1
|
Yuan Z, Mao F, Liu Z, Xing S, Yang L, Wu W, Xu W, Deng J, Wang G. Characteristic of motor-related cortical network during stimulating at the affected or bilateral limbs of stroke patients by acupuncture. Brain Res Bull 2025; 227:111393. [PMID: 40398702 DOI: 10.1016/j.brainresbull.2025.111393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/29/2025] [Accepted: 05/17/2025] [Indexed: 05/23/2025]
Abstract
BACKGROUND The compensatory pattern between the two hemispheres after stroke has been the focus of research. Some evidence suggests bilateral stimulation more effectively engages networks across both hemispheres compared to the affected side only. OBJECTIVES To explore whether the stimulating at bilateral limbs of stroke patients by acupuncture may better engage compensatory reorganization between the hemispheres compared to stimulating at the hemiplegic limb. METHODS Conscious patients with hemiplegia were screened. Brain activity was assessed by the functional near-infrared spectroscopy(fNIRS) in three states: no treatment, acupuncture on the affected side, and then acupuncture on both sides. Brain activation and directed functional connectivity(FC) was analyzed between the two acupuncture strategies. RESULTS Acupuncture of bilateral limbs resulted in stronger activation in the primary motor cortex(M1) of the ipsilesional hemisphere than acupuncture of the affected side only. And no significantly enhanced activation of the contralesional hemisphere was observed after acupuncture on the healthy limb. Besides, the FCs from the ipsilesional premotor cortex to the contralesional sensory-related area were significantly enhanced, and the FCs from the sensory area to motor area within the ipsilesional hemisphere were also significantly enhanced. Additionally, FCs from contralesional M1 to ipsilesional motor area were attenuated. CONCLUSION Stimulating at bilateral limbs by acupuncture could lead to greater brain network remodeling in the motor-related areas compared to stimulating solely at the affected side, and not through more stimulation.
Collapse
Affiliation(s)
- Ziwen Yuan
- Department of Rehabilitation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Research and Transformation Center of Intelligent Rehabilitation Assistance Devices, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fei Mao
- Department of Rehabilitation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Research and Transformation Center of Intelligent Rehabilitation Assistance Devices, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zimo Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Shubo Xing
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Liu Yang
- Department of Rehabilitation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Research and Transformation Center of Intelligent Rehabilitation Assistance Devices, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wenping Wu
- Department of Rehabilitation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Research and Transformation Center of Intelligent Rehabilitation Assistance Devices, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Weiwei Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jingyuan Deng
- Department of Rehabilitation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Research and Transformation Center of Intelligent Rehabilitation Assistance Devices, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Gang Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
2
|
Jiang H, Zhang C, Lin M, Yin Y, Deng S, Liu W, Zhuo B, Tian G, Du Y, Meng Z. Deciphering the mechanistic impact of acupuncture on the neurovascular unit in acute ischemic stroke: Insights from basic research in a narrative review. Ageing Res Rev 2024; 101:102536. [PMID: 39384155 DOI: 10.1016/j.arr.2024.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Ischemic stroke(IS), a severe acute cerebrovascular disease, not only imposes a heavy economic burden on society but also presents numerous challenges in treatment. During the acute phase, while thrombolysis and thrombectomy serve as primary treatments, these approaches are restricted by a narrow therapeutic window. During rehabilitation, commonly used neuroprotective agents struggle with their low drug delivery efficiency and inadequate preclinical testing, and the long-term pharmacological and toxicity effects of nanomedicines remain undefined. Meanwhile, acupuncture as a therapeutic approach is widely acknowledged for its effectiveness in treating IS and has been recommended by the World Health Organization (WHO) as an alternative and complementary therapy, even though its exact mechanisms remain unclear. This review aims to summarize the known mechanisms of acupuncture and electroacupuncture (EA) in the treatment of IS. Research shows that acupuncture treatment mainly protects the neurovascular unit through five mechanisms: 1) reducing neuronal apoptosis and promoting neuronal repair and proliferation; 2) maintaining the integrity of the blood-brain barrier (BBB); 3) inhibiting the overactivation and polarization imbalance of microglia; 4) regulating the movement of vascular smooth muscle (VSM) cells; 5) promoting the proliferation of oligodendrocyte precursors. Through an in-depth analysis, this review reveals the multi-level, multi-dimensional impact of acupuncture treatment on the neurovascular unit (NVU) following IS, providing stronger evidence and a theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Hailun Jiang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Chao Zhang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Mengxuan Lin
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yu Yin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shizhe Deng
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Wei Liu
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Bifang Zhuo
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Guang Tian
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yuzheng Du
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Zhihong Meng
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
3
|
Yuan J, Zhang W, Qie B, Xie Y, Zhu B, Chen C, Qiu W, Sun H, Zhao B, Long Y. Utilizing press needle acupuncture to treat mild-to-moderate COVID-19: A single-blind, randomized controlled trial. Medicine (Baltimore) 2024; 103:e39810. [PMID: 39465704 PMCID: PMC11460845 DOI: 10.1097/md.0000000000039810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND In China, acupuncture has been employed as an adjunctive therapy for coronavirus disease 2019 (COVID-19). Press needle acupuncture is a special type of acupuncture that provides prolonged stimulation to acupuncture points and simultaneously reduces the pain associated with traditional acupuncture. This study assessed the effectiveness of integrating press needles alongside pharmacologic treatment in patients with mild-to-moderate COVID-19. METHODS Patients hospitalized with mild-to-moderate COVID-19 symptoms between December 2022 and January 2023 were included in the study. The enrolled patients were randomly assigned to receive pharmacologic treatment alone (control group) or both pharmacologic treatment and press needle acupuncture (intervention group). Patients were evaluated for clinical outcomes, including symptom scores, deterioration rates, fever durations, and nucleic acid test results. The patients' complete blood count and C-reactive protein levels were also analyzed using venous blood samples both before and after treatment. RESULTS Both groups exhibited a reduction in clinical symptom scores, but symptoms regressed faster in the intervention group. Nucleic acid test negativity was achieved faster in the intervention group than in the control group. The intervention group also had a lower deterioration rate. Furthermore, the increase in the lymphocyte count and decrease in C-reactive protein levels following treatment were more pronounced in the intervention group than in the control group. CONCLUSION This study suggests that utilizing press needle acupuncture as an adjunct to pharmacologic treatment can be effective in patients with mild-to-moderate COVID-19 symptoms.
