not trigger epithelial-mesenchymal transition, which could lead to undesirable fibrotic changes, α-SMA staining was conducted. These comprehensive methodologies provided robust data on the effects of HGF, confirming its potential as a therapeutic agent for corneal endothelial repair without inducing harmful EMT, as indicated by the absence of α-SMA expression. These findings suggest that HGF holds therapeutic promise for enhancing corneal endothelial repair, warranting further investigation in in vivo models to confirm its clinical applicability.
Collapse
Affiliation(s)
- Merle Tratnig-Frankl
- Department of Ophthalmology, LMU University Hospital, Ludwig-Maximilians University Munich, Mathildenstrasse 8, 80336 Munich, Germany
- Department of Ophthalmology and Optometry, Medical University Vienna, AKH Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Nikolaus Luft
- Department of Ophthalmology, LMU University Hospital, Ludwig-Maximilians University Munich, Mathildenstrasse 8, 80336 Munich, Germany
| | - Guiseppe Magistro
- Department of Urology, Asklepios Westklinikum Hamburg GmbH, Suurheid 20, 22559 Hamburg, Germany
| | - Siegfried Priglinger
- Department of Ophthalmology, LMU University Hospital, Ludwig-Maximilians University Munich, Mathildenstrasse 8, 80336 Munich, Germany
| | - Andreas Ohlmann
- Department of Ophthalmology, LMU University Hospital, Ludwig-Maximilians University Munich, Mathildenstrasse 8, 80336 Munich, Germany
| | - Stefan Kassumeh
- Department of Ophthalmology, LMU University Hospital, Ludwig-Maximilians University Munich, Mathildenstrasse 8, 80336 Munich, Germany
| |
Collapse
|
4
|
Liang Q, Liu X, Peng X, Luo T, Su Y, Xu X, Xie H, Gao H, Chen Z, Xie C. Salvianolic acid B in fibrosis treatment: a comprehensive review. Front Pharmacol 2024; 15:1442181. [PMID: 39139645 PMCID: PMC11319160 DOI: 10.3389/fphar.2024.1442181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Fibrosis is a public health issue of great concern characterized by the excessive deposition of extracellular matrix, leading to the destruction of parenchymal tissue and organ dysfunction that places a heavy burden on the global healthcare system due to its high incidence, disability, and mortality. Salvianolic acid B (SalB) has positively affected various human diseases, including fibrosis. In this review, we concentrate on the anti-fibrotic effects of SalB from a molecular perspective while providing information on the safety, adverse effects, and drug interactions of SalB. Additionally, we discuss the innovative SalB formulations, which give some references for further investigation and therapeutic use of SalB's anti-fibrotic qualities. Even with the encouraging preclinical data, additional research is required before relevant clinical trials can be conducted. Therefore, we conclude with recommendations for future studies. It is hoped that this review will provide comprehensive new perspectives on future research and product development related to SalB treatment of fibrosis and promote the efficient development of this field.
Collapse
Affiliation(s)
- Qingzhi Liang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoqin Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xi Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ting Luo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi Su
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xin Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hongyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhengtao Chen
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Babuta M, Morel C, de Carvalho Ribeiro M, Datta AA, Calenda C, Copeland C, Nasser I, Szabo G. A novel experimental model of MetALD in male mice recapitulates key features of severe alcohol-associated hepatitis. Hepatol Commun 2024; 8:e0450. [PMID: 38896082 PMCID: PMC11186819 DOI: 10.1097/hc9.0000000000000450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/23/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND The recent increase in the incidence of alcohol-associated hepatitis (AH) coincides with the obesity epidemic in the United States. However, current mouse models do not fully replicate the combined insults of obesity, metabolic dysfunction-associated steatohepatitis, and alcohol. The aim of this study was to develop a new mouse model that recapitulates the robust inflammatory and fibrotic phenotype characteristic of human MetALD. METHODS Eight- to 10-week-old male C57BL/6 mice were fed chow or high fat-cholesterol-sugar diet (metabolic dysfunction-associated steatohepatitis diet) and in each group, some received alcohol in drinking water (ad libitum) and weekly alcohol binges (EtOH) for 3 months. The liver was assessed for features of AH. RESULTS MetALD mice displayed increased liver damage indicated by highly elevated ALT and bilirubin levels compared to all other groups. Liver steatosis was significantly greater in the MetALD mice compared to all other experimental groups. The inflammatory phenotype of MetALD was also recapitulated, including increased IL-6 and IL-1β protein levels as well as increased CD68+ macrophages and Ly6G+ neutrophils in the liver. Sirius red staining and expression of collagen 1, alpha-smooth muscle actin indicated advanced fibrosis in the livers of MetALD mice. In addition, indicators of epithelial-to-mesenchymal transition markers were increased in MetALD mice compared to all other groups. Furthermore, we found increased ductular reaction, dysregulated hedgehog signaling, and decreased liver synthetic functions, consistent with severe AH. CONCLUSIONS Alcohol administration in mice combined with metabolic dysfunction-associated steatohepatitis diet recapitulates key characteristics of human AH including liver damage, steatosis, robust systemic inflammation, and liver immune cell infiltration. This model results in advanced liver fibrosis, ductular reaction, decreased synthetic function, and hepatocyte dedifferentiation, suggesting a robust model of MetALD in mice.
Collapse
Affiliation(s)
- Mrigya Babuta
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Caroline Morel
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Marcelle de Carvalho Ribeiro
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Aditi Ashish Datta
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Charles Calenda
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Copeland
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Imad Nasser
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Gyongyi Szabo
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Xu Y, Zhou X, Wang X, Jin Y, Zhou L, Ye J. Progress of mesenchymal stem cells (MSCs) & MSC-Exosomes combined with drugs intervention in liver fibrosis. Biomed Pharmacother 2024; 176:116848. [PMID: 38834005 DOI: 10.1016/j.biopha.2024.116848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
Liver fibrosis is an intrahepatic chronic damage repair response caused by various reasons such as alcoholic liver, fatty liver, viral hepatitis, autoimmune diseases, etc., and is closely related to the progression of liver disease. Currently, the mechanisms of liver fibrosis and its treatment are hot research topics in the field of liver disease remedy. Mesenchymal stem cells (MSCs) are a class of adult stem cells with self-renewal and multidirectional differentiation potential, which can ameliorate fibrosis through hepatic-directed differentiation, paracrine effects, and immunomodulation. However, the low inner-liver colonization rate, low survival rate, and short duration of intervention after stem cell transplantation have limited their wide clinical application. With the intensive research on liver fibrosis worldwide, it has been found that MSCs and MSCs-derived exosomes combined with drugs have shown better intervention efficiency than utilization of MSCs alone in many animal models of liver fibrosis. In this paper, we review the interventional effects and mechanisms of mesenchymal stem cells and their exosomes combined with drugs to alleviate hepatic fibrosis in vivo in animal models in recent years, which will provide new ideas to improve the efficacy of mesenchymal stem cells and their exosomes in treating hepatic fibrosis in the clinic.
Collapse
Affiliation(s)
- Yan Xu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Jiangxi, China
| | - Xiaolei Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Jiangxi, China
| | - Xuesong Wang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Jiangxi, China
| | - Yu Jin
- School of Rehabilitation Medicine, Gannan Medical University, Jiangxi, China
| | - Lin Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Jiangxi, China; Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Jiangxi, China; Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Jiangxi, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Jiangxi, China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Jiangxi, China; Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Jiangxi, China; Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Jiangxi, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Jiangxi, China.
| |
Collapse
|
7
|
Liu QQ, Chen J, Ma T, Huang W, Lu CH. DCDC2 inhibits hepatic stellate cell activation and ameliorates CCl 4-induced liver fibrosis by suppressing Wnt/β-catenin signaling. Sci Rep 2024; 14:9425. [PMID: 38658618 PMCID: PMC11043443 DOI: 10.1038/s41598-024-59698-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Liver fibrosis, as a consequence of chronic liver disease, involves the activation of hepatic stellate cell (HSC) caused by various chronic liver injuries. Emerging evidence suggests that activation of HSC during an inflammatory state can lead to abnormal accumulation of extracellular matrix (ECM). Investigating novel strategies to inhibit HSC activation and proliferation holds significant importance for the treatment of liver fibrosis. As a member of the doublecortin domain-containing family, doublecortin domain containing 2 (DCDC2) mutations can lead to neonatal sclerosing cholangitis, but its involvement in liver fibrosis remains unclear. Therefore, this study aims to elucidate the role of DCDC2 in liver fibrosis. Our findings revealed a reduction in DCDC2 expression in both human fibrotic liver tissues and carbon tetrachloride (CCl4)-induced mouse liver fibrotic tissues. Furthermore, exposure to transforming growth factor beta-1(TGF-β1) stimulation resulted in a dose- and time-dependent decrease in DCDC2 expression. The overexpression of DCDC2 inhibited the expression of α-smooth muscle actin (α-SMA) and type I collagen alpha 1 (Col1α1), and reduced the activation of HSC stimulated with TGF-β1. Additionally, we provided evidence that the Wnt/β-catenin signaling pathway was involved in this process, wherein DCDC2 was observed to inhibit β-catenin activation, thereby preventing its nuclear translocation. Furthermore, our findings demonstrated that DCDC2 could attenuate the proliferation and epithelial-mesenchymal transition (EMT)-like processes of HSC. In vivo, exogenous DCDC2 could ameliorate CCl4-induced liver fibrosis. In summary, DCDC2 was remarkably downregulated in liver fibrotic tissues of both humans and mice, as well as in TGF-β1-activated HSC. DCDC2 inhibited the activation of HSC induced by TGF-β1 in vitro and fibrogenic changes in vivo, suggesting that it is a promising therapeutic target for liver fibrosis and warrants further investigation in clinical practice.
Collapse
Affiliation(s)
- Qing-Qing Liu
- Suzhou Medical College of Soochow University, Suzhou, 215000, China
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Jing Chen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Tao Ma
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Wei Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
| | - Cui-Hua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
| |
Collapse
|
8
|
Tejero J, Lazure F, Gomes AP. Methylmalonic acid in aging and disease. Trends Endocrinol Metab 2024; 35:188-200. [PMID: 38030482 PMCID: PMC10939937 DOI: 10.1016/j.tem.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023]
Abstract
Metabolic byproducts have conventionally been disregarded as waste products without functions. In this opinion article, we bring to light the multifaceted role of methylmalonic acid (MMA), a byproduct of the propionate metabolism pathway mostly commonly known as a clinical biomarker of vitamin B12 deficiency. MMA is normally present at low levels in the body, but increased levels can come from different sources, such as vitamin B12 deficiency, genetic mutations in enzymes related to the propionate pathway, the gut microbiota, and aggressive cancers. Here, we describe the diverse metabolic and signaling functions of MMA and discuss the consequences of increased MMA levels, such as during the aging process, for several age-related human pathologies.
