1
|
Wang L, Chen Z, Ma S, Jiang T. Exploring the Molecular Mechanisms underlying SADI-S Improves Glucose Metabolism in Type 2 Diabetic Rats through Liver Transcriptomics and Proteomics Analysis. J Proteome Res 2024. [PMID: 39499038 DOI: 10.1021/acs.jproteome.4c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Metabolic surgery could improve or even reverse type 2 diabetes mellitus (T2DM). Single-anastomosis duodenal-ileal bypass with sleeve gastrectomy (SADI-S) is one of the most effective metabolic surgeries for T2DM. However, the molecular mechanisms behind the SADI-S-induced T2DM improvement are not fully understood.Here,T2DM rats received SADI-S and were sacrificed after 8 weeks; the controls received sham surgery; Liver tissues were collected for transcriptomics and proteomics analysis to identify differentially expressed genes (DEGs) and proteins (DEPs). Parallel reaction monitoring (PRM) was performed to validate the accuracy of the proteomics results.SADI-S significantly improved glucose metabolism in T2DM rats.A total of 120 genes/proteins(e.g., phosphoenolpyruvate carboxykinase (Pck1) and pyruvate kinase (Pklr)) exhibited consistent expression trends at both mRNA and protein levels. Among the upregulated genes/proteins involved in glucose metabolic pathways, enrichment was observed in pathways such as the pyruvate metabolic pathway, insulin signaling pathway, glycolysis/gluconeogenesis biological processes, glucagon signaling pathway, and AMPK signaling pathway. Downregulated genes/proteins were enriched in the pyruvate metabolic pathway. The above-mentioned signaling pathways are implicated in glucose metabolism, suggesting a potential mechanism for SADI-S-mediated alleviation of T2DM. The PRM validation results indicated that all selected proteins showed consistent trends between PRM and proteomics data. This consistency suggests the reliability of the proteomics results.
Collapse
Affiliation(s)
- Lun Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000,China
| | - Zhengfu Chen
- Department of Bariatric and Metabolic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033,China
| | - Subo Ma
- Department of Bariatric and Metabolic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033,China
| | - Tao Jiang
- Department of Bariatric and Metabolic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033,China
| |
Collapse
|
2
|
Zhang L, Shao D, You J, Liu P, Deng F, Zhang J. Comparative Analysis of Intestinal TLR4 Gene Expression and Functional Verification in Lepus yarkandensis and Oryctolagus cuniculus. Biochem Genet 2024:10.1007/s10528-024-10925-z. [PMID: 39347855 DOI: 10.1007/s10528-024-10925-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024]
Abstract
Lepus yarkandensis live year-round in harsh desert environments and are less susceptible to enteritis. The living conditions of Oryctolagus cuniculus in captivity were suitable, but they were highly susceptible to death by Gram-negative bacteria infected with inflammatory bowel disease complex.TLR4 is closely related to the occurrence of enteritis, and the neighbor-joining topology based on the 12S rDNA sequences showed that the relationship between O. cuniculus and L. yarkandensis is as high as 98%.Therefore, we chose O. cuniculus and L. yarkandensis for comparative study.The purpose of this study was to investigate the role of Toll-like receptor 4 (TLR4) in the regulation of immunity and inflammation in the intestinal tract of L. yarkandensis. In this study, the TLR4 gene was cloned for the first time in the colon of L. yarkandensis. The expression of TLR4 in the intestinal tissues of L. yarkandensis and O. cuniculus was detected by histological observation, real-time fluorescence quantification PCR(qRT-PCR), and protein blotting (Western blot).An LPS-induced cell inflammation model was constructed in vitro, and ELISA was used to examine the effect of pEGFP-N1-TLR4 and siRNA knockout on the anti-inflammatory ability of the TLR4 gene. The results showed that the open reading frame of the L. yarkandensis TLR4 gene was 2520 bp in length. Compared with the sequence of O. cuniculus, there were 15 differences in the TLR4 amino acid sequence of L. yarkandensis, 12 of which occurred in the LRR domain and 2 in the TIR domain, and the sequence changed from G to D at position 298. Immunohistochemistry showed that TLR4 was mainly expressed in the epithelial cells of the colon L. yarkandensis, and the expression level of TLR4 in the cecum and colon was significantly lower compared with that of O. cuniculus. qRT-PCR and Western blot results showed that the expression level of TLR4 in the colon of L. yarkandensis was significantly lower than that of O. cuniculus. At the cellular level, ELISA showed that overexpression of the TLR4 protein in L. yarkandensis could reduce the LPS-induced inflammatory response. Therefore, according to the above results, the protein structure and function of L. yarkandensis TLR4 may be different due to the change of nucleotide, which affects its binding with LPS and the activation of downstream molecules, so that L. yarkandensis is not prone to enteritis and can adapt to the harsh desert environment for a long time. This study also laid the foundation for improving the disease resistance of O. cuniculus and promoting the development and utilization of genes in L. yarkandensis.
Collapse
Affiliation(s)
- Liukai Zhang
- College of Life Sciences and Technology, Tarim University, Alar, Xinjiang, China
| | - Dingwei Shao
- College of Life Sciences and Technology, Tarim University, Alar, Xinjiang, China
| | - Junyao You
- College of Life Sciences and Technology, Tarim University, Alar, Xinjiang, China
| | - Penggang Liu
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources, Tarim University, Alar, Xinjiang, China
- College of Veterinary Medicine, Institute of Comparative Medicine, YangZhou University, YangZhou, China
| | - Fang Deng
- College of Life Sciences and Technology, Tarim University, Alar, Xinjiang, China
| | - Jianping Zhang
- College of Life Sciences and Technology, Tarim University, Alar, Xinjiang, China.
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources, Tarim University, Alar, Xinjiang, China.
| |
Collapse
|
3
|
Hsu CY, Mustafa MA, Moath Omar T, Taher SG, Ubaid M, Gilmanova NS, Nasrat Abdulraheem M, Saadh MJ, Athab AH, Mirzaei R, Karampoor S. Gut instinct: harnessing the power of probiotics to tame pathogenic signaling pathways in ulcerative colitis. Front Med (Lausanne) 2024; 11:1396789. [PMID: 39323474 PMCID: PMC11422783 DOI: 10.3389/fmed.2024.1396789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) marked by persistent inflammation of the mucosal lining of the large intestine, leading to debilitating symptoms and reduced quality of life. Emerging evidence suggests that an imbalance of the gut microbiota plays a crucial role in UC pathogenesis, and various signaling pathways are implicated in the dysregulated immune response. Probiotics are live microorganisms that confer health benefits to the host, have attracted significant attention for their potential to restore gut microbial balance and ameliorate inflammation in UC. Recent studies have elucidated the mechanisms by which probiotics modulate these signaling pathways, often by producing anti-inflammatory molecules and promoting regulatory immune cell function. For example, probiotics can inhibit the nuclear factor-κB (NF-κB) pathway by stabilizing Inhibitor of kappa B alpha (IκBα), dampening the production of proinflammatory cytokines. Similarly, probiotics can modulate the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway, suppressing the activation of STAT1 and STAT3 and thus reducing the inflammatory response. A better understanding of the underlying mechanisms of probiotics in modulating pathogenic signaling pathways in UC will pave the way for developing more effective probiotic-based therapies. In this review, we explore the mechanistic role of probiotics in the attenuation of pathogenic signaling pathways, including NF-κB, JAK/STAT, mitogen-activated protein kinases (MAPKs), Wnt/β-catenin, the nucleotide-binding domain (NOD)-, leucine-rich repeat (LRR)- and pyrin domain-containing protein 3 (NLRP3) inflammasome, Toll-like receptors (TLRs), interleukin-23 (IL-23)/IL-17 signaling pathway in UC.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, United States
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Baghdad, Iraq
- Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Samarra, Iraq
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Mosul, Iraq
| | - Sada Gh Taher
- Department of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Ubaid
- Department of MTL, Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Nataliya S Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | - Aya H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Jain H, Kumar A, Almousa S, Mishra S, Langsten KL, Kim S, Sharma M, Su Y, Singh S, Kerr BA, Deep G. Characterisation of LPS+ bacterial extracellular vesicles along the gut-hepatic portal vein-liver axis. J Extracell Vesicles 2024; 13:e12474. [PMID: 39001704 PMCID: PMC11245684 DOI: 10.1002/jev2.12474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/10/2024] [Indexed: 07/15/2024] Open
Abstract
Gut microbiome dysbiosis is a major contributing factor to several pathological conditions. However, the mechanistic understanding of the communication between gut microbiota and extra-intestinal organs remains largely elusive. Extracellular vesicles (EVs), secreted by almost every form of life, including bacteria, could play a critical role in this inter-kingdom crosstalk and are the focus of present study. Here, we present a novel approach for isolating lipopolysaccharide (LPS)+ bacterial extracellular vesicles (bEVLPS) from complex biological samples, including faeces, plasma and the liver from lean and diet-induced obese (DIO) mice. bEVLPS were extensively characterised using nanoparticle tracking analyses, immunogold labelling coupled with transmission electron microscopy, flow cytometry, super-resolution microscopy and 16S sequencing. In liver tissues, the protein expressions of TLR4 and a few macrophage-specific biomarkers were assessed by immunohistochemistry, and the gene expressions of inflammation-related cytokines and their receptors (n = 89 genes) were measured using a PCR array. Faecal samples from DIO mice revealed a remarkably lower concentration of total EVs but a significantly higher percentage of LPS+ EVs. Interestingly, DIO faecal bEVLPS showed a higher abundance of Proteobacteria by 16S sequencing. Importantly, in DIO mice, a higher number of total EVs and bEVLPS consistently entered the hepatic portal vein and subsequently reached the liver, associated with increased expression of TLR4, macrophage markers (F4/80, CD86 and CD206), cytokines and receptors (Il1rn, Ccr1, Cxcl10, Il2rg and Ccr2). Furthermore, a portion of bEVLPS escaped liver and entered the peripheral circulation. In conclusion, bEV could be the key mediator orchestrating various well-established biological effects induced by gut bacteria on distant organs.