Collapse
Affiliation(s)
- Jiawei Yuan
- Baiyun Branch, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Weizhen Zhang
- NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Beibei Qie
- Baiyun Branch, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuhua Xie
- Taihe Branch, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Binbin Zhu
- Guangdong Work Injury Rehabilitation Hospital, Guangzhou, Guangdong, China
| | - Cheng Chen
- Baiyun Branch, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenwei Qiu
- Baiyun Branch, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Huanwen Sun
- Baiyun Branch, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bin Zhao
- Southern Medical University, Guangzhou, Guangdong, China
| | - Yaqiu Long
- Baiyun Branch, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Guan C, Feng Y, Cao L, Wang Y, Zhang Q, Liu L, Xie H, Yu K, Shen X, Wu Y, Wang N. Acupuncture for stroke: A bibliometric analysis of global research from 2000 to 2022. Heliyon 2024; 10:e33827. [PMID: 39050433 PMCID: PMC11268209 DOI: 10.1016/j.heliyon.2024.e33827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Objective This study aimed to explore the global and future research trends in acupuncture interventions for stroke between 2000 and 2022 using bibliometric analysis. Method A bibliometric analysis of literature from 2000 to 2022 in the Web of Science Core Collection was conducted in this study. The analysis utilized CiteSpace, VOSviewer, and Scimago Graphica software to identify the major contributors to publications, including authors, countries, institutions, journals, references, and keywords. Results The bibliometric analysis yielded a total of 860 publications. There was a gradual increase in the number of publications over the study period. China published the most articles. Evidence-Based Complementary and Alternative Medicine was the journal with the greatest number of publications. The most frequently used keywords were "acupuncture," "stroke," and "electroacupuncture." Conclusion These analysis uncovers the research trends in acupuncture for stroke spanning 2000 to 2022 and points to prospective research frontiers. This study provides a deeper and more thorough understanding of the connotations of acupuncture for stroke and guidance and support for future research in this field.
Collapse
Affiliation(s)
- Chong Guan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Clinical Research Center for Geriatric Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yashuo Feng
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Clinical Research Center for Geriatric Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lu Cao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yiyuan Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qun Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Li Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Hongyu Xie
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Kewei Yu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xueyan Shen
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yi Wu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Clinical Research Center for Geriatric Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Nianhong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Clinical Research Center for Geriatric Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
5
|
Kuang H, Zhu X, Chen H, Tang H, Zhao H. The immunomodulatory mechanism of acupuncture treatment for ischemic stroke: research progress, prospects, and future direction. Front Immunol 2024; 15:1319863. [PMID: 38756772 PMCID: PMC11096548 DOI: 10.3389/fimmu.2024.1319863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
Ischemic stroke (IS) is one of the leading causes of death and disability. Complicated mechanisms are involved in the pathogenesis of IS. Immunomodulatory mechanisms are crucial to IS. Acupuncture is a traditional non-drug treatment that has been extensively used to treat IS. The exploration of neuroimmune modulation will broaden the understanding of the mechanisms underlying acupuncture treatment. This review summarizes the immune response of immune cells, immune cytokines, and immune organs after an IS. The immunomodulatory mechanisms of acupuncture treatment on the central nervous system and peripheral immunity, as well as the factors that influence the effects of acupuncture treatment, were summarized. We suggest prospects and future directions for research on immunomodulatory mechanisms of acupuncture treatment for IS based on current progress, and we hope that these will provide inspiration for researchers. Additionally, acupuncture has shown favorable outcomes in the treatment of immune-based nervous system diseases, generating new directions for research on possible targets and treatments for immune-based nervous system diseases.
