1
|
Bick F, Blanchetot C, Lambrecht BN, Schuijs MJ. A reappraisal of IL-9 in inflammation and cancer. Mucosal Immunol 2024:S1933-0219(24)00106-5. [PMID: 39389468 DOI: 10.1016/j.mucimm.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
While much is known about the functional effects of type 2 cytokines interleukin (IL)-4, IL-5 and IL-13 in homeostasis and disease, we still poorly understand the functions of IL-9. Chronic inflammation seen in allergic diseases, autoimmunity and cancer is however frequently accompanied by overproduction of this elusive type 2 cytokine. Initially identified as a T cell and mast cell growth factor, and later as the hallmark cytokine defining TH9 cells, we now know that IL-9 is produced by multiple innate and adaptive immune cells. Recent evidence suggests that IL-9 controls discrete aspects of the allergic cascade, cellular responses of immune and stromal cells, cancer progression, tolerance and immune escape. Despite functioning as a pleiotropic cytokine in mucosal environments, like the lungs, the direct and indirect cellular targets of IL-9 are still not well characterized. Here, we discuss IL-9's cellular senders and receivers, focusing on asthma and cancer. Moreover, we review current research directions and the outlook of targeted therapy centered around the biology of IL-9.
Collapse
Affiliation(s)
- Fabian Bick
- argenx BV, 9052 Zwijnaarde, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | | | - Bart N Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Martijn J Schuijs
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
2
|
Chen SL, Zhang B, Wang S, Yang M, Shen QH, Zhang R, Xiong Z, Leng Y. Correlation between inflammatory cytokines and the likelihood of developing multiple types of digestive system cancers: A Mendelian randomization study. Cytokine 2024; 183:156735. [PMID: 39173282 DOI: 10.1016/j.cyto.2024.156735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVE Inflammatory cytokines have been linked to digestive system cancers, yet their exact causal connection remains uncertain. Consequently, we conducted a Mendelian randomization (MR) analysis to gauge how inflammatory cytokines are linked to the risk of five prevalent digestive system cancers (DSCs). METHODS We collected genetic variation data for 41 inflammatory cytokines from genome-wide association studies (GWAS), and the results data for five common diseases from the Finnish database. Our primary analytical approach involved employing the inverse-variance weighted, residual sum (IVW) method, complemented by the MR-Egger method, the weighted median method, simple mode analysis, and weighted mode analysis as supplementary analytical techniques. Furthermore, we conducted multiple sensitivity analyses. RESULTS Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), macrophage colony-stimulating factor (M-CSF), and interleukin (IL)-18 showed a negative association with the risk of hepatocellular carcinoma. Conversely, TRAIL was inversely linked to the risk of gastric cancer, while IL-16 exhibited a positive correlation with gastric cancer risk. Stem cell factor (SCF) acted as a protective factor against pancreatic cancer. For colorectal cancer, IL-7, IL-9, IL-13, and vascular endothelial growth factor (VEGF) were identified as risk factors. Notably, our results did not indicate a significant correlation between inflammatory cytokines and the risk of esophageal cancer. CONCLUSION Our research unveils potential connections between 41 inflammatory cytokines and the risk of five common DSCs through a MR analysis. These associations offer valuable insights that could aid in the development of diagnostic biomarkers and the identification of novel therapeutic targets for DSCs.
Collapse
Affiliation(s)
- Su-Lan Chen
- Changchun University of Chinese Medicine, Changchun 130021, Jilin Province, China
| | - Bin Zhang
- Changchun University of Chinese Medicine, Changchun 130021, Jilin Province, China
| | - Song Wang
- Department of Hepatosplenogastrology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, Jilin Province, China
| | - Ming Yang
- Department of Hepatosplenogastrology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, Jilin Province, China
| | - Qiao-Hui Shen
- Changchun University of Chinese Medicine, Changchun 130021, Jilin Province, China
| | - Rui Zhang
- Changchun University of Chinese Medicine, Changchun 130021, Jilin Province, China
| | - Zhuang Xiong
- Department of Hepatosplenogastrology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, Jilin Province, China
| | - Yan Leng
- Department of Hepatosplenogastrology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, Jilin Province, China.
| |
Collapse
|
3
|
Kazakov AS, Deryusheva EI, Rastrygina VA, Sokolov AS, Permyakova ME, Litus EA, Uversky VN, Permyakov EA, Permyakov SE. Interaction of S100A6 Protein with the Four-Helical Cytokines. Biomolecules 2023; 13:1345. [PMID: 37759746 PMCID: PMC10526228 DOI: 10.3390/biom13091345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/19/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
S100 is a family of over 20 structurally homologous, but functionally diverse regulatory (calcium/zinc)-binding proteins of vertebrates. The involvement of S100 proteins in numerous vital (patho)physiological processes is mediated by their interaction with various (intra/extra)cellular protein partners, including cell surface receptors. Furthermore, recent studies have revealed the ability of specific S100 proteins to modulate cell signaling via direct interaction with cytokines. Previously, we revealed the binding of ca. 71% of the four-helical cytokines via the S100P protein, due to the presence in its molecule of a cytokine-binding site overlapping with the binding site for the S100P receptor. Here, we show that another S100 protein, S100A6 (that has a pairwise sequence identity with S100P of 35%), specifically binds numerous four-helical cytokines. We have studied the affinity of the recombinant forms of 35 human four-helical cytokines from all structural families of this fold to Ca2+-loaded recombinant human S100A6, using surface plasmon resonance spectroscopy. S100A6 recognizes 26 of the cytokines from all families of this fold, with equilibrium dissociation constants from 0.3 nM to 12 µM. Overall, S100A6 interacts with ca. 73% of the four-helical cytokines studied to date, with a selectivity equivalent to that for the S100P protein, with the differences limited to the binding of interleukin-2 and oncostatin M. The molecular docking study evidences the presence in the S100A6 molecule of a cytokine-binding site, analogous to that found in S100P. The findings argue the presence in some of the promiscuous members of the S100 family of a site specific to a wide range of four-helical cytokines. This unique feature of the S100 proteins potentially allows them to modulate the activity of the numerous four-helical cytokines in the disorders accompanied by an excessive release of the cytokines.
