1
|
Kato N, Yang Y, Bumrungkit C, Kumrungsee T. Does Vitamin B6 Act as an Exercise Mimetic in Skeletal Muscle? Int J Mol Sci 2024; 25:9962. [PMID: 39337450 PMCID: PMC11432312 DOI: 10.3390/ijms25189962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Marginal vitamin B6 (B6) deficiency is common in various segments worldwide. In a super-aged society, sarcopenia is a major concern and has gained significant research attention focused on healthy aging. To date, the primary interventions for sarcopenia have been physical exercise therapy. Recent evidence suggests that inadequate B6 status is associated with an increased risk of sarcopenia and mortality among older adults. Our previous study showed that B6 supplementation to a marginal B6-deficient diet up-regulated the expression of various exercise-induced genes in the skeletal muscle of rodents. Notably, a supplemental B6-to-B6-deficient diet stimulates satellite cell-mediated myogenesis in rodents, mirroring the effects of physical exercise. These findings suggest the potential role of B6 as an exercise-mimetic nutrient in skeletal muscle. To test this hypothesis, we reviewed relevant literature and compared the roles of B6 and exercise in muscles. Here, we provide several pieces of evidence supporting this hypothesis and discuss the potential mechanisms behind the similarities between the effects of B6 and exercise on muscle. This research, for the first time, provides insight into the exercise-mimetic roles of B6 in skeletal muscle.
Collapse
Affiliation(s)
- Norihisa Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Yongshou Yang
- School of Life Sciences, Anhui University, Hefei 230601, China
| | - Chanikan Bumrungkit
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Thanutchaporn Kumrungsee
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
- Smart Agriculture, Graduate School of Innovation and Practice for Smart Society, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| |
Collapse
|
2
|
Mutavdzin Krneta S, Gopcevic K, Stankovic S, Jakovljevic Uzelac J, Todorovic D, Labudovic Borovic M, Rakocevic J, Djuric D. Insights into the Cardioprotective Effects of Pyridoxine Treatment in Diabetic Rats: A Study on Cardiac Oxidative Stress, Cardiometabolic Status, and Cardiovascular Biomarkers. Diagnostics (Basel) 2024; 14:1507. [PMID: 39061644 PMCID: PMC11275822 DOI: 10.3390/diagnostics14141507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The aims of this study were to examine the effects of pyridoxine administration on the activities of cardiac antioxidant stress enzymes superoxide dismutase (SOD) and catalase (CAT) and enzyme indicators of cardiometabolic status, lactate and malate dehydrogenase (LDH, MDH), as well as LDH and MDH isoforms' distribution in the cardiac tissue of healthy and diabetic Wistar male rats. Experimental animals were divided into five groups: C1-control (0.9% sodium chloride-NaCl-1 mL/kg, intraperitoneally (i.p.), 1 day); C2-second control (0.9% NaCl 1 mL/kg, i.p., 28 days); DM-diabetes mellitus (streptozotocin 100 mg/kg in 0.9% NaCl, i.p., 1 day); P-pyridoxine (7 mg/kg, i.p., 28 days); and DM + P-diabetes mellitus and pyridoxine (streptozotocin 100 mg/kg, i.p., 1 day and pyridoxine 7 mg/kg, i.p., 28 days). Pyridoxine treatment reduced CAT and MDH activity in diabetic rats. In diabetic rats, the administration of pyridoxine increased LDH1 and decreased LDH4 isoform activities, as well as decreased peroxisomal MDH and increased mitochondrial MDH activities. Our findings highlight the positive effects of pyridoxine administration on the complex interplay between oxidative stress, antioxidant enzymes, and metabolic changes in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Slavica Mutavdzin Krneta
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.J.U.); (D.T.); (D.D.)
| | - Kristina Gopcevic
- Institute of Chemistry in Medicine “Prof. Dr. Petar Matavulj”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Sanja Stankovic
- Centre for Medical Biochemistry, University Clinical Centre of Serbia, 11000 Belgrade, Serbia;
- Department of Biochemistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jovana Jakovljevic Uzelac
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.J.U.); (D.T.); (D.D.)
| | - Dušan Todorovic
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.J.U.); (D.T.); (D.D.)