Collapse
Affiliation(s)
- Heetanshi Jain
- Department of Cancer BiologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Ashish Kumar
- Department of Cancer BiologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Sameh Almousa
- Department of Cancer BiologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Shalini Mishra
- Department of Cancer BiologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Kendall L. Langsten
- Department of Cancer BiologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Susy Kim
- Department of Cancer BiologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Mitu Sharma
- Department of Cancer BiologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Yixin Su
- Department of Cancer BiologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Sangeeta Singh
- Department of Cancer BiologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Bethany A. Kerr
- Department of Cancer BiologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Atrium Health Wake Forest Baptist Comprehensive Cancer CenterWinston‐SalemNorth CarolinaUSA
| | - Gagan Deep
- Department of Cancer BiologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Atrium Health Wake Forest Baptist Comprehensive Cancer CenterWinston‐SalemNorth CarolinaUSA
- Department of Internal Medicine‐Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Sticht Center for Healthy Aging and Alzheimer's PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
5
|
Allam MM, Ibrahim RM, El Gazzar WB, Said MA. Dipeptedyl peptidase-4 (DPP-4) inhibitor downregulates HMGB1/TLR4/NF-κB signaling pathway in a diabetic rat model of non-alcoholic fatty liver disease. Arch Physiol Biochem 2024; 130:87-95. [PMID: 34543583 DOI: 10.1080/13813455.2021.1975758] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023]
Abstract
CONTEXT Inflammatory and immune pathways play a crucial role in the pathophysiology of non-alcoholic fatty liver disease (NAFLD). Sitagliptin blocks the dipeptidyl peptidase-4 (DPP-4) enzyme, mechanisms that alter inflammatory pathways and the innate immune system, and by which Sitagliptin affects the pathogenesis of NAFLD weren't previously discussed. OBJECTIVE This study aims to understand the interaction between Sitagliptin and innate immune response in order to meliorate NAFLD. METHODS Thirty- two Wistar male albino rats were categorised into four groups. Rats have received a standard diet or a high-fat diet either with or without Sitagliptin. Serum HMGB1, protein and mRNA expressions of hepatic TLR4 and NF-κB, inflammatory cytokines, and histopathological changes were analysed. RESULTS An ameliorative action of Sitagliptin in NAFLD was demonstrated via decreasing HMGB1-mediated TLR4/NF-κB signalling in order to suppress inflammation and reduce insulin resistance. CONCLUSION Sitagliptin may in fact prove to be a beneficial therapeutic intervention in NAFLD.
Collapse
Affiliation(s)
- Mona M Allam
- Department of Physiology, Faculty of Medicine, Benha University, Benha City, Egypt
| | - Reham M Ibrahim
- Department of Physiology, Faculty of Medicine, Benha University, Benha City, Egypt
| | - Walaa Bayoumie El Gazzar
- Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqa, Jordan
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha City, Egypt
| | - Mona A Said
- Department of Physiology, Faculty of Medicine, Benha University, Benha City, Egypt
| |
Collapse
|
6
|
Zheng J, Wang J, Li K, Qin X, Li S, Chang X, Sun Y. LncRNA AP000487.1 regulates PRKCB DNA methylation-mediated TLR4/MyD88/NF-κB pathway in Nano NiO-induced collagen formation in BEAS-2B cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:2783-2796. [PMID: 37528634 DOI: 10.1002/tox.23918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 07/01/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023]
Abstract
Nickel oxide nanoparticles (Nano NiO) have been shown to cause pulmonary fibrosis; But, the underlying epigenetic mechanisms remain poorly understood. In this study, we aimed to investigate the role of lncRNA AP000487.1 in regulating PRKCB DNA methylation and the Toll-like receptor 4 (TLR4)/ Myeloid differentiation primary response 88 (MyD88)/ Nuclear factor kappa-B (NF-κB) pathway in Nano NiO-induced collagen formation. We found that lncRNA AP000487.1 was able to bind to the promoter region of the PRKCB gene by Chromosomal RNA pull-down experiments (Ch-RNA pull-down). Moreover, Nano NiO exposure led to down-regulation of lncRNA AP000487.1 expression and PRKCB DNA methylation, resulting in up-regulation of PRKCB expression, activation of the TLR4/MyD88/NF-κB pathway, and increased collagen formation in BEAS-2B cells. Conversely, overexpression of lncRNA AP000487.1 restored PRKCB expression, reduced its hypomethylation and attenuated TLR4/MyD88/NF-κB pathway activation and collagen formation. Furthermore, treatment with the DNA methylation inhibitor, decitabine, alleviated Nano NiO-induced PRKCB2 expression, TLR4/MyD88/NF-κB pathway activation, and collagen formation. Additionally, using PRKCB2 overexpression plasmid, PRKCB2 siRNA, and PRKCB2 protein inhibitor LY317615 influenced NF-κB pathway activity and collagen formation. Finally, TLR4 inhibitor (TAK-242) restrained Nano NiO-induced MyD88/NF-κB pathway activation and excessive collagen formation. In summary, we demonstrated that the down-regulated lncRNA AP000487.1 could cause PRKCB hypomethylation and increased expression, resulting in NF-κB pathway activation and collagen formation in Nano NiO-induced BEAS-2B cells. This is the first study to reveal the role of lncRNA AP000487.1 in regulating collagen formation in Nano NiO-exposed BEAS-2B cells. Our study identified that lncRNA AP000487.1/PRKCB hypomethylation/NF-κB pathway was a regulatory axis of BEAS-2B cells collagen excessive formation. Our findings indicate that lncRNA AP000487.1 and PRKCB DNA methylation may function as biomarkers or potential targets in response to Nano NiO exposure.
Collapse
Affiliation(s)
- Jinfa Zheng
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Jinyu Wang
- Institute of Anthropotomy and Histoembryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Kun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xin Qin
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Sheng Li
- Department of Public Health, The First People's Hospital of Lanzhou City, Lanzhou, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Calcaterra V, Magenes VC, Hruby C, Siccardo F, Mari A, Cordaro E, Fabiano V, Zuccotti G. Links between Childhood Obesity, High-Fat Diet, and Central Precocious Puberty. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10020241. [PMID: 36832370 PMCID: PMC9954755 DOI: 10.3390/children10020241] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023]
Abstract
In recent years, the existing relationship between excess overweight and central precocious puberty (CPP) has been reported, especially in girls. Different nutritional choices have been associated with different patterns of puberty. In particular, the involvement of altered biochemical and neuroendocrine pathways and a proinflammatory status has been described in connection with a high-fat diet (HFD). In this narrative review, we present an overview on the relationship between obesity and precocious pubertal development, focusing on the role of HFDs as a contributor to activating the hypothalamus-pituitary-gonadal axis. Although evidence is scarce and studies limited, especially in the paediatric field, the harm of HFDs on PP is a relevant problem that cannot be ignored. Increased knowledge about HFD effects will be useful in developing strategies preventing precocious puberty in children with obesity. Promoting HFD-avoiding behavior may be useful in preserving children's physiological development and protecting reproductive health. Controlling HFDs may represent a target for policy action to improve global health.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy
- Correspondence:
| | | | - Chiara Hruby
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy
| | | | - Alessandra Mari
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy
| | - Erika Cordaro
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy
| | - Valentina Fabiano
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy
- Department of Biomedical and Clinical Science “L. Sacco”, University of Milano, 20157 Milano, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy
- Department of Biomedical and Clinical Science “L. Sacco”, University of Milano, 20157 Milano, Italy
| |
Collapse
|
8
|
Virwani PD, Cai L, Yeung PKK, Qian G, Chen Y, Zhou L, Wong JWH, Wang Y, Ho JWK, Lau KK, Qian PY, Chung SK. Deficiency of exchange protein directly activated by cAMP (EPAC)-1 in mice augments glucose intolerance, inflammation, and gut dysbiosis associated with Western diet. MICROBIOME 2022; 10:187. [PMID: 36329549 PMCID: PMC9635209 DOI: 10.1186/s40168-022-01366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Gut microbiota (GM) dysregulation, known as dysbiosis, has been proposed as a crucial driver of obesity associated with "Western" diet (WD) consumption. Gut dysbiosis is associated with increased gut permeability, inflammation, and insulin resistance. However, host metabolic pathways implicated in the pathophysiology of gut dysbiosis are still elusive. Exchange protein directly activated by cAMP (Epac) plays a critical role in cell-cell junction formation and insulin secretion. Here, we used homozygous Epac1-knockout (Epac1-/-), Epac2-knockout (Epac2-/-), and wild-type (WT) mice to investigate the role of Epac proteins in mediating gut dysbiosis, gut permeability, and inflammation after WD feeding. RESULTS The 16S rRNA gene sequencing of fecal DNA showed that the baseline GM of Epac2-/-, but not Epac1-/-, mice was represented by a significantly higher Firmicutes to Bacteroidetes ratio and significant alterations in several taxa compared to WT mice, suggesting that Epac2-/- mice had gut dysbiosis under physiological conditions. However, an 8-week WD led to a similar gut microbiome imbalance in mice regardless of genotype. While Epac1 deficiency modestly exacerbated the WD-induced GM dysbiosis, the WD-fed Epac2-/- mice had a more significant increase in gut permeability than corresponding WT mice. After WD feeding, Epac1-/-, but not Epac2-/-, mice had significantly higher mRNA levels of tumor necrosis factor-alpha (TNF-α) and F4/80 in the epididymal white adipose tissue (EWAT), increased circulating lipocalin-2 protein and more severe glucose intolerance, suggesting greater inflammation and insulin resistance in WD-fed Epac1-/- mice than corresponding WT mice. Consistently, Epac1 protein expression was significantly reduced in the EWAT of WD-fed WT and Epac2-/- mice. CONCLUSION Despite significantly dysregulated baseline GM and a more pronounced increase in gut permeability upon WD feeding, WD-fed Epac2-/- mice did not exhibit more severe inflammation and glucose intolerance than corresponding WT mice. These findings suggest that the role of gut dysbiosis in mediating WD-associated obesity may be context-dependent. On the contrary, we demonstrate that deficiency of host signaling protein, Epac1, drives inflammation and glucose intolerance which are the hallmarks of WD-induced obesity. Video abstract.