Collapse
Affiliation(s)
- Hongjun Kuang
- Department of Acupuncture and Moxibustion, Shanghai University of Traditional Chinese Medicine, Shenzhen Hospital, Shenzhen, China
- Department of Acupuncture and Moxibustion, Luohu District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xinzhou Zhu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Huan Chen
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Science, Beijing, China
| | - Han Tang
- Department of Acupuncture and Moxibustion, Shanghai University of Traditional Chinese Medicine, Shenzhen Hospital, Shenzhen, China
- Department of Acupuncture and Moxibustion, Luohu District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Hong Zhao
- Department of Acupuncture and Moxibustion, Luohu District Hospital of Traditional Chinese Medicine, Shenzhen, China
| |
Collapse
|
6
|
Han Y, Liu C, Yang X, Zhou J, Shi W, Gao H, Zhang H, Ran D, Shi L. Bibliometric analysis: Hot spots and frontiers in acupuncture treatment of cerebral infarction. Medicine (Baltimore) 2024; 103:e37800. [PMID: 38608052 PMCID: PMC11018181 DOI: 10.1097/md.0000000000037800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
OBJECTIVE CiteSpace6.1.R2 is used to analyze the research status of acupuncture in the treatment of cerebral infarction, and to find relevant hot spots and frontiers. METHODS The researchers searched the Web of Science Core Collection database. The search date is from the establishment of the database to August 31, 2023. The search terms and expressions are: ("Cerebral Infarction" OR "Ischemic stroke") AND ("Acupuncture" OR "fire needle"). The researchers used CiteSpace software to draw a knowledge map to explore the hot spots and frontiers of acupuncture in treating cerebral infarction. RESULTS We screened 414 articles in the Web of Science Core Collection database. China is the country with the largest number of publications, with a total of 343 papers published. China's institutions cooperate most closely, and cooperation between countries is less and more scattered. The author with the highest number of published articles is Chen L, with a total of 31 published articles. The research focus mainly revolves around the mechanism of acupuncture treatment of cerebral infarction and electroacupuncture treatment of cerebral infarction. Among them, acupuncture treatment of cerebral infarction is the most. CONCLUSION According to CiteSpace's analysis results, China is at the forefront of this research field, while other countries have less research in this field and little cooperation among countries. At present, the mainstream aspect of research is the mechanism of acupuncture treatment of cerebral infarction electroacupuncture and acupuncture points. Therefore, in future research, we should pay more attention to the treatment of cerebral infarction mechanism of acupuncture, problems with the type of acupuncture used, and acupuncture points.
Collapse
Affiliation(s)
- Yutong Han
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chang Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinming Yang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jiaxiao Zhou
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Weiping Shi
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Huasong Gao
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Huixue Zhang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Dawei Ran
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lei Shi
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
7
|
Wen Q, Zha F, Shan L, Zhang S, Xiao P, Zhang C, Yu H, Wang Y. Electroacupuncture attenuates middle cerebral artery occlusion-induced learning and memory impairment by regulating microglial polarization in hippocampus. Int J Neurosci 2024:1-13. [PMID: 38315119 DOI: 10.1080/00207454.2024.2313664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND As a traditional medical therapy, electroacupuncture (EA) has been demonstrated to have beneficial effects on ischemic stroke-induced cognitive impairment. However, the underlying mechanism is largely unclear. METHODS Adult rats received occlusion of the middle cerebral artery and reperfusion (MCAO/R) to establish the ischemic stroke model. Morris water maze test was performed following EA stimulation at the GV20, PC6, and KI1 acupoints in rats to test the learning and memory ability. Western blot, immunofluorescent staining, and enzyme-linked immunosorbent assay were conducted to assess the cellular and molecular mechanisms. RESULTS EA stimulation attenuated neurological deficits. In the Morris water maze test, EA treatment ameliorated the MCAO/R-induced learning and memory impairment. Moreover, we observed that MCAO/R induced microglial activation and polarization in the ischemic hippocampus, whereas, EA treatment dampened microglial activation and inhibited M1 microglial polarization but enhanced M2 microglial polarization. EA treatment inhibited the increased expression of proinflammatory cytokines and enhanced the increased expression of anti-inflammatory cytokines. Finally, we found that EA treatment dampened microglial p38 mitogen-activated protein kinase (MAPK) phosphorylation. CONCLUSION Collectively, our data suggested that EA treatment ameliorated cognitive impairment induced by MCAO/R and the underlying mechanism may be p38-mediated microglia polarization and neuroinflammation.
Collapse
Affiliation(s)
- Qiong Wen
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Department of Rehabilitation, Shenzhen Dapeng New District Nanao People's Hospital, Shenzhen, China
| | - Fubing Zha
- Department of Rehabilitation, The First Affiliated Hospital, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Linlin Shan
- Department of Rehabilitation, The First Affiliated Hospital, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Shaohua Zhang
- Department of Rehabilitation, Shenzhen Dapeng New District Nanao People's Hospital, Shenzhen, China
| | - Peng Xiao
- Department of Rehabilitation, Shenzhen Dapeng New District Nanao People's Hospital, Shenzhen, China
| | - Chunxia Zhang
- Department of Rehabilitation, Shenzhen Dapeng New District Nanao People's Hospital, Shenzhen, China
| | - Haibo Yu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yulong Wang
- Department of Rehabilitation, The First Affiliated Hospital, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
8
|
Xu G, Dong F, Su L, Tan ZX, Lei M, Li L, Wen D, Zhang F. The role and therapeutic potential of nuclear factor κB (NF-κB) in ischemic stroke. Biomed Pharmacother 2024; 171:116140. [PMID: 38211425 DOI: 10.1016/j.biopha.2024.116140] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
Stroke is a prevalent cerebrovascular condition with a global impact, causing significant rates of illness and death. Despite extensive research, the available treatment options for stroke remain restricted. Hence, it is crucial to gain a deeper understanding of the molecular mechanisms associated with the onset and advancement of stroke in order to establish a theoretical foundation for novel preventive and therapeutic approaches. NF-κB, also known as nuclear factor κB, is a transcription factor responsible for controlling the expression of numerous genes and plays a crucial role in diverse physiological processes. NF-κB is triggered and regulates neuroinflammation and other processes after stroke, promoting the generation of cytokine storms and contributing to the advancement of ischemic stroke (IS). Therefore, NF-κB could potentially play a vital role in stroke by regulating diverse pathophysiological processes. This review provides an overview of the functions of NF-κB in stroke and its governing mechanisms. In addition, our attention is directed towards various potential therapies that aim to inhibit the NF-κB signaling pathway in order to offer valuable insights for the advancement of innovative treatment approaches for stroke.
