1
|
Wang F, Cai YJ, Ma X, Wang N, Wu ZB, Sun Y, Xu YX, Yang H, Liu TT, Xia Q, Yu Z, Zhu DF. Synaptic loss in a mouse model of euthyroid Hashimoto's thyroiditis: possible involvement of the microglia. BMC Neurosci 2022; 23:25. [PMID: 35468730 PMCID: PMC9036731 DOI: 10.1186/s12868-022-00710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/05/2022] [Indexed: 11/24/2022] Open
Abstract
Background Hashimoto’s thyroiditis (HT) is an autoimmune illness that renders individuals vulnerable to neuropsychopathology even in the euthyroid state, the mechanisms involved remain unclear. We hypothesized that activated microglia might disrupt synapses, resulting in cognitive disturbance in the context of euthyroid HT, and designed the present study to test this hypothesis. Methods Experimental HT model was induced by immunizing NOD mice with thyroglobulin and adjuvant twice. Morris Water Maze was measured to determine mice spatial learning and memory. The synaptic parameters such as the synaptic density, synaptic ultrastructure and synaptic-markers (SYN and PSD95) as well as the interactions of microglia with synapses were also determined. Results HT mice had poorer performance in Morris Water Maze than controls. Concurrently, HT resulted in a significant reduction in synapse density and ultrastructure damage, along with decreased synaptic puncta visualized by immunostaining with synaptophysin and PSD-95. In parallel, frontal activated microglia in euthyroid HT mice showed increased engulfment of PSD95 and EM revealed that the synaptic structures were visible within the microglia. These functional alterations in microglia corresponded to structural increases in their attachment to neuronal perikarya and a reduction in presynaptic terminals covering the neurons. Conclusion Our results provide initial evidence that HT can induce synaptic loss in the euthyroid state with deficits might be attributable to activated microglia, which may underlie the deleterious effects of HT on spatial learning and memory. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00710-2.
Collapse
Affiliation(s)
- Fen Wang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Yao-Jun Cai
- Department of Endocrinology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiao Ma
- Department of Respiratoration, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, 241000, China
| | - Nan Wang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Zhang-Bi Wu
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Yan Sun
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Yong-Xia Xu
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Hao Yang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Tian-Tian Liu
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Qin Xia
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Zhen Yu
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - De-Fa Zhu
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
2
|
Dahiya V, Vasudeva N, Sharma S, Kumar A. Role of Dietary Supplements in Thyroid Diseases. Endocr Metab Immune Disord Drug Targets 2022; 22:985-996. [PMID: 35440339 DOI: 10.2174/1871530322666220419125131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/28/2021] [Accepted: 01/11/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Thyroid hormones play a vital role in regulating our body's metabolism. Two important thyroid hormones released from the thyroid gland are- tri-iodothyronine (T3) and tetra-iodothyronine (T4). Thyroid stimulating hormone and thyroid regulating hormone control the T3 and T4 levels in our body. Increased TSH levels indicate hypothyroidism and decreased TSH levels indicate hyperthyroidism. Iodine is a crucial nutrient for the synthesis of thyroid hormones and is mostly obtained from our diet. Other essential nutrients for the thyroid hormones formation include selenium, iron, vitamin D, vitamin B12, etc. Dietary changes in these nutrients can result in alterations in thyroid function and structure. Although, normally the hormonal diseases cannot be cured but we can improve their signs and symptoms using suitable dietary supplements. OBJECTIVE To thoroughly analyze the various benefits and risks associated with the use of dietary supplements for the prevention and treatment of various thyroid disorders, like hypothyroidism, as seen in hashimoto's thyroiditis; hyperthyroidism, as seen in grave's disease, sick euthyroidism and subclinical hypothyroidism. METHODS Literature was searched using the search terms; "dietary supplements+ thyroid diseases" on pub med, google scholar, scopus, cochrane library and other search engines and data was collected from 1967- November 2021 including research inputs from the authors. The literature was thoroughly read and deep knowledge was acquired on this topic, which was then sequentially organized and summarized using suitable tables and figures. CONCLUSION After analyzing the various studies on this topic we arrived at the conclusion that although, there are various claimed and observed health benefits of dietary supplements in prevention and treatment of various thyroid disorders; but still several studies have shown that, there are many risks associated too with the use of dietary supplements, and people using these products should be aware of these risks in order to use them very judiciously for the improvement of their thyroid status.