Collapse
Affiliation(s)
- Preeti Dinesh Virwani
- School of Biomedical Sciences, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Lin Cai
- Department of Ocean Science and Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong S.A.R. China
| | - Patrick Ka Kit Yeung
- School of Biomedical Sciences, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Gordon Qian
- School of Biomedical Sciences, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong S.A.R., China
| | - Yingxian Chen
- School of Biomedical Sciences, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Lei Zhou
- School of Biomedical Sciences, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Jason Wing Hon Wong
- School of Biomedical Sciences, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Yu Wang
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong S.A.R., China
| | - Joshua Wing Kei Ho
- School of Biomedical Sciences, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong S.A.R., China
| | - Kui Kai Lau
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong S.A.R., China
| | - Pei-Yuan Qian
- Department of Ocean Science and Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong S.A.R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
| | - Sookja Kim Chung
- Faculty of Medicine; Faculty of Innovation Engineering, Macau University of Science and Technology, Macau Special Administrative Region (S.A.R.), China
- School of Biomedical Sciences, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong S.A.R., China
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau S.A.R., China
| |
Collapse
|
9
|
Unhealthy Diets Induce Distinct and Regional Effects on Intestinal Inflammatory Signalling Pathways and Long-Lasting Metabolic Dysfunction in Rats. Int J Mol Sci 2022; 23:ijms231810984. [PMID: 36142897 PMCID: PMC9503261 DOI: 10.3390/ijms231810984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
The intestinal epithelium is a principal site for environmental agents’ detection. Several inflammation- and stress-related signalling pathways have been identified as key players in these processes. However, it is still unclear how the chronic intake of inadequate nutrients triggers inflammatory signalling pathways in different intestinal regions. We aimed to evaluate the impact of unhealthy dietary patterns, starting at a younger age, and the association with metabolic dysfunction, intestinal inflammatory response, and obesity in adulthood. A rat model was used to evaluate the effects of the consumption of sugary beverages (HSD) and a Western diet (WD), composed of ultra-processed foods. Both diets showed a positive correlation with adiposity index, but a positive correlation was found between the HSD diet and the levels of blood glucose and triglycerides, whereas the WD diet correlated positively with triglyceride levels. Moreover, a distinct inflammatory response was associated with either the WD or HSD diets. The WD induced an increase in TLR2, TLR4, and nuclear factor-kappa B (NF-κB) intestinal gene expression, with higher levels in the colon and overexpression of the inducible nitric oxide synthase. In turn, the HSD diet induced activation of the TLR2-mediated NF-κB signalling pathway in the small intestine. Altogether, these findings support the concept that early intake of unhealthy foods and nutrients are a main exogenous signal for disturbances of intestinal immune mechanisms and in a region-specific manner, ultimately leading to obesity-related disorders in later life.
Collapse
|
10
|
Pharmacological Effects of Polyphenol Phytochemicals on the Intestinal Inflammation via Targeting TLR4/NF-κB Signaling Pathway. Int J Mol Sci 2022; 23:ijms23136939. [PMID: 35805952 PMCID: PMC9266441 DOI: 10.3390/ijms23136939] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
TLR4/NF-κB is a key inflammatory signaling transduction pathway, closely involved in cell differentiation, proliferation, apoptosis, and pro-inflammatory response. Toll like receptor 4 (TLR4), the first mammalian TLR to be characterized, is the innate immune receptor that plays a key role in inflammatory signal transductions. Nuclear factor kappa B (NF-κB), the TLR4 downstream, is the key to accounting for the expression of multiple genes involved in inflammatory responses, such as pro-inflammatory cytokines. Inflammatory bowel disease (IBD) in humans is a chronic inflammatory disease with high incidence and prevalence worldwide. Targeting the TLR4/NF-κB signaling pathway might be an effective strategy to alleviate intestinal inflammation. Polyphenol phytochemicals have shown noticeable alleviative effects by acting on the TLR4/NF-κB signaling pathway in intestinal inflammation. This review summarizes the pharmacological effects of more than 20 kinds of polyphenols on intestinal inflammation via targeting the TLR4/NF-κB signaling pathway. We expected that polyphenol phytochemicals targeting the TLR4/NF-κB signaling pathway might be an effective approach to treat IBD in future clinical research applications.
Collapse
|
11
|
Liu Y, Zheng S, Cui J, Guo T, Zhang J. Lactiplantibacillus plantarum Y15 alleviate type 2 diabetes in mice via modulating gut microbiota and regulating NF-κB and insulin signaling pathway. Braz J Microbiol 2022; 53:935-945. [PMID: 35150432 PMCID: PMC8853432 DOI: 10.1007/s42770-022-00686-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotics have been used for the treatment of chronic metabolic diseases, including type 2 diabetes (T2D). However, the mechanisms of antidiabetic effects are not well understood. The object of this study is to assess the antidiabetic effect of Lactiplantibacillus plantarum Y15 isolated from Chinese traditional dairy products in vivo. Results revealed that L. plantarum Y15 administration improved the biochemical indexes related to diabetes, reduced pro-inflammatory cytokines, L. plantarum Y15 administration reshaped the structure of gut microbiota, decreased the abundance of LPS-producing, and increased short-chain fatty acids (SCFAs)-producing bacteria, which subsequently reduce the levels of lipopolysaccharide (LPS) and pro-inflammatory cytokines. L. plantarum Y15 administration also regulated the expressions of the inflammation and insulin signaling pathway-related genes. These results suggest that L. plantarum Y15 may serve as a potential probiotic for developing food products to ameliorate T2D.
Collapse
Affiliation(s)
- Yin Liu
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China.
| | - Shujuan Zheng
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China
| | - Jiale Cui
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China
| | - Tingting Guo
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China
| | - Jingtao Zhang
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China
| |
Collapse
|
12
|
Bandopadhyay P, Ganguly D. Gut dysbiosis and metabolic diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 191:153-174. [DOI: 10.1016/bs.pmbts.2022.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Gorecki AM, Anyaegbu CC, Anderton RS. TLR2 and TLR4 in Parkinson's disease pathogenesis: the environment takes a toll on the gut. Transl Neurodegener 2021; 10:47. [PMID: 34814947 PMCID: PMC8609261 DOI: 10.1186/s40035-021-00271-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is an incurable, devastating disorder that is characterized by pathological protein aggregation and neurodegeneration in the substantia nigra. In recent years, growing evidence has implicated the gut environment and the gut-brain axis in the pathogenesis and progression of PD, especially in a subset of people who exhibit prodromal gastrointestinal dysfunction. Specifically, perturbations of gut homeostasis are hypothesized to contribute to α-synuclein aggregation in enteric neurons, which may spread to the brain over decades and eventually result in the characteristic central nervous system manifestations of PD, including neurodegeneration and motor impairments. However, the mechanisms linking gut disturbances and α-synuclein aggregation are still unclear. A plethora of research indicates that toll-like receptors (TLRs), especially TLR2 and TLR4, are critical mediators of gut homeostasis. Alongside their established role in innate immunity throughout the body, studies are increasingly demonstrating that TLR2 and TLR4 signalling shapes the development and function of the gut and the enteric nervous system. Notably, TLR2 and TLR4 are dysregulated in patients with PD, and may thus be central to early gut dysfunction in PD. To better understand the putative contribution of intestinal TLR2 and TLR4 dysfunction to early α-synuclein aggregation and PD, we critically discuss the role of TLR2 and TLR4 in normal gut function as well as evidence for altered TLR2 and TLR4 signalling in PD, by reviewing clinical, animal model and in vitro research. Growing evidence on the immunological aetiology of α-synuclein aggregation is also discussed, with a focus on the interactions of α-synuclein with TLR2 and TLR4. We propose a conceptual model of PD pathogenesis in which microbial dysbiosis alters the permeability of the intestinal barrier as well as TLR2 and TLR4 signalling, ultimately leading to a positive feedback loop of chronic gut dysfunction promoting α-synuclein aggregation in enteric and vagal neurons. In turn, α-synuclein aggregates may then migrate to the brain via peripheral nerves, such as the vagal nerve, to contribute to neuroinflammation and neurodegeneration typically associated with PD.
Collapse
Affiliation(s)
- Anastazja M Gorecki
- School of Biological Science, University of Western Australia, Crawley, WA, Australia.
- Neurodegenerative Disorders Research Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.
| | - Chidozie C Anyaegbu
- Curtin Health Innovation Research Institute, Ralph and Patricia Sarich Neuroscience Research Institute, Curtin University, Nedlands, WA, Australia
| | - Ryan S Anderton
- Faculty of Medicine, Nursing and Midwifery and Faculty of Health Sciences, University of Notre Dame Australia, Fremantle, WA, Australia
- School of Nursing, Midwifery, Health Sciences and Physiotherapy, University of Notre Dame Australia, Fremantle, WA, Australia
| |
Collapse
|
14
|
Malesza IJ, Malesza M, Walkowiak J, Mussin N, Walkowiak D, Aringazina R, Bartkowiak-Wieczorek J, Mądry E. High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells 2021; 10:cells10113164. [PMID: 34831387 PMCID: PMC8619527 DOI: 10.3390/cells10113164] [Citation(s) in RCA: 247] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is responsible for recovering energy from food, providing hosts with vitamins, and providing a barrier function against exogenous pathogens. In addition, it is involved in maintaining the integrity of the intestinal epithelial barrier, crucial for the functional maturation of the gut immune system. The Western diet (WD)—an unhealthy diet with high consumption of fats—can be broadly characterized by overeating, frequent snacking, and a prolonged postprandial state. The term WD is commonly known and intuitively understood. However, the strict digital expression of nutrient ratios is not precisely defined. Based on the US data for 1908–1989, the calory intake available from fats increased from 32% to 45%. Besides the metabolic aspects (hyperinsulinemia, insulin resistance, dyslipidemia, sympathetic nervous system and renin-angiotensin system overstimulation, and oxidative stress), the consequences of excessive fat consumption (high-fat diet—HFD) comprise dysbiosis, gut barrier dysfunction, increased intestinal permeability, and leakage of toxic bacterial metabolites into the circulation. These can strongly contribute to the development of low-grade systemic inflammation. This narrative review highlights the most important recent advances linking HFD-driven dysbiosis and HFD-related inflammation, presents the pathomechanisms for these phenomena, and examines the possible causative relationship between pro-inflammatory status and gut microbiota changes.
Collapse
Affiliation(s)
- Ida Judyta Malesza
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (I.J.M.); (J.W.)
| | - Michał Malesza
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (M.M.); (J.B.-W.)
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (I.J.M.); (J.W.)
| | - Nadiar Mussin
- Department of General Surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan;
| | - Dariusz Walkowiak
- Department of Organization and Management in Health Care, Poznan University of Medical Sciences, 61-701 Poznań, Poland;
| | - Raisa Aringazina
- Department of Internal Diseases No. 1, West Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan;
| | | | - Edyta Mądry
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (M.M.); (J.B.-W.)