Collapse
Affiliation(s)
- Alexey S. Kazakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Evgenia I. Deryusheva
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Victoria A. Rastrygina
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Andrey S. Sokolov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Maria E. Permyakova
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Ekaterina A. Litus
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Vladimir N. Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
- Department of Molecular, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Eugene A. Permyakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Sergei E. Permyakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| |
Collapse
|
4
|
Cannon A, Pajulas A, Kaplan MH, Zhang J. The Dichotomy of Interleukin-9 Function in the Tumor Microenvironment. J Interferon Cytokine Res 2023; 43:229-245. [PMID: 37319357 PMCID: PMC10282829 DOI: 10.1089/jir.2023.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
Interleukin 9 (IL-9) is a cytokine with potent proinflammatory properties that plays a central role in pathologies such as allergic asthma, immunity to parasitic infection, and autoimmunity. More recently, IL-9 has garnered considerable attention in tumor immunity. Historically, IL-9 has been associated with a protumor function in hematological malignancies and an antitumor function in solid malignancies. However, recent discoveries of the dynamic role of IL-9 in cancer progression suggest that IL-9 can act as both a pro- or antitumor factor in various hematological and solid malignancies. This review summarizes IL-9-dependent control of tumor growth, regulation, and therapeutic applicability of IL-9 blockade and IL-9-producing cells in cancer.
Collapse
Affiliation(s)
- Anthony Cannon
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Brown Center for Immunotherapy, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jilu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
5
|
B7H4 Expression Is More Frequent in MSS Status Colorectal Cancer and Is Negatively Associated with Tumour Infiltrating Lymphocytes. Cells 2023; 12:cells12060861. [PMID: 36980202 PMCID: PMC10046962 DOI: 10.3390/cells12060861] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The immunotherapies based on ICIs in CRC are nowadays limited to microsatellite unstable tumours which are approximately 15% of all CRC cases. There are a few new immune checkpoints belonging to the B7 family, including B7H4. B7H4 expression is associated with so-called “cold tumours”, and its function is linked to the downregulation of various immune cell populations. Our study aimed to investigate whether B7H4 expression is dependent on microsatellite status in CRC and on elucidating the immunological context in which the expression of B7H4 occurs. We enrolled 167 patients in the study. We prepared the homogenates from tumour tissues and healthy adjacent tissue to assess the B7H4 levels and the Bio-Plex Pro Human 48-cytokine panel. We assessed the microsatellite status of the tumour, B7H4 expression, CD8+ T cell population, and the TILs and budding in H + E stained slides by the IHC method. We used an online available database for further exploring the biological characteristics of B7H4. The expression of B7H4 was more frequent in microsatellite stable tumours, and was negatively associated with TILs. B7H4 is positively correlated with antitumour immunosuppressive iTME, thus contributing to the immunosuppressive environment in CRC.
Collapse
|
6
|
Wang M, Zhang L, Chang W, Zhang Y. The crosstalk between the gut microbiota and tumor immunity: Implications for cancer progression and treatment outcomes. Front Immunol 2023; 13:1096551. [PMID: 36726985 PMCID: PMC9885097 DOI: 10.3389/fimmu.2022.1096551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
The gastrointestinal tract is inhabited by trillions of commensal microorganisms that constitute the gut microbiota. As a main metabolic organ, the gut microbiota has co-evolved in a symbiotic relationship with its host, contributing to physiological homeostasis. Recent advances have provided mechanistic insights into the dual role of the gut microbiota in cancer pathogenesis. Particularly, compelling evidence indicates that the gut microbiota exerts regulatory effects on the host immune system to fight against cancer development. Some microbiota-derived metabolites have been suggested as potential activators of antitumor immunity. On the contrary, the disequilibrium of intestinal microbial communities, a condition termed dysbiosis, can induce cancer development. The altered gut microbiota reprograms the hostile tumor microenvironment (TME), thus allowing cancer cells to avoid immunosurvelliance. Furthermore, the gut microbiota has been associated with the effects and complications of cancer therapy given its prominent immunoregulatory properties. Therapeutic measures that aim to manipulate the interplay between the gut microbiota and tumor immunity may bring new breakthroughs in cancer treatment. Herein, we provide a comprehensive update on the evidence for the implication of the gut microbiota in immune-oncology and discuss the fundamental mechanisms underlying the influence of intestinal microbial communities on systemic cancer therapy, in order to provide important clues toward improving treatment outcomes in cancer patients.