Collapse
Affiliation(s)
- Vinesh Dahiya
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Neeru Vasudeva
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Sunil Sharma
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Ashok Kumar
- Internal Medicine, Kansas University Medical Center, Kansas, USA
| |
Collapse
|
3
|
Xiao H, Liang J, Liu S, Zhang Q, Xie F, Kong X, Guo S, Wang R, Fu R, Ye Z, Li Y, Zhang S, Zhang L, Kaudimba KK, Wang R, Kong X, Zhao B, Zheng X, Liu T. Proteomics and Organoid Culture Reveal the Underlying Pathogenesis of Hashimoto's Thyroiditis. Front Immunol 2021; 12:784975. [PMID: 34925365 PMCID: PMC8674930 DOI: 10.3389/fimmu.2021.784975] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/05/2021] [Indexed: 12/20/2022] Open
Abstract
Hashimoto’s thyroiditis (HT) is an autoimmune disease, and its incidence continues to rise. Although scientists have studied this disease for many years and discovered the potential effects of various proteins in it, the specific pathogenesis is still not fully comprehended. To understand HT and translate this knowledge to clinical applications, we took the mass spectrometric analysis on thyroid tissue fine-needle puncture from HT patients and healthy people in an attempt to make a further understanding of the pathogenesis of HT. A total of 44 proteins with differential expression were identified in HT patients, and these proteins play vital roles in cell adhesion, cell metabolism, and thyroxine synthesis. Combining patient clinical trial sample information, we further compared the transient changes of gene expression regulation in HT and papillary thyroid carcinoma (PTC) samples. More importantly, we developed patient-derived HT and PTC organoids as a promising new preclinical model to verify these potential markers. Our data revealed a marked characteristic of HT organoid in upregulating chemokines that include C-C motif chemokine ligand (CCL) 2 and CCL3, which play a key role in the pathogenesis of HT. Overall, our research has enriched everyone’s understanding of the pathogenesis of HT and provides a certain reference for the treatment of the disease.
Collapse
Affiliation(s)
- Hui Xiao
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Jianqing Liang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sunqiang Liu
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiongyue Zhang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Famin Xie
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xingyu Kong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shanshan Guo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ruwen Wang
- School of Kinesiology, Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China.,Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, China
| | - Rong Fu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiqi Ye
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuang Zhang
- School of Kinesiology, Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China.,Department of Kinesiology, Harbin Sport University, Harbin, China
| | - Li Zhang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Keneilwe Kenny Kaudimba
- School of Kinesiology, Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China.,Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, China
| | - Ru Wang
- School of Kinesiology, Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China.,Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, China
| | - Xingxing Kong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China
| | - Bing Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuqin Zheng
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tiemin Liu
- Human Phenome Institute, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Zhao N, Wang Z, Cui X, Wang S, Fan C, Li Y, Shan Z, Teng W. In Vivo Inhibition of MicroRNA-326 in a NOD.H-2 h4 Mouse Model of Autoimmune Thyroiditis. Front Immunol 2021; 12:620916. [PMID: 34140947 PMCID: PMC8205278 DOI: 10.3389/fimmu.2021.620916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 05/14/2021] [Indexed: 01/06/2023] Open
Abstract
Background Previous studies reported that various miRNAs participate in autoimmune diseases, but the potential regulatory mechanism of miRNAs in autoimmune thyroiditis (AIT) needs further exploration. Objective This study aimed to further verify that miR-326 contributes to AIT by regulating Th17/Treg balance through Ets-1 using lentiviral gene delivery through tail vein and thyroid injection in NOD.H-2h4 mice. Materials and Methods Five-week-old NOD.H-2h4 mice were divided randomly into tail vein and thyroid injection groups, and each received either mmu-miR-326 sponge (LV-sponge) or lentiviral vector control. Mice were divided for tail vein injection: the therapeutic LV-ctrl, therapeutic LV-sponge, prophylactic