Collapse
Affiliation(s)
- Joanne Tejero
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Felicia Lazure
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
9
|
Ye L, Ziesch A, Schneider JS, Ofner A, Nieß H, Denk G, Hohenester S, Mayr D, Mahajan UM, Munker S, Khaled NB, Wimmer R, Gerbes AL, Mayerle J, He Y, Geier A, Toni END, Zhang C, Reiter FP. The inhibition of YAP Signaling Prevents Chronic Biliary Fibrosis in the Abcb4 -/- Model by Modulation of Hepatic Stellate Cell and Bile Duct Epithelium Cell Pathophysiology. Aging Dis 2024; 15:338-356. [PMID: 37307826 PMCID: PMC10796084 DOI: 10.14336/ad.2023.0602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) represents a chronic liver disease characterized by poor prognosis and lacking causal treatment options. Yes-associated protein (YAP) functions as a critical mediator of fibrogenesis; however, its therapeutic potential in chronic biliary diseases such as PSC remains unestablished. The objective of this study is to elucidate the possible significance of YAP inhibition in biliary fibrosis by examining the pathophysiology of hepatic stellate cells (HSC) and biliary epithelial cells (BEC). Human liver tissue samples from PSC patients were analyzed to assess the expression of YAP/connective tissue growth factor (CTGF) relative to non-fibrotic control samples. The pathophysiological relevance of YAP/CTGF in HSC and BEC was investigated in primary human HSC (phHSC), LX-2, H69, and TFK-1 cell lines through siRNA or pharmacological inhibition utilizing verteporfin (VP) and metformin (MF). The Abcb4-/- mouse model was employed to evaluate the protective effects of pharmacological YAP inhibition. Hanging droplet and 3D matrigel culture techniques were utilized to investigate YAP expression and activation status of phHSC under various physical conditions. YAP/CTGF upregulation was observed in PSC patients. Silencing YAP/CTGF led to inhibition of phHSC activation and reduced contractility of LX-2 cells, as well as suppression of epithelial-mesenchymal transition (EMT) in H69 cells and proliferation of TFK-1 cells. Pharmacological inhibition of YAP mitigated chronic liver fibrosis in vivo and diminished ductular reaction and EMT. YAP expression in phHSC was effectively modulated by altering extracellular stiffness, highlighting YAP's role as a mechanotransducer. In conclusion, YAP regulates the activation of HSC and EMT in BEC, thereby functioning as a checkpoint of fibrogenesis in chronic cholestasis. Both VP and MF demonstrate effectiveness as YAP inhibitors, capable of inhibiting biliary fibrosis. These findings suggest that VP and MF warrant further investigation as potential therapeutic options for the treatment of PSC.
Collapse
Affiliation(s)
- Liangtao Ye
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Andreas Ziesch
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | | | - Andrea Ofner
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Hanno Nieß
- Biobank of the Department of General, Visceral and Transplantion Surgery, University Hospital, LMU Munich, Germany.
| | - Gerald Denk
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Simon Hohenester
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Doris Mayr
- Institute of Pathology, Faculty of Medicine, LMU Munich, Germany.
| | - Ujjwal M. Mahajan
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Stefan Munker
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Najib Ben Khaled
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Ralf Wimmer
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | | | - Julia Mayerle
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Andreas Geier
- Division of Hepatology, Department of Medicine II, University Hospital Würzburg, Würzburg, Germany.
| | - Enrico N. De Toni
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Florian P. Reiter
- Department of Medicine II, University Hospital, LMU Munich, Germany.
- Division of Hepatology, Department of Medicine II, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
10
|
Yüregir Y, Kaçaroğlu D, Yaylacı S. Regulation of Hepatocellular Carcinoma Epithelial-Mesenchymal Transition Mechanism and Targeted Therapeutic Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1450:93-102. [PMID: 37452258 DOI: 10.1007/5584_2023_781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is a primary liver malignancy that accounts for the majority of liver cancer cases, with multiple risk factors including chronic hepatitis B and C infections, alcohol abuse, and non-alcoholic fatty liver disease (NAFLD). Despite advancements in diagnosis and treatment, the survival rate of patients with advanced HCC remains low, creating an urgent need for new therapeutic targets and strategies.One biological process crucial to HCC progression is the epithelial-mesenchymal transition (EMT). EMT is a process that enables epithelial cells to acquire mesenchymal properties, including motility and invasiveness, by losing their cell-cell adhesion. Various signaling pathways, including TGF-β, Wnt/β-catenin, and Notch, have been implicated in regulating EMT in HCC.To inhibit EMT, targeted therapeutic approaches have been developed, and preclinical studies suggest that the inhibition of the TGF-β, Wnt/β-catenin, and Notch signaling pathways is promising. TGF-β receptor inhibitors, Wnt/β-catenin pathway inhibitors, and gamma-secretase inhibitors have shown efficacy in preclinical studies by inhibiting EMT and reducing tumor growth in HCC models. However, further clinical studies are necessary to determine their effectiveness in human patients.In addition to these approaches, further research is needed to identify other novel therapeutic targets and develop new treatment strategies for HCC. This review emphasizes the critical role of EMT in HCC progression and highlights the potential of targeting the TGF-β, Wnt/β-catenin, and Notch signaling pathways to inhibit EMT and reduce tumor growth in HCC. Future studies and clinical trials are necessary to validate these therapeutic strategies and develop effective treatments for HCC.
Collapse
Affiliation(s)
- Yelda Yüregir
- Molecular Biology and Genetics Department, İhsan Doğramacı Bilkent University, Ankara, Turkey
| | - Demet Kaçaroğlu
- Faculty of Medicine, Medical Biology Department, Lokman Hekim University, Ankara, Turkey
| | - Seher Yaylacı
- Faculty of Medicine, Medical Biology Department, Lokman Hekim University, Ankara, Turkey.
| |
Collapse
|
11
|
Park HJ, Choi J, Kim H, Yang DY, An TH, Lee EW, Han BS, Lee SC, Kim WK, Bae KH, Oh KJ. Cellular heterogeneity and plasticity during NAFLD progression. Front Mol Biosci 2023; 10:1221669. [PMID: 37635938 PMCID: PMC10450943 DOI: 10.3389/fmolb.2023.1221669] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a progressive liver disease that can progress to nonalcoholic steatohepatitis (NASH), NASH-related cirrhosis, and hepatocellular carcinoma (HCC). NAFLD ranges from simple steatosis (or nonalcoholic fatty liver [NAFL]) to NASH as a progressive form of NAFL, which is characterized by steatosis, lobular inflammation, and hepatocellular ballooning with or without fibrosis. Because of the complex pathophysiological mechanism and the heterogeneity of NAFLD, including its wide spectrum of clinical and histological characteristics, no specific therapeutic drugs have been approved for NAFLD. The heterogeneity of NAFLD is closely associated with cellular plasticity, which describes the ability of cells to acquire new identities or change their phenotypes in response to environmental stimuli. The liver consists of parenchymal cells including hepatocytes and cholangiocytes and nonparenchymal cells including Kupffer cells, hepatic stellate cells, and endothelial cells, all of which have specialized functions. This heterogeneous cell population has cellular plasticity to adapt to environmental changes. During NAFLD progression, these cells can exert diverse and complex responses at multiple levels following exposure to a variety of stimuli, including fatty acids, inflammation, and oxidative stress. Therefore, this review provides insights into NAFLD heterogeneity by addressing the cellular plasticity and metabolic adaptation of hepatocytes, cholangiocytes, hepatic stellate cells, and Kupffer cells during NAFLD progression.
Collapse
Affiliation(s)
- Hyun-Ju Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Juyong Choi
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hyunmi Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Da-Yeon Yang
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Baek-Soo Han
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
12
|
Li TZ, Bai CY, Wu B, Zhang CY, Wang WT, Shi TW, Zhou J. The Elk-3 target Abhd10 ameliorates hepatotoxic injury and fibrosis in alcoholic liver disease. Commun Biol 2023; 6:682. [PMID: 37400491 DOI: 10.1038/s42003-023-05055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 06/19/2023] [Indexed: 07/05/2023] Open
Abstract
Alcoholic liver disease (ALD) and other forms of chronic hepatotoxic injury can lead to transforming growth factor β1 (TGFβ1)-induced hepatic fibrosis and compromised liver function, underscoring the need to develop novel treatments for these conditions. Herein, our analyses of liver tissue samples from severe alcoholic hepatitis (SAH) patients and two murine models of ALD reveals that the ALD phenotype was associated with upregulation of the transcription factor ETS domain-containing protein (ELK-3) and ELK-3 signaling activity coupled with downregulation of α/β hydrolase domain containing 10 (ABHD10) and upregulation of deactivating S-palmitoylation of the antioxidant protein Peroxiredoxin 5 (PRDX5). In vitro, we further demonstrate that ELK-3 can directly bind to the ABHD10 promoter to inhibit its transactivation. TGFβ1 and epidermal growth factor (EGF) signaling induce ABHD10 downregulation and PRDX5 S-palmitoylation via ELK-3. This ELK-3-mediated ABHD10 downregulation drives oxidative stress and disrupts mature hepatocyte function via enhancing S-palmitoylation of PRDX5's Cys100 residue. In vivo, ectopic Abhd10 overexpression ameliorates liver damage in ALD model mice. Overall, these data suggest that the therapeutic targeting of the ABHD10-PRDX5 axis may represent a viable approach to treating ALD and other forms of hepatotoxicity.
Collapse
Affiliation(s)
- Tian-Zhu Li
- Department of Molecular Biology, College of Basic Medical Science, Chifeng University, Chifeng, 024000, China.
| | - Chun-Ying Bai
- Department of Molecular Biology, College of Basic Medical Science, Chifeng University, Chifeng, 024000, China
| | - Bao Wu
- Department of Tissue and Embryology, College of Basic Medical Science, Chifeng University, Chifeng, 024000, China
| | - Cong-Ying Zhang
- Department of Pharmacy, College of Basic Medical Science, Chifeng University, Chifeng, 024000, China
| | - Wen-Tao Wang
- Department of Pathogenic Biology, College of Basic Medical Science, Chifeng University, Chifeng, 024000, China
| | - Tie-Wei Shi
- Department of Molecular Biology, College of Basic Medical Science, Chifeng University, Chifeng, 024000, China
| | - Jing Zhou
- Department of Molecular Biology, College of Basic Medical Science, Chifeng University, Chifeng, 024000, China
| |
Collapse
|
13
|
Sun Z, Zou X, Bao M, Huang Z, Lou Y, Zhang Y, Huang P. Role of Ferroptosis in Fibrosis Diseases. Am J Med Sci 2023:S0002-9629(23)01174-6. [PMID: 37192694 DOI: 10.1016/j.amjms.2023.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/22/2023] [Accepted: 04/20/2023] [Indexed: 05/18/2023]
Abstract
Ferroptosis is a pervasive non-apoptotic mode of cell death that is different from autophagy or necrosis. It is mainly caused by an imbalance between the production and degradation of lipid reactive oxygen species in cells. Several metabolic pathways and biochemical processes, such as amino acid and lipid metabolism, iron handling, and mitochondrial respiration, affect and regulate cell sensitivity to peroxidation and ferroptosis. Organ fibrosis, a pathological manifestation of several etiological conditions, leads to chronic tissue injury and is characterized by excessive deposition of extracellular matrix components. Excessive tissue fibrosis can have diverse pathophysiological effects on several organ systems, eventually causing organ dysfunction and failure. The current manuscript provides a review that illustrates the link between ferroptosis and organ fibrosis and to better understand the underlying mechanisms. It provides novel potential therapeutic approaches and targets for fibrosis diseases.
Collapse
Affiliation(s)
- Zhiyong Sun
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaozhou Zou
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Meihua Bao
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Zhongjie Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yutao Lou
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Pucci M, Moschetti M, Urzì O, Loria M, Conigliaro A, Di Bella MA, Crescitelli R, Olofsson Bagge R, Gallo A, Santos MF, Puglisi C, Forte S, Lorico A, Alessandro R, Fontana S. Colorectal cancer-derived small extracellular vesicles induce TGFβ1-mediated epithelial to mesenchymal transition of hepatocytes. Cancer Cell Int 2023; 23:77. [PMID: 37072829 PMCID: PMC10114452 DOI: 10.1186/s12935-023-02916-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/31/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Metastatic disease is the major cause of cancer-related deaths. Increasing evidence shows that primary tumor cells can promote metastasis by preparing the local microenvironment of distant organs, inducing the formation of the so-called "pre-metastatic niche". In recent years, several studies have highlighted that among the tumor-derived molecular components active in pre-metastatic niche formation, small extracellular vesicles (sEVs) play a crucial role. Regarding liver metastasis, the ability of tumor-derived sEVs to affect the activities of non-parenchymal cells such as Kupffer cells and hepatic stellate cells is well described, while the effects on hepatocytes, the most conspicuous and functionally relevant hepatic cellular component, remain unknown. METHODS sEVs isolated from SW480 and SW620 CRC cells and from clinical samples of CRC patients and healthy subjects were used to treat human healthy hepatocytes (THLE-2 cells). RT-qPCR, Western blot and confocal microscopy were applied to investigate the effects of this treatment. RESULTS Our study shows for the first time that TGFβ1-carrying CRC_sEVs impair the morphological and functional properties of healthy human hepatocytes by triggering their TGFβ1/SMAD-dependent EMT. These abilities of CRC_sEVs were further confirmed by evaluating the effects elicited on hepatocytes by sEVs isolated from plasma and biopsies from CRC patients. CONCLUSIONS Since it is known that EMT of hepatocytes leads to the formation of a fibrotic environment, a well-known driver of metastasis, these results suggest that CRC_sEV-educated hepatocytes could have an active and until now neglected role during liver metastasis formation.