Collapse
|
7
|
The Cytokine Network in Colorectal Cancer: Implications for New Treatment Strategies. Cells 2022; 12:cells12010138. [PMID: 36611932 PMCID: PMC9818504 DOI: 10.3390/cells12010138] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequent tumor entities worldwide with only limited therapeutic options. CRC is not only a genetic disease with several mutations in specific oncogenes and/or tumor suppressor genes such as APC, KRAS, PIC3CA, BRAF, SMAD4 or TP53 but also a multifactorial disease including environmental factors. Cancer cells communicate with their environment mostly via soluble factors such as cytokines, chemokines or growth factors to generate a favorable tumor microenvironment (TME). The TME, a heterogeneous population of differentiated and progenitor cells, plays a critical role in regulating tumor development, growth, invasion, metastasis and therapy resistance. In this context, cytokines from cancer cells and cells of the TME influence each other, eliciting an inflammatory milieu that can either enhance or suppress tumor growth and metastasis. Additionally, several lines of evidence exist that the composition of the microbiota regulates inflammatory processes, controlled by cytokine secretion, that play a role in carcinogenesis and tumor progression. In this review, we discuss the cytokine networks between cancer cells and the TME and microbiome in colorectal cancer and the related treatment strategies, with the goal to discuss cytokine-mediated strategies that could overcome the common therapeutic resistance of CRC tumors.
Collapse
|
8
|
Czajka-Francuz P, Cisoń-Jurek S, Czajka A, Kozaczka M, Wojnar J, Chudek J, Francuz T. Systemic Interleukins' Profile in Early and Advanced Colorectal Cancer. Int J Mol Sci 2021; 23:124. [PMID: 35008550 PMCID: PMC8745135 DOI: 10.3390/ijms23010124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 02/05/2023] Open
Abstract
Tumor microenvironment (TME) is characterized by mutual interactions of the tumor, stromal and immune cells. Early and advanced colorectal tumors differ in structure and present altered serum cytokine levels. Mutual crosstalk among TME infiltrating cells may shift the balance into immune suppressive or pro-inflammatory, antitumor response this way influencing patients' prognosis. Cancer-related inflammation affects all the body and this way, the systemic level of cytokines could reflect TME processes. Despite numerous studies, it is still not known how systemic cytokines levels change during colorectal cancer (CRC) tumor development. Better understanding tumor microenvironment processes could help in planning therapeutic interventions and more accurate patient prognosis. To contribute to the comprehension of these processes within TME, we reviewed cytokines levels from clinical trials in early and advanced colorectal cancer. Presented data were analyzed in the context of experimental studies and studies analyzing tumor infiltration with immune cells. The review summarizes clinical data of cytokines secreted by tumor microenvironment cells: lymphocytes T helper 1 (Th1), lymphocytes T helper 2 (Th2), lymphocytes T helper 17 (Th17), regulatory T cells (Treg cells), regulatory T cells (Breg cells), M1/M2 macrophages, N1/N2 neutrophils, myeloid-derived suppressor cells (MDSC), dendritic cells (DC), innate lymphoid cells (ILC) natural killer (NK) cells and tumor cells.
Collapse
Affiliation(s)
- Paulina Czajka-Francuz
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
| | - Sylwia Cisoń-Jurek
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
| | - Aleksander Czajka
- Department of General Surgery, Vascular Surgery, Angiology and Phlebology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-635 Katowice, Poland;
| | - Maciej Kozaczka
- Department of Radiotherapy and Chemotherapy, National Institute of Oncology, Public Research Institute in Gliwice, 44-101 Gliwice, Poland;
| | - Jerzy Wojnar
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
| | - Jerzy Chudek
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
| | - Tomasz Francuz
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
9
|
Zhang Z, Zhou Q, Ouyang J, Pu J, Hou J, Zhang J. Expression and clinical significance of interleukin-9 in renal tumors. Transl Androl Urol 2021; 9:2657-2664. [PMID: 33457237 PMCID: PMC7807335 DOI: 10.21037/tau-20-761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background To measure expression levels of interleukin-9 (IL-9) in renal tumors and to determine the clinical significance of those levels. Methods Using TCGA database analysis, we found that the expression of IL-9 in renal clear cell carcinoma was significantly down-regulated, and was significantly related to survival. We then verified this using experiments. We enrolled 66 patients who underwent surgical resection of renal tumors between January and December 2018 at the First Affiliated Hospital of Soochow University. Their tumor tissues were paired with adjacent normal tissues and IL-9 expression levels were measured using immunohistochemistry. We determined the correlation of IL-9 expression with clinicopathological features and progression-free survival (PFS). Results Expression of IL-9 in renal tumors was significantly lower than in adjacent normal tissues (P<0.0001). There was a significant negative correlation between IL-9 expression levels and R.E.N.A.L. scores (P=0.0277) as well as with differentiation (P=0.0041). However, no significant correlation was found between IL-9 levels and clinicopathological features, including gender (P=0.0716), age (P=0.2566), body mass index (BMI) (P=0.7941), tumor size (P=0.4193) or TNM staging (P=0.5402). PFS time in renal tumor patients with positive IL-9 expression was similar to that of patients with negative IL-9 expression. Conclusions IL-9 expression was higher in adjacent normal tissues than in renal tumors. Low expression of IL-9 was detected when R.E.N.A.L. score was high or cell differentiation was poor, suggesting that IL-9 may may play a protective role in renal tumor microenvironments.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Zhou