LV-ctrl, and prophylactic LV-sponge groups. The control group was fed high-iodine water without vein injection. The thyroid infiltration of lymphocytes and serum TgAb value were investigated by thyroid hematoxylin and eosin (HE) staining and ELISA, respectively. Ets-1 and lymphocyte counts were measured by RT-PCR, western blotting, and flow cytometry. The thyroid CD4+IL-17a+ cells and CD4+Ets-1+ cells were detected by immunofluorescence, and the serum cytokines were tested by ELISA. Results In the tail vein injection groups, the thyroid inflammatory score and serum TgAb titer were significantly lower in the LV-sponge groups than in the control and LV-ctrl groups while Ets-1 protein expression in mouse spleens was increased in the LV-sponge groups. Moreover, Th17/Treg ratio declined in the LV-sponge group and decreased significantly in the prophylactic LV-sponge group (P = 0.036) tested by flow cytometry. Immunofluorescence showed that, in LV-sponge groups, CD4+IL-17a+ cells were decreased significantly (P = 0.001), while CD4+Ets-1+ cells were increased significantly in the LV-sponge group (P = 0.029). The serum IL-17/IL-10 was decreased significantly in the LV-sponge group (P < 0.05). In the thyroid injection groups, the thyroid inflammatory score and serum TgAb titer in the LV-sponge group decreased significantly compared with those in the LV-ctrl group (P < 0.05). In addition, in LV-sponge groups, CD4+IL-17a+ cells were decreased, while CD4+Ets-1+ cells were increased significantly in the inhibition group evaluated by immunofluorescence. Moreover, tail vein injection of LV-sponge resulted in much lower TgAb levels in thyroiditis compared with thyroid injection. Conclusion MiR-326 targeted therapy may be a promising approach for AIT. In addition, tail vein injection may achieve a better intervention effect than thyroid injection.
Collapse
Affiliation(s)
- Na Zhao
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenzhen Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuejiao Cui
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuo Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chenling Fan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yushu Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Sur U, Erkekoglu P, Bulus AD, Andiran N, Kocer-Gumusel B. Oxidative stress markers, trace elements, and endocrine disrupting chemicals in children with Hashimoto's thyroiditis. Toxicol Mech Methods 2019; 29:633-643. [PMID: 31354016 DOI: 10.1080/15376516.2019.1646367] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this study, we aimed to investigate whether bisphenol A (BPA) and di-(2-ethylhexyl) phthalate (DEHP) exposure have any association with Hashimoto's thyroiditis (HT) and its biomarkers and to determine whether oxidative stress biomarkers and trace element levels showed any alterations in children with HT. We found that superoxide dismutase and glutathione peroxidase activities are lower in HT group from control (24% and 46%, respectively, p < 0.05). Zinc levels were significantly lower in HT group vs. control. In addition, the levels of mono-(2-ethylhexyl) phthalate (MEHP) which is the primary metabolite for DEHP, were markedly higher in HT group compared to control (p < 0.05). A negative correlation was observed between urinary BPA levels and fT4. In children with HT, oxidant/antioxidant balance is changed and these differences may be related by EDC exposure, the importance of which should be elucidated with further studies.
Collapse
Affiliation(s)
- Unzile Sur
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University , Ankara , Turkey.,Department of Toxicology, Faculty of Pharmacy, Ataturk University , Erzurum , Turkey
| | - Pinar Erkekoglu
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University , Ankara , Turkey
| | - Ayse Derya Bulus
- Pediatric Endocrinology Unit, Turkish Ministry of Health, Keçioren Research and Training Hospital , Ankara , Turkey
| | | | - Belma Kocer-Gumusel
- Department of Toxicology, Faculty of Pharmacy, Lokman Hekim University , Ankara , Turkey
| |
Collapse
|
6
|
Masetti G, Moshkelgosha S, Köhling HL, Covelli D, Banga JP, Berchner-Pfannschmidt U, Horstmann M, Diaz-Cano S, Goertz GE, Plummer S, Eckstein A, Ludgate M, Biscarini F, Marchesi JR. Gut microbiota in experimental murine model of Graves' orbitopathy established in different environments may modulate clinical presentation of disease. MICROBIOME 2018; 6:97. [PMID: 29801507 PMCID: PMC5970527 DOI: 10.1186/s40168-018-0478-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/08/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Variation in induced models of autoimmunity has been attributed to the housing environment and its effect on the gut microbiota. In Graves' disease (GD), autoantibodies to the thyrotropin receptor (TSHR) cause