Collapse
Affiliation(s)
- Marzia Pucci
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Marta Moschetti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Ornella Urzì
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Marco Loria
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Alice Conigliaro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Maria Antonietta Di Bella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Rossella Crescitelli
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Roger Olofsson Bagge
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alessia Gallo
- Department of Research, IRCCS ISMETT, Palermo, Italy
| | - Mark F Santos
- Touro University College of Medicine, Henderson, NV, USA
| | | | | | - Aurelio Lorico
- Touro University College of Medicine, Henderson, NV, USA
- IOM Ricerca, Viagrande, Catania, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Palermo, Italy
| | - Simona Fontana
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy.
| |
Collapse
|
15
|
Bashir A, Nabi M, Tabassum N, Afzal S, Ayoub M. An updated review on phytochemistry and molecular targets of Withania somnifera (L.) Dunal (Ashwagandha). Front Pharmacol 2023; 14:1049334. [PMID: 37063285 PMCID: PMC10090468 DOI: 10.3389/fphar.2023.1049334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Withania somnifera (L.) Dunal belongs to the nightshade family Solanaceae and is commonly known as Ashwagandha. It is pharmacologically a significant medicinal plant of the Indian sub-continent, used in Ayurvedic and indigenous systems of medicine for more than 3,000 years. It is a rich reservoir of pharmaceutically bioactive constituents known as withanolides (a group of 300 naturally occurring C-28 steroidal lactones with an ergostane-based skeleton). Most of the biological activities of W. somnifera have been attributed to two key withanolides, namely, withaferin-A and withanolide-D. In addition, bioactive constituents such as withanosides, sitoindosides, steroidal lactones, and alkaloids are also present with a broad spectrum of therapeutic potential. Several research groups worldwide have discovered various molecular targets of W. somnifera, such as inhibiting the activation of nuclear factor kappa-B and promoting apoptosis of cancer cells. It also enhances dopaminergic D2 receptor activity (relief in Parkinson’s disease). The active principles such as sitoindosides VII-X and withaferin-A possess free radical properties. Withanolide-D increases the radio sensitivity of human cancer cells via inhibiting deoxyribonucleic acid (DNA) damage to non-homologous end-joining repair (NHEJ) pathways. Withanolide-V may serve as a potential inhibitor against the main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to combat COVID. The molecular docking studies revealed that the withanolide-A inhibits acetyl-cholinesterase in the brain, which could be a potential drug to treat Alzheimer’s disease. Besides, withanolide-A reduces the expression of the N-methyl-D-aspartate (NMDA) receptor, which is responsible for memory loss in epileptic rats. This review demonstrates that W. somnifera is a rich source of withanolides and other bioactive constituents, which can be used as a safe drug for various chronic diseases due to the minimal side effects in various pre-clinical studies. These results are interesting and signify that more clinical trials should be conducted to prove the efficacy and other potential therapeutic effects in human settings.
Collapse
Affiliation(s)
- Arsalan Bashir
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Masarat Nabi
- Department of Environmental Science, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
- *Correspondence: Nahida Tabassum,
| | - Suhaib Afzal
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Mehrose Ayoub
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
16
|
Qin L, Liu N, Bao CLM, Yang DZ, Ma GX, Yi WH, Xiao GZ, Cao HL. Mesenchymal stem cells in fibrotic diseases-the two sides of the same coin. Acta Pharmacol Sin 2023; 44:268-287. [PMID: 35896695 PMCID: PMC9326421 DOI: 10.1038/s41401-022-00952-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is caused by extensive deposition of extracellular matrix (ECM) components, which play a crucial role in injury repair. Fibrosis attributes to ~45% of all deaths worldwide. The molecular pathology of different fibrotic diseases varies, and a number of bioactive factors are involved in the pathogenic process. Mesenchymal stem cells (MSCs) are a type of multipotent stem cells that have promising therapeutic effects in the treatment of different diseases. Current updates of fibrotic pathogenesis reveal that residential MSCs may differentiate into myofibroblasts which lead to the fibrosis development. However, preclinical and clinical trials with autologous or allogeneic MSCs infusion demonstrate that MSCs can relieve the fibrotic diseases by modulating inflammation, regenerating damaged tissues, remodeling the ECMs, and modulating the death of stressed cells after implantation. A variety of animal models were developed to study the mechanisms behind different fibrotic tissues and test the preclinical efficacy of MSC therapy in these diseases. Furthermore, MSCs have been used for treating liver cirrhosis and pulmonary fibrosis patients in several clinical trials, leading to satisfactory clinical efficacy without severe adverse events. This review discusses the two opposite roles of residential MSCs and external MSCs in fibrotic diseases, and summarizes the current perspective of therapeutic mechanism of MSCs in fibrosis, through both laboratory study and clinical trials.
Collapse
Affiliation(s)
- Lei Qin
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Nian Liu
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Chao-le-meng Bao
- CASTD Regengeek (Shenzhen) Medical Technology Co. Ltd, Shenzhen, 518000 China
| | - Da-zhi Yang
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Gui-xing Ma
- grid.263817.90000 0004 1773 1790Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055 China
| | - Wei-hong Yi
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Guo-zhi Xiao
- grid.263817.90000 0004 1773 1790Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055 China
| | - Hui-ling Cao
- grid.263817.90000 0004 1773 1790Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055 China
| |
Collapse
|
17
|
Wang F, Stappenbeck F, Parhami F. Oxy210, a Semi-Synthetic Oxysterol, Inhibits Profibrotic Signaling in Cellular Models of Lung and Kidney Fibrosis. Pharmaceuticals (Basel) 2023; 16:114. [PMID: 36678611 PMCID: PMC9862207 DOI: 10.3390/ph16010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Oxy210, a semi-synthetic oxysterol derivative, displays cell-selective inhibition of Hedgehog (Hh) and transforming growth factor beta (TGF-β) signaling in epithelial cells, fibroblasts, and macrophages as well as antifibrotic and anti-inflammatory efficacy in models of liver fibrosis. In the present report, we examine the effects of Oxy210 in cellular models of lung and kidney fibrosis, such as human lung fibroblast cell lines IMR-90, derived from healthy lung tissue, and LL97A, derived from an idiopathic pulmonary fibrosis (IPF) patient. In addition, we examine the effects of Oxy210 in primary human renal fibroblasts, pericytes, mesangial cells, and renal tubular epithelial cells, known for their involvement in chronic kidney disease (CKD) and kidney fibrosis. We demonstrate in fibroblasts that the expression of several profibrotic TGF-β target genes, including fibronectin (FN), collagen 1A1 (COL1A1), and connective tissue growth factor (CTGF) are inhibited by Oxy210, both at the basal level and following TGF-β stimulation in a statistically significant manner. The inhibition of COL1A1 gene expression translated directly to significantly reduced COL1A1 protein expression. In human primary small airway epithelial cells (HSAECs) and renal tubular epithelial cells, Oxy210 significantly inhibited TGF-β target gene expression associated with epithelial-mesenchymal transition (EMT). Oxy210 also inhibited the proliferation of fibroblasts, pericytes, and mesangial cells in a dose-dependent and statistically significant manner.
Collapse
Affiliation(s)
| | | | - Farhad Parhami
- MAX BioPharma, Inc., 2870 Colorado Avenue, Santa Monica, CA 90404, USA
| |
Collapse
|
18
|
Gromowski T, Lukacs-Kornek V, Cisowski J. Current view of liver cancer cell-of-origin and proposed mechanisms precluding its proper determination. Cancer Cell Int 2023; 23:3. [PMID: 36609378 PMCID: PMC9824961 DOI: 10.1186/s12935-022-02843-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
Hepatocellular carcinoma and intrahepatic cholangiocarcinoma are devastating primary liver cancers with increasing prevalence in many parts of the world. Despite intense investigation, many aspects of their biology are still largely obscure. For example, numerous studies have tackled the question of the cell-of-origin of primary liver cancers using different experimental approaches; they have not, however, provided a clear and undisputed answer. Here, we will review the evidence from animal models supporting the role of all major types of liver epithelial cells: hepatocytes, cholangiocytes, and their common progenitor as liver cancer cell-of-origin. Moreover, we will also propose mechanisms that promote liver cancer cell plasticity (dedifferentiation, transdifferentiation, and epithelial-to-mesenchymal transition) which may contribute to misinterpretation of the results and which make the issue of liver cancer cell-of-origin particularly complex.
Collapse
Affiliation(s)
- Tomasz Gromowski
- grid.5522.00000 0001 2162 9631Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Veronika Lukacs-Kornek
- grid.10388.320000 0001 2240 3300Institute of Experimental Immunology, University Hospital of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Jaroslaw Cisowski
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
19
|
Van Campenhout R, Cogliati B, Vinken M. Effects of acute and chronic disease on cell junctions in mouse liver. EXCLI JOURNAL 2023; 22:1-11. [PMID: 36660194 PMCID: PMC9837383 DOI: 10.17179/excli2022-5559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 01/21/2023]
Abstract
Cell junctions, including anchoring, occluding and communicating junctions, play an indispensable role in tissue architecture and homeostasis. Consequently, malfunctioning of cell junctions is linked with a wide range of disorders, including in liver. The present study was set up to investigate the effects of acute and chronic disease induced by chemical compounds on hepatic cell junctions in mice. Mice were either overdosed with paracetamol or repeatedly administered carbon tetrachloride followed by sampling at 24 hours or 8 weeks, respectively. mRNA and protein expression levels of adherens, gap and tight junction components were measured in liver using reverse transcription quantitative real-time polymerase chain reaction analysis and immunoblot techniques, respectively. It was found that protein levels of the adherens junction building blocks β-catenin and γ-catenin, the gap junction components Cx26 and Cx32, and the tight junction constituent zonula occludens 2 were decreased, while mRNA levels of the adherens junction building block E-cadherin, and the tight junction constituent zonula occludens 2 and claudin 1 were upregulated following paracetamol overdosing. Repeated administration of carbon tetrachloride increased protein levels of E-cadherin, β-catenin, Cx26, Cx32, Cx43 and claudin 1. The latter was reflected at the mRNA level. In conclusion, acute and chronic liver disease have different effects on cell junctions in liver.