- Correspondence:
| |
Collapse
|
15
|
Guibourdenche M, El Khayat El Sabbouri H, Djekkoun N, Khorsi-Cauet H, Bach V, Anton PM, Gay-Quéheillard J. Programming of intestinal homeostasis in male rat offspring after maternal exposure to chlorpyrifos and/or to a high fat diet. Sci Rep 2021; 11:11420. [PMID: 34075131 PMCID: PMC8169651 DOI: 10.1038/s41598-021-90981-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
Alteration of programming of the intestinal wall maturation may be responsible for non-communicable chronic diseases in adulthood. It may originate from prenatal exposure of mothers to deleterious environmental factors such as pesticides or western diet. This work was undertaken to determine whether disturbances of the digestive tract function and of innate immunity of offspring at adulthood could be due to maternal exposure to a pesticide, chlorpyrifos (CPF) and a High Fat Diet (HFD) starting 4 months before gestation and lasting until weaning of offspring. Fifty-one male Wistar rats coming from 4 groups of dams exposed to CPF, HFD, both and control were followed from birth to 8 weeks of age. They were fed standard chow and received no treatment. The maternal pesticide exposure slows down fetal and postnatal weight gain without histological injuries of the gut mucosa. CPF or HFD both induced modifications of tight junctions and mucins genes expressions without inducing an increase in epithelial permeability or an inflammatory state. Co-exposure to both CPF and HFD did not exacerbate the effects observed with each factor separately. Despite the lack of direct contact except through breast milk until weaning, CPF or HFD maternal exposure have demonstrated preliminary gut barrier impacts on offspring.
Collapse
Affiliation(s)
- Marion Guibourdenche
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01, UPJV/INERIS, Université Picardie Jules Verne, CURS, Présidence UPJV, Chemin du Thil, 80025, Amiens, France.,Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Hiba El Khayat El Sabbouri
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01, UPJV/INERIS, Université Picardie Jules Verne, CURS, Présidence UPJV, Chemin du Thil, 80025, Amiens, France
| | - Narimane Djekkoun
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01, UPJV/INERIS, Université Picardie Jules Verne, CURS, Présidence UPJV, Chemin du Thil, 80025, Amiens, France
| | - Hafida Khorsi-Cauet
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01, UPJV/INERIS, Université Picardie Jules Verne, CURS, Présidence UPJV, Chemin du Thil, 80025, Amiens, France
| | - Véronique Bach
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01, UPJV/INERIS, Université Picardie Jules Verne, CURS, Présidence UPJV, Chemin du Thil, 80025, Amiens, France
| | - Pauline M Anton
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Jérôme Gay-Quéheillard
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01, UPJV/INERIS, Université Picardie Jules Verne, CURS, Présidence UPJV, Chemin du Thil, 80025, Amiens, France.
| |
Collapse
|
16
|
Yu P, Ke C, Guo J, Zhang X, Li B. Lactobacillus plantarum L15 Alleviates Colitis by Inhibiting LPS-Mediated NF-κB Activation and Ameliorates DSS-Induced Gut Microbiota Dysbiosis. Front Immunol 2020; 11:575173. [PMID: 33123156 PMCID: PMC7566170 DOI: 10.3389/fimmu.2020.575173] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Previous studies have suggested that the Lactobacillus plantarum bacteria strain could be effective in ulcerative colitis (UC) management. However, its effects are strain-specific and the related mechanisms for its attenuating effects on UC remain unclear. This study aimed to elucidate the underlying mechanisms for the protective effect of L. plantarum on UC. Firstly, 15 L. plantarum strains were screened for potential probiotic characteristics with good tolerance to simulated human gastrointestinal transit and adhesion. Secondly, the inflammatory response of selected strains to the Caco-2 cells induced by lipopolysaccharide (LPS) was measured. Finally, an in vivo mouse model induced by dextran sulfate sodium (DSS) was used to assess the beneficial effects and likely action mechanisms the successfully screened in vitro strain, L. plantarum L15. In vitro results showed that L. plantarum L15 possessed the highest gastrointestinal transit tolerance, adhesion and reduction of pro-inflammatory abilities compared to the other screened strains. In vivo, high dose of L. plantarum L15 supplementation increased the body weight, colon length and anti-inflammatory cytokine production. Pro-inflammatory cytokine production, disease activity index (DAI) levels and myeloperoxidase (MPO) parameters decreased using this strain. In addition, L. plantarum L15 alleviated the histopathological changes in colon, modulated the gut microbiota, and decreased LPS secretion. The activities of this strain down-regulated the expression of TLR4 and MyD88 genes as well as genes associated with NF-κB signaling pathway. Our findings present L. plantarum L15 as a new probiotic, with promising application for UC management.
Collapse
Affiliation(s)
- Peng Yu
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chuxin Ke
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Jiaxin Guo
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiuling Zhang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Bailiang Li
- College of Food Science, Northeast Agricultural University, Harbin, China.,Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
17
|
Real-Sandoval SA, Gutiérrez-López GF, Domínguez-López A, Paniagua-Castro N, Michicotl-Meneses MM, Jaramillo-Flores ME. Downregulation of proinflammatory liver gene expression by Justicia spicigera and kaempferitrin in a murine model of obesity-induced by a high-fat diet. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
18
|
Beraldi EJ, Borges SC, de Almeida FLA, Dos Santos A, Saad MJA, Buttow NC. Colonic neuronal loss and delayed motility induced by high-fat diet occur independently of changes in the major groups of microbiota in Swiss mice. Neurogastroenterol Motil 2020; 32:e13745. [PMID: 31721393 DOI: 10.1111/nmo.13745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Obesity has been linked to gastrointestinal disorders, and the loss of myenteric neurons in the intestine caused by high-fat diets (HFD) has been attributed to changes in microbiota and lipotoxicity. We investigated whether the prebiotic inulin modulates bacterial populations and alleviates neuronal loss in mice fed HFD. METHODS Swiss mice were fed purified rodent diet or HFD (59% kcal fat), or both diets supplemented with inulin for 17 weeks. Intestinal motility was assessed and a metagenome analysis of the colonic microbiota was performed. The gene expression of inflammatory markers was evaluated, and immunofluorescence was performed for different types of myenteric neurons and glial cells in the distal colon. KEY RESULTS The HFD caused obesity and delayed colonic motility. The loss of myenteric neurons and glial cells in obese mice affected all of the studied neuronal populations, including neurons positive for myosin-V, neuronal nitric oxide synthase, vasoactive intestinal peptide, and calretinin. Although obese mice supplemented with inulin exhibited improvements in colonic motility, neuronal, and glial cell loss persisted. The HFD did not altered the expression levels of inflammatory cytokines in the intestine or the prevalence of the major groups in microbiota, but inulin increased the proportion of the genus Akkermansia in the obese mice. CONCLUSIONS AND INFERENCES In Swiss mice, the HFD-induced neuronal loss but did not change the major groups in microbiota. This suggests that, despite the increase in the beneficial bacteria, other factors that are directly linked to excess dietary lipid intake affect the enteric nervous system.
Collapse
Affiliation(s)
- Evandro José Beraldi
- Graduate Program in Biological Sciences (PBC), State University of Maringá, Maringá, Brazil
| | | | | | - Andrey Dos Santos
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | | | | |
Collapse
|
19
|
Shang Y, Dai S, Chen X, Wen W, Liu X. MicroRNA-93 regulates the neurological function, cerebral edema and neuronal apoptosis of rats with intracerebral hemorrhage through TLR4/NF-κB signaling pathway. Cell Cycle 2019; 18:3160-3176. [PMID: 31559899 DOI: 10.1080/15384101.2019.1670509] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
In recent years, many studies have unraveled the impact of microRNAs (miRNAs) in intracerebral hemorrhage (ICH). This study aims to explore the role of miR-93 in modulating neurological function, cerebral edema and neuronal apoptosis of rats with ICH by regulating TLR4/NF-κB signaling pathway. ICH models were constructed using Ⅶ collagenase method. The successfully modeled rats were injected with miR-93 antagomir, TLR4/NF-κB signaling pathway activator or inhibitor together with their controls. The expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and vascular endothelial growth factor (VEGF) was measured using enzyme-linked immunosorbent assay (ELISA). The expression of human aquaporin 4 (AQP-4), Caspase-3, Bax, Bcl-2 and TLR4/NF-κB signaling pathway-related proteins was also measured. MiR-93, TLR4 and NF-κB were all highly expressed in ICH, reduced miR-93 and inhibited TLR4/NF-κB signaling pathway could improve neurological function and suppress inflammation in ICH rats. Moreover, down-regulated miR-93 and suppressed TLR4/NF-κB signaling pathway were able to attenuate cerebral edema and abate pathological lesion. We have also found in this research that miR-93 knockdown as well as inhibited TLR4/NF-κB signaling pathway could relieve neuronal apoptosis in ICH rats. This study suggests that reduced miR-93 alleviates the neurological function and cerebral edema as well as repressed neuronal apoptosis of ICH rats via the inhibited activation of TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yajun Shang
- Neurosurgery Department, First Affiliated Hospital of Kunming Medical University , Kunming , PR. China
| | - Shujuan Dai
- Neurology Department, First Affiliated Hospital of Kunming Medical University , Kunming , PR. China
| | - Xinjie Chen
- Neurology Department, First Affiliated Hospital of Kunming Medical University , Kunming , PR. China
| | - Wei Wen
- Neurology Department, First Affiliated Hospital of Kunming Medical University , Kunming , PR. China
| | - Xiaolei Liu
- Neurology Department, First Affiliated Hospital of Kunming Medical University , Kunming , PR. China
| |
Collapse
|
20
|
Schanuel FS, Romana-Souza B, Monte-Alto-Costa A. Short-Term Administration of a High-Fat Diet Impairs Wound Repair in Mice. Lipids 2019; 55:23-33. [PMID: 31509252 DOI: 10.1002/lipd.12189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/22/2022]
Abstract
High intake of dietary fat plays an important role in obesity development in animals and humans, and prolonged intake of high-fat diet might lead to low-grade chronic inflammation. Previous study showed that diet-induced overweight delays cutaneous wound healing in both obesity-prone and obesity-resistant animals, highlighting the importance of diet composition in the wound healing process. This study evaluated the hypothesis that a short-term administration of high-fat diet could affect cutaneous wound healing. Male mice (C57/bl6) were randomly divided into standard (10% energy from fat) or high-fat (60% energy from fat) chow groups. After 10 days of diet administration, an excisional lesion was performed and the animals were sacrificed 6 or 10 days later. There was no difference in the fasting blood glucose between groups. Ten days after wounding, high-fat chow group presented increased inflammatory infiltrate, levels of inducible nitric oxide synthase and cyclo-oxygenase-2 proteins, and lipid peroxidation. The high-fat chow group presented delayed wound closure, increased amount of myofibroblasts and vessels, and decreased deposition of type I collagen. These findings support the hypothesis that short-term administration of high-fat diet exerts negative effects on mice cutaneous wound healing, due to the interference in the inflammatory phase.