autoimmune hyperthyroidism. Many GD patients develop Graves' orbitopathy or ophthalmopathy (GO) characterized by orbital tissue remodeling including adipogenesis. Murine models of GD/GO would help delineate pathogenetic mechanisms, and although several have been reported, most lack reproducibility. A model comprising immunization of female BALBc mice with a TSHR expression plasmid using in vivo electroporation was reproduced in two independent laboratories. Similar orbital disease was induced in both centers, but differences were apparent (e.g., hyperthyroidism in Center 1 but not Center 2). We hypothesized a role for the gut microbiota influencing the outcome and reproducibility of induced GO. RESULTS We combined metataxonomics (16S rRNA gene sequencing) and traditional microbial culture of the intestinal contents from the GO murine model, to analyze the gut microbiota in the two centers. We observed significant differences in alpha and beta diversity and in the taxonomic profiles, e.g., operational taxonomic units (OTUs) from the genus Lactobacillus were more abundant in Center 2, and Bacteroides and Bifidobacterium counts were more abundant in Center 1 where we also observed a negative correlation between the OTUs of the genus Intestinimonas and TSHR autoantibodies. Traditional microbiology largely confirmed the metataxonomics data and indicated significantly higher yeast counts in Center 1 TSHR-immunized mice. We also compared the gut microbiota between immunization groups within Center 2, comprising the TSHR- or βgal control-immunized mice and naïve untreated mice. We observed a shift of the TSHR-immunized mice bacterial communities described by the beta diversity weighted Unifrac. Furthermore, we observed a significant positive correlation between the presence of Firmicutes and orbital-adipogenesis specifically in TSHR-immunized mice. CONCLUSIONS The significant differences observed in microbiota composition from BALBc mice undergoing the same immunization protocol in comparable specific-pathogen-free (SPF) units in different centers support a role for the gut microbiota in modulating the induced response. The gut microbiota might also contribute to the heterogeneity of induced response since we report potential disease-associated microbial taxonomies and correlation with ocular disease.
Collapse
Affiliation(s)
- Giulia Masetti
- Division of Infection & Immunity, School of Medicine, Cardiff University, UHW main building, Heath Park, Cardiff, CF14 4XW, UK
- Departments of Bioinformatics, PTP Science Park Srl, via Einstein loc. Cascina Codazza, 29600, Lodi, Italy
| | - Sajad Moshkelgosha
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen/University of Duisburg-Essen, 45147, Essen, Germany
- Faculty of Life Sciences and Medicine, King's College London, London, SE5 9NU, UK
- Latner Thoracic Surgery Laboratories, Toronto General Research Institute, University Health Network and University of Toronto, Toronto, M5G 1L7, Canada
| | - Hedda-Luise Köhling
- Cultech Ltd., Baglan, Port Talbot, SA127BZ, UK
- University Hospital Essen, University of Duisburg-Essen, Institute of Medical Microbiology, 45147, Essen, Germany
| | - Danila Covelli
- Cultech Ltd., Baglan, Port Talbot, SA127BZ, UK
- Graves' Orbitopathy Center, Endocrinology, Department of Clinical Sciences and Community Health, Fondazione Ca'Granda IRCCS, University of Milan, via Sforza 35, 20122, Milan, Italy
| | - Jasvinder Paul Banga
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen/University of Duisburg-Essen, 45147, Essen, Germany
- Faculty of Life Sciences and Medicine, King's College London, London, SE5 9NU, UK
| | - Utta Berchner-Pfannschmidt
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen/University of Duisburg-Essen, 45147, Essen, Germany
| | - Mareike Horstmann
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen/University of Duisburg-Essen, 45147, Essen, Germany
| | | | - Gina-Eva Goertz
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen/University of Duisburg-Essen, 45147, Essen, Germany
| | - Sue Plummer
- Cultech Ltd., Baglan, Port Talbot, SA127BZ, UK
| | - Anja Eckstein
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen/University of Duisburg-Essen, 45147, Essen, Germany
| | - Marian Ludgate
- Division of Infection & Immunity, School of Medicine, Cardiff University, UHW main building, Heath Park, Cardiff, CF14 4XW, UK
| | - Filippo Biscarini
- Division of Infection & Immunity, School of Medicine, Cardiff University, UHW main building, Heath Park, Cardiff, CF14 4XW, UK
- Departments of Bioinformatics, PTP Science Park Srl, via Einstein loc. Cascina Codazza, 29600, Lodi, Italy
- Italian National Council for Research (CNR), via Bassini 15, 20133, Milan, Italy
| | - Julian Roberto Marchesi
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK.