| | - Milica Labudovic Borovic
- Institute of Histology and Embryology “Aleksandar Dj. Kostic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.L.B.); (J.R.)
| | - Jelena Rakocevic
- Institute of Histology and Embryology “Aleksandar Dj. Kostic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.L.B.); (J.R.)
| | - Dragan Djuric
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.J.U.); (D.T.); (D.D.)
| |
Collapse
|
3
|
Shen Y, Zhang C, Dai C, Zhang Y, Wang K, Gao Z, Chen X, Yang X, Sun H, Yao X, Xu L, Liu H. Nutritional Strategies for Muscle Atrophy: Current Evidence and Underlying Mechanisms. Mol Nutr Food Res 2024; 68:e2300347. [PMID: 38712453 DOI: 10.1002/mnfr.202300347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 02/28/2024] [Indexed: 05/08/2024]
Abstract
Skeletal muscle can undergo detrimental changes in various diseases, leading to muscle dysfunction and atrophy, thus severely affecting people's lives. Along with exercise, there is a growing interest in the potential of nutritional support against muscle atrophy. This review provides a brief overview of the molecular mechanisms driving skeletal muscle atrophy and summarizes recent advances in nutritional interventions for preventing and treating muscle atrophy. The nutritional supplements include amino acids and their derivatives (such as leucine, β-hydroxy, β-methylbutyrate, and creatine), various antioxidant supplements (like Coenzyme Q10 and mitoquinone, resveratrol, curcumin, quercetin, Omega 3 fatty acids), minerals (such as magnesium and selenium), and vitamins (such as vitamin B, vitamin C, vitamin D, and vitamin E), as well as probiotics and prebiotics (like Lactobacillus, Bifidobacterium, and 1-kestose). Furthermore, the study discusses the impact of a combined approach involving nutritional support and physical therapy to prevent muscle atrophy, suggests appropriate multi-nutritional and multi-modal interventions based on individual conditions to optimize treatment outcomes, and enhances the recovery of muscle function for patients. By understanding the molecular mechanisms behind skeletal muscle atrophy and implementing appropriate interventions, it is possible to enhance the recovery of muscle function and improve patients' quality of life.
Collapse
Grants
- 81901933 National Natural Science Foundation of China
- 82072160 National Natural Science Foundation of China
- 20KJA310012 Major Natural Science Research Projects in Universities of Jiangsu Province
- BK20202013 Natural Science Foundation of Jiangsu Province, and the Scientific Research Project of The Health Commission of Jiangsu Province
- BK20201209 Natural Science Foundation of Jiangsu Province, and the Scientific Research Project of The Health Commission of Jiangsu Province
- ZDB2020003 Natural Science Foundation of Jiangsu Province, and the Scientific Research Project of The Health Commission of Jiangsu Province
- QingLan Project in Jiangsu Universities
- JC22022037 The Priority Academic Program Development of Jiangsu Higher Education Institutions, and Nantong Science and Technology Program, and Nantong Health Medical Research Center
- MS22022010 The Priority Academic Program Development of Jiangsu Higher Education Institutions, and Nantong Science and Technology Program, and Nantong Health Medical Research Center
- JC12022010 The Priority Academic Program Development of Jiangsu Higher Education Institutions, and Nantong Science and Technology Program, and Nantong Health Medical Research Center
- HS2022003 The Priority Academic Program Development of Jiangsu Higher Education Institutions, and Nantong Science and Technology Program, and Nantong Health Medical Research Center
Collapse
Affiliation(s)
- Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Chen Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Chaolun Dai
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, P. R. China, 226001
| | - Yijie Zhang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, P. R. China, 226001
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Lingchi Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province, 226600, P. R. China
| |
Collapse
|
4
|
Kato N, Kimoto A, Zhang P, Bumrungkit C, Karunaratne S, Yanaka N, Kumrungsee T. Relationship of Low Vitamin B6 Status with Sarcopenia, Frailty, and Mortality: A Narrative Review. Nutrients 2024; 16:177. [PMID: 38202006 PMCID: PMC10780671 DOI: 10.3390/nu16010177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Marginal vitamin B6 (B6) deficiency is a widespread global concern. Inadequate B6 levels have been linked to an increased risk of age-related chronic diseases such as cardiovascular diseases and cancers. In recent years, the growing concern over sarcopenia (the age-related loss of muscle mass and strength) and frailty (a decline in physiological resilience and increased vulnerability associated with aging) is particularly relevant due to the emergence of super-aged societies in developed countries. Notably, among the thirty-one studies included in this review, twenty-five showed a significant association of B6 status with sarcopenia, frailty, and all-cause mortality in adults (p < 0.05), while six showed no association. Emerging studies have suggested novel mechanisms underlying this association. These mechanisms involve P2X7 receptor-mediated NLRP3 inflammasome signaling, AMPK signaling, PD-L1 signaling, and satellite cell-mediated myogenesis. Furthermore, the modulation of PLP-dependent enzymes due to B6 deficiency is associated with impaired metabolic processes, affecting energy utilization, imidazole peptide production, and hydrogen sulfide production, as well as the kynurenine pathway, all of which play vital roles in skeletal muscle health and pathophysiology. This narrative review provides an up-to-date assessment of our current understanding of the potential role of nutritional B6 status in combating sarcopenia, frailty, and mortality.