Collapse
Affiliation(s)
- Fernanda S Schanuel
- Histology and Embryology Department, Tissue Repair Laboratory, Rio de Janeiro State University (UERJ), Av Marechal Rondon, 381/HLA, 20950-003 Rio de Janeiro, RJ, Brazil
| | - Bruna Romana-Souza
- Histology and Embryology Department, Tissue Repair Laboratory, Rio de Janeiro State University (UERJ), Av Marechal Rondon, 381/HLA, 20950-003 Rio de Janeiro, RJ, Brazil
| | - Andréa Monte-Alto-Costa
- Histology and Embryology Department, Tissue Repair Laboratory, Rio de Janeiro State University (UERJ), Av Marechal Rondon, 381/HLA, 20950-003 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
21
|
Xuguang H, Aofei T, Tao L, Longyan Z, Weijian B, Jiao G. Hesperidin ameliorates insulin resistance by regulating the IRS1-GLUT2 pathway via TLR4 in HepG2 cells. Phytother Res 2019; 33:1697-1705. [PMID: 31074547 DOI: 10.1002/ptr.6358] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 02/22/2019] [Accepted: 03/11/2019] [Indexed: 11/07/2022]
Abstract
The aim of this study was to evaluate the effect and mechanism of hesperidin (HES) on insulin resistance (IR) in the human hepatocellular carcinoma cell line (HepG2 cells). HepG2 cells were induced with lipopolysaccharide (LPS) as a model of IR and treated with HES at three dosages. Next, the levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), the glucose content, and glucose uptake were evaluated by enzyme-linked immunosorbent assay, glucose oxidase-peroxidase method (GOD-POD), or (2-(N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)amino)-2-deoxyglucose) (2-NBDG). Moreover, the protein expression of toll-like receptors 4 (TLR4), insulin receptor substrate 1 (IRS1), nuclear factor kappa B (NF-κB), and glucose transporter 2 (GLUT2) in HepG2 cells treated with HES were assessed via western blotting analysis. In addition, GLUT2 protein expression exposed to HES was detected following treatment with TLR4 inhibitor (HTA125). Our results demonstrated that HES decreased the levels of TNF-α and IL-6, attenuated the glucose content in culture medium and increased glucose uptake in insulin-resistant HepG2 cells in vitro. Moreover, HES upregulated the expression of IRS1 and GLUT2 protein and downregulated the protein expression of TLR4 and NF-κB in insulin-resistant HepG2 cells. The expression of GLUT2 protein had no significant changes when treated with HES after blockade of TLR4. HES attenuated IR in LPS-inducedinsulin-resistant HepG2 cells. Therefore, regulating the IRS1-GLUT2 pathway via TLR4 represents a potential mechanism of HES on IR in HepG2 cells.
Collapse
Affiliation(s)
- Hu Xuguang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tian Aofei
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Liu Tao
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhou Longyan
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bei Weijian
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guo Jiao
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
22
|
Yao AJ, Chen JH, Xu Y, Zhang ZW, Zou ZQ, Yang HT, Hua QH, Zhao JS, Kang JX, Zhang XH. Endogenous n-3 polyunsaturated fatty acids prevent azoxymethane-induced colon tumorigenesis in mice fed a high-fat diet. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
23
|
Han LP, Sun B, Li CJ, Xie Y, Chen LM. Effect of celastrol on toll‑like receptor 4‑mediated inflammatory response in free fatty acid‑induced HepG2 cells. Int J Mol Med 2018; 42:2053-2061. [PMID: 30015859 PMCID: PMC6108865 DOI: 10.3892/ijmm.2018.3775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/10/2018] [Indexed: 01/11/2023] Open
Abstract
Toll-like receptor 4 (TLR4)-mediated immune and inflammatory signaling serves a pivotal role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Our previous study demonstrated that celastrol treatment was able to improve hepatic steatosis and inhibit the TLR4 signaling cascade pathway in type 2 diabetic rats. The present study aimed to investigate the effects of celastrol on triglyceride accumulation and inflammation in steatotic HepG2 cells, and the possible mechanisms responsible for the regulation of cellular responses following TLR4 gene knockdown by small interfering RNA (siRNA) in vitro. A cell model of hepatic steatosis was prepared by exposing the HepG2 cells to free fatty acid (FFA) in the absence or presence of celastrol. Intracellular triglycerides were visualized by Oil red O staining, and the TLR4/myeloid differentiation primary response 88 (MyD88)/nuclear factor-κB (NF-κB) signaling cascade pathway were investigated. To directly elucidate whether TLR4 was the blocking target of celastrol upon FFA exposure, the cellular response to inflammation was determined upon transfection with TLR4 siRNA. The results revealed that celastrol significantly reduced triglyceride accumulation in the steatotic HepG2 cells, and downregulated the expression levels of TLR4, MyD88 and phospho-NF-κBp65, as well as of the downstream inflammatory cytokines interleukin-1β and tumor necrosis factor α. Knockdown of TLR4 also alleviated FFA-induced inflammatory response. In addition, co-treatment with TLR4 siRNA and celastrol further attenuated the expression of inflammatory mediators. These results suggest that celastrol exerts its protective effect partly via inhibiting the TLR4-mediated immune and inflammatory response in steatotic HepG2 cells.
Collapse
Affiliation(s)
- Li-Ping Han
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Bei Sun
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Chun-Jun Li
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yun Xie
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Li-Ming Chen
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, P.R. China
| |
Collapse
|
24
|
Bacillus subtilis CFR5 isolated from fermented soybean attenuates the chronic pancreatitis. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
25
|
Sharmila GR, Venkateswaran G. Protective effect of bacillopeptidase CFR5 from Bacillus subtilis CFR5 on cerulein-induced pancreatitis. Biochem Biophys Res Commun 2017; 491:455-462. [PMID: 28709869 DOI: 10.1016/j.bbrc.2017.07.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 07/10/2017] [Indexed: 01/05/2023]
Abstract
Bacillopeptidase is a serine peptidase, known for its fibrinolytic activity. However, a very little information is known about its in vivo inflammatory and/or anti-inflammatory properties. Thus, to understand whether bacillopeptidase incorporation can regulate pancreatitis or not, the cerulein-induced pancreatitis model was used, and the role of bacillopeptidase on pancreatitis was studied. In this study, 46 kDa protein was purified from Bacillus subtilis and identified as bacillopeptidase CFR5 (BPC) through MS/MS analysis. The nutritional prophylactic group was orally fed with two doses of BPC (100 μg/Kg/BW of rat) 6 h before cerulein administration and analyzed for its effect on intestine and pancreas inflammation, cytokines, and pancreatitis marker gene expression. BPC administration significantly reduced the severity of pancreatitis by decreasing serum amylase, lipase, pancreatic edema and myeloperoxidase activity. The pretreatment with BPC suppressed the pancreatic pro-inflammatory and inflammatory cytokines production including IL-6, IL-1β, TNF-α, IL-2, IL-4, IL-5, IL-10, and IL-13 in both pancreas and serum samples. Moreover, BPC supplementation restored pancreatitis mediated disruption of intestinal barrier integrity by upregulating tight junction proteins (ZO-1, occludin), antimicrobial peptides (DEFB1, CRAMP), MUC-2, TFF3 expression and by enhancing SCFA's production. Pretreatment with BPC suppressed the intestinal inflammation with reduced cytokines production in the colon and ileal region of cerulein-induced pancreatitis. Thus, BPC based pretreatment protocol is a novel intervention to prevent acute pancreatitis.
Collapse
Affiliation(s)
- G R Sharmila
- Academy of Scientific and Innovative Research, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysuru 570020, India
| | - G Venkateswaran
- Academy of Scientific and Innovative Research, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysuru 570020, India.
| |
Collapse
|
26
|
Botchlett R, Woo SL, Liu M, Pei Y, Guo X, Li H, Wu C. Nutritional approaches for managing obesity-associated metabolic diseases. J Endocrinol 2017; 233:R145-R171. [PMID: 28400405 PMCID: PMC5511693 DOI: 10.1530/joe-16-0580] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/11/2017] [Indexed: 01/10/2023]
Abstract
Obesity is an ongoing pandemic and serves as a causal factor of a wide spectrum of metabolic diseases including diabetes, fatty liver disease, and cardiovascular disease. Much evidence has demonstrated that nutrient overload/overnutrition initiates or exacerbates inflammatory responses in tissues/organs involved in the regulation of systemic metabolic homeostasis. This obesity-associated inflammation is usually at a low-grade and viewed as metabolic inflammation. When it exists continuously, inflammation inappropriately alters metabolic pathways and impairs insulin signaling cascades in peripheral tissues/organs such as adipose tissue, the liver and skeletal muscles, resulting in local fat deposition and insulin resistance and systemic metabolic dysregulation. In addition, inflammatory mediators, e.g., proinflammatory cytokines, and excessive nutrients, e.g., glucose and fatty acids, act together to aggravate local insulin resistance and form a vicious cycle to further disturb the local metabolic pathways and exacerbate systemic metabolic dysregulation. Owing to the critical role of nutrient metabolism in controlling the initiation and progression of inflammation and insulin resistance, nutritional approaches have been implicated as effective tools for managing obesity and obesity-associated metabolic diseases. Based on the mounting evidence generated from both basic and clinical research, nutritional approaches are commonly used for suppressing inflammation, improving insulin sensitivity, and/or decreasing fat deposition. Consequently, the combined effects are responsible for improvement of systemic insulin sensitivity and metabolic homeostasis.