- Center for Digestive and Gut Health, Imperial College London, W2 1NY, London, UK.
| |
Collapse
|
7
|
Abstract
BACKGROUND Hashimoto's thyroiditis (HT) is considered to be the most common autoimmune disease. It is currently accepted that genetic susceptibility, environmental factors, and immune disorders contribute to its development. With regard to nutritional factors, evidence implicates high iodine intake and deficiencies of selenium and iron with a potential relevance of vitamin D status. To elucidate the role of nutritional factors in the risk, pathogenesis, and treatment of HT, PubMed and the Cochrane Library were searched for publications on iodine, iron, selenium, and vitamin D and risk/treatment of HT. SUMMARY Chronic exposure to excess iodine intake induces autoimmune thyroiditis, partly because highly iodinated thyroglobulin (Tg) is more immunogenic. Recent introduction of universal salt iodization can have a similar, though transient, effect. Selenoproteins are essential to thyroid action. In particular, the glutathione peroxidases protect the thyroid by removing excessive hydrogen peroxide produced for Tg iodination. Genetic data implicate the anti-inflammatory selenoprotein S in HT risk. There is evidence from observational studies and randomized controlled trials that selenium/selenoproteins can reduce thyroid peroxidase (TPO)-antibody titers, hypothyroidism, and postpartum thyroiditis. Iron deficiency impairs thyroid metabolism. TPO, the enzyme responsible for the production of thyroid hormones, is a heme (iron-containing) enzyme which becomes active at the apical surface of thyrocytes only after binding heme. HT patients are frequently iron deficient, since autoimmune gastritis, which impairs iron absorption, is a common co-morbidity. Treatment of anemic women with impaired thyroid function with iron improves thyroid-hormone concentrations, while thyroxine and iron together are more effective in improving iron status. Lower vitamin D status has been found in HT patients than in controls, and inverse relationships of serum vitamin D with TPO/Tg antibodies have been reported. However, other data and the lack of trial evidence suggest that low vitamin D status is more likely the result of autoimmune disease processes that include vitamin D receptor dysfunction. CONCLUSIONS Clinicians should check patients' iron (particularly in menstruating women) and vitamin D status to correct any deficiency. Adequate selenium intake is vital in areas of iodine deficiency/excess, and in regions of low selenium intake a supplement of 50-100 μg/day of selenium may be appropriate.
Collapse
Affiliation(s)
- Shiqian Hu
- 1 Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey , Guildford, United Kingdom
- 2 Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, China
| | - Margaret P Rayman
- 1 Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey , Guildford, United Kingdom
- 2 Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, China
| |
Collapse
|
8
|
Monitoring the effects of iodine prophylaxis in the adult population of southern Italy with deficient and sufficient iodine intake levels: a cross-sectional, epidemiological study. Br J Nutr 2017; 117:170-175. [PMID: 28098046 PMCID: PMC5297575 DOI: 10.1017/s0007114516004499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
I prophylaxis is the most effective strategy to eradicate I deficiency disorders, but it has been shown to affect the thyroid disease pattern. In this study, we assessed the frequency of thyroid disorders in an adult population living in two areas of southern Italy after implementing I prophylaxis. To this aim, a cross-sectional, population-based study including 489 subjects from an I-deficient rural and an I-sufficient urban area of southern Italy was conducted. Thyroid ultrasound was performed on all participants, and urine and blood samples were collected from each subject. The levels of thyroid-stimulating hormone (TSH), thyroglobulin (TgAb) and thyroperoxidase antibodies (TPOAb), urinary I excretion (UIE), and thyroid volume and echogenicity were evaluated. We found that the median UIE was higher in the urban than in the rural area (P=0·004), whereas the prevalence of subjects affected by goitre was higher in the rural compared with the urban area (P=0·003). Positive TgAb rather than TPOAb were more frequent in subjects from the urban area compared with the rural area (P=0·009). The hypoechoic pattern at thyroid ultrasound (HT-US) was similar between the two areas, but TgAb were significantly higher (P=0·01) in HT-US subjects from the urban area. The frequency of elevated TSH did not differ between the two screened populations, and no changes were found for TgAb positivity in subjects with high TSH in the urban compared with the rural area. Our findings support that the small risks of I supplementation are far outweighed by the substantial benefits of correcting I deficiency, although continued monitoring of populations is necessary.