Collapse
Affiliation(s)
- Norihisa Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; (C.B.); (S.K.); (N.Y.)
| | - Akiko Kimoto
- Faculty of Health of Sciences, Hiroshima Shudo University, Hiroshima 731-3166, Japan;
| | - Peipei Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Science, Xiamen University, Xiamen 361102, China;
- School of Medicine, Xiamen University, Xiamen 361102, China
| | - Chanikan Bumrungkit
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; (C.B.); (S.K.); (N.Y.)
| | - Sajith Karunaratne
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; (C.B.); (S.K.); (N.Y.)
| | - Noriyuki Yanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; (C.B.); (S.K.); (N.Y.)
| | - Thanutchaporn Kumrungsee
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; (C.B.); (S.K.); (N.Y.)
- Graduate School of Innovation and Practice for Smart Society, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
5
|
Mohd Sahardi NFN, Jaafar F, Tan JK, Mad Nordin MF, Makpol S. Elucidating the Pharmacological Properties of Zingiber officinale Roscoe (Ginger) on Muscle Ageing by Untargeted Metabolomic Profiling of Human Myoblasts. Nutrients 2023; 15:4520. [PMID: 37960173 PMCID: PMC10648528 DOI: 10.3390/nu15214520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 11/15/2023] Open
Abstract
(1) Background: Muscle loss is associated with frailty and a reduction in physical strength and performance, which is caused by increased oxidative stress. Ginger (Zingiber officinale Roscoe) is a potential herb that can be used to reduce the level of oxidative stress. This study aimed to determine the effect of ginger on the expression of metabolites and their metabolic pathways in the myoblast cells to elucidate the mechanism involved and its pharmacological properties in promoting myoblast differentiation. (2) Methods: The myoblast cells were cultured into three stages (young, pre-senescent and senescent). At each stage, the myoblasts were treated with different concentrations of ginger extract. Then, metabolomic analysis was performed using liquid chromatography-tandem mass spectrometry (LCMS/MS). (3) Results: Nine metabolites were decreased in both the pre-senescent and senescent control groups as compared to the young control group. For the young ginger-treated group, 8-shogaol and valine were upregulated, whereas adipic acid and bis (4-ethyl benzylidene) sorbitol were decreased. In the pre-senescent ginger-treated group, the niacinamide was upregulated, while carnitine and creatine were downregulated. Ginger treatment in the senescent group caused a significant upregulation in 8-shogaol, octadecanamide and uracil. (4) Conclusions: Ginger extract has the potential as a pharmacological agent to reduce muscle loss in skeletal muscle by triggering changes in some metabolites and their pathways that could promote muscle regeneration in ageing.