Collapse
Affiliation(s)
- Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Lei Su
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding 071000, PR China
| | - Zi-Xuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Mingcheng Lei
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Lina Li
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, PR China.
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
9
|
Cheng CJ, Yu HB. Global trends and development of acupuncture for stroke: A review and bibliometric analysis. Medicine (Baltimore) 2024; 103:e36984. [PMID: 38241541 PMCID: PMC10798747 DOI: 10.1097/md.0000000000036984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024] Open
Abstract
The objective of this review is to elaborate on the status, hotspots, and trends of researches on acupuncture for stroke over the past 26 years. Publications about acupuncture for stroke were downloaded from the Web of Science Core Collection, and these papers were published up to December 31, 2022. A bibliometric analysis of acupuncture for stroke was conducted by CiteSpace (6.2.R4) and VOSviewer (1.6.17). In this study, VOSviewer was used for visual analysis of countries, institutions, authors, journals, keywords, and co-cited references. CiteSpace was used to draw a keyword burst map and a co-cited reference burst map. A total of 534 papers were obtained from the Web of Science Core Collection. The number of papers per year showed a rapid upward trend. The most productive country and institution in this field were China (452) and the Fujian University of Traditional Chinese Medicine (43), respectively. Tao Jing had the highest number of articles (34), and EZ Longa was the most popular author (129 co-citations). Neural Regeneration Research (51) was the most productive journal, and Stroke (1346) was the most co-cited journal. An paper written by EZ Longa was the most influential reference, with the highest citation count. The hotspots and frontiers of this area of research were focused on the mechanisms of acupuncture, especially its neural regenerative or neuroprotective effects. This study used CiteSpace and VOSviewer for bibliometric analysis to provide researchers with information on the research status, hotspots, and trends in acupuncture for stroke research over the past 26 years.
Collapse
Affiliation(s)
- Chang-Jiang Cheng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hai-Bo Yu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
10
|
Wu L, Tan Z, Su L, Dong F, Xu G, Zhang F. Transcutaneous electrical acupoint stimulation alleviates cerebral ischemic injury through the TLR4/MyD88/NF-κ B pathway. Front Cell Neurosci 2024; 17:1343842. [PMID: 38273974 PMCID: PMC10808520 DOI: 10.3389/fncel.2023.1343842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
This study was to explore whether transcutaneous electrical acupoint stimulation (TEAS) treatment could mediate inflammation, apoptosis, and pyroptosis of neuronal cells and microglia activation through the TLR4/MyD88/NF-κB pathway in the early stage of ischemic stroke. TEAS treatment at Baihui (GV20) and Hegu (LI4) acupoints of the affected limb was administered at 24, 48, and 72 h following middle cerebral artery occlusion/reperfusion (MCAO/R), with lasting for 30 min each time. Neurological impairment scores were assessed 2 h and 72 h after ischemia/reperfusion (I/R). TTC staining was used to evaluate the volume of brain infarction. The histopathologic changes of hippocampus were detected by H&E staining. WB analysis was performed to assess the levels of TLR4, MyD88, p-NF-κB p65/NF-κB p65, and inflammation, apoptosis, pyroptosis-related proteins. TLR4 expression was measured using immunohistochemistry. The expression of inflammation-related proteins was also measured using ELISA. Immunofluorescence was used to detect the expression level of Iba1. Our findings demonstrated that TEAS intervention after I/R improved neurological function, reduced the volume of brain infarction, and mitigated pathological damage. Moreover, TEAS reduced the levels of TLR4, MyD88, p-NF-κB p65/NF-κB p65, TNF-α, IL-6, Bax, NLRP3, cleaved caspase-1/pro caspase-1, IL-1β, IL-18, GSDMD, and Iba1 while enhancing Bcl-2 expression. Moreover, the protective effects of TEAS could be counteracted by lipopolysaccharide (LPS, a TLR4 agonist). In conclusion, TEAS can reduce cerebral damage and suppress inflammation, cell death, and microglia activation after ischemic stroke via inhibiting the TLR4/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Linyu Wu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Zixuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Lei Su
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| |
Collapse
|
11
|
Guo W, Pan L, Yang R, Sun J, Hu Q, Huang P. Acupoint transplantation versus non-acupoint transplantation using autologous peripheral blood mononuclear cells in treating peripheral arterial disease. BLOOD SCIENCE 2024; 6:e00175. [PMID: 38226019 PMCID: PMC10789451 DOI: 10.1097/bs9.0000000000000175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/13/2023] [Indexed: 01/17/2024] Open
Abstract
Numerous studies have discussed the therapeutic outcomes of using cell therapy or acupuncture to treat peripheral artery disease (PAD). However, there are no long-term studies on the safety and efficacy of transplanting peripheral blood mononuclear cells (PBMNCs) via acupoints to treat PAD. We first reviewed the short-term and long-term clinical results of PAD patients treated with PBMNCs through intramuscular non-acupoint transplantation (control group; n = 45) or intramuscular acupoint transplantation (acupoint group; n = 45) at a single university hospital general medical center between December 2002 and September 2022. Pain intensity (assessed with the verbal rating scale [VRS] score) in the acupoint group was considerably lower than that in the control group at month 1 (mean ± standard deviation [SD]: 1.29 ± 0.96 vs 1.76 ± 0.82; P = 0.016) and month 3 (mean ± SD: 1.27 ± 0.90 vs 1.61 ± 0.86; P = 0.042). We observed significant improvement of VRS score (P < .001 for all) and ankle-brachial index (ABI; P < .001 for all) from baseline in both groups at months 1, 3, 6, 12, 36, and 60. The 10-year cumulative rate of major amputation-free survival (MAFS) was higher in the acupoint group as compared to the control group (81.9%, 95% confidence interval [CI]: 71.3%-94.1% vs 78.5%, 95% CI: 66.7%-92.3%; P = 0.768). Compared with the routine injection method, intramuscular transplantation of PBMNCs via selected acupoints could significantly decrease the short-term pain intensity in patients with PAD, which remains an option for consideration.