Collapse
|
9
|
Prevalence of thyroiditis and immunohistochemistry study searching for a morphologic consensus in morphology of autoimmune thyroiditis in a 4613 autopsies series. Appl Immunohistochem Mol Morphol 2016; 23:402-8. [PMID: 25356944 DOI: 10.1097/pai.0000000000000094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We sought to verify the prevalence of lymphocytic thyroiditis (LT) and Hashimoto's thyroiditis (HT) in autopsy materials. Cases examined between 2003 and 2007 at the Department of Pathology of Faculty of Medicine of São Paulo University were studied. Immunohistochemical analyses were conducted in selected cases to characterize the type of infiltrating mononuclear cells; in addition, we evaluated the frequency of apoptosis by TUNEL assay technique and caspase-3 immunostaining. Significant increase in overall thyroiditis frequency was observed in the present series when compared with the previous report (2.2978% vs. 0.0392%). Thyroiditis was more prevalent among older people. Selected cases of LT and HT (40 cases each) had their infiltrating lymphocytes characterized by immunohistochemical analyses. Both LT and HT showed similar immunostaining patterns for CD4, CD8, CD68, thus supporting a common pathophysiology mechanism and indicating that LT and HT should be considered different presentations of a same condition, that is, autoimmune thyroiditis. Moreover, apoptosis markers strongly evidenced that apoptosis was present in all studied cases. Our results demonstrated an impressive increase in the prevalence of thyroiditis during recent years and our data support that the terminology of autoimmune thyroiditis should be used to designate both LT and HT. This classification would facilitate comparison of prevalence data from different series and studies.
Collapse
|
10
|
Kolypetri P, King J, Larijani M, Carayanniotis G. Genes and environment as predisposing factors in autoimmunity: acceleration of spontaneous thyroiditis by dietary iodide in NOD.H2(h4) mice. Int Rev Immunol 2015; 34:542-56. [PMID: 26287317 DOI: 10.3109/08830185.2015.1065828] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the field of autoimmune thyroiditis, NOD.H2(h4) mice have attracted significant and increasing attention since they not only develop spontaneous disease but they present thyroiditis with accelerated incidence and severity if they ingest iodide through their drinking water. This animal model highlights the interplay between genetic and dietary factors in the triggering of autoimmune disease and offers new opportunities to study immunoregulatory parameters influenced by both genes and environment. Here, we review experimental findings with this mouse model of thyroiditis.
Collapse
Affiliation(s)
- Panayota Kolypetri
- a Division of Biomedical Sciences , Memorial University of Newfoundland , St. John's , NL , Canada
| | - Justin King
- a Division of Biomedical Sciences , Memorial University of Newfoundland , St. John's , NL , Canada
| | - Mani Larijani
- a Division of Biomedical Sciences , Memorial University of Newfoundland , St. John's , NL , Canada
| | - George Carayanniotis
- a Division of Biomedical Sciences , Memorial University of Newfoundland , St. John's , NL , Canada.,b Division of Endocrinology, Faculty of Medicine , Memorial University of Newfoundland , St. John's , NL , Canada
| |
Collapse
|
11
|
Kolypetri P, Carayanniotis G. Apoptosis of NOD.H2 h4 thyrocytes by low concentrations of iodide is associated with impaired control of oxidative stress. Thyroid 2014; 24:1170-8. [PMID: 24660772 PMCID: PMC4080865 DOI: 10.1089/thy.2013.0676] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Enhanced iodide intake in NOD.H2(h4) mice accelerates the incidence and severity of spontaneous autoimmune thyroiditis (SAT) via an unknown mechanism. A plausible hypothesis is that iodide-induced apoptosis of thyrocytes can create imbalances in antigenic load and/or disruption of immunoregulatory mechanisms that facilitate activation of autoreactive T cells in cervical lymph nodes draining the thyroid. METHODS We examined whether NOD.H2(h4) thyrocytes, exposed to low NaI concentrations in vitro, are more susceptible to apoptosis compared to thyrocytes from CBA/J mice, which are resistant to iodide-accelerated SAT (ISAT). We also looked, at the transcriptional level, for differential activation of genes involved in apoptosis or oxidative stress pathways that may account for potential differences in iodide-mediated apoptosis between NOD.H2(h4) and CBA/J thyrocytes. RESULTS We report that NOD.H2(h4) thyrocytes, cultured for 24 h at very low (4-8 μM) concentrations of NaI, exhibit high levels (40-55%) of apoptosis, as assessed microscopically following staining with fluorescent caspase inhibitors. Similar treatment of thyrocytes from CBA/J mice, which are resistant to ISAT, yielded significantly lower (10-20%) apoptotic rates. Expression analysis by real-time polymerase chain reaction using arrays of apoptosis- and oxidative stress-related genes showed that NaI intake upregulates the expression of 22 genes involved in ROS metabolism and/or antioxidant function in CBA/J thyrocytes, whereas only two of these genes were upregulated in NOD.H2(h4) thyrocytes. Among the set of overexpressed genes were those encoding thyroid peroxidase (Tpo; 5.77-fold), glutathione peroxidases (Gpx2, Gpx4, Gpx7; 2.03-3.14-fold), peroxiredoxins (Prdx1, Prdx2, Prdx5; 2.27-2.97-fold), superoxide dismutase 1 (Sod1; 3.57-fold), thioredoxin 1 (Txn1; 2.13-fold), and the uncoupling proteins 2 and 3 (Ucp2, Ucp3; 2.01-2.15-fold). CONCLUSIONS The results demonstrate that an impaired control of oxidative stress mechanisms is associated with the observed high susceptibility of NOD.H2(h4) thyrocytes to NaI-mediated apoptosis, and suggest a contributing factor for the development of ISAT in this strain.