Collapse
Affiliation(s)
- Nur Fatin Nabilah Mohd Sahardi
- Department of Biochemistry, Faculty of Medicine, Level 17, Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Faizul Jaafar
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Level 17, Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | | | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Level 17, Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
6
|
Magalhães NV, Waitzberg DL, Lopes NC, Vicedomini ACC, Prudêncio APA, Jacob-Filho W, Busse AL, Ferdinando D, Alves TP, Pereira RMR, Torrinhas RS, Belarmino G. High Prevalence of Energy and Nutrients Inadequacy among Brazilian Older Adults. Nutrients 2023; 15:3246. [PMID: 37513664 PMCID: PMC10384757 DOI: 10.3390/nu15143246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Poor nutrition increases the risk of diseases and adverse health outcomes in older adults. We evaluated the potential inadequacy of nutrient intake among older adults in Brazil and its association with body anthropometry and composition outcomes. Dietary intake was obtained from 295 community-living older adults (>60 years old), of both genders, using a seven-day food record. Nutrient inadequacy was further identified based on the Dietary Reference Intakes and European Guidelines. Skeletal muscle mass (SM), strength and performance, and the diagnosis of sarcopenia were assessed using reference methods. Nutritional inadequacy was high, with energy, dietary fiber, and six micronutrients exhibiting the greatest inadequacy levels (>80%). Energy intake was correlated with SM strength (p = 0.000) and performance (p = 0.001). Inadequate energy, fiber, and protein intakes influenced BMI, while inadequate intake of vitamin B6 directly affected the diagnosis of sarcopenia (p ≤ 0.005). Further research is required to investigate whether these inadequacies can be associated with other clinical health outcomes.
Collapse
Affiliation(s)
- Natalia Vieira Magalhães
- Laboratory of Nutrition and Metabolic Surgery of the Digestive System, LIM 35, Department of Gastroenterology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
| | - Dan Linetzky Waitzberg
- Laboratory of Nutrition and Metabolic Surgery of the Digestive System, LIM 35, Department of Gastroenterology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
| | - Natalia Correia Lopes
- Laboratory of Nutrition and Metabolic Surgery of the Digestive System, LIM 35, Department of Gastroenterology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
| | - Ana Carolina Costa Vicedomini
- Laboratory of Nutrition and Metabolic Surgery of the Digestive System, LIM 35, Department of Gastroenterology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
| | - Ana Paula Aguiar Prudêncio
- Laboratory of Nutrition and Metabolic Surgery of the Digestive System, LIM 35, Department of Gastroenterology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
| | - Wilson Jacob-Filho
- Laboratório de Investigação Médica em Envelhecimento (LIM-66), Serviço de Geriatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo 01246-903, SP, Brazil
| | - Alexandre Leopold Busse
- Laboratório de Investigação Médica em Envelhecimento (LIM-66), Serviço de Geriatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo 01246-903, SP, Brazil
| | - Douglas Ferdinando
- Laboratório de Investigação Médica em Envelhecimento (LIM-66), Serviço de Geriatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo 01246-903, SP, Brazil
| | - Tatiana Pereira Alves
- Laboratório de Investigação Médica em Envelhecimento (LIM-66), Serviço de Geriatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo 01246-903, SP, Brazil
| | - Rosa Maria Rodrigues Pereira
- Research Laboratory in Rheumatology, LIM-17, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
| | - Raquel Susana Torrinhas
- Laboratory of Nutrition and Metabolic Surgery of the Digestive System, LIM 35, Department of Gastroenterology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
| | - Giliane Belarmino
- Laboratory of Nutrition and Metabolic Surgery of the Digestive System, LIM 35, Department of Gastroenterology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
| |
Collapse
|
7
|