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Ouyang
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinxian Pu
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianquan Hou
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianglei Zhang
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
10
|
Niccolai E, Russo E, Baldi S, Ricci F, Nannini G, Pedone M, Stingo FC, Taddei A, Ringressi MN, Bechi P, Mengoni A, Fani R, Bacci G, Fagorzi C, Chiellini C, Prisco D, Ramazzotti M, Amedei A. Significant and Conflicting Correlation of IL-9 With Prevotella and Bacteroides in Human Colorectal Cancer. Front Immunol 2021; 11:573158. [PMID: 33488574 PMCID: PMC7820867 DOI: 10.3389/fimmu.2020.573158] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Background and aim Gut microbiota (GM) can support colorectal cancer (CRC) progression by modulating immune responses through the production of both immunostimulatory and/or immunosuppressive cytokines. The role of IL-9 is paradigmatic because it can either promote tumor progression in hematological malignancies or inhibit tumorigenesis in solid cancers. Therefore, we investigate the microbiota–immunity axis in healthy and tumor mucosa, focusing on the correlation between cytokine profile and GM signature. Methods In this observational study, we collected tumor (CRC) and healthy (CRC-S) mucosa samples from 45 CRC patients, who were undergoing surgery in 2018 at the Careggi University Hospital (Florence, Italy). First, we characterized the tissue infiltrating lymphocyte subset profile and the GM composition. Subsequently, we evaluated the CRC and CRC-S molecular inflammatory response and correlated this profile with GM composition, using Dirichlet multinomial regression. Results CRC samples displayed higher percentages of Th17, Th2, and Tregs. Moreover, CRC tissues showed significantly higher levels of MIP-1α, IL-1α, IL-1β, IL-2, IP-10, IL-6, IL-8, IL-17A, IFN-γ, TNF-α, MCP-1, P-selectin, and IL-9. Compared to CRC-S, CRC samples also showed significantly higher levels of the following genera: Fusobacteria, Proteobacteria, Fusobacterium, Ruminococcus2, and Ruminococcus. Finally, the abundance of Prevotella spp. in CRC samples negatively correlated with IL-17A and positively with IL-9. On the contrary, Bacteroides spp. presence negatively correlated with IL-9. Conclusions Our data consolidate antitumor immunity impairment and the presence of a distinct microbiota profile in the tumor microenvironment compared with the healthy mucosa counterpart. Relating the CRC cytokine profile with GM composition, we confirm the presence of bidirectional crosstalk between the immune response and the host’s commensal microorganisms. Indeed, we document, for the first time, that Prevotella spp. and Bacteroides spp. are, respectively, positively and negatively correlated with IL-9, whose role in CRC development is still under debate.
Collapse
Affiliation(s)
- Elena Niccolai
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Edda Russo
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Simone Baldi
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Federica Ricci
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" University of Florence, Florence, Italy
| | - Giulia Nannini
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Matteo Pedone
- Department of Statistics, Computer Science, Applications "G. Parenti", Florence, Italy
| | | | - Antonio Taddei
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | | | - Paolo Bechi
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Florence, Italy
| | - Renato Fani
- Department of Biology, University of Florence, Florence, Italy
| | - Giovanni Bacci
- Department of Biology, University of Florence, Florence, Italy
| | - Camilla Fagorzi
- Department of Biology, University of Florence, Florence, Italy
| | | | - Domenico Prisco
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy.,SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" University of Florence, Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy.,SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Florence, Italy
| |
Collapse
|
11
|
Ji D, Zhang D, Zhan T, Jia J, Han W, Li Z, Li M, Song C, Wang J, Gu J. Tumor mutation burden in blood predicts benefit from neoadjuvant chemo/radiotherapy in locally advanced rectal cancer. Genomics 2020; 113:957-966. [PMID: 33129922 DOI: 10.1016/j.ygeno.2020.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/27/2020] [Accepted: 10/26/2020] [Indexed: 01/12/2023]
Abstract
Distant metastasis has been the major concern of prognosis in patients with locally advanced rectal cancer (LARC). The purpose of this study was to investigate the prognostic value of TMB in blood (bTMB) in LARC patients after receiving neoadjuvant chemoradiotherapy (nCRT) and surgery. Using targeted ctDNA sequencing, we revealed that bTMB level at baseline was positively correlated with recurrence-free survival (RFS). Following nCRT, the patients with decreasing TMB tends to have a longer median RFS. bTMB level after surgery was negatively correlated with RFS. The serum cytokines including IFNγ, IFNα2, IL-1β, IL-2 and MIP-1β were significantly higher in pre-nCRT serum with higher bTMB group than that of lower bTMB group. Clonal evolution analysis showed that the pre- and post-nCRT ctDNAs of most cases had shared mutations. In conclusion, we presume that bTMB could potentially improve pre- and post-treatment risk assessment and facilitate individualized therapy for patients with LARC.