Collapse
Affiliation(s)
- Rachel Botchlett
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
- Pinnacle Clinical ResearchLive Oak, USA
| | - Shih-Lung Woo
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Mengyang Liu
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Ya Pei
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Xin Guo
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
- Baylor College of MedicineHouston, USA
| | - Honggui Li
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Chaodong Wu
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| |
Collapse
|
27
|
Oral Administration of Resveratrol Alleviates Osteoarthritis Pathology in C57BL/6J Mice Model Induced by a High-Fat Diet. Mediators Inflamm 2017; 2017:7659023. [PMID: 28250578 PMCID: PMC5303602 DOI: 10.1155/2017/7659023] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/10/2017] [Indexed: 01/22/2023] Open
Abstract
Obesity has been associated with osteoarthritis (OA) due to increased mass and metabolic factors which are independent of the biomechanical contribution to joint load. Resveratrol, a natural polyphenolic compound, exerts protective effects on OA through its anti-inflammatory property. However, the mechanism of resveratrol on obesity-related OA is unclear. To investigate the effect and possible mechanism of oral resveratrol on obesity-related OA, we fed C57BL/6J mice with a high-fat diet (HFD) for 16 weeks to establish obesity-related OA model; then two doses (22.5 mg/kg and 45 mg/kg) of resveratrol were given by gavage for additional 12 weeks. Mice with HFD significantly increased body weights compared to the control mice, while resveratrol treatment did not cause obvious weight loss. Histological assessments showed that resveratrol at 45 mg/kg significantly improved OA symptoms. Levels of serum IL-1β and leptin were decreased by resveratrol treatment and positively correlated with Mankin scores. Moreover, resveratrol significantly inhibited the expression of TLR4 and TRAF6 in cartilage. These results suggest that HFD induced obesity can lead to the occurrence of OA, and resveratrol may alleviate OA pathology by decreasing the levels of systematic inflammation and/or inhibiting TLR4 signaling pathway in cartilage. Thus, resveratrol might be a promising therapeutic treatment for obesity-related OA.
Collapse
|
28
|
A role for intestinal TLR4-driven inflammatory response during activity-based anorexia. Sci Rep 2016; 6:35813. [PMID: 27779218 PMCID: PMC5078809 DOI: 10.1038/srep35813] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 10/05/2016] [Indexed: 12/12/2022] Open
Abstract
Anorexia nervosa (AN) is associated with low-grade systemic inflammation and altered gut microbiota. However, the molecular origin of the inflammation remains unknown. Toll-like receptors are key regulators of innate immune response and their activation seems also to be involved in the control of food intake. We used activity-based anorexia (ABA) model to investigate the role of TLR4 and its contribution in anorexia-associated low-grade inflammation. Here, we found that ABA affected early the intestinal inflammatory status and the hypothalamic response. Indeed, TLR4 was upregulated both on colonic epithelial cells and intestinal macrophages, leading to elevated downstream mucosal cytokine production. These mucosal changes occurred earlier than hypothalamic changes driving to increased levels of IL-1β and IL-1R1 as well as increased levels of plasma corticosterone. Paradoxically, TLR4-deficient mice exhibited greater vulnerability to ABA with increased mortality rate, suggesting a major contribution of TLR4-mediated responses during ABA-induced weight loss.
Collapse
|
29
|
Glucose and Palmitate Differentially Regulate PFKFB3/iPFK2 and Inflammatory Responses in Mouse Intestinal Epithelial Cells. Sci Rep 2016; 6:28963. [PMID: 27387960 PMCID: PMC4937440 DOI: 10.1038/srep28963] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/07/2016] [Indexed: 12/21/2022] Open
Abstract
The gene PFKFB3 encodes for inducible 6-phosphofructo-2-kinase, a glycolysis-regulatory enzyme that protects against diet-induced intestine inflammation. However, it is unclear how nutrient overload regulates PFKFB3 expression and inflammatory responses in intestinal epithelial cells (IECs). In the present study, primary IECs were isolated from small intestine of C57BL/6J mice fed a low-fat diet (LFD) or high-fat diet (HFD) for 12 weeks. Additionally, CMT-93 cells, a cell line for IECs, were cultured in low glucose (LG, 5.5 mmol/L) or high glucose (HG, 27.5 mmol/L) medium and treated with palmitate (50 μmol/L) or bovine serum albumin (BSA) for 24 hr. These cells were analyzed for PFKFB3 and inflammatory markers. Compared with LFD, HFD feeding decreased IEC PFKFB3 expression and increased IEC proinflammatory responses. In CMT-93 cells, HG significantly increased PFKFB3 expression and proinflammatory responses compared with LG. Interestingly, palmitate decreased PFKFB3 expression and increased proinflammatory responses compared with BSA, regardless of glucose concentrations. Furthermore, HG significantly increased PFKFB3 promoter transcription activity compared with LG. Upon PFKFB3 overexpression, proinflammatory responses in CMT-93 cells were decreased. Taken together, these results indicate that in IECs glucose stimulates PFKFB3 expression and palmitate contributes to increased proinflammatory responses. Therefore, PFKFB3 regulates IEC inflammatory status in response to macronutrients.
Collapse
|
30
|
Nawata A, Noguchi H, Mazaki Y, Kurahashi T, Izumi H, Wang KY, Guo X, Uramoto H, Kohno K, Taniguchi H, Tanaka Y, Fujii J, Sasaguri Y, Tanimoto A, Nakayama T, Yamada S. Overexpression of Peroxiredoxin 4 Affects Intestinal Function in a Dietary Mouse Model of Nonalcoholic Fatty Liver Disease. PLoS One 2016; 11:e0152549. [PMID: 27035833 PMCID: PMC4818088 DOI: 10.1371/journal.pone.0152549] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 03/16/2016] [Indexed: 02/07/2023] Open
Abstract
Background Accumulating evidence has shown that methionine- and choline-deficient high fat (MCD+HF) diet induces the development of nonalcoholic fatty liver disease (NAFLD), in which elevated reactive oxygen species play a crucial role. We have reported that peroxiredoxin 4 (PRDX4), a unique secretory member of the PRDX antioxidant family, protects against NAFLD progression. However, the detailed mechanism and potential effects on the intestinal function still remain unclear. Methods & Results Two weeks after feeding mice a MCD+HF diet, the livers of human PRDX4 transgenic (Tg) mice exhibited significant suppression in the development of NAFLD compared with wild-type (WT) mice. The serum thiobarbituric acid reactive substances levels were significantly lower in Tg mice. In contrast, the Tg small intestine with PRDX4 overexpression showed more suppressed shortening of total length and villi height, and more accumulation of lipid in the jejunum, along with lower levels of dihydroethidium binding. The enterocytes exhibited fewer apoptotic but more proliferating cells, and inflammation was reduced in the mucosa. Furthermore, the small intestine of Tg mice had significantly higher expression of cholesterol absorption-regulatory factors, including liver X receptor-α, but lower expression of microsomal triglyceride-transfer protein. Conclusion Our present data provide the first evidence of the beneficial effects of PRDX4 on intestinal function in the reduction of the severity of NAFLD, by ameliorating oxidative stress-induced local and systemic injury. We can suggest that both liver and intestine are spared, to some degree, by the antioxidant properties of PRDX4.
Collapse
Affiliation(s)
- Aya Nawata
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807–8555, Japan
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807–8555, Japan
| | - Hirotsugu Noguchi
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807–8555, Japan
| | - Yuichi Mazaki
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, Sapporo, 060–8638, Japan
| | - Toshihiro Kurahashi
- Department of Biomolecular Function, Graduate School of Medical Science, Yamagata University, Yamagata, 990–9585, Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807–8555, Japan
| | - Ke-Yong Wang
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807–8555, Japan
- Shared-Use Research Center, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807–8555, Japan
| | - Xin Guo
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807–8555, Japan
- Second Department of Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807–8555, Japan
| | - Hidetaka Uramoto
- Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei, Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China
- Department of Thoracic Surgery, Saitama Cancer Center, Saitama, 362–0806, Japan
| | - Kimitoshi Kohno
- The President Laboratory, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807–8555, Japan
- Asahi-Matsumoto Hospital, Kitakyushu, 800–0242, Japan
| | - Hatsumi Taniguchi
- Department of Microbiology, University of Occupational and Environmental Health, Kitakyushu, 807–8555, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807–8555, Japan
| | - Junichi Fujii
- Department of Biomolecular Function, Graduate School of Medical Science, Yamagata University, Yamagata, 990–9585, Japan
| | - Yasuyuki Sasaguri
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807–8555, Japan
- Laboratory of Pathology, Fukuoka Wajiro Hospital, Fukuoka, 811–0213, Japan
| | - Akihide Tanimoto
- Department of Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890–8544, Japan
| | - Toshiyuki Nakayama
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807–8555, Japan
| | - Sohsuke Yamada
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807–8555, Japan
- Department of Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890–8544, Japan
- Institute of Pathology, Medical University of Graz, Graz, 8010, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, 8010, Austria
- * E-mail:
| |
Collapse
|
31
|
Anitha M, Reichardt F, Tabatabavakili S, Nezami BG, Chassaing B, Mwangi S, Vijay-Kumar M, Gewirtz A, Srinivasan S. Intestinal dysbiosis contributes to the delayed gastrointestinal transit in high-fat diet fed mice. Cell Mol Gastroenterol Hepatol 2016; 2:328-339. [PMID: 27446985 PMCID: PMC4945127 DOI: 10.1016/j.jcmgh.2015.12.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS High-fat diet (HFD) feeding is associated with gastrointestinal motility disorders. We recently reported delayed colonic motility in mice fed a HFD mice for 11 weeks. In this study, we investigated the contributing role of gut microbiota in HFD-induced gut dysmotility. METHODS Male C57BL/6 mice were fed a HFD (60% kcal fat) or a regular/control diet (RD) (18% kcal fat) for 13 weeks. Serum and fecal endotoxin levels were measured, and relative amounts of specific gut bacteria in the feces assessed by real time PCR. Intestinal transit was measured by fluorescent-labeled marker and bead expulsion test. Enteric neurons were assessed by immunostaining. Oligofructose (OFS) supplementation with RD or HFD for 5 weeks was also studied. In vitro studies were performed using primary enteric neurons and an enteric neuronal cell line. RESULTS HFD-fed mice had reduced numbers of enteric nitrergic neurons and exhibited delayed gastrointestinal transit compared to RD-fed mice. HFD-fed mice had higher fecal Firmicutes and Escherichia coli and lower Bacteroidetes compared to RD-fed mice. OFS supplementation protected against enteric nitrergic neurons loss in HFD-fed mice, and improved intestinal transit time. OFS supplementation resulted in a reductions in fecal Firmicutes and Escherichia coli and serum endotoxin levels. In vitro, palmitate activation of TLR4 induced enteric neuronal apoptosis in a p-JNK1 dependent pathway. This apoptosis was prevented by a JNK inhibitor and in neurons from TLR4-/- mice. CONCLUSIONS Together our data suggest that intestinal dysbiosis in HFD fed mice contribute to the delayed intestinal motility by inducing a TLR4-dependant neuronal loss. Manipulation of gut microbiota with OFS improved intestinal motility in HFD mice.