Collapse
Affiliation(s)
- Wenjing Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ling Pan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ruiyu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jiali Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Qinglin Hu
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Pingping Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
12
|
Chuang CY, Chou W, Chien TW, Jen TH. Trends and hotspots related to traditional and modern approaches on acupuncture for stroke: A bibliometric and visualization analysis. Medicine (Baltimore) 2023; 102:e35332. [PMID: 38050290 PMCID: PMC10695603 DOI: 10.1097/md.0000000000035332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/31/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Acupuncture role in stroke treatment and post-stroke rehabilitation has garnered significant attention. However, there is a noticeable gap in bibliometric studies on this topic. Additionally, the precision and comprehensive methodology of cluster analysis remain underexplored. This research sought to introduce an innovative cluster analysis technique (called follower-leading clustering algorithm, FLCA) to evaluate global publications and trends related to acupuncture for stroke in the recent decade. METHODS Publications pertaining to acupuncture for stroke from 2013 to 2022 were sourced from the Web of Science Core Collection. For the assessment of publication attributes-including contributing countries/regions (e.g., US states, provinces, and major cities in China) in comparison to others, institutions, departments, authors, journals, and keywords-we employed bibliometric visualization tools combined with the FLCA algorithm. The analysis findings, inclusive of present research status, prospective trends, and 3 influential articles, were presented through bibliometrics with visualizations. RESULTS We identified 1050 publications from 92 countries/regions. An initial gradual rise in publication numbers was observed until 2019, marking a pivotal juncture. Prominent contributors in research, based on criteria such as regions, institutions, departments, and authors, were Beijing (China), Beijing Univ Chinese Med (China), the Department of Rehabilitation Medicine, and Lidian Chen (Fujian). The journal "Evid.-based Complement Altern" emerged as the most productive. The FLCA algorithm was effectively employed for co-word and author collaboration analyses. Furthermore, we detail the prevailing research status, anticipated trends, and 3 standout articles via bibliometrics. CONCLUSION Acupuncture for stroke presents a vast research avenue. It is imperative for scholars from various global regions and institutions to transcend academic boundaries to foster dialogue and cooperation. For forthcoming bibliometric investigations, the application of the FLCA algorithm for cluster analysis is advocated.
Collapse
Affiliation(s)
- Chao-Yu Chuang
- Department of Chinese Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Willy Chou
- Department of Physical Medicine and Rehabilitation, Chiali Chi-Mei Hospital, Tainan 710, Taiwan
- Department of Physical Medicine and Rehabilitation, Chung San Medical University Hospital, Taichung 400, Taiwan
| | - Tsair-Wei Chien
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Tung-Hui Jen
- Department of Chinese Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Senior Welfare and Service, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| |
Collapse
|
13
|
Wang D, Zhang J, Yang D, Wang J, Li J, Han Y, Kang Z, Zhang H. Electroacupuncture restores intestinal mucosal barrier through TLR4/NF-κB p65 pathway in functional dyspepsia-like rats. Anat Rec (Hoboken) 2023; 306:2927-2938. [PMID: 34713984 DOI: 10.1002/ar.24800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 11/09/2022]
Abstract
Functional dyspepsia (FD) is a common functional gastrointestinal disorder with high morbidity. Electroacupuncture (EA) has been applied to treat FD for a long time. The aim of this study was to investigate the effects of EA and its mechanism about intestinal mucosal barrier in rodent model of FD. Male Sprague-Dawley rats were randomly divided into the control group and the model group. Then, the rats in model group were established to the FD model by multifactor interventions. In Experiment 1, qualified FD-like rats were randomly divided into three groups: FD, EA, and acupuncture (AP) groups. The interventions of EA and AP lasted 14 days, food intake, and body weight were recorded every 5 days. In Experiment 2, qualified FD-like rats were randomly divided into five groups: FD, EA, AP, EA + TAK242, and TAK242 groups. The interventions of EA and AP lasted 14 days, while TAK242 injection continued for 6 days. The rats were sacrificed for the measurement of serum Interleukin- 6 (IL-6) and Tumor necrosis factor-α (TNF-α) assayed by ELISA. Western blotting was used to assess the expression of TLR4, Myd88, NF-κB p65, p-NF-κB p65, TRAF6, ZO-1, and occludin in the duodenum. The transmission electron microscope was used to observe the ultrastructure of intestinal epithelial cells. Compared with the rats in the group FD, the rats in EA group had significantly increase of body weight, food intake, and protein expressions of ZO-1 and occludin, while expressions of TLR4, Myd88, NF-κB p65, p-NF-κB p65, TRAF6 in the duodenum and IL-6, and TNF-α in serum were decreased. The EA + TAK242 treatment had similar effects to the EA treatment but with increased potency; compared with EA, AP showed similar but reduced effects. Our data demonstrated that EA is more effective than AP in improving intestine mucosal barrier. The possible mechanisms of EA may involve the TLR4/NF-κB p65 pathway.