Wang Y, Zhao X, Ma Y, Yang Y, Ge S. The effects of vitamin B6 on the nutritional support of BCAAs-enriched amino acids formula in rats with partial gastrectomy. Clin Nutr 2023; 42:954-961. [PMID: 37104913 DOI: 10.1016/j.clnu.2023.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Total parenteral nutrition with the formula of amino acids enriched branched-chain amino acids (BCAAs) could promote patients' recovery after gastrointestinal surgery. Previous studies reported that vitamin B6 could promote amino acid metabolism and enhance protein synthesis. The aim of this study was to determine if the addition of vitamin B6 to BCAAs-enriched formula can enhance postoperative nutritional status and intestinal function in rats undergoing partial gastrectomy, and the appropriate compatibility concentration of vitamin B6. METHODS Fifty-six male rats were randomly divided into seven groups (n = 8 per group): (I) Control, (II) BCAAs-enriched formula group (BCAA), (III) BCAA plus vitamin B6 (50 mg/L), (IV) BCAA plus vitamin B6 (100 mg/L), (V) BCAA plus vitamin B6 (200 mg/L), (VI) BCAA plus vitamin B6 (500 mg/L), and (VII) BCAA plus vitamin B6 (1000 mg/L). All animals were performed partial gastrectomy and placed a jugular vein catheter. During enteral nutrition, blood and urine samples were repeatedly collected. Gastrocnemius muscle and small intestine were also collected at the end of experiment. RESULTS The addition of vitamin B6 to BCAAs-enriched formula improved negative nitrogen balance after gastrectomy compared to the BCAAs-enriched formula group at POD1 (first postoperative day) and POD3 (third postoperative day), and 100 mg/L was an appropriate concentration of vitamin B6 to enhance the effects of BCAAs-enriched formula. The 3-methylhistidine/creatinine in BCAA plus vitamin B6 groups were significantly lower than that in the BCAA group at POD3. Moreover, BCAA plus vitamin B6 group significantly increased the cross-sectional area of the muscle fibers compared to the BCAA group. Transcriptome sequencing, GO and KEGG enhancement analysis also showed that BCAA plus vitamin B6 group showed muscle organ development and PI3K/AKT pathway enhancement compared to BCAA group. Moreover, AKT/mTOR/4EBP1 pathway was activated in BCAA plus vitamin B6 group. In addition, the results also showed that BCAA plus vitamin B6 decreased D-lactate, and exerted synergistic effects on intestinal morphology. CONCLUSION The addition of vitamin B6 to BCAAs-enriched formula could improve nitrogen balance, promote muscle protein synthesis through AKT/mTOR/4EBP1 pathway, and alleviate intestinal mucosa damage after partial gastrectomy in rats. Overall, the results from this pre-clinical study support the use of vitamin B6 as an ingredient to BCAAs-enriched formula, and 100 mg/L may be an optimal concentration for rats.
Collapse
Affiliation(s)
- Ying Wang
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| | - Xining Zhao
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| | - Yimei Ma
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| | - Yuying Yang
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| | - Shengjin Ge
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
8
|
Cai Z, Liu D, Yang Y, Xie W, He M, Yu D, Wu Y, Wang X, Xiao W, Li Y. The role and therapeutic potential of stem cells in skeletal muscle in sarcopenia. Stem Cell Res Ther 2022; 13:28. [PMID: 35073997 PMCID: PMC8785537 DOI: 10.1186/s13287-022-02706-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/05/2022] [Indexed: 01/23/2023] Open
Abstract
Sarcopenia is a common age-related skeletal muscle disorder featuring the loss of muscle mass and function. In regard to tissue repair in the human body, scientists always consider the use of stem cells. In skeletal muscle, satellite cells (SCs) are adult stem cells that maintain tissue homeostasis and repair damaged regions after injury to preserve skeletal muscle integrity. Muscle-derived stem cells (MDSCs) and SCs are the two most commonly studied stem cell populations from skeletal muscle. To date, considerable progress has been achieved in understanding the complex associations between stem cells in muscle and the occurrence and treatment of sarcopenia. In this review, we first give brief introductions to sarcopenia, SCs and MDSCs. Then, we attempt to untangle the differences and connections between these two types of stem cells and further elaborate on the interactions between sarcopenia and stem cells. Finally, our perspectives on the possible application of stem cells for the treatment of sarcopenia in future are presented. Several studies emerging in recent years have shown that changes in the number and function of stem cells can trigger sarcopenia, which in turn leads to adverse influences on stem cells because of the altered internal environment in muscle. A better understanding of the role of stem cells in muscle, especially SCs and MDSCs, in sarcopenia will facilitate the realization of novel therapy approaches based on stem cells to combat sarcopenia.