Collapse
Affiliation(s)
- Mallappa Anitha
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - François Reichardt
- Department of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia,Atlanta VA Medical Center, Decatur, Georgia
| | - Sahar Tabatabavakili
- Department of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia,Atlanta VA Medical Center, Decatur, Georgia
| | - Behtash Ghazi Nezami
- Department of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia,Atlanta VA Medical Center, Decatur, Georgia
| | - Benoit Chassaing
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Simon Mwangi
- Department of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia,Atlanta VA Medical Center, Decatur, Georgia
| | - Matam Vijay-Kumar
- Department of Nutritional Sciences & Medicine, The Pennsylvania State University, University Park, Pennsylvania
| | - Andrew Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Shanthi Srinivasan
- Department of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia,Atlanta VA Medical Center, Decatur, Georgia,Correspondence Address correspondence to: Shanthi Srinivasan, MD, Division of Digestive Diseases, Whitehead Biomedical Research Building, 615 Michael Street, Suite 201A, Atlanta, Georgia 30322. fax: (404) 727-5767.Division of Digestive DiseasesWhitehead Biomedical Research Building615 Michael StreetSuite 201AAtlantaGeorgia 30322
| |
Collapse
|
32
|
Han LP, Li CJ, Sun B, Xie Y, Guan Y, Ma ZJ, Chen LM. Protective Effects of Celastrol on Diabetic Liver Injury via TLR4/MyD88/NF-κB Signaling Pathway in Type 2 Diabetic Rats. J Diabetes Res 2016; 2016:2641248. [PMID: 27057550 PMCID: PMC4745324 DOI: 10.1155/2016/2641248] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 12/05/2015] [Accepted: 12/30/2015] [Indexed: 02/06/2023] Open
Abstract
Immune and inflammatory pathways play a central role in the pathogenesis of diabetic liver injury. Celastrol is a potent immunosuppressive and anti-inflammatory agent. So far, there is no evidence regarding the mechanism of innate immune alterations of celastrol on diabetic liver injury in type 2 diabetic animal models. The present study was aimed at investigating protective effects of celastrol on the liver injury in diabetic rats and at elucidating the possible involved mechanisms. We analyzed the liver histopathological and biochemical changes and the expressions of TLR4 mediated signaling pathway. Compared to the normal control group, diabetic rats were found to have obvious steatohepatitis and proinflammatory cytokine activities were significantly upregulated. Celastrol-treated diabetic rats show reduced hepatic inflammation and macrophages infiltration. The expressions of TLR4, MyD88, NF-κB, and downstream inflammatory factors IL-1β and TNFα in the hepatic tissue of treated rats were downregulated in a dose-dependent manner. We firstly found that celastrol treatment could delay the progression of diabetic liver disease in type 2 diabetic rats via inhibition of TLR4/MyD88/NF-κB signaling cascade pathways and its downstream inflammatory effectors.
Collapse
Affiliation(s)
- Li-ping Han
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormone and Development, Ministry of Health, Metabolic Disease Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Chun-jun Li
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormone and Development, Ministry of Health, Metabolic Disease Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Bei Sun
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormone and Development, Ministry of Health, Metabolic Disease Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Yun Xie
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormone and Development, Ministry of Health, Metabolic Disease Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Yue Guan
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormone and Development, Ministry of Health, Metabolic Disease Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Ze-jun Ma
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormone and Development, Ministry of Health, Metabolic Disease Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Li-ming Chen
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormone and Development, Ministry of Health, Metabolic Disease Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
- *Li-ming Chen:
| |
Collapse
|
33
|
Ouyang Q, Huang Z, Lin H, Ni J, Lu H, Chen X, Wang Z, Lin L. Apolipoprotein E deficiency and high-fat diet cooperate to trigger lipidosis and inflammation in the lung via the toll-like receptor 4 pathway. Mol Med Rep 2015; 12:2589-97. [PMID: 25975841 PMCID: PMC4464450 DOI: 10.3892/mmr.2015.3774] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 02/11/2015] [Indexed: 01/06/2023] Open
Abstract
Apolipoprotein E deficiency (ApoE(-/-)) combined with a high-fat Western-type diet (WD) is known to activate the toll-like receptor (TLR4) pathway and promote atherosclerosis. However, to date, the pathogenic effects of these conditions on the lung have not been extensively studied. Therefore, the present study examined the effects of ApoE(-/-) and a WD on lung injury and investigated the underlying mechanisms. ApoE(-/-) and wild-type mice were fed a WD or normal chow diet for 4, 12 and 24 weeks. Lung inflammation, lung cholesterol content and cytokines profiles in broncho-alveolar lavage fluid (BALF) were determined. TLR4 and its main downstream molecules were analyzed with western blot analysis. In addition, the role of the TLR4 pathway was further validated using TLR4-targeted gene silencing. The results showed that ApoE(-/-) mice developed lung lipidosis following 12 weeks of receiving a WD, as evidenced by an increased lung cholesterol content. Moreover, dependent on the time period of receiving the diet, those mice exhibited pulmonary inflammation, which was manifested by initial leukocyte recruitment (at 4 weeks), by increased alveolar septal thickness and mean linear intercept as well as elevated production of inflammation mediators (at 12 weeks), and by granuloma formation (at 24 weeks). The expression levels of TLR4, myeloid differentiation primary response 88 (MyD88) and nuclear factor kappa B were markedly upregulated in ApoE(-/-) WD mice at week 12. However, these effects were ameliorated by shRNA-mediated knockdown of TLR4. By contrast, ApoE(-/-) ND or wild-type WD mice exhibited low-grade or no inflammation and mild lipidosis. The levels of TLR4 and MyD88 in those mice showed only minor changes. In conclusion, ApoE deficiency acts synergistically with a WD to trigger lung lipidosis and inflammation at least in part via TLR4 signaling.
Collapse
Affiliation(s)
- Qiufang Ouyang
- Cardiovascular Department, The Second Affiliated Hospital and Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Ziyang Huang
- Cardiovascular Department, The Second Affiliated Hospital and Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Huili Lin
- Cardiovascular Department, The Second Affiliated Hospital and Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Jingqin Ni
- Cardiovascular Department, The Second Affiliated Hospital and Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Huixia Lu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012, P.R. China
| | - Xiaoqing Chen
- Rheumatism Department, The Second Affiliated Hospital and Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Zhenhua Wang
- Cardiovascular Department, The Second Affiliated Hospital and Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Ling Lin
- Rheumatism Department, The Second Affiliated Hospital and Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
34
|
Luck H, Tsai S, Chung J, Clemente-Casares X, Ghazarian M, Revelo XS, Lei H, Luk CT, Shi SY, Surendra A, Copeland JK, Ahn J, Prescott D, Rasmussen BA, Chng MHY, Engleman EG, Girardin SE, Lam TKT, Croitoru K, Dunn S, Philpott DJ, Guttman DS, Woo M, Winer S, Winer DA. Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab 2015; 21:527-42. [PMID: 25863246 DOI: 10.1016/j.cmet.2015.03.001] [Citation(s) in RCA: 258] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/12/2015] [Accepted: 02/27/2015] [Indexed: 12/13/2022]
Abstract
Obesity has reached epidemic proportions, but little is known about its influence on the intestinal immune system. Here we show that the gut immune system is altered during high-fat diet (HFD) feeding and is a functional regulator of obesity-related insulin resistance (IR) that can be exploited therapeutically. Obesity induces a chronic phenotypic pro-inflammatory shift in bowel lamina propria immune cell populations. Reduction of the gut immune system, using beta7 integrin-deficient mice (Beta7(null)), decreases HFD-induced IR. Treatment of wild-type HFD C57BL/6 mice with the local gut anti-inflammatory, 5-aminosalicyclic acid (5-ASA), reverses bowel inflammation and improves metabolic parameters. These beneficial effects are dependent on adaptive and gut immunity and are associated with reduced gut permeability and endotoxemia, decreased visceral adipose tissue inflammation, and improved antigen-specific tolerance to luminal antigens. Thus, the mucosal immune system affects multiple pathways associated with systemic IR and represents a novel therapeutic target in this disease.