Collapse
Affiliation(s)
- Raf Van Campenhout
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bruno Cogliati
- School of Veterinary Medicine and Animal Science, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium,*To whom correspondence should be addressed: Mathieu Vinken, Vrije Universiteit Brussel, Entity of In Vitro Toxicology and Dermato-Cosmetology, Laarbeeklaan 103, B-1090 Brussels, Belgium; Tel: +32-2-4774587, Fax: +32-2-4774582, E-mail:
| |
Collapse
|
20
|
You Y, Gao C, Wu J, Qu H, Xiao Y, Kang Z, Li J, Hong J. Enhanced Expression of ARK5 in Hepatic Stellate Cell and Hepatocyte Synergistically Promote Liver Fibrosis. Int J Mol Sci 2022; 23:ijms232113084. [PMID: 36361872 PMCID: PMC9655442 DOI: 10.3390/ijms232113084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 11/22/2022] Open
Abstract
AMPK-related protein kinase 5 (ARK5) is involved in a broad spectrum of physiological and cell events, and aberrant expression of ARK5 has been observed in a wide variety of solid tumors, including liver cancer. However, the role of ARK5 in liver fibrosis remains largely unexplored. We found that ARK5 expression was elevated in mouse fibrotic livers, and showed a positive correlation with the progression of liver fibrosis. ARK5 was highly expressed not only in activated hepatic stellate cells (HSCs), but also in hepatocytes. In HSCs, ARK5 prevents the degradation of transforming growth factor β type I receptor (TβRI) and mothers against decapentaplegic homolog 4 (Smad4) proteins by inhibiting the expression of Smad ubiquitin regulatory factor 2 (Smurf2), thus maintaining the continuous transduction of the transforming growth factor β (TGF-β) signaling pathway, which is essential for cell activation, proliferation and survival. In hepatocytes, ARK5 induces the occurrence of epithelial-mesenchymal transition (EMT), and also promotes the secretion of inflammatory factors. Inflammatory factors, in turn, further enhance the activation of HSCs and deepen the degree of liver fibrosis. Notably, we demonstrated in a mouse model that targeting ARK5 with the selective inhibitor HTH-01-015 attenuates CCl4-induced liver fibrosis in mice. Taken together, the results indicate that ARK5 is a critical driver of liver fibrosis, and promotes liver fibrosis by synergy between HSCs and hepatocytes.
Collapse
Affiliation(s)
- Yang You
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510630, China
| | - Chongqing Gao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510630, China
| | - Junru Wu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510630, China
| | - Hengdong Qu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510630, China
| | - Yang Xiao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510630, China
- Department of Hepatological Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Ziwei Kang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510630, China
| | - Jinying Li
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510630, China
- Department of Hepatological Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
- Correspondence: ; Tel.: +86-20-8522-0253
| |
Collapse
|
21
|
Naghdalipour M, Moradi N, Fadaei R, Rezghi Barez S, Sayyahfar S, Mokhtare M, Fard TK, Fallah S, Esteghamati A. Alteration of miR-21, miR-433 and miR-590 tissue expression related to the TGF-β signaling pathway in ulcerative colitis patients. Arch Physiol Biochem 2022; 128:1170-1174. [PMID: 32412349 DOI: 10.1080/13813455.2020.1762656] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ulcerative colitis (UC) is an inflammatory disease, and studies have suggested a role for TGF-β signalling pathway in the pathogenesis of UC. In the present study, we evaluated expression of TGF-β signalling genes and their regulatory microRNAs in patients with UC and control subjects. The expression of TGF-β1, SMAD2, SMAD3, miR-21, miR-101, miR-433, and miR-590 were evaluated using real-time PCR in biopsy samples of the patients and controls. Results showed increased expression of TGF-β1 and SMAD3 in the patients compared to controls. In addition, miR-21 and miR-433 were found to be higher in the patients compared to controls; however, miR-590 was found to be lower. Moreover, miR-433 was demonstrated to have positive correlation with SMAD3 and TGF-β while miR-21 was positively correlated with TGF-β1. MiR-590 was negatively correlated with SMAD2 and SMAD3. Results of the present study suggested a role for TGF-β signalling pathway related microRNAs in pathogenesis of UC.
Collapse
Affiliation(s)
- Mehri Naghdalipour
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of medical sciences, Tehran, Iran
| | - Nariman Moradi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shekufe Rezghi Barez
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Sayyahfar
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of medical sciences, Tehran, Iran
| | - Marjan Mokhtare
- Colorectal Research Center, Iran university of medical sciences, Tehran, Iran
| | - Toktam Kazemi Fard
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soudabeh Fallah
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aboulreza Esteghamati
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of medical sciences, Tehran, Iran
| |
Collapse
|
22
|
Li Y, Zhang L, Xiong W, Gao X, Xiong Y, Sun W. A Molecular Mechanism Study to Reveal Hirudin's Downregulation to PI3K/AKT Signaling Pathway through Decreasing PDGFR β in Renal Fibrosis Treatment. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5481552. [PMID: 36119923 PMCID: PMC9473867 DOI: 10.1155/2022/5481552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Chronic kidney disease (CKD) is identified as a widespread chronic progressive disease jeopardizing public health which characterized by gradually loss of renal function. However, there is no efficient therapy to prevail over this disease. Our study was attempting to reveal hirudin's regulation to renal fibrosis as well as the molecular mechanism. We built renal fibrosis models on both cell and animal levels, which were subsequently given with hirudin disposal; then, we performed the transwell assay to estimate the cells' migration and had our detection to relevant proteins with western blot and immunofluorescence. Finally, we commenced both the identification and the determination to the hirudin targeted proteins and its downstream signaling pathways with the methods of network pharmacology. And the results turned out that when it was compared with the model group, the group with hirudin addition came with the suppression in the migration of renal tubular epithelial cells NRK-52E and with a conspicuous decline in the expressions of fibronectin, N-cadherin, vimentin, TGF-β, and snail. After that, we predicted that there were 17 hirudin target points mainly involving in the PI3K-AKT signaling pathway. Our outcomes of the animal level demonstrated that the conditions of interstitial fibrosis, severe tubular dilatation or atrophy, inflammatory cell infiltration, and massive accumulation of interstitial collagen in the model group were withdrawn after the addition of hirudin. In addition, p-PDGFRβ, p-PI3K, and p-AKT protein expressions were significantly reduced, and the PI3K/AKT pathway was downregulated after hirudin treatment in the model group of NRK-52E cells and animals. Therefore, we had our conclusion that hirudin is capable of suppressing the PI3K-AKT signaling pathway as well as the EMT by decreasing PDGFRβ phosphorylation.
Collapse
Affiliation(s)
- Ying Li
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ling Zhang
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Weijian Xiong
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Xuan Gao
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Yanying Xiong
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Wei Sun
- Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine (Affiliated Hospital of Nanjing University of Chinese Medicine), 210029, China
| |
Collapse
|
23
|
Mesenchymal Stem Cell-Derived Extracellular Vesicles as Idiopathic Pulmonary Fibrosis Microenvironment Targeted Delivery. Cells 2022; 11:cells11152322. [PMID: 35954166 PMCID: PMC9367455 DOI: 10.3390/cells11152322] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) affects an increasing number of people globally, yet treatment options remain limited. At present, conventional treatments depending on drug therapy do not show an ideal effect in reversing the lung damage or extending the lives of IPF patients. In recent years, more and more attention has focused on extracellular vesicles (EVs) which show extraordinary therapeutic effects in inflammation, fibrosis disease, and tissue damage repair in many kinds of disease therapy. More importantly, EVs can be modified or used as a drug or cytokine delivery tool, targeting injury sites to enhance treatment efficiency. In light of this, the treatment strategy of mesenchymal stem cell-extracellular vesicles (MSC-EVs) targeting the pulmonary microenvironment for IPF provides a new idea for the treatment of IPF. In this review, we summarized the inflammation, immune dysregulation, and extracellular matrix microenvironment (ECM) disorders in the IPF microenvironment in order to reveal the treatment strategy of MSC-EVs targeting the pulmonary microenvironment for IPF.
Collapse
|
24
|
Peng W, Zhang S, Zhou W, Zhao X, Wang K, Yue C, Wei X, Pang S, Dong W, Chen S, Chen C, Yang Q, Wang W. Layered Double Hydroxides-Loaded Sorafenib Inhibit Hepatic Stellate Cells Proliferation and Activation In Vitro and Reduce Fibrosis In Vivo. Front Bioeng Biotechnol 2022; 10:873971. [PMID: 35711641 PMCID: PMC9196193 DOI: 10.3389/fbioe.2022.873971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
A core feature of liver fibrosis is the activation of hepatic stellate cells (HSCs), which are transformed into myofibroblasts and lead to the accumulation of extracellular matrix (ECM) proteins. In this study, we combined in vitro cellular efficacy with in vivo antifibrosis performance to evaluate the outcome of sorafenib (SRF) loaded layered double hydroxide (LDH) nanocomposite (LDH-SRF) on HSCs. The cellular uptake test has revealed that sorafenib encapsulated LDH nanoparticles were efficiently internalized by the HSC-T6 cells, synergistically inducing apoptosis of hepatic stellate cells. Moreover, the apoptosis rate and the migration inhibition rate induced by LDHs-SRF were 2.5 and 1.7 times that of SRF. Western Blot showed that the TGF-β1/Smad/EMT and AKT signaling pathway was significantly inhibited in HSC-T6 cells treated with LDHs-SRF. For the in vivo experiment, LDHs-SRF were administered to rat models of CCl4-induced liver fibrosis. H&E, masson and sirius red staining showed that LDHs-SRF could significantly reduce inflammatory infiltrate and collagen fiber deposition and immunohistochemical results found that LDHs-SRF treatment significantly inhibited the protein expressions of α-SMA in the liver, these results suggesting that LDHs-SRF exhibited better anti-fibrotic effect than SRF alone and significantly inhibited the proliferation and activation of rat hepatic stellate cells and collagen fiber synthesis.
Collapse
Affiliation(s)
- Wei Peng
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Shiwen Zhang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Wei Zhou
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Xinchen Zhao
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Kexue Wang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Chengxu Yue
- Department of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
| | - Xinyu Wei
- Department of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
| | - Siyan Pang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Wei Dong
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Sulian Chen
- Department of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
| | - Changjie Chen
- Department of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
| | - Qingling Yang
- Department of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
| | - Wenrui Wang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| |
Collapse
|
25
|
Kim KR, Kim J, Back JH, Lee JE, Ahn DR. Cholesterol-Mediated Seeding of Protein Corona on DNA Nanostructures for Targeted Delivery of Oligonucleotide Therapeutics to Treat Liver Fibrosis. ACS NANO 2022; 16:7331-7343. [PMID: 35500062 DOI: 10.1021/acsnano.1c08508] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The protein corona is a protein layer formed on the surface of nanoparticles administered in vivo and considerably affects the in vivo fate of nanoparticles. Although it is challenging to control protein adsorption on nanoparticles precisely, the protein corona may be harnessed to develop a targeted drug delivery system if the nanoparticles are decorated with a ligand with enhanced affinity to target tissue- and cell-homing proteins. Here, we prepared a DNA tetrahedron with trivalent cholesterol conjugation (Chol3-Td) that can induce enhanced interaction with lipoproteins in serum, which in situ generates the lipoprotein-associated protein corona on a DNA nanostructure favorable for cells abundantly expressing lipoprotein receptors in the liver, such as hepatocytes in healthy mice and myofibroblasts in fibrotic mice. Chol3-Td was further adopted for liver delivery of antisense oligonucleotide (ASO) targeting TGF-β1 mRNA to treat liver fibrosis in a mouse model. The potency of ASO@Chol3-Td was comparable to that of ASO conjugated with the clinically approved liver-targeting ligand, trivalent N-acetylgalactosamine (GalNAc3), demonstrating the potential of Chol3-Td as a targeted delivery system for oligonucleotide therapeutics. This study suggests that controlled seeding of the protein corona on nanomaterials can provide a way to steer nanoparticles into the target area.
Collapse
Affiliation(s)
- Kyoung-Ran Kim
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Junghyun Kim
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Ji Hyun Back
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Ji Eun Lee
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Dae-Ro Ahn
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
- Division of Biomedical Science and Technology, KIST School, University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
| |
Collapse
|
26
|
Czaja AJ. Immune Inhibitory Properties and Therapeutic Prospects of Transforming Growth Factor-Beta and Interleukin 10 in Autoimmune Hepatitis. Dig Dis Sci 2022; 67:1163-1186. [PMID: 33835375 DOI: 10.1007/s10620-021-06968-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
Transforming growth factor-beta and interleukin 10 have diverse immune inhibitory properties that have restored homeostatic defense mechanisms in experimental models of autoimmune disease. The goals of this review are to describe the actions of each cytokine, review their investigational use in animal models and patients, and indicate their prospects as interventions in autoimmune hepatitis. English abstracts were identified in PubMed by multiple search terms. Full-length articles were selected for review, and secondary and tertiary bibliographies were developed. Transforming growth factor-beta expands the natural and inducible populations of regulatory T cells, limits the proliferation of natural killer cells, suppresses the activation of naïve CD8+ T cells, decreases the production of interferon-gamma, and stimulates fibrotic repair. Interleukin 10 selectively inhibits the CD28 co-stimulatory signal for antigen recognition and impairs antigen-specific activation of uncommitted CD4+ and CD8+ T cells. It also inhibits maturation of dendritic cells, suppresses Th17 cells, supports regulatory T cells, and limits production of diverse pro-inflammatory cytokines. Contradictory immune stimulatory effects have been associated with each cytokine and may relate to the dose and accompanying cytokine milieu. Experimental findings have not translated into successful early clinical trials. The recombinant preparation of each agent in low dosage has been safe in human studies. In conclusion, transforming growth factor-beta and interleukin 10 have powerful immune inhibitory actions of potential therapeutic value in autoimmune hepatitis. The keys to their therapeutic application will be to match their predominant non-redundant function with the pivotal pathogenic mechanism or cytokine deficiency and to avoid contradictory immune stimulatory actions.