Collapse
Affiliation(s)
- Zijun Cai
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Di Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuntao Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Miao He
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Dengjie Yu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuxiang Wu
- School of Kinesiology, Jianghan University, Wuhan, 430056, China
| | - Xiuhua Wang
- Xiang Ya Nursing School, Central South University, Changsha, 410008, Hunan, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
9
|
Satellite Cells Exhibit Decreased Numbers and Impaired Functions on Single Myofibers Isolated from Vitamin B6-Deficient Mice. Nutrients 2021; 13:nu13124531. [PMID: 34960083 PMCID: PMC8705767 DOI: 10.3390/nu13124531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Emerging research in human studies suggests an association among vitamin B6, sarcopenia, and muscle strength. However, very little is known regarding its potential role at the cellular level, especially in muscle satellite cells. Therefore, to determine whether vitamin B6 affects the satellite cells, we isolated single myofibers from muscles of vitamin B6-deficient and vitamin B6-supplemented mice. Subsequently, we subjected them to single myofiber culture and observed the number and function of the satellite cells, which remained in their niche on the myofibers. Prior to culture, the vitamin B6-deficient myofibers exhibited a significantly lower number of quiescent satellite cells, as compared to that in the vitamin B6-supplemented myofibers, thereby suggesting that vitamin B6 deficiency induces a decline in the quiescent satellite cell pool in mouse muscles. After 48 and 72 h of culture, the number of proliferating satellite cells per cluster was similar between the vitamin B6-deficient and -supplemented myofibers, but their numbers decreased significantly after culturing the myofibers in vitamin B6-free medium. After 72 h of culture, the number of self-renewing satellite cells per cluster was significantly lower in the vitamin B6-deficient myofibers, and the vitamin B6-free medium further decreased this number. In conclusion, vitamin B6 deficiency appears to reduce the number of quiescent satellite cells and suppress the proliferation and self-renewal of satellite cells during myogenesis.
Collapse
|
10
|
Kumrungsee T, Peipei Zhang, Yanaka N, Suda T, Kato N. Emerging cardioprotective mechanisms of vitamin B6: a narrative review. Eur J Nutr 2021; 61:605-613. [PMID: 34436643 DOI: 10.1007/s00394-021-02665-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
Although overt vitamin B6 deficiency is rare, marginal vitamin B6 deficiency is frequent and occurs in a consistent proportion of the population. The marginal vitamin B6 deficiency appears to relate to an increased risk of inflammation-related diseases, such as cardiovascular diseases and cancers. Of all the cardiovascular diseases, heart failure is a complex clinical syndrome associated with a high mortality rate. So far, information regarding the cardioprotective mechanisms of vitamin B6 has been limited. Meanwhile, recent studies have revealed that vitamin B6 treatment increases cardiac levels of imidazole dipeptides (e.g., carnosine, anserine, and homocarnosine), histamine, and γ-aminobutyric acid (GABA) and suppresses P2X7 receptor-mediated NLRP3 inflammasome. These modulations may imply potential cardioprotective mechanisms of vitamin B6. These modulations may also be involved in the underlying mechanisms through which vitamin B6 suppresses oxidative stress and inflammation. This review provides an up-to-date evaluation of our current understanding of the cardioprotective mechanisms of vitamin B6.
Collapse
Affiliation(s)
- Thanutchaporn Kumrungsee
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
| | - Peipei Zhang
- State Key Laboratory of Cellular Stress Biology, School of Medicine & School of Life Science, Xiamen University, Xiamen, Fujian, China
| | - Noriyuki Yanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Takashi Suda
- Department of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Norihisa Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
11
|
Szabó MR, Pipicz M, Csont T, Csonka C. Modulatory Effect of Myokines on Reactive Oxygen Species in Ischemia/Reperfusion. Int J Mol Sci 2020; 21:ijms21249382. [PMID: 33317180 PMCID: PMC7763329 DOI: 10.3390/ijms21249382] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
There is a growing body of evidence showing the importance of physical activity against acute ischemic events in various organs. Ischemia/reperfusion injury (I/R) is characterized by tissue damage as a result of restriction and subsequent restoration of blood supply to an organ. Oxidative stress due to increased reactive oxygen species formation and/or insufficient antioxidant defense is considered to play an important role in I/R. Physical activity not only decreases the general risk factors for ischemia but also confers direct anti-ischemic protection via myokine production. Myokines are skeletal muscle-derived cytokines, representing multifunctional communication channels between the contracting skeletal muscle and other organs through an endocrine manner. In this review, we discuss the most prominent members of the myokines (i.e., brain-derived neurotrophic factor (BDNF), cathepsin B, decorin, fibroblast growth factors-2 and -21, follistatin, follistatin-like, insulin-like growth factor-1; interleukin-6, interleukin-7, interleukin-15, irisin, leukemia inhibitory factor, meteorin-like, myonectin, musclin, myostatin, and osteoglycin) with a particular interest in their potential influence on reactive oxygen and nitrogen species formation or antioxidant capacity. A better understanding of the mechanism of action of myokines and particularly their participation in the regulation of oxidative stress may widen their possible therapeutic use and, thereby, may support the fight against I/R.