Collapse
Affiliation(s)
- Dan Wang
- Chongqing Medical University, College of Traditional Chinese Medicine, Chongqing, China
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
- Hubei University of Chinese Medicine, Wuhan, China
| | - Jinling Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Daye Yang
- Hubei University of Chinese Medicine, Wuhan, China
| | - Junying Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Li
- Hubei University of Chinese Medicine, Wuhan, China
| | - Yongli Han
- Hubei University of Chinese Medicine, Wuhan, China
| | - Zhaoxia Kang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | | |
Collapse
|
14
|
Lin W, Zhao XY, Cheng JW, Li LT, Jiang Q, Zhang YX, Han F. Signaling pathways in brain ischemia: Mechanisms and therapeutic implications. Pharmacol Ther 2023; 251:108541. [PMID: 37783348 DOI: 10.1016/j.pharmthera.2023.108541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Ischemic stroke occurs when the arteries supplying blood to the brain are narrowed or blocked, inducing damage to brain tissue due to a lack of blood supply. One effective way to reduce brain damage and alleviate symptoms is to reopen blocked blood vessels in a timely manner and reduce neuronal damage. To achieve this, researchers have focused on identifying key cellular signaling pathways that can be targeted with drugs. These pathways include oxidative/nitrosative stress, excitatory amino acids and their receptors, inflammatory signaling molecules, metabolic pathways, ion channels, and other molecular events involved in stroke pathology. However, evidence suggests that solely focusing on protecting neurons may not yield satisfactory clinical results. Instead, researchers should consider the multifactorial and complex mechanisms underlying stroke pathology, including the interactions between different components of the neurovascular unit. Such an approach is more representative of the actual pathological process observed in clinical settings. This review summarizes recent research on the multiple molecular mechanisms and drug targets in ischemic stroke, as well as recent advances in novel therapeutic strategies. Finally, we discuss the challenges and future prospects of new strategies based on the biological characteristics of stroke.
Collapse
Affiliation(s)
- Wen Lin
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiang-Yu Zhao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jia-Wen Cheng
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Li-Tao Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Quan Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yi-Xuan Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China.
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China; Institute of Brain Science, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
15
|
Chun H, Shin WC, Kim JM, Kim H, Cho JH, Song MY, Chung WS. Visual bibliometric analysis of electroacupuncture research in stroke treatment: a 20-year overview. Front Neurosci 2023; 17:1265854. [PMID: 37901432 PMCID: PMC10600454 DOI: 10.3389/fnins.2023.1265854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Background Electroacupuncture has been used as a treatment; however, a visual bibliometric analysis has not yet been performed in this field. In this study, we aimed to suggest future research topics and directions related to the field by examining the last 20 years of research trends and hotspots of electroacupuncture in stroke. Methods We searched the Web of Science database on electroacupuncture as a treatment for stroke published from 2003 to 2022. We analyzed the papers by annual publication, research fields, nations, affiliations, authors, journals, and keywords. VOSviewer software was used to visualize the bibliometric analysis and results. A total of 440 papers were included in the analysis. Results The number of publications has gradually increased every year, and neuroscience has become the most actively studied field. Neural Regeneration Research journal and China had the most publications. Fujian University of Traditional Chinese Medicine, as an affiliated institute, published the most articles. Chen Lidian and Tao Jing presented the largest number of papers, making them the leading contributors in this field. Four clusters were created by analyzing keywords, such as "neuroprotection," "clinical rehabilitation," "neuroplasticity," and "pretreatment-induced tolerance". Conclusion This study is the first to analyze the research trends in electroacupuncture as a treatment for stroke using the VOSviewer. It shows the current state of research in the field by visualizing research trends and hotspots. This will help offer reference data for future studies.
Collapse
Affiliation(s)
- Hyonjun Chun
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Korean Rehabilitation Medicine, Dong-shin Korean Medicine Hospital, Seoul, Republic of Korea
| | - Woo-Chul Shin
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Korean Rehabilitation Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Jong-min Kim
- Department of Oriental Neuropsychiatry, Dong-Seo Medical Center, Seoul, Republic of Korea
| | - Hyungsuk Kim
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Korean Rehabilitation Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Jae-Heung Cho
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Korean Rehabilitation Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Mi-Yeon Song
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Korean Rehabilitation Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Won-Seok Chung
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Korean Rehabilitation Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| |
Collapse
|
16
|
Zhu W, Deng S, Jiang H, Zhang J, Li B, Jia Q, Meng Z. Assessment of corticospinal tract remodeling based on diffusion tensor imaging in the treatment of motor dysfunction after ischemic stroke by acupuncture: A meta-analysis. Medicine (Baltimore) 2023; 102:e34618. [PMID: 37565876 PMCID: PMC10419801 DOI: 10.1097/md.0000000000034618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND To investigate the efficacy of acupuncture in improving motor dysfunction after ischemic stroke (IS) and to investigate the effect of acupuncture on corticospinal tract (CST) remodeling using diffusion tensor imaging. METHODS Published literature on the effect of acupuncture on CST remodeling after IS using diffusion tensor imaging in the form of randomized controlled trials (RCTs) were systematically retrieved and screened from Cochrane Library, Web of Science, PubMed, Embase, CNKI, CBM, VIP, and Wanfang databases from inception to December 2022. The methodological quality of the included studies was critically and independently evaluated by 2 reviewers using the Cochrane Risk of Bias Assessment Tool for RCTs. The correlated data were extracted using the pre-designed form, and all analyses were performed using Reviewer Manager version 5.4. RESULTS Eleven eligible RCTs involving 459 patients were eventually included. The combined evidence results showed that the acupuncture group significantly improved patients' National Institute of Health stroke scale, Fugl-Meyer Assessment Scale, and Barthel index compared with conventional medical treatment. The acupuncture group significantly promoted remodeling of the CST, as reflected by an increase in fractional anisotropy (FA) throughout the CST [MD = 0.04, 95% CI (0.02, 0.07), P = .001], and in addition, subgroup analysis showed that the acupuncture group significantly improved FA in the infarct area compared with conventional medical treatment at around 4 weeks [MD = 0.04, 95% CI (0.02, 0.06), P = .0002] and FA of the affected cerebral peduncle [MD = 0.03, 95% CI (0.00, 0.07), P = .02]. Also, compared with conventional medical treatment, the acupuncture group significantly increased average diffusion coefficient of the affected cerebral peduncle [MD = -0.21, 95% CI (-0.28, -0.13), P < .00001]. CONCLUSION The results of the meta-analysis suggest that acupuncture therapy can improve the clinical manifestations of motor dysfunction in patients after IS and advance a possibly beneficial effect on CST remodeling. However, due to the number and quality of eligible studies, these findings need to be further validated in more standardized, rigorous, high-quality clinical trials.