Collapse
Affiliation(s)
- Albert J Czaja
- Professor Emeritus of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
27
|
Liu Y, Schwam J, Chen Q. Senescence-Associated Cell Transition and Interaction (SACTAI): A Proposed Mechanism for Tissue Aging, Repair, and Degeneration. Cells 2022; 11:1089. [PMID: 35406653 PMCID: PMC8997723 DOI: 10.3390/cells11071089] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Aging is a broad process that occurs as a time-dependent functional decline and tissue degeneration in living organisms. On a smaller scale, aging also exists within organs, tissues, and cells. As the smallest functional unit in living organisms, cells "age" by reaching senescence where proliferation stops. Such cellular senescence is achieved through replicative stress, telomere erosion and stem cell exhaustion. It has been shown that cellular senescence is key to tissue degradation and cell death in aging-related diseases (ARD). However, senescent cells constitute only a small percentage of total cells in the body, and they are resistant to death during aging. This suggests that ARD may involve interaction of senescent cells with non-senescent cells, resulting in senescence-triggered death of non-senescent somatic cells and tissue degeneration in aging organs. Here, based on recent research evidence from our laboratory and others, we propose a mechanism-Senescence-Associated Cell Transition and Interaction (SACTAI)-to explain how cell heterogeneity arises during aging and how the interaction between somatic cells and senescent cells, some of which are derived from aging somatic cells, results in cell death and tissue degeneration.
Collapse
Affiliation(s)
| | | | - Qian Chen
- Laboratory of Molecular Biology and Nanomedicine, Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA; (Y.L.); (J.S.)
| |
Collapse
|
28
|
Worlikar T, Zhang M, Ganguly A, Hall TL, Shi J, Zhao L, Lee FT, Mendiratta-Lala M, Cho CS, Xu Z. Impact of Histotripsy on Development of Intrahepatic Metastases in a Rodent Liver Tumor Model. Cancers (Basel) 2022; 14:1612. [PMID: 35406383 PMCID: PMC8996987 DOI: 10.3390/cancers14071612] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Histotripsy has been used for tumor ablation, through controlled, non-invasive acoustic cavitation. This is the first study to evaluate the impact of partial histotripsy ablation on immune infiltration, survival outcomes, and metastasis development, in an in vivo orthotopic, immunocompetent rat HCC model (McA-RH7777). At 7−9 days post-tumor inoculation, the tumor grew to 5−10 mm, and ~50−75% tumor volume was treated by ultrasound-guided histotripsy, by delivering 1−2 cycle histotripsy pulses at 100 Hz PRF (focal peak negative pressure P− >30 MPa), using a custom 1 MHz transducer. Complete local tumor regression was observed on MRI in 9/11 histotripsy-treated rats, with no local recurrence or metastasis up to the 12-week study end point, and only a <1 mm residual scar tissue observed on histology. In comparison, 100% of untreated control animals demonstrated local tumor progression, developed intrahepatic metastases, and were euthanized at 1−3 weeks. Survival outcomes in histotripsy-treated animals were significantly improved compared to controls (p-value < 0.0001). There was evidence of potentially epithelial-to-mesenchymal transition (EMT) in control tumor and tissue healing in histotripsy-treated tumors. At 2- and 7-days post-histotripsy, increased immune infiltration of CD11b+, CD8+ and NK cells was observed, as compared to controls, which may have contributed to the eventual regression of the untargeted tumor region in histotripsy-treated tumors.
Collapse
Affiliation(s)
- Tejaswi Worlikar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (T.W.); (T.L.H.)
| | - Man Zhang
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (M.Z.); (M.M.-L.)
| | - Anutosh Ganguly
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; (A.G.); (C.S.C.)
| | - Timothy L. Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (T.W.); (T.L.H.)
| | - Jiaqi Shi
- Department of Pathology & Clinical Labs, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Lili Zhao
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Fred T. Lee
- Department of Radiology, University of Wisconsin, Madison, WI 53705, USA;
| | - Mishal Mendiratta-Lala
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (M.Z.); (M.M.-L.)
| | - Clifford S. Cho
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; (A.G.); (C.S.C.)
- Department of Surgery, Ann Arbor VA Healthcare, Ann Arbor, MI 48105, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (T.W.); (T.L.H.)
| |
Collapse
|
29
|
Vats R, Li Z, Ju EM, Dubey RK, Kaminski TW, Watkins S, Pradhan-Sundd T. Intravital imaging reveals inflammation as a dominant pathophysiology of age-related hepatovascular changes. Am J Physiol Cell Physiol 2022; 322:C508-C520. [PMID: 34986022 PMCID: PMC8917937 DOI: 10.1152/ajpcell.00408.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aging is the most significant risk factor for the majority of chronic diseases, including liver disease. The cellular, molecular, and pathophysiological mechanisms that promote age-induced hepatovascular changes are unknown due to our inability to visualize changes in liver pathophysiology in live mice over time. We performed quantitative liver intravital microscopy (qLIM) in live C57BL/6J mice to investigate the impact of aging on the hepatovascular system over a 24-mo period. qLIM revealed that age-related hepatic alterations include reduced liver sinusoidal blood flow, increased sinusoidal vessel diameter, and loss of small hepatic vessels. The ductular cell structure deteriorates with age, along with altered expression of hepatic junctional proteins. Furthermore, qLIM imaging revealed increased inflammation in the aged liver, which was linked to increased expression of proinflammatory macrophages, hepatic neutrophils, liver sinusoidal endothelial cells, senescent cells, and procoagulants. Finally, we detected elevated NF-κB pathway activity in aged livers. Overall, these findings emphasize the importance of inflammation in age-related hepatic vasculo-epithelial alterations and highlight the utility of qLIM in studying age-related effects in organ pathophysiology.
Collapse
Affiliation(s)
- Ravi Vats
- 1Pittsburgh Heart, Liver and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ziming Li
- 1Pittsburgh Heart, Liver and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Eun-Mi Ju
- 1Pittsburgh Heart, Liver and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rikesh K. Dubey
- 1Pittsburgh Heart, Liver and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tomasz W. Kaminski
- 1Pittsburgh Heart, Liver and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Simon Watkins
- 3Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tirthadipa Pradhan-Sundd
- 1Pittsburgh Heart, Liver and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,2Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
Pereira G, Guo Y, Silva E, Bevilacqua C, Charpigny G, Lopes-da-Costa L, Humblot P. Progesterone differentially affects the transcriptomic profiles of cow endometrial cell types. BMC Genomics 2022; 23:82. [PMID: 35086476 PMCID: PMC8793221 DOI: 10.1186/s12864-022-08323-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/20/2022] [Indexed: 01/04/2023] Open
Abstract
Background The endometrium is a heterogeneous tissue composed of luminal epithelial (LE), glandular epithelial (GE), and stromal cells (ST), experiencing progesterone regulated dynamic changes during the estrous cycle. In the cow, this regulation at the transcriptomic level was only evaluated in the whole tissue. This study describes specific gene expression in the three types of cells isolated from endometrial biopsies following laser capture microdissection and the transcriptome changes induced by progesterone in GE and ST cells. Results Endometrial LE, GE, and ST cells show specific transcriptomic profiles. Most of the differentially expressed genes (DEGs) in response to progesterone are cell type-specific (96%). Genes involved in cell cycle and nuclear division are under-expressed in the presence of progesterone in GE, highlighting the anti-proliferative action of progesterone in epithelial cells. Elevated progesterone concentrations are also associated with the under-expression of estrogen receptor 1 (ESR1) in GE and oxytocin receptor (OXTR) in GE and ST cells. In ST cells, transcription factors such as SOX17 and FOXA2, known to regulate uterine epithelial-stromal cross-talk conveying to endometrial receptivity, are over-expressed under progesterone influence. Conclusions The results from this study show that progesterone regulates endometrial function in a cell type-specific way, which is independent of the expression of its main receptor PGR. These novel insights into uterine physiology present the cell compartment as the physiological unit rather than the whole tissue. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08323-z.
Collapse
Affiliation(s)
- Gonçalo Pereira
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Yongzhi Guo
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SLU, PO Box 7054, 750 07, Uppsala, Sweden
| | - Elisabete Silva
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Claudia Bevilacqua
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Gilles Charpigny
- Université Paris-Saclay, INRAE, ENVA, BREED, 78350, Jouy-en-Josas, France
| | - Luís Lopes-da-Costa
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.
| | - Patrice Humblot
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SLU, PO Box 7054, 750 07, Uppsala, Sweden
| |
Collapse
|
31
|
Grapentine S, Singh RK, Basu P, Sivanesan S, Mattos G, Oresajo O, Cheema J, Demeke W, Dolinsky VW, Bakovic M. Pcyt2 deficiency causes age-dependant development of nonalcoholic steatohepatitis and insulin resistance that could be attenuated with phosphoethanolamine. Sci Rep 2022; 12:1048. [PMID: 35058529 PMCID: PMC8776951 DOI: 10.1038/s41598-022-05140-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
The mechanisms of NASH development in the context of age and genetics are not fully elucidated. This study investigates the age-dependent liver defects during NASH development in mice with heterozygous deletion of Pcyt2 (Pcyt2+/−), the rate limiting enzyme in phosphatidylethanolamine (PE) synthesis. Further, the therapeutic potential of Pcyt2 substrate, phosphoethanolamine (PEtn), is examined. Pcyt2+/− were investigated at 2 and 6–8 months (mo) of age and in addition, 6-mo old Pcyt2+/− with developed NASH were supplemented with PEtn for 8 weeks and glucose and fatty acid metabolism, insulin signaling, and inflammation were examined. Heterozygous ablation of Pcyt2 causes changes in liver metabolic regulators from young age, prior to the development of liver disease which does not occur until adulthood. Only older Pcyt2+/− experiences perturbed glucose and fatty acid metabolism. Older Pcyt2+/− liver develops NASH characterized by increased glucose production, accumulation of TAG and glycogen, and increased inflammation. Supplementation with PEtn reverses Pcyt2+/− steatosis, inflammation, and other aspects of NASH, showing that was directly caused by Pcyt2 deficiency. Pcyt2 deficiency is a novel mechanism of metabolic dysregulation due to reduced membrane ethanolamine phospholipid synthesis, and the metabolite PEtn offers therapeutic potential for NASH reversion.