Collapse
Affiliation(s)
- Márton Richárd Szabó
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (M.R.S.); (M.P.); (T.C.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Márton Pipicz
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (M.R.S.); (M.P.); (T.C.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Tamás Csont
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (M.R.S.); (M.P.); (T.C.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Csaba Csonka
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (M.R.S.); (M.P.); (T.C.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
- Department of Sports Medicine, University of Szeged, Tisza Lajos krt 107, 6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-30-5432-693
| |
Collapse
|
12
|
Chen PY, Tsai YW, Chang AYW, Chang HH, Hsiao YH, Huang CW, Sung PS, Chen BH, Fu TF. Increased leptin-b expression and metalloprotease expression contributed to the pyridoxine-associated toxicity in zebrafish larvae displaying seizure-like behavior. Biochem Pharmacol 2020; 182:114294. [DOI: 10.1016/j.bcp.2020.114294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/26/2022]
|
13
|
Nutrition and Sarcopenia-What Do We Know? Nutrients 2020; 12:nu12061755. [PMID: 32545408 PMCID: PMC7353446 DOI: 10.3390/nu12061755] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Muscle health is important for the functionality and independence of older adults, and certain nutrients as well as dietary patterns have been shown to offer protective effects against declines in strength and function associated with aging. In this paper, micronutrients, macronutrients, and food groups have been reviewed, along with their studied effects on the prevalence and incidence of sarcopenia, as well as their ability to preserve muscle mass and optimize physical performance. Randomized controlled trials appear to suggest a critical role for dietary intake of protein in preventing sarcopenia and muscle loss, although the optimal dose and type of protein is unknown. There are some promising data regarding the role of vitamin D and sarcopenia, but it is unclear whether the dose, frequency of dose, or length of treatment impacts the efficacy of vitamin D on improving muscle mass or function. Selenium, magnesium, and omega 3 fatty acids have been studied as supplements in clinical trials and in the diet, and they appear to demonstrate a potential association with physical activity and muscle performance in older individuals. Following the Mediterranean diet and higher consumption of fruits and vegetables have been associated with improved physical performance and protection against muscle wasting, sarcopenia, and frailty.
Collapse
|
14
|
Vitamin B 6 improves blood parameters in rats fed a protein-deficient diet and subjected to moderate, long-term exercise. Cent Eur J Immunol 2019; 44:23-32. [PMID: 31114433 PMCID: PMC6526596 DOI: 10.5114/ceji.2019.83266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/28/2019] [Indexed: 12/15/2022] Open
Abstract
Vitamin B6 is necessary for many enzymatic pathways (glucose and lipid metabolism, DNA/RNA synthesis, or modulation of gene expression) and affects immune cell function and blood-forming processes. We hypothesised that supplementing a protein-deficient diet with vitamin B6 may reduce the negative impact of protein malnutrition. Here, we evaluated the effect of moderate, long-term exercise (ninety days) on selected blood parameters in rats fed a normal diet, a protein-deficient diet, or a protein-deficient diet supplemented with vitamin B6. Selected haematological, immunological, and biochemical parameters were examined. A protein-deficient diet lasting 90 days caused significant reduction in body mass, increased activity of aminotransferases (asparagine and alanine), an increased percentage of innate cells in the blood, and decreased haemoglobin concentration in the blood. Adding vitamin B6 significantly increased body and muscle mass, decreased liver parameters, and caused normalisation of haemoglobin concentration and the proportion of white blood cells in the blood. These results indicate that vitamin B6 supplementation significantly improves the health of protein-malnourished rats and paves the way for the development of novel anti-malnutrition therapies.
Collapse
|