Collapse
Affiliation(s)
- Dengbo Ji
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Haidian District, Beijing 100142, China
| | - Dakui Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Haidian District, Beijing 100142, China; Department of General Surgery, China-Japan Friendship Hospital, 100029, China
| | - Tiancheng Zhan
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Haidian District, Beijing 100142, China
| | - Jinying Jia
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Haidian District, Beijing 100142, China
| | - Wenbo Han
- Genecast Biotechnology Co., Beijing 100191, China
| | - Zhaowei Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Haidian District, Beijing 100142, China
| | - Ming Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Haidian District, Beijing 100142, China
| | - Can Song
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Peking-Tsinghua Center for Life Sciences, China
| | - Jianfei Wang
- Genecast Biotechnology Co., Beijing 100191, China
| | - Jin Gu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Haidian District, Beijing 100142, China; Peking-Tsinghua Center for Life Sciences, China; Peking University S.G. Hospital, China.
| |
Collapse
|
12
|
Wang J, Sun M, Zhao H, Huang Y, Li D, Mao D, Zhang Z, Zhu X, Dong X, Zhao X. IL-9 Exerts Antitumor Effects in Colon Cancer and Transforms the Tumor Microenvironment In Vivo. Technol Cancer Res Treat 2019; 18:1533033819857737. [PMID: 31242804 PMCID: PMC6598323 DOI: 10.1177/1533033819857737] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
As a newly discovered cytokine, interleukin 9 was initially considered a T-lymphocyte growth factor. Interleukin 9 affects target cells by binding to a member of the γc-family of receptors and is involved in inflammation, autoimmune diseases, and other ailments. In recent years, mounting evidence reveals that interleukin 9 exerts antitumor effects, which has attracted considerable attention. Many previous studies were performed in vivo by establishing a mouse model of melanoma. Here, interleukin 9 protein and messenger RNA expression levels were both low in colon carcinoma tissue specimens, as assessed by immunohistochemistry and quantitative real-time polymerase chain reaction. In addition, interleukin 9 expression in these samples was correlated with TNM staging, Dukes staging, lymph node metastasis, and good prognosis, but not with gender, age, tumor size, tumor differentiation, and hepatic metastasis. In vivo, by establishing a mouse subcutaneous allograft model, we found that interleukin 9 overexpression inhibited tumor growth and resulted in longer survival time. Then, antitumor immune responses were increased by interleukin 9 as demonstrated by flow cytometry. Furthermore, interleukin 9 was shown to exert antitumor effects by regulating T-cell function and killing tumor cells in the tumor microenvironment. Overall, this study revealed that interleukin 9 exerts robust antitumor effects in colon cancer and transforms the tumor microenvironment in vivo.
Collapse
Affiliation(s)
- Jin Wang
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,2 Jiangsu Institute of Clinical Immunology, Soochow University, Suzhou, China.,3 Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,4 Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mingbing Sun
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Zhao
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Huang
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dongbao Li
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Deli Mao
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhe Zhang
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinguo Zhu
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoqiang Dong
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Zhao
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,2 Jiangsu Institute of Clinical Immunology, Soochow University, Suzhou, China.,3 Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,4 Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
13
|
Cui G. T H9, T H17, and T H22 Cell Subsets and Their Main Cytokine Products in the Pathogenesis of Colorectal Cancer. Front Oncol 2019; 9:1002. [PMID: 31637216 PMCID: PMC6787935 DOI: 10.3389/fonc.2019.01002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/18/2019] [Indexed: 12/17/2022] Open
Abstract
In recent years, several newly identified T helper (TH) cell subsets, such as TH9, TH17, and TH22 cells, and their respective cytokine products, IL-9, IL-17, and IL-22, have been reported to play critical roles in the development of chronic inflammation in the colorectum. Since chronic inflammation is a potent driving force for the development of human colorectal cancer (CRC), the contributions of TH9/IL-9, TH17/IL-17, and TH22/IL-22 in the pathogenesis of CRC have recently become an increasingly popular area of scientific investigation. Extensive laboratory and clinical evidence suggests a positive relationship between these new TH subsets and the growth and formation of CRC, whereas, administration of IL-9, IL-17, and IL-22 signaling inhibitors can significantly alter the formation of colorectal chronic inflammation or CRC lesions in animal models, suggesting that blocking these cytokine signals might represent promising immunotherapeutic strategies. This review summarizes recent findings and currently available data for understanding the vital role and therapeutic significance of TH9/IL-9, TH17/IL-17, and TH22/IL-22 in the development of colorectal tumorigenesis.
Collapse
Affiliation(s)
- Guanglin Cui
- Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Faculty of Health Science, Nord University, Levanger, Norway
| |
Collapse
|
14
|
The dichotomous function of interleukin-9 in cancer diseases. J Mol Med (Berl) 2019; 97:1377-1383. [PMID: 31396657 DOI: 10.1007/s00109-019-01826-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/09/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022]
Abstract
The pleiotropic function of the cytokine IL-9 is so far described in many inflammation processes and autoimmune diseases. But its role in cancer immunology is rather diverse as it can have a pro-tumorigenic function as well as anti-tumorigenic characteristics. In various disease models of cancer, this cytokine is involved in different signaling pathways triggering the expression of proteins involved in cell growth, migration, and transformation or repressing cells from the adaptive immune system to reject tumor growth. Additionally, there are even therapeutic approaches for IL-9 in cancer development. This review will give an overview of the various roles of IL-9 in different immune organs and cells and provide an insight in the current state of research in the IL-9-dependent cancer area.