Collapse
|
32
|
Siyu P, Junxiang W, Qi W, Yimao Z, Shuguang J. The Role of GLI in the Regulation of Hepatic Epithelial-Mesenchymal Transition in Biliary Atresia. Front Pediatr 2022; 10:861826. [PMID: 35692978 PMCID: PMC9178093 DOI: 10.3389/fped.2022.861826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To study the regulatory role of GLI1/GLI2, a nuclear transcription factor of the Sonic hedgehog (Shh) signaling pathway, in epithelial-mesenchymal transition (EMT) related to hepatic fibrosis in patients with biliary atresia (BA). METHODS The messenger RNA (mRNA) and protein expression levels of GLI1/GLI2, Snail/Slug, and other Shh- and EMT-related cytokines were tested in the liver tissues of BA patients and animals. Then, GLI1/GLI2 was silenced and overexpressed in mouse intrahepatic bile duct epithelial cells (mIBECs) and BA animals to investigate changes in the mRNA and protein expression of EMT key factors and liver fibrosis indicators. After silencing and overexpression of GLI1/GLI2, immunofluorescence was used to detect the expression of cytokeratin-19 (CK19) and α-smooth muscle actin (α-SMA) in mIBECs, and hematoxylin and eosin (HE) staining and Masson staining were used to observe the degree of liver fibrosis in the BA animals. RESULTS Compared with the control, the mRNA and protein expression levels of GLI2, Snail, vimentin, and α-SMA were significantly increased and those of E-cadherin were significantly decreased in liver tissue from BA patients and animals. Overexpression of GLI2 increased the mRNA and protein expression levels of Snail, vimentin, and α-SMA and that of E-cadherin was significantly decreased in mIBECs and BA animals. After GLI2 silencing, the opposite pattern was observed. Immunofluorescence detection showed enhanced expression of the bile duct epithelial cell marker CK19 in mIBECs after GLI2 silencing and enhanced expression of the mesenchymal cell marker α-SMA after GLI2 overexpression. HE and Masson staining suggested that the GLI2-overexpressing group had a significantly higher degree of fibrosis. CONCLUSION The Shh signaling pathway plays an important role in fibrogenesis in BA. GLI2 can significantly regulate EMT in mIBECs and livers of BA mice.
Collapse
Affiliation(s)
- Pu Siyu
- Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Wang Junxiang
- Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Wang Qi
- Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zhang Yimao
- Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Jin Shuguang
- Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Baris E, Secen A, Karabulut S, Gultekin SE. Investigation of the effects of marsupialization on histomorphological and immunohistochemical markers of odontogenic keratocysts. Niger J Clin Pract 2022; 25:1548-1556. [DOI: 10.4103/njcp.njcp_103_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
34
|
Li CH, Hsu TI, Chang YC, Chan MH, Lu PJ, Hsiao M. Stationed or Relocating: The Seesawing EMT/MET Determinants from Embryonic Development to Cancer Metastasis. Biomedicines 2021; 9:1265. [PMID: 34572451 PMCID: PMC8472300 DOI: 10.3390/biomedicines9091265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial and mesenchymal transition mechanisms continue to occur during the cell cycle and throughout human development from the embryo stage to death. In embryo development, epithelial-mesenchymal transition (EMT) can be divided into three essential steps. First, endoderm, mesoderm, and neural crest cells form, then the cells are subdivided, and finally, cardiac valve formation occurs. After the embryonic period, the human body will be subjected to ongoing mechanical stress or injury. The formation of a wound requires EMT to recruit fibroblasts to generate granulation tissues, repair the wound and re-create an intact skin barrier. However, once cells transform into a malignant tumor, the tumor cells acquire the characteristic of immortality. Local cell growth with no growth inhibition creates a solid tumor. If the tumor cannot obtain enough nutrition in situ, the tumor cells will undergo EMT and invade the basal membrane of nearby blood vessels. The tumor cells are transported through the bloodstream to secondary sites and then begin to form colonies and undergo reverse EMT, the so-called "mesenchymal-epithelial transition (MET)." This dynamic change involves cell morphology, environmental conditions, and external stimuli. Therefore, in this manuscript, the similarities and differences between EMT and MET will be dissected from embryonic development to the stage of cancer metastasis.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-H.L.); (T.-I.H.); (M.-H.C.)
| | - Tai-I Hsu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-H.L.); (T.-I.H.); (M.-H.C.)
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-H.L.); (T.-I.H.); (M.-H.C.)
| | - Pei-Jung Lu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Clinical Medicine Research Center, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-H.L.); (T.-I.H.); (M.-H.C.)
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
35
|
Feofanova EV, Lim E, Chen H, Lee M, Liu CT, Cupples LA, Boerwinkle E. Exome sequence association study of levels and longitudinal change of cardiovascular risk factor phenotypes in European Americans and African Americans from the Atherosclerosis Risk in Communities Study. Genet Epidemiol 2021; 45:651-663. [PMID: 34167169 PMCID: PMC9047057 DOI: 10.1002/gepi.22390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/09/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD) is responsible for 31% of all deaths worldwide. Among CVD risk factors are age, race, increased systolic blood pressure (BP), and dyslipidemia. Both BP and blood lipids levels change with age, with a dose-dependent relationship between the cumulative exposure to hyperlipidemia and the risk of CVD. We performed an exome sequence association study using longitudinal data with up to 7805 European Americans (EAs) and 3171 African Americans (AAs) from the Atherosclerosis Risk in Communities (ARIC) study. We assessed associations of common (minor allele frequency > 5%) nonsynonymous and splice-site variants and gene-based sets of rare variants with levels and with longitudinal change of seven CVD risk factor phenotypes (BP traits: systolic BP, diastolic BP, pulse pressure; lipids traits: triglycerides, total cholesterol, high-density lipoprotein cholesterol [HDL-C], low-density lipoprotein cholesterol [LDL-C]). Furthermore, we investigated the relationship of the identified variants and genes with select CVD endpoints. We identified two novel genes: DCLK3 associated with the change of HDL-C levels in AAs and RAB7L1 associated with the change of LDL-C levels in EAs. RAB7L1 is further associated with an increased risk of heart failure in ARIC EAs. Investigation of the contribution of genetic factors to the longitudinal change of CVD risk factor phenotypes promotes our understanding of the etiology of CVD outcomes, stressing the importance of incorporating the longitudinal structure of the cohort data in future analyses.
Collapse
Affiliation(s)
- Elena V. Feofanova
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Elise Lim
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Public Health & School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - MinJae Lee
- Division of Biostatistics, Department of Population & Data Sciences, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - L. Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
36
|
ADAM 17 and Epithelial-to-Mesenchymal Transition: The Evolving Story and Its Link to Fibrosis and Cancer. J Clin Med 2021; 10:jcm10153373. [PMID: 34362154 PMCID: PMC8347979 DOI: 10.3390/jcm10153373] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
For decades, metalloproteinase 17 (ADAM17) has been the goal of wide investigation. Since its discovery as the tumour necrosis factor-α convertase, it has been studied as the main drug target, especially in the context of inflammatory conditions and tumour. In fact, evidence is mounting to support a key role of ADAM17 in the induction of the proliferation, migration and progression of tumour cells and the trigger of the pro-fibrotic process during chronic inflammatory conditions; this occurs, probably, through the activation of epithelial-to-mesenchymal transition (EMT). EMT is a central morphologic conversion that occurs in adults during wound healing, tumour progression and organ fibrosis. EMT is characterised by the disassembly of cell–cell contacts, remodelling of the actin cytoskeleton and separation of cells, and generates fibroblast-like cells that express mesenchymal markers and have migratory properties. This transition is characterised by loss of epithelial proteins such as E-cadherin and the acquisition of new mesenchymal markers, including vimentin and a-smooth muscle actin. The present review discusses the current understanding of molecular mechanisms involved in ADAM17-dependent EMT in order to individuate innovative therapeutic strategies using ADAM17-related pathways.
Collapse
|
37
|
Kwon HC, Sohn H, Kim DH, Shin DM, Jeong CH, Chang YH, Yune JH, Kim YJ, Kim DW, Kim SH, Han SG. In Vitro and In Vivo Study on the Toxic Effects of Propiconazole Fungicide in the Pathogenesis of Liver Fibrosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7399-7408. [PMID: 34170130 DOI: 10.1021/acs.jafc.1c01086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Propiconazole (PCZ) is a hepatotoxic triazole fungicide. There are insufficient data on how PCZ induces liver fibrosis in humans. This study aimed to investigate the effect of PCZ on liver fibrosis and its underlying mechanisms. HepG2 cells and Sprague-Dawley rats were exposed to PCZ at doses of 0-160 μM (3-72 h) and 0.5-50 mg/kg body weight/day (28 days), respectively. PCZ-treated cells activated intracellular oxidative stress via cytochrome P450 and had higher mRNA levels of interleukin-1β, tumor necrosis factor-α, matrix metalloproteinase (MMP)-2, MMP-9, and transforming growth factor-β (TGF-β) than the control. PCZ treatment in cells induced a morphological transition with E-cadherin decrease and vimentin and Snail increase via the oxidative stress and TGF-β/Smad pathways. PCZ administration in rats induced liver fibrosis through pathological changes, epithelial-mesenchymal transition, and collagen deposition. Thus, our data suggest that exposure of PCZ to humans may be a risk factor for the functional integrity of the liver.
Collapse
Affiliation(s)
- Hyuk Cheol Kwon
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyejin Sohn
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Do Hyun Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong Min Shin
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Chang Hee Jeong
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - You Hyun Chang
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Jong Hyeok Yune
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Yea Ji Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong-Wook Kim
- Department of Poultry Science, Korea National College of Agriculture and Fisheries, Jeonju 54874, Republic of Korea
| | - Sang Ho Kim
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
38
|
MicroRNA-34a Promotes EMT and Liver Fibrosis in Primary Biliary Cholangitis by Regulating TGF- β1/smad Pathway. J Immunol Res 2021; 2021:6890423. [PMID: 33977112 PMCID: PMC8087466 DOI: 10.1155/2021/6890423] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/11/2021] [Accepted: 04/13/2021] [Indexed: 12/27/2022] Open
Abstract
Background and Aims Primary biliary cholangitis (PBC) is an autoimmune cholestatic liver disease. We found microRNA-34a (miR-34a), as the downstream gene of p53, was overexpressed in some of fibrogenic diseases. In this study, we sought to explore whether miR-34a plays a role in the fibrosis of PBC. Methods The peripheral blood of PBC patients and controls was collected to analyze the level of miR-34a. Human intrahepatic biliary epithelial cells (HIBEC) were cultured. The expression of miR-34a was regulated by miR-34a mimics and inhibitor. The biomarkers of epithelium-mesenchymal transition (EMT), fibrogenesis, inflammation, and transforming growth factor- (TGF-) β1/smad pathway were analyzed. Results We found that miR-34a was overexpressed in the peripheral blood in PBC patients. In vitro, overexpressed miR-34a increased the EMT and fibrogenesis activity of HIBEC. Transforming growth factor-beta type 1 receptor (TβR1), TGF-β1, and p-smad2/3 were upregulated by miR-34a. Inflammatory factors such as IL-6 and IL-17 were also upregulated. Finally, we showed that miR-34a promoted EMT and liver fibrosis in PBC by targeting the TGF-β1/smad pathway antagonist transforming growth factor-beta-induced factor homeobox 2 (TGIF2). Conclusions Our findings show that miR-34a plays an important role in the EMT and fibrosis of PBC through the TGF-β1/smad pathway by targeting TGIF2. This study suggests that miR-34a may be a new marker of fibrogenesis in PBC. Inhibition of miR-34a may be a promising strategy in treating PBC and improving the prognosis of the disease.
Collapse
|
39
|
Di Gregorio J, Robuffo I, Spalletta S, Giambuzzi G, De Iuliis V, Toniato E, Martinotti S, Conti P, Flati V. The Epithelial-to-Mesenchymal Transition as a Possible Therapeutic Target in Fibrotic Disorders. Front Cell Dev Biol 2020; 8:607483. [PMID: 33409282 PMCID: PMC7779530 DOI: 10.3389/fcell.2020.607483] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is a chronic and progressive disorder characterized by excessive deposition of extracellular matrix, which leads to scarring and loss of function of the affected organ or tissue. Indeed, the fibrotic process affects a variety of organs and tissues, with specific molecular background. However, two common hallmarks are shared: the crucial role of the transforming growth factor-beta (TGF-β) and the involvement of the inflammation process, that is essential for initiating the fibrotic degeneration. TGF-β in particular but also other cytokines regulate the most common molecular mechanism at the basis of fibrosis, the Epithelial-to-Mesenchymal Transition (EMT). EMT has been extensively studied, but not yet fully explored as a possible therapeutic target for fibrosis. A deeper understanding of the crosstalk between fibrosis and EMT may represent an opportunity for the development of a broadly effective anti-fibrotic therapy. Here we report the evidences of the relationship between EMT and multi-organ fibrosis, and the possible therapeutic approaches that may be developed by exploiting this relationship.