Collapse
Affiliation(s)
- Weiming Zhu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shizhe Deng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hailun Jiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jieying Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Boxuan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qingqing Jia
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhihong Meng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
17
|
Feng Y, Ju Y, Wu Q, Sun G, Yan Z. TAK-242, a toll-like receptor 4 antagonist, against brain injury by alleviates autophagy and inflammation in rats. Open Life Sci 2023; 18:20220662. [PMID: 37528888 PMCID: PMC10389675 DOI: 10.1515/biol-2022-0662] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/10/2023] [Accepted: 06/23/2023] [Indexed: 08/03/2023] Open
Abstract
Inhibition of Toll-like receptor 4 (TLR4)-mediated inflammatory pathways exerts a critical effect on neuronal death; therefore, it is a possible new therapeutic approach for traumatic brain injury (TBI). Resatorvid (TAK-242) is a novel small-molecule compound widely used to inhibit TLR4-mediated pathways, but the protective mechanism of TAK-242 in TBI remains unclear. Herein, we analyzed the neuroprotective effects of TAK-242 in rats after TBI. The rat model of brain injury was established using a modified Free-fall device, and the rats were injected with TAK-242 (0.5 mg/kg) through the caudal vein before TBI. The rats were allocated into four groups: a sham group, a TBI group, a TBI + vehicle group, and a TBI + TAK-242 group. The brain tissue was extracted for histology and determination of the expression of autophagy-related proteins and inflammatory mediators. TAK-242 pretreatment significantly reduced the damage to hippocampal neurons. Neuronal autophagy increased after brain injury, whereas TAK-242 significantly reduced autophagy marker protein LC3-II in the hippocampus. In addition, TAK-242 pretreatment significantly downregulated NF-κB p65, TNF-α, and IL-1β in the hippocampus. In conclusion, TAK-242 significantly reduced hippocampal neuronal damage by inhibiting autophagy and neuroinflammatory activity, possibly via the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yan Feng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shi Jiazhuang, Hebei 050000, China
| | - Yaru Ju
- Perinatal Center, The Fourth Hospital of Shi Jiazhuang, Shi Jiazhuang, Hebei050011, China
| | - Qiang Wu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shi Jiazhuang, Hebei 050000, China
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shi Jiazhuang, Hebei 050000, China
| | - Zhongjie Yan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, No. 215 Heping West
Road, Shi Jiazhuang, Hebei 050000, China
| |
Collapse
|
18
|
Shen Y, Hu L, Ge J, Li L. Effect of electroacupuncture treatment combined with rehabilitation care on serum sirt3 level and motor function in elderly patients with stroke hemiparesis. Medicine (Baltimore) 2023; 102:e33403. [PMID: 37058075 PMCID: PMC10101298 DOI: 10.1097/md.0000000000033403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/09/2023] [Indexed: 04/15/2023] Open
Abstract
OBJECTIVE Acupuncture treatment helps to improve neurological and motor function in elderly patients with stroke hemiplegia. However, the exact mechanism by which electroacupuncture improves stroke hemiparesis is uncertain. The aim of this study was to determine the effect of electroacupuncture care on sirt3 levels in elderly patients with stroke hemiparesis. METHODS One hundred and ten elderly patients with hemiplegia after first stroke were divided into an experimental group and a control group (n = 55 in each group). The control group was given conventional rehabilitation care by a rehabilitation therapist. In the experimental group, on the basis of conventional rehabilitation care, electroacupuncture was performed once a day for 28 days. RESULTS Fugl-Meyer assessment (FMA) and barthel index (BI) scores were significantly higher, while neurologic deficit scale (NDS) and physiological state scores were significantly lower in both groups after 14 and 28 days of intervention compared to preintervention. The Generalized estimating equation (GEE) model also showed that the experimental group showed more favorable improvements in all outcomes at postintervention time points compared to the control group. After the intervention, serum sirt3 levels increased significantly in both groups compared to preintervention, and the increase was more pronounced in the experimental group. Consistently, the GEE model showed that serum sirt3 levels were significantly higher in the experimental group compared to the control group at postintervention time points. Correlation analysis revealed that serum sirt3 levels in the experimental group were negatively correlated with FMA and BI pre- and postintervention, while showing a significant positive correlation with NDS and physiological state scores. CONCLUSION Electroacupuncture intervention led to significant improvements in motor function, activities of daily living and neurological function in elderly patients with stroke hemiplegia, which may be associate with increased serum sirt3 levels.