Collapse
|
15
|
Lee JE, Zhu Z, Bai Q, Brady TJ, Xiao H, Wakefield MR, Fang Y. The Role of Interleukin-9 in Cancer. Pathol Oncol Res 2019; 26:2017-2022. [PMID: 31016637 DOI: 10.1007/s12253-019-00665-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/12/2019] [Indexed: 10/27/2022]
Abstract
Interluekin-9 (IL-9) is produced predominantly by helper T cells such as Th2 and Th9 cells. It normally functions through the activation of a JAK/STAT pathway and plays a critical role in immunity and the pathogenesis of cancer. In cancer, it yields different responses depending on the cancer cell line involved. This review is a summary of what is known about the involvement of IL-9 in various cancer cell lines as well as its role in immunity with a focus on allergic responses.
Collapse
Affiliation(s)
- Jacob E Lee
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, Iowa, 50312, USA
| | - Ziwen Zhu
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | - Tucker J Brady
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, Iowa, 50312, USA
| | - Huaping Xiao
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, Iowa, 50312, USA.,The Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, Iowa, 50312, USA. .,Department of Surgery, University of Missouri School of Medicine, Columbia, MO, USA.
| |
Collapse
|
16
|
Kaleta-Richter M, Kawczyk-Krupka A, Aebisher D, Bartusik-Aebisher D, Czuba Z, Cieślar G. The capability and potential of new forms of personalized colon cancer treatment: Immunotherapy and Photodynamic Therapy. Photodiagnosis Photodyn Ther 2019; 25:253-258. [PMID: 30611864 DOI: 10.1016/j.pdpdt.2019.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION PDT can interfere with cytokine-mediated responses that play an important role in the processes of cancer progression, tumor angiogenesis and metastasis. Therefore, based on the identification of these cancer biomarkers, the therapy of combining various forms of treatment, including immunotherapy and PDT, may be a justified strategy for colorectal cancer treatment that focuses on individualized comprehensive therapy. METHOD We reviewed the major approaches on the use of immunotherapy in colorectal cancer, with the special regard to photodynamic therapy, its immunological effect and new oncological treatment directions, connected with adjuvant immunotherapy including use of nanoparticles. Databases such as PubMed, ScienceDirect and Springer were utilized to search the literature for relevant articles. PURPOSE To review studies of the immunotherapy in colon cancer and immune response to PDT. CONCLUSION Based on the identification of immunological cancer biomarkers, the therapy of combining various forms of treatment, including immunotherapy and PDT, may be a justified strategy for colorectal cancer treatment that focuses on individualized comprehensive therapy.
Collapse
Affiliation(s)
- Marta Kaleta-Richter
- School of Medicine with the Division of Dentistry in Zabrze, Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego Street 15, 41-902 Bytom, Poland; School of Medicine with the Division of Dentistry in Zabrze, Department of Internal Medicine, Dermatology and Allergology, Medical University of Silesia in Katowice, Marii Curie - Skłodowskiej Street 10, 41-800 Zabrze, Poland.
| | - Aleksandra Kawczyk-Krupka
- School of Medicine with the Division of Dentistry in Zabrze, Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego Street 15, 41-902 Bytom, Poland.
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Faculty of Medicine, University of Rzeszów, Tadeusza Rejtana Avenue 16 C, 35-310 Rzeszów, Poland.
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Faculty of Medicine, University of Rzeszów, Tadeusza Rejtana Avenue 16 C, 35-310 Rzeszów, Poland.
| | - Zenon Czuba
- School of Medicine with the Division of Dentistry in Zabrze, Department of Microbiology and Immunology, Medical University of Silesia in Katowice, 19 Jordana St., 41- 808 Zabrze, Poland.
| | - Grzegorz Cieślar
- School of Medicine with the Division of Dentistry in Zabrze, Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego Street 15, 41-902 Bytom, Poland.
| |
Collapse
|
17
|
Liang J, Wu J, Wang F, Zhang P, Zhang X. Semaphoring 4D is required for the induction of antioxidant stress and anti-inflammatory effects of dihydromyricetin in colon cancer. Int Immunopharmacol 2018; 67:220-230. [PMID: 30562683 DOI: 10.1016/j.intimp.2018.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022]
Abstract
Semaphorin 4D (Sema4D) has been involved in cancer progression, the expression of which is associated with the poor clinical outcomes of some cancer patients. Dihydromyricetin (DMY) has antitumor potentials for different types of human cancer cells. However, the pharmacological effects of DMY on colon cancer (CC) or the regulatory effects of Sema4D on this process remain largely unknown. In the present study, we aimed to evaluate the effects of DMY on CC, and to elucidate the role of Sema4D in DMY-induced antitumor effects. DMY inhibited the proliferation and growth of Colo-205 colon cancer cells significantly in vivo and in vitro. DMY inhibited reactive oxygen species (ROS) and malondialdehyde (MDA) levels, but increased glutathione (GSH) level. Moreover, the activities of antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and heme oxygenase 1 (HO-1) were enhanced by DMY treatment in vitro, showing strong anti-oxidative stress effect. In addition, DMY inhibited the secretion of interleukin 1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor (TNF-α) in the supernatant of Colo-205 culture medium. Besides, the expressions of cyclooxygenase (COX-2) and inducible nitric oxide synthase (iNOS) were suppressed by DMY in dose-dependent manners in vivo, showing potent anti-inflammatory effect. Further investigations showed that DMY suppressed the expression and secretion of Sema4D in Colo-205 cells and tissues. Interestingly, overexpression of Sema4D significantly weakened the regulatory effects of DMY on oxidative stress. Furthermore, overexpression of Sema4D significantly attenuated the anti-inflammatory effects of DMY. Collectively, we drew a conclusion that the anti-colon cancer effect of DMY was attributed to its negative modulation on oxidative stress and inflammation via suppression of Sema4D. The findings broaden the width and depth of molecular mechanisms involved in the DMY action, facilitating the development of DMY in anti-colon cancer therapies.