Collapse
Affiliation(s)
- Jacopo Di Gregorio
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Iole Robuffo
- Institute of Molecular Genetics, National Research Council, Section of Chieti, Chieti, Italy
| | - Sonia Spalletta
- Department of Clinical Pathology, E. Profili Hospital, Fabriano, Ancona, Italy
| | - Giulia Giambuzzi
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Vincenzo De Iuliis
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Elena Toniato
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Stefano Martinotti
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Pio Conti
- Postgraduate Medical School, University of Chieti-Pescara, Chieti, Italy
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
40
|
Nomden M, Beljaars L, Verkade HJ, Hulscher JBF, Olinga P. Current Concepts of Biliary Atresia and Matrix Metalloproteinase-7: A Review of Literature. Front Med (Lausanne) 2020; 7:617261. [PMID: 33409288 PMCID: PMC7779410 DOI: 10.3389/fmed.2020.617261] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022] Open
Abstract
Biliary atresia (BA) is a rare cholangiopathy of infancy in which the bile ducts obliterate, leading to profound cholestasis and liver fibrosis. BA is hypothesized to be caused by a viral insult that leads to over-activation of the immune system. Patients with BA are surgically treated with a Kasai portoenterostomy (KPE), which aims to restore bile flow from the liver to the intestines. After KPE, progressive liver fibrosis is often observed in BA patients, even despite surgical success and clearance of their jaundice. The innate immune response is involved during the initial damage to the cholangiocytes and further differentiation of the adaptive immune response into a T-helper 1 cell (Th1) response. Multiple studies have shown that there is continuing elevation of involved cytokines that can lead to the progressive liver fibrosis. However, the mechanism by which the progressive injury occurs is not fully elucidated. Recently, matrix metalloproteinase-7 (MMP-7) has been investigated to be used as a biomarker to diagnose BA. MMPs are involved in extracellular matrix (ECM) turnover, but also have non-ECM related functions. The role of MMP-7 and other MMPs in liver fibrosis is just starting to be elucidated. Multiple studies have shown that serum MMP-7 measurements are able to accurately diagnose BA in a cohort of cholestatic patients while hepatic MMP-7 expression correlated with BA-related liver fibrosis. While the mechanism by which MMP-7 can be involved in the pathophysiology of BA is unclear, MMP-7 has been investigated in other fibrotic pathologies such as renal and idiopathic pulmonary fibrosis. MMP-7 is involved in Wnt/β-catenin signaling, reducing cell-to-cell contact by shedding of E-cadherin, amplifying inflammation and fibrosis via osteopontin (OPN) and TNF-α while it also appears to play a role in induction of angiogenesis This review aims to describe the current understandings of the pathophysiology of BA. Subsequently, we describe how MMP-7 is involved in other pathologies, such as renal and pulmonary fibrosis. Then, we propose how MMP-7 can potentially be involved in BA. By doing this, we aim to describe the putative role of MMP-7 as a prognostic biomarker in BA and to provide possible new therapeutic and research targets that can be investigated in the future.
Collapse
Affiliation(s)
- Mark Nomden
- Divison of Pediatric Surgery, Department of Surgery, University of Groningen, Groningen, Netherlands
| | - Leonie Beljaars
- Division of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Henkjan J Verkade
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jan B F Hulscher
- Divison of Pediatric Surgery, Department of Surgery, University of Groningen, Groningen, Netherlands
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| |
Collapse
|
41
|
Dual Pharmacological Targeting of HDACs and PDE5 Inhibits Liver Disease Progression in a Mouse Model of Biliary Inflammation and Fibrosis. Cancers (Basel) 2020; 12:cancers12123748. [PMID: 33322158 PMCID: PMC7763137 DOI: 10.3390/cancers12123748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Chronic liver injury and inflammation leads to excessive deposition of extracellular matrix, known as liver fibrosis, and the distortion of the hepatic parenchyma. Liver fibrosis may progress to cirrhosis, a condition in which hepatic function is impaired and most cases of liver tumors occur. Currently, there are no effective therapies to inhibit and reverse the progression of liver fibrosis, and therefore, chronic liver disease remains a global health problem. In this study we have tested the efficacy of a new class of molecules that simultaneously target two molecular pathways known to be involved in the pathogenesis of hepatic fibrosis. In a clinically relevant mouse model of liver injury and inflammation we show that the combined inhibition of histones deacetylases and the cyclic guanosine monophosphate (cGMP) phosphodiesterase phosphodiesterase 5 (PDE5) results in potent anti-inflammatory and anti-fibrotic effects. Our findings open new avenues for the treatment of liver fibrosis and therefore, the prevention of hepatic carcinogenesis. Abstract Liver fibrosis, a common hallmark of chronic liver disease (CLD), is characterized by the accumulation of extracellular matrix secreted by activated hepatic fibroblasts and stellate cells (HSC). Fibrogenesis involves multiple cellular and molecular processes and is intimately linked to chronic hepatic inflammation. Importantly, it has been shown to promote the loss of liver function and liver carcinogenesis. No effective therapies for liver fibrosis are currently available. We examined the anti-fibrogenic potential of a new drug (CM414) that simultaneously inhibits histone deacetylases (HDACs), more precisely HDAC1, 2, and 3 (Class I) and HDAC6 (Class II) and stimulates the cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway activity through phosphodiesterase 5 (PDE5) inhibition, two mechanisms independently involved in liver fibrosis. To this end, we treated Mdr2-KO mice, a clinically relevant model of liver inflammation and fibrosis, with our dual HDAC/PDE5 inhibitor CM414. We observed a decrease in the expression of fibrogenic markers and collagen deposition, together with a marked reduction in inflammation. No signs of hepatic or systemic toxicity were recorded. Mechanistic studies in cultured human HSC and cholangiocytes (LX2 and H69 cell lines, respectively) demonstrated that CM414 inhibited pro-fibrogenic and inflammatory responses, including those triggered by transforming growth factor β (TGFβ). Our study supports the notion that simultaneous targeting of pro-inflammatory and fibrogenic mechanisms controlled by HDACs and PDE5 with a single molecule, such as CM414, can be a new disease-modifying strategy.
Collapse
|
42
|
Phan THG, Paliogiannis P, Nasrallah GK, Giordo R, Eid AH, Fois AG, Zinellu A, Mangoni AA, Pintus G. Emerging cellular and molecular determinants of idiopathic pulmonary fibrosis. Cell Mol Life Sci 2020; 78:2031-2057. [PMID: 33201251 PMCID: PMC7669490 DOI: 10.1007/s00018-020-03693-7] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/08/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF), the most common form of idiopathic interstitial pneumonia, is a progressive, irreversible, and typically lethal disease characterized by an abnormal fibrotic response involving vast areas of the lungs. Given the poor knowledge of the mechanisms underpinning IPF onset and progression, a better understanding of the cellular processes and molecular pathways involved is essential for the development of effective therapies, currently lacking. Besides a number of established IPF-associated risk factors, such as cigarette smoking, environmental factors, comorbidities, and viral infections, several other processes have been linked with this devastating disease. Apoptosis, senescence, epithelial-mesenchymal transition, endothelial-mesenchymal transition, and epithelial cell migration have been shown to play a key role in IPF-associated tissue remodeling. Moreover, molecules, such as chemokines, cytokines, growth factors, adenosine, glycosaminoglycans, non-coding RNAs, and cellular processes including oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, hypoxia, and alternative polyadenylation have been linked with IPF development. Importantly, strategies targeting these processes have been investigated to modulate abnormal cellular phenotypes and maintain tissue homeostasis in the lung. This review provides an update regarding the emerging cellular and molecular mechanisms involved in the onset and progression of IPF.
Collapse
Affiliation(s)
- Thị Hằng Giang Phan
- Department of Immunology and Pathophysiology, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100, Sassari, Italy
| | - Gheyath K Nasrallah
- Department of Biomedical Sciences, College of Health Sciences Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar. .,Biomedical Research Center Qatar University, P.O Box 2713, Doha, Qatar.
| | - Roberta Giordo
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates
| | - Ali Hussein Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, PO Box 2713, Doha, Qatar.,Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, PO Box 11-0236, Beirut, Lebanon
| | - Alessandro Giuseppe Fois
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100, Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | - Arduino Aleksander Mangoni
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates. .,Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy.
| |
Collapse
|
43
|
Chilvery S, Bansod S, Saifi MA, Godugu C. Piperlongumine attenuates bile duct ligation-induced liver fibrosis in mice via inhibition of TGF-β1/Smad and EMT pathways. Int Immunopharmacol 2020; 88:106909. [PMID: 32882664 DOI: 10.1016/j.intimp.2020.106909] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/15/2020] [Accepted: 08/15/2020] [Indexed: 02/06/2023]
Abstract
Liver fibrosis (LF) is a progressive liver injury that may result in excessive accumulation of extracellular matrix (ECM). However, transforming growth factor-beta (TGF-β) and epithelial to mesenchymal transition (EMT) play a central role in the progression of LF through the activation of matrix producing hepatic stellate cells (HSCs). Piperlongumine (PL), an alkaloid extracted from Piper longum, has been reported to possess anti-inflammatory and antioxidant activities in various diseases but its hepatoprotective and antifibrotic effects have not been reported yet. Therefore, in the present study, we investigated the protective effect of PL in bile duct ligation (BDL)-induced LF model and explored the molecular mechanisms underlying its antifibrotic effect. BDL group displayed a significant degree of liver damage, oxidative-nitrosative stress, hepatic inflammation and collagen deposition in the liver while these pathological changes were effectively attenuated by treatment with PL. Furthermore, we found that PL treatment greatly inhibited HSCs activation and ECM deposition via downregulation of fibronectin, α-SMA, collagen1a, and collagen3a expression in the fibrotic livers. We further demonstrated that PL administration significantly inhibited TGF-β1/Smad and EMT signaling pathways. Our study demonstrated that PL exerted strong hepatoprotective and antifibrotic activities against BDL-induced LF and might be an effective therapeutic agent for the treatment of LF.
Collapse
Affiliation(s)
- Shrilekha Chilvery
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Sapana Bansod
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
44
|
Yin F, Wang WY, Mao LC, Cai QQ, Jiang WH. Effect of Human Umbilical Cord Mesenchymal Stem Cells Transfected with HGF on TGF-β1/Smad Signaling Pathway in Carbon Tetrachloride-Induced Liver Fibrosis Rats. Stem Cells Dev 2020; 29:1395-1406. [DOI: 10.1089/scd.2020.0060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Fei Yin
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| | - Wen-Ying Wang
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| | - Li-Cui Mao
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| | - Qi-Qi Cai
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| | - Wen-Hua Jiang
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| |
Collapse
|
45
|
PM014 attenuates radiation-induced pulmonary fibrosis via regulating NF-kB and TGF-b1/NOX4 pathways. Sci Rep 2020; 10:16112. [PMID: 32999298 PMCID: PMC7527517 DOI: 10.1038/s41598-020-72629-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022] Open
Abstract
Radiation therapy is the mainstay in the treatment of lung cancer, and lung fibrosis is a radiotherapy-related major side effect that can seriously reduce patient’s quality of life. Nevertheless, effective strategies for protecting against radiation therapy-induced fibrosis have not been developed. Hence, we investigated the radioprotective effects and the underlying mechanism of the standardized herbal extract PM014 on radiation-induced lung fibrosis. Ablative radiation dose of 75 Gy was focally delivered to the left lung of mice. We evaluated the effects of PM014 on radiation-induced lung fibrosis in vivo and in an in vitro model. Lung volume and functional changes were evaluated using the micro-CT and flexiVent system. Fibrosis-related molecules were evaluated by immunohistochemistry, western blot, and real-time PCR. A orthotopic lung tumour mouse model was established using LLC1 cells. Irradiated mice treated with PM014 showed a significant improvement in collagen deposition, normal lung volume, and functional lung parameters, and these therapeutic effects were better than those of amifostine. PM104 attenuated radiation-induced increases in NF-κB activity and inhibited radiation-induced p65 translocation, ROS production, DNA damage, and epithelial-mesenchymal transition. PM104 effectively alleviated fibrosis in an irradiated orthotopic mouse lung tumour model while not attenuating the efficacy of the radiation therapy by reduction of the tumour. Standardized herbal extract PM014 may be a potential therapeutic agent that is able to increase the efficacy of radiotherapy by alleviating radiation-induced lung fibrosis.