Collapse
Affiliation(s)
- Panayota Kolypetri
- Divisions of Endocrinology and Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland , St. John's, Canada
| | | |
Collapse
|
12
|
Ehlers M, Thiel A, Papewalis C, Domröse A, Stenzel W, Bernecker C, Haase M, Allelein S, Schinner S, Willenberg HS, Feldkamp J, Schott M. Enhanced iodine supplementation alters the immune process in a transgenic mouse model for autoimmune thyroiditis. Thyroid 2014; 24:888-96. [PMID: 24460670 DOI: 10.1089/thy.2013.0495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The impact of excessive iodine intake on the development of autoimmune thyroiditis (AIT) is still under debate. Transgenic, antibody-devoid TAZ10 mice spontaneously develop AIT due to autoreactive thyroperoxidase-specific T cells. In this model, development of AIT is determined by a T cell infiltration of the thyroid gland leading to an elevation of serum thyrotropin (TSH) levels and significant weight gain. In the present study we investigated the impact of moderate and high iodine supplementation on the course of disease in these mice, which are immunologically prone to AIT. METHODS In addition to normal nutrition, mice were supplemented for 20 weeks with 2.5 μg versus 5 μg iodine per milliliter drinking water, which corresponds to a human daily iodine supplementation of 150 μg, 315 μg, and 615 μg iodine. AIT-defining parameters (weight gain, elevation of serum TSH levels, cellular infiltration of the thyroid) and immunologic effects were analyzed. RESULTS No significant differences were displayed when comparing weight and serum TSH levels in the iodine-supplemented versus control groups. Increased thyroid infiltrates with CD8⁺ T cells were detected by fluorescein-activated cell sorter (FACS) and immunofluorescence staining in mice supplemented with elevated iodine amounts (315 μg and 615 μg iodine per day, respectively). Immunologic monitoring revealed selective changes in immune cell frequencies (CD8⁺ and regulatory T cells, natural killer [NK] cells) and cytokine production (interferon-γ, interleukin-1α, and interleukin-17), however, without affecting the overall immune balance. CONCLUSION Our results demonstrate that elevated iodine supplementation has no physical impact on the course of disease in transgenic, antibody-devoid TAZ10 mice, which are immunologically prone to AIT.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Cytokines/blood
- Cytokines/metabolism
- Dietary Supplements
- Female
- Immunity, Cellular
- Immunologic Factors/administration & dosage
- Immunologic Factors/therapeutic use
- Iodine/administration & dosage
- Iodine/therapeutic use
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/pathology
- Male
- Mice, Transgenic
- Organ Size
- Specific Pathogen-Free Organisms
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/pathology
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th1 Cells/pathology
- Thyroid Gland/immunology
- Thyroid Gland/metabolism
- Thyroid Gland/pathology
- Thyroiditis, Autoimmune/diet therapy
- Thyroiditis, Autoimmune/immunology
- Thyroiditis, Autoimmune/metabolism
- Thyroiditis, Autoimmune/pathology
- Thyrotropin/blood
- Weight Gain
Collapse
Affiliation(s)
- Margret Ehlers
- 1 Division for Specific Endocrinology, University of Duesseldorf , Duesseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|