Collapse
Affiliation(s)
- Jun Liang
- Oncology Medicine Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jing Wu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Fei Wang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Pengfei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xuemei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
18
|
王 进, 董 晓, 朱 新, 赵 华, 毛 德, 赵 鑫. [Expression of interleukin-9 in colon cancer tissues and its clinical significance]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:943-948. [PMID: 30187869 PMCID: PMC6744043 DOI: 10.3969/j.issn.1673-4254.2018.08.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the expression of interleukin-9 (IL-9) in colon cancer tissues and its clinical significance. METHODS Immunohistochenmistry and qRT-PCR were used to detect the expressions of IL-9 protein and mRNA in 92 colon cancer tissues and paired adjacent normal tissues. The correlation of IL-9 expressions with the clinicopathological features and prognosis of the patients was analyzed. RESULTS IL-9 protein and mRNA expressions were significantly higher in adjacent normal tissues than in the colon cancer tissues (P < 0.001). In colon cancer patients, IL-9 expression was significantly correlated with TNM stage (P=0.013), Ducks stage (P=0.025) and lymph node metastasis (P=0.004) but not with gender, age, tumor size, differentiation or hepatic metastasis (P > 0.05). The survival time of colon cancer patients with positive IL-9 expression was significantly longer than that of patients negative for IL-9 expression (P=0.015). CONCLUSIONS IL-9 expression is lowered in colon cancer tissues compoved with in the adjacent normal tissues. IL-9 expression is negatively correlated with TNM staging, Ducks staging and lymph node metastasis but positively with good prognosis, suggesting its important role in the tumor microenvironment of colon cancer.
Collapse
Affiliation(s)
- 进 王
- />苏州大学附属第一医院普外科,江苏 苏州 215006Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - 晓强 董
- />苏州大学附属第一医院普外科,江苏 苏州 215006Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - 新国 朱
- />苏州大学附属第一医院普外科,江苏 苏州 215006Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - 华 赵
- />苏州大学附属第一医院普外科,江苏 苏州 215006Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - 德利 毛
- />苏州大学附属第一医院普外科,江苏 苏州 215006Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - 鑫 赵
- />苏州大学附属第一医院普外科,江苏 苏州 215006Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
19
|
Do Thi VA, Park SM, Lee H, Kim YS. Ectopically Expressed Membrane-bound Form of IL-9 Exerts Immune-stimulatory Effect on CT26 Colon Carcinoma Cells. Immune Netw 2018; 18:e12. [PMID: 29503742 PMCID: PMC5833119 DOI: 10.4110/in.2018.18.e12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/12/2022] Open
Abstract
IL-9 is a known T cell growth factor with pleiotropic immunological functions, especially in parasite infection and colitis. However, its role in tumor growth is controversial. In this study, we generated tumor clones expressing the membrane-bound form of IL-9 (MB-IL-9) and investigated their influences on immune system. MB-IL-9 tumor clones showed reduced tumorigenicity but shortened survival accompanied with severe body weight loss in mice. MB-IL-9 expression on tumor cells had no effect on cell proliferation or major histocompatibility complex class I expression in vitro. MB-IL-9 tumor clones were effective in amplifying CD4+ and CD8+ T cells and increasing cytotoxic activity against CT26 cells in vivo. We also observed a prominent reduction in body weights and survival period of mice injected intraperitoneally with MB-IL-9 clones compared with control groups. Ratios of IL-17 to interferon (IFN)-γ in serum level and tumor mass were higher in mice implanted with MB-IL-9 tumor clones than those observed in mice implanted with control cells. These results indicate that the ectopic expression of the MB-IL-9 on tumor cells exerts an immune-stimulatory effect with toxicity. To exploit its benefits as a tumor vaccine, a strategy to control the toxicity of MB-IL-9 tumor clones should be developed.
Collapse
Affiliation(s)
- Van Anh Do Thi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Sang Min Park
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Hayyoung Lee
- Institute of Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea.,Institute of Biotechnology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
20
|
Masuda J, Takayama E, Strober W, Satoh A, Morimoto Y, Honjo Y, Ichinohe T, Tokuno SI, Ishizuka T, Nakata T, Mizutani A, Umemura N, Kitani A, Fuss IJ, Shigehiro T, Kawaki H, Mizuno-Kamiya M, Kondoh N, Seno M. Tumor growth limited to subcutaneous site vs tumor growth in pulmonary site exhibit differential effects on systemic immunities. Oncol Rep 2017; 38:449-455. [PMID: 28535011 DOI: 10.3892/or.2017.5646] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/08/2017] [Indexed: 12/23/2022] Open
Abstract
To evaluate systemic immunity associated with tumor growth limited to a subcutaneous site versus growth proceeding at multiple tumor sites, we established syngeneic mouse subcutaneous and pulmonary tumor models by local subcutaneous and intravenous injection of colon carcinoma CT26 cells. We found that splenic myeloid-derived suppressor cell (MDSC) levels were significantly increased in the subcutaneous tumor model but not in the pulmonary tumor model. Furthermore, both CD4+ and CD8+ T cells as well as CD4+ Foxp3+ T cells were significantly decreased in the subcutaneous tumor model and were largely unchanged in the pulmonary tumor model. In addition, the subcutaneous model, but not the pulmonary model, displayed a Th1 polarization bias. This bias was characterized by decreased IL-4, IL-9, and IL-10 production, whereas the pulmonary model displayed increased production of IL-10. These results suggest that the mode of tumor development has differential effects on systemic immunity that may, in turn, influence approaches to treatment of cancer patients.