Collapse
|
46
|
Ahodantin J, Lekbaby B, Bou Nader M, Soussan P, Kremsdorf D. Hepatitis B virus X protein enhances the development of liver fibrosis and the expression of genes associated with epithelial-mesenchymal transitions and tumor progenitor cells. Carcinogenesis 2020; 41:358-367. [PMID: 31175830 DOI: 10.1093/carcin/bgz109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/03/2019] [Accepted: 06/06/2019] [Indexed: 12/24/2022] Open
Abstract
The hepatitis B virus X protein (HBx) has pleiotropic biological effects, which underlies its potential role in cell transformation. However, its involvement in hepatic fibrosis remains unclear. In this study, we wanted to clarify, in vivo, the role of HBx protein in the development of liver fibrosis. Mice transgenic for the full-length HBx (FL-HBx) were used. To create liver fibrosis, FL-HBx transgenic and control mice were chronically exposed to carbon tetrachloride (CCl4). Modulation of the expression of proteins involved in matrix remodeling, hepatic metabolism and epithelial-mesenchymal transition (EMT) were investigated. In transgenic mice, FL-HBx expression potentiates CCl4-induced liver fibrosis with increased expression of proteins involved in matrix remodeling (Collagen1a, α-Sma, PdgfR-β, MMP-13). In FL-HBx transgenic mice, an increase in EMT was observed with a higher transcription of two inflammatory cytokines (TNF-α and TGF-β) and a decrease of glutamine synthetase expression level. This was associated with a sustained cell cycle and hepatocyte polyploidy alteration consistent with p38 and ERK1/2 overactivation, increase of PLK1 transcription, accumulation of SQSTM1/p62 protein and increase expression of Beclin-1. This correlates with a higher expression of tumor progenitor cell markers (AFP, Ly6D and EpCam), indicating a higher risk of progression from fibrosis to hepatocellular carcinoma (HCC) in the presence of FL-HBx protein. In conclusion, our results show that FL-HBx protein enhances the development of liver fibrosis and contributes to the progression of liver disease from chronic hepatitis to HCC.
Collapse
Affiliation(s)
- James Ahodantin
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Sorbonne Universités, Paris, France.,Centre National de la Recherche Scientifique (CNRS, ERL8255), Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Sorbonne Universités, Paris, France
| | - Bouchra Lekbaby
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Sorbonne Universités, Paris, France.,Centre National de la Recherche Scientifique (CNRS, ERL8255), Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Sorbonne Universités, Paris, France
| | - Myriam Bou Nader
- Team Proliferation Stress and Liver Physiopathology, Genome and Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale (Inserm), Paris, France.,Sorbonne Unversité, USPC, Paris, France.,Université Paris Descartes, Paris, France.,Université Paris Diderot, Paris, France
| | - Patrick Soussan
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Sorbonne Universités, Paris, France.,Centre National de la Recherche Scientifique (CNRS, ERL8255), Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Sorbonne Universités, Paris, France
| | - Dina Kremsdorf
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Sorbonne Universités, Paris, France.,Centre National de la Recherche Scientifique (CNRS, ERL8255), Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Sorbonne Universités, Paris, France
| |
Collapse
|
47
|
Chen Y, Fan Y, Guo DY, Xu B, Shi XY, Li JT, Duan LF. Study on the relationship between hepatic fibrosis and epithelial-mesenchymal transition in intrahepatic cells. Biomed Pharmacother 2020; 129:110413. [PMID: 32570119 DOI: 10.1016/j.biopha.2020.110413] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatic fibrosis is a pathophysiological process, which causes excessive extracellular matrix (ECM) deposition resulting from persistent liver damage. Myofibroblasts are the core cells that produce ECM. It is known that epithelial-mesenchymal transition (EMT) is not a simple transition of cells from the epithelial to mesenchymal state. Instead, it is a process, in which epithelial cells temporarily lose cell polarity, transform into interstitial cell-like morphology, and acquire migration ability. Hepatocytes, hepatic stellate cells, and bile duct cells are the types of intrahepatic cells found in the liver. They can be transformed into myofibroblasts via EMT and play important roles in the development of hepatic fibrosis through a maze of regulations involving various pathways. The aim of the present study is to explore the relationship between the relevant regulatory factors and the EMT signaling pathways in the various intrahepatic cells.
Collapse
Affiliation(s)
- Yang Chen
- The Basic Medical College of Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Yu Fan
- The Basic Medical College of Shaanxi University of Chinese Medicine, Xianyang 712046, China; Shaanxi Province Key Laboratory of Basic and New Herbal Medicament Research, Xianyang 712046, China.
| | - Dong-Yan Guo
- Shaanxi Province Key Laboratory of Basic and New Herbal Medicament Research, Xianyang 712046, China.
| | - Bing Xu
- The Medical Technical College of Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Xiao-Yan Shi
- The Basic Medical College of Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Jing-Tao Li
- The First Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China.
| | - Li-Fang Duan
- The Basic Medical College of Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| |
Collapse
|
48
|
Roehlen N, Crouchet E, Baumert TF. Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells 2020; 9:cells9040875. [PMID: 32260126 PMCID: PMC7226751 DOI: 10.3390/cells9040875] [Citation(s) in RCA: 615] [Impact Index Per Article: 153.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis due to viral or metabolic chronic liver diseases is a major challenge of global health. Correlating with liver disease progression, fibrosis is a key factor for liver disease outcome and risk of hepatocellular carcinoma (HCC). Despite different mechanism of primary liver injury and disease-specific cell responses, the progression of fibrotic liver disease follows shared patterns across the main liver disease etiologies. Scientific discoveries within the last decade have transformed the understanding of the mechanisms of liver fibrosis. Removal or elimination of the causative agent such as control or cure of viral infection has shown that liver fibrosis is reversible. However, reversal often occurs too slowly or too infrequent to avoid life-threatening complications particularly in advanced fibrosis. Thus, there is a huge unmet medical need for anti-fibrotic therapies to prevent liver disease progression and HCC development. However, while many anti-fibrotic candidate agents have shown robust effects in experimental animal models, their anti-fibrotic effects in clinical trials have been limited or absent. Thus, no approved therapy exists for liver fibrosis. In this review we summarize cellular drivers and molecular mechanisms of fibrogenesis in chronic liver diseases and discuss their impact for the development of urgently needed anti-fibrotic therapies.
Collapse
Affiliation(s)
- Natascha Roehlen
- Université de Strasbourg, 67000 Strasbourg, France; (N.R.); (E.C.)
- Institut de Recherche sur les Maladies Virales et Hépatiques U1110, 67000 Strasbourg, France
| | - Emilie Crouchet
- Université de Strasbourg, 67000 Strasbourg, France; (N.R.); (E.C.)
- Institut de Recherche sur les Maladies Virales et Hépatiques U1110, 67000 Strasbourg, France
| | - Thomas F. Baumert
- Université de Strasbourg, 67000 Strasbourg, France; (N.R.); (E.C.)
- Institut de Recherche sur les Maladies Virales et Hépatiques U1110, 67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Correspondence: ; Tel.: +33-366853703
| |
Collapse
|
49
|
Zhang Q, Chang X, Wang H, Liu Y, Wang X, Wu M, Zhan H, Li S, Sun Y. TGF-β1 mediated Smad signaling pathway and EMT in hepatic fibrosis induced by Nano NiO in vivo and in vitro. ENVIRONMENTAL TOXICOLOGY 2020; 35:419-429. [PMID: 31737983 DOI: 10.1002/tox.22878] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/20/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Nickel oxide nanoparticles (Nano NiO) bears hepatotoxicity, while whether it leads to liver fibrosis remains unclear. The aim of this study was to establish the Nano NiO-induced hepatic fibrosis model in vivo and investigate the roles of transforming growth factor β1 (TGF-β1) in Smad pathway activation, epithelial-mesenchymal transition (EMT) occurrence, and extracellular matrix (ECM) deposition in vitro. Male Wistar rats were exposed to 0.015, 0.06, and 0.24 mg/kg Nano NiO by intratracheal instilling twice a week for 9 weeks. HepG2 cells were treated with 100 μg/mL Nano NiO and TGF-β1 inhibitor (SB431542) to explore the mechanism of collagen formation. Results of Masson staining as well as the elevated levels of type I collagen (Col-I) and Col-III suggested that Nano NiO resulted in hepatic fibrosis in rats. Furthermore, Nano NiO increased the protein expression of TGF-β1, p-Smad2, p-Smad3, alpha-smooth muscle actin (α-SMA), matrix metalloproteinase9 (MMP9), and tissue inhibitors of metalloproteinase1 (TIMP1), while decreased the protein content of E-cadherin and Smad7 in rat liver and HepG2 cells. Most importantly, Nano NiO-triggered the abnormal expression of the abovementioned proteins were all alleviated by co-treatment with SB431542, implying that TGF-β1-mediated Smad pathway, EMT and MMP9/TIMP1 imbalance were involved in overproduction of collagen in HepG2 cells. In conclusion, these findings indicated that Nano NiO induced hepatic fibrosis via TGF-β1-mediated Smad pathway activation, EMT occurrence, and ECM deposition.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Haibing Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yunlan Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaoxia Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Minmin Wu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Haibing Zhan
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Sheng Li
- Department occupational disease control, Lanzhou Municipal Center for Disease Control, Lanzhou, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
50
|
Han YS, Yoon YM, Go G, Lee JH, Lee SH. Melatonin Protects Human Renal Proximal Tubule Epithelial Cells Against High Glucose-Mediated Fibrosis via the Cellular Prion Protein-TGF-β-Smad Signaling Axis. Int J Med Sci 2020; 17:1235-1245. [PMID: 32547319 PMCID: PMC7294914 DOI: 10.7150/ijms.42603] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetes-mediated hyperglycemia is a major risk factor for renal fibrosis, resulting in the development of chronic kidney diseases. To address this issue, the effect of melatonin, which has an antioxidative potential, on renal fibrosis in human renal proximal tubule epithelial cells under high glucose conditions was investigated. Under high glucose conditions, the generation of reactive oxygen species was drastically increased in human renal proximal tubule epithelial cells, which lead to the inhibition of cell proliferation, enlargement of cell size, reduction of cell survival, and suppression of antioxidant enzyme activities. High glucose also increased the expression of transforming growth factor-β, leading to an increase in Smad2 phosphorylation. These fibrotic phenotype changes increased the expression of fibrosis-mediated extracellular matrix proteins, such as fibronectin, collagen I, and α-smooth muscle actin. In addition, the level of cellular prion protein (PrPC), which is associated with several biological processes, was decreased by exposure to high glucose conditions. Melatonin recovered the expression levels of PrPC under high glucose conditions via phosphorylation of Akt, resulting in the prevention of high glucose-induced fibrosis. In particular, overexpression of PrPC blocked the high glucose-mediated fibrotic phenotype change. These findings indicate that melatonin could be a powerful agent for treating hyperglycemia-induced renal fibrosis.
Collapse
Affiliation(s)
- Yong-Seok Han
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| | - Yeo Min Yoon
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| | - Gyeongyun Go
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 31151, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea.,College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea.,Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 31151, Republic of Korea
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea.,Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 31151, Republic of Korea
| |
Collapse
|