Collapse
Affiliation(s)
- Helen Luck
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Research Institute (TGRI), University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada; Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Sue Tsai
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Research Institute (TGRI), University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Jason Chung
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Research Institute (TGRI), University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Xavier Clemente-Casares
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Research Institute (TGRI), University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Magar Ghazarian
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Research Institute (TGRI), University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada; Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Xavier S Revelo
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Research Institute (TGRI), University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Helena Lei
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Research Institute (TGRI), University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Cynthia T Luk
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Research Institute (TGRI), University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Sally Yu Shi
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Research Institute (TGRI), University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Anuradha Surendra
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, 33 Wilcocks Street, Toronto, ON M5S 3B3, Canada
| | - Julia K Copeland
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, 33 Wilcocks Street, Toronto, ON M5S 3B3, Canada
| | - Jennifer Ahn
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - David Prescott
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Brittany A Rasmussen
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Research Institute (TGRI), University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Melissa Hui Yen Chng
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Palo Alto, CA 94305-5324, USA
| | - Edgar G Engleman
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Palo Alto, CA 94305-5324, USA
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Tony K T Lam
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Research Institute (TGRI), University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Kenneth Croitoru
- Institute of Medical Science, Department of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Shannon Dunn
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - David S Guttman
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, 33 Wilcocks Street, Toronto, ON M5S 3B3, Canada
| | - Minna Woo
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Research Institute (TGRI), University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, Department of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Division of Endocrinology, Department of Medicine, University Health Network, University of Toronto, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada
| | - Shawn Winer
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Research Institute (TGRI), University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Daniel A Winer
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Research Institute (TGRI), University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada; Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Department of Pathology, University Health Network, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada.
| |
Collapse
|
35
|
High-fat diet promotes neuronal loss in the myenteric plexus of the large intestine in mice. Dig Dis Sci 2015; 60:841-9. [PMID: 25330870 DOI: 10.1007/s10620-014-3402-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/11/2014] [Indexed: 12/28/2022]
Abstract
BACKGROUND Obesity is considered a risk factor for other chronic diseases, and diets rich in lipids can cause alterations in the intestinal functions. AIM The aim of this study was to investigate the effects of a high-fat diet (HFD) on the myenteric plexus of the large intestine in mice. METHODS Swiss mice were distributed into four groups: Control animals fed standard chow for 8 and 17 weeks (C8 and C17 groups) and hyperlipidic animals fed HFD for 8 and 17 weeks (Ob8 and Ob17 groups). Immunofluorescence was performed in the large intestine for the morphologic and quantitative analysis of neuronal populations. RESULTS Animals in the Ob17 group exhibited increased body weight and visceral fat gain compared with the C17 group. The intestinal area was also reduced in the two Ob groups. In the proximal colon, the Ob17 group exhibited 16.1 % reduction of the general neuronal density and 33 % reduction of the VIP-immunoreactive (IR) subpopulation. The general neuronal density in the distal colon was reduced by 45 % in the Ob17 group, and the nNOS-IR density was reduced by 35 %. The morphometry of neuronal cell bodies in the Ob17 group exhibited a reduction of the neuronal area of all of the neuronal populations studied in the proximal colon, with a reduction of the subpopulations of nNOS-IR and VIP-IR neurons in the distal colon. CONCLUSIONS The HFD caused neuronal loss in the myenteric plexus, and nitrergic neurons were more resilient. The changes were more pronounced in the distal colon after 17 weeks.
Collapse
|
36
|
Shajib MS, Khan WI. The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol (Oxf) 2015; 213:561-74. [PMID: 25439045 DOI: 10.1111/apha.12430] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/29/2014] [Accepted: 11/19/2014] [Indexed: 12/13/2022]
Abstract
Serotonin or 5-hydroxytryptamine (5-HT) is a neurotransmitter and hormone that contributes to the regulation of various physiological functions by its actions in the central nervous system (CNS) and in the respective organ systems. Peripheral 5-HT is predominantly produced by enterochromaffin (EC) cells of the gastrointestinal (GI) tract. These gut-resident cells produce much more 5-HT than all neuronal and other sources combined, establishing EC cells as the main source of this biogenic amine in the human body. Peripheral 5-HT is also a potent immune modulator and affects various immune cells through its receptors and via the recently identified process of serotonylation. Alterations in 5-HT signalling have been described in inflammatory conditions of the gut, such as inflammatory bowel disease. The association between 5-HT and inflammation, however, is not limited to the gut, as changes in 5-HT levels have also been reported in patients with allergic airway inflammation and rheumatoid arthritis. Based on searches for terms such as '5-HT', 'EC cell', 'immune cells' and 'inflammation' in pubmed.gov as well as by utilizing pertinent reviews, the current review aims to provide an update on the role of 5-HT in biological functions with a particular focus on immune activation and inflammation.
Collapse
Affiliation(s)
- M. S. Shajib
- Farncombe Family Digestive Health Research Institute; Hamilton ON Canada
- Department of Pathology & Molecular Medicine; McMaster University; Hamilton ON Canada
| | - W. I. Khan
- Farncombe Family Digestive Health Research Institute; Hamilton ON Canada
- Department of Pathology & Molecular Medicine; McMaster University; Hamilton ON Canada
- Hamilton Regional Laboratory Medicine Program; Hamilton Health Sciences; Hamilton ON Canada
| |
Collapse
|
37
|
Deer J, Koska J, Ozias M, Reaven P. Dietary models of insulin resistance. Metabolism 2015; 64:163-71. [PMID: 25441706 DOI: 10.1016/j.metabol.2014.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/20/2014] [Accepted: 08/29/2014] [Indexed: 12/12/2022]
Abstract
Insulin resistance is a significant factor in the development of type 2 diabetes mellitus, however the connection between the Western diet and the development of insulin resistance has not been fully explained. Dietary macronutrient composition has been examined in a number of articles, and diets enriched in saturated fatty acids, and possibly in fructose, appear to be most consistently associated with the development of insulin resistance. However, mechanistic insights into the metabolic effects of such diets are lacking, and merit further study.
Collapse
Affiliation(s)
- James Deer
- Department of Endocrinology, Phoenix VA Health Care System, 650 E Indian School Road Mail Code 111E, Phoenix, AZ 85012-1892.
| | - Juraj Koska
- Department of Endocrinology, Phoenix VA Health Care System, 650 E Indian School Road Mail Code 111E, Phoenix, AZ 85012-1892
| | - Marlies Ozias
- Department of Endocrinology, Phoenix VA Health Care System, 650 E Indian School Road Mail Code 111E, Phoenix, AZ 85012-1892
| | - Peter Reaven
- Department of Endocrinology, Phoenix VA Health Care System, 650 E Indian School Road Mail Code 111E, Phoenix, AZ 85012-1892
| |
Collapse
|
38
|
Egg intake during carbohydrate restriction alters peripheral blood mononuclear cell inflammation and cholesterol homeostasis in metabolic syndrome. Nutrients 2014; 6:2650-67. [PMID: 25045936 PMCID: PMC4113762 DOI: 10.3390/nu6072650] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/02/2014] [Accepted: 07/08/2014] [Indexed: 01/14/2023] Open
Abstract
Egg yolk contains bioactive components that improve plasma inflammatory markers and HDL profiles in metabolic syndrome (MetS) under carbohydrate restriction. We further sought to determine whether egg yolk intake affects peripheral blood mononuclear cell (PBMC) inflammation and cholesterol homeostasis in MetS, as HDL and its associated lipid transporter ATP-binding cassette transporter A1 (ABCA1) reduce the inflammatory potential of leukocytes through modulation of cellular cholesterol content and distribution. Thirty-seven men and women classified with MetS consumed a moderate carbohydrate-restricted diet (25%–30% of energy) for 12 weeks, in addition to consuming either three whole eggs per day (EGG) or the equivalent amount of yolk-free egg substitute (SUB). Interestingly, lipopolysaccharide-induced PBMC IL-1β and TNFα secretion increased from baseline to week 12 in the SUB group only, despite increases in PBMC toll-like receptor 4 (TLR4) mRNA expression in the EGG group. Compared to baseline, ABCA1 and 3-hydroxy-3-methyl-glutaryl (HMG)-CoA reductase mRNA expression increased by week 12 in the EGG group only, whereas changes in PBMC total cholesterol positively correlated with changes in lipid raft content. Together, these findings suggest that intake of whole eggs during carbohydrate restriction alters PBMC inflammation and cholesterol homeostasis in MetS.
Collapse
|
39
|
Tanaka T, Tahara-Hanaoka S, Nabekura T, Ikeda K, Jiang S, Tsutsumi S, Inagaki T, Magoori K, Higurashi T, Takahashi H, Tachibana K, Tsurutani Y, Raza S, Anai M, Minami T, Wada Y, Yokote K, Doi T, Hamakubo T, Auwerx J, Gonzalez FJ, Nakajima A, Aburatani H, Naito M, Shibuya A, Kodama T, Sakai J. PPARβ/δ activation of CD300a controls intestinal immunity. Sci Rep 2014; 4:5412. [PMID: 24958459 PMCID: PMC4067692 DOI: 10.1038/srep05412] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 06/02/2014] [Indexed: 01/17/2023] Open
Abstract
Macrophages are important for maintaining intestinal immune homeostasis. Here, we show that PPARβ/δ (peroxisome proliferator-activated receptor β/δ) directly regulates CD300a in macrophages that express the immunoreceptor tyrosine based-inhibitory motif (ITIM)-containing receptor. In mice lacking CD300a, high-fat diet (HFD) causes chronic intestinal inflammation with low numbers of intestinal lymph capillaries and dramatically expanded mesenteric lymph nodes. As a result, these mice exhibit triglyceride malabsorption and reduced body weight gain on HFD. Peritoneal macrophages from Cd300a-/- mice on HFD are classically M1 activated. Activation of toll-like receptor 4 (TLR4)/MyD88 signaling by lipopolysaccharide (LPS) results in prolonged IL-6 secretion in Cd300a-/- macrophages. Bone marrow transplantation confirmed that the phenotype originates from CD300a deficiency in leucocytes. These results identify CD300a-mediated inhibitory signaling in macrophages as a critical regulator of intestinal immune homeostasis.
Collapse
Affiliation(s)
- Toshiya Tanaka
- Laboratory for Systems Biology and Medicine (LSBM), Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Satoko Tahara-Hanaoka
- Department of Immunology, Faculty of Medicine, Center for TARA and Japan Science and Technology Agency, CREST, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Tsukasa Nabekura
- Department of Immunology, Faculty of Medicine, Center for TARA and Japan Science and Technology Agency, CREST, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Kaori Ikeda
- Laboratory for Systems Biology and Medicine (LSBM), Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Shuying Jiang
- 1] Division of Cellular and Molecular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan [2] Peruseus Proteomics, Tokyo 153-0041, Japan
| | - Shuichi Tsutsumi
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Takeshi Inagaki
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Kenta Magoori
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Takuma Higurashi
- Gastroenterology Division, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Hirokazu Takahashi
- Gastroenterology Division, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Keisuke Tachibana
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Yuya Tsurutani
- 1] Division of Metabolic Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan [2] Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Sana Raza
- Laboratory for Systems Biology and Medicine (LSBM), Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Motonobu Anai
- Laboratory for Systems Biology and Medicine (LSBM), Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Takashi Minami
- Laboratory for Vascular Biology, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Youichiro Wada
- Laboratory for Systems Biology and Medicine (LSBM), Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Koutaro Yokote
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Takefumi Doi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Atsushi Nakajima
- Gastroenterology Division, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Makoto Naito
- Division of Cellular and Molecular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Akira Shibuya
- Department of Immunology, Faculty of Medicine, Center for TARA and Japan Science and Technology Agency, CREST, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine (LSBM), Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Juro Sakai
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| |
Collapse
|