Collapse
Affiliation(s)
- Junko Masuda
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Eiji Takayama
- Department of Oral Biochemistry, Asahi University School of Dentistry, Gifu, Japan
| | - Warren Strober
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ayano Satoh
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Yuji Morimoto
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Yasuko Honjo
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Shin-Ichi Tokuno
- Verbal Analysis of Pathophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Ishizuka
- Department of Pharmacology, National Defense Medical College, Saitama, Japan
| | - Takahiro Nakata
- Department of Molecular and Cellular Anatomy, Faculty of Health Promotional Science, Tokoha University, Hamamatsu, Japan
| | - Akifumi Mizutani
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Naoki Umemura
- Department of Oral Biochemistry, Asahi University School of Dentistry, Gifu, Japan
| | - Atsushi Kitani
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ivan J Fuss
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tsukasa Shigehiro
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Harumi Kawaki
- Department of Oral Biochemistry, Asahi University School of Dentistry, Gifu, Japan
| | - Masako Mizuno-Kamiya
- Department of Oral Biochemistry, Asahi University School of Dentistry, Gifu, Japan
| | - Nobuo Kondoh
- Department of Oral Biochemistry, Asahi University School of Dentistry, Gifu, Japan
| | - Masaharu Seno
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
21
|
Interleukin-9 Promotes Pancreatic Cancer Cells Proliferation and Migration via the miR-200a/Beta-Catenin Axis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2831056. [PMID: 28349057 PMCID: PMC5352879 DOI: 10.1155/2017/2831056] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/07/2017] [Accepted: 02/14/2017] [Indexed: 01/30/2023]
Abstract
Background. Both IL-9 and miR-200a are involved in the pathogenesis of cancers; however, the role of IL-9 in pancreatic cancer and the possible underlying mechanisms remain unknown. The aim of this study was to investigate the effect of IL-9 on pancreatic cancer cells and its interaction with miR-200a. Methods. Pancreatic cancer cells (PANC-1 and AsPC-1) were treated with IL-9 and the expression of miR-200a and β-catenin in pancreatic cancer cells was measured. β-Catenin was examined as a target gene of miR-200a in pancreatic cancer cells. The interaction between IL-9 and miR-200a in pancreatic cancer cells was determined by infecting miR-200a mimics prior to IL-9 treatment and then measuring miR-200a and β-catenin expression. Results. IL-9 significantly promoted the proliferation, invasion, and migration of pancreatic cancer cells; however, the effect on pancreatic cancer cell apoptosis was insignificant. β-Catenin was verified as a target gene of miR-200a in pancreatic cancer cells. Overexpression of miR-200a in pancreatic cancer cells significantly attenuated proliferation and metastasis and reduced β-catenin expression. IL-9 treatment of pancreatic cancer cells decreased miR-200a expression and increased β-catenin expression. The effect of miR-200a on pancreatic cancer cells decreased following IL-9 treatment. Conclusions. IL-9 promotes proliferation and metastasis in pancreatic cancer cells; this effect may partly involve regulation of the miR-200a/β-catenin axis.
Collapse
|
22
|
Mager LF, Wasmer MH, Rau TT, Krebs P. Cytokine-Induced Modulation of Colorectal Cancer. Front Oncol 2016; 6:96. [PMID: 27148488 DOI: 10.3389/fonc.2016.00096] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/02/2016] [Indexed: 12/12/2022] Open
Abstract
The emergence of novel immunomodulatory cancer therapies over the last decade, above all immune checkpoint blockade, has significantly advanced tumor treatment. For colorectal cancer (CRC), a novel scoring system based on the immune cell infiltration in tumors has greatly improved disease prognostic evaluation and guidance to more specific therapy. These findings underline the relevance of tumor immunology in the future handling and therapeutic approach of malignant disease. Inflammation can either promote or suppress CRC pathogenesis and inflammatory mediators, mainly cytokines, critically determine the pro- or anti-tumorigenic signals within the tumor environment. Here, we review the current knowledge on the cytokines known to be critically involved in CRC development and illustrate their mechanisms of action. We also highlight similarities and differences between CRC patients and murine models of CRC and point out cytokines with an ambivalent role for intestinal cancer. We also identify some of the future challenges in the field that should be addressed for the development of more effective immunomodulatory therapies.
Collapse
Affiliation(s)
- Lukas F Mager
- Institute of Pathology, University of Bern , Bern , Switzerland
| | - Marie-Hélène Wasmer
- Institute of Pathology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Tilman T Rau
- Institute of Pathology, University of Bern , Bern , Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern , Bern , Switzerland
| |
Collapse
|