Collapse
Affiliation(s)
- Ying Shen
- International Clinic, Wuhan Union Hospital of China, Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liping Hu
- Department of Geriatrics, Wuhan Union Hospital of China, Affiliated to Tongji Medical College of Huazhong University of Science and technology, Wuhan, Hubei, China
| | - Jing Ge
- Department of Geriatrics, Wuhan Union Hospital of China, Affiliated to Tongji Medical College of Huazhong University of Science and technology, Wuhan, Hubei, China
| | - Ling Li
- Department of Geriatrics, Wuhan Union Hospital of China, Affiliated to Tongji Medical College of Huazhong University of Science and technology, Wuhan, Hubei, China
| |
Collapse
|
19
|
Electro-acupuncture treatment inhibits the inflammatory response by regulating γδ T and Treg cells in ischemic stroke. Exp Neurol 2023; 362:114324. [PMID: 36669751 DOI: 10.1016/j.expneurol.2023.114324] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/30/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
BACKGROUND Electro-acupuncture (EA) is an effective and safe treatment for ischemic stroke. It is not only capable of reducing cerebral damage but also alleviating intestinal inflammation. However, its mechanism has not been fully elucidated. METHODS All rats were randomly divided into three experimental groups: the SHAM group, the MCAO group, and the MEA (MCAO+EA) group. Ischemic-reperfusion (I/R) injury was induced by MCAO surgery. Rats in the MEA group were treated with EA stimulation in the "Baihui" acupoint (1 mA, 2/15 Hz, 20 min for each time). The Real-time (RT)-qPCR was used to evaluate the mRNA expression of inflammation factors in the ischemic brain and the small intestine after I/R injury. In addition, our research evaluated the effects of EA on regulatory T cells (Tregs) and γδ T cells in the small intestine and brain via Flow cytometry analysis. Finally, we applied CM-Dil and CFSE injection and explored the potential connections of T cells between the ischemic hemisphere and the small intestine. RESULTS Our results suggested that EA treatment could significantly reduce the inflammation response in the ischemic brain and small intestine 3 days after I/R injury in rats. To be specific, EA increased the percentage of Tregs in the brain and the small intestine and decreased intestinal and cerebral γδ T cells. Concomitantly, after EA treatment, the percentage of cerebral CD3+TCRγδ+CFSE+ cells dropped from 12.06% to 6.52% compared with the MCAO group. CONCLUSIONS These findings revealed that EA could regulate the Tregs and γδ T cells in the ischemic brain and the small intestine, which indicated its effect on inhibiting inflammation. And, EA could inhibit the mobilization of intestinal T cells, which may contribute to the protection of EA after ischemic stroke.
Collapse
|
20
|
Huang Y, Omorou M, Gao M, Mu C, Xu W, Xu H. Hydrogen sulfide and its donors for the treatment of cerebral ischaemia-reperfusion injury: A comprehensive review. Biomed Pharmacother 2023; 161:114506. [PMID: 36906977 DOI: 10.1016/j.biopha.2023.114506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
As an endogenous gas signalling molecule, hydrogen sulfide (H2S) is frequently present in a variety of mammals and plays a significant role in the cardiovascular and nervous systems. Reactive oxygen species (ROS) are produced in large quantities as a result of cerebral ischaemia-reperfusion, which is a very serious class of cerebrovascular diseases. ROS cause oxidative stress and induce specific gene expression that results in apoptosis. H2S reduces cerebral ischaemia-reperfusion-induced secondary injury via anti-oxidative stress injury, suppression of the inflammatory response, inhibition of apoptosis, attenuation of cerebrovascular endothelial cell injury, modulation of autophagy, and antagonism of P2X7 receptors, and it plays an important biological role in other cerebral ischaemic injury events. Despite the many limitations of the hydrogen sulfide therapy delivery strategy and the difficulty in controlling the ideal concentration, relevant experimental evidence demonstrating that H2S plays an excellent neuroprotective role in cerebral ischaemia-reperfusion injury (CIRI). This paper examines the synthesis and metabolism of the gas molecule H2S in the brain as well as the molecular mechanisms of H2S donors in cerebral ischaemia-reperfusion injury and possibly other unknown biological functions. With the active development in this field, it is expected that this review will assist researchers in their search for the potential value of hydrogen sulfide and provide new ideas for preclinical trials of exogenous H2S.
Collapse
Affiliation(s)
- Yiwei Huang
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| | - Moussa Omorou
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Meng Gao
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Chenxi Mu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Weijing Xu
- School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Hui Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| |
Collapse
|
21
|
Ai Z, Liu Y, Shi X, Hu W, Zhang Y, An R, Lei G. The Protective Effects of Apple Pectin and Citrus Pectins on Post-Cerebral I/R Depression in Mice: The Role of NF-κB-p65 and pSTAT3 pathways. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
22
|
Guo R, Zhang Y, Geng Y, Chen P, Fu T, Xia Y, Zhang R, Zhu Y, Jin J, Jin N, Xu H, Tian X. Electroacupuncture ameliorates inflammatory response induced by retinal ischemia-reperfusion injury and protects the retina through the DOR-BDNF/Trkb pathway. Front Neuroanat 2023; 16:1057929. [PMID: 36686575 PMCID: PMC9850165 DOI: 10.3389/fnana.2022.1057929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Objectives: Retinal ischemia-reperfusion injury (RIRI) is the common pathological basis of many ophthalmic diseases in the later stages, and inflammation is the primary damage mechanism of RIRI. Our study aimed to assess whether electroacupuncture (EA) has a protective effect against RIRI and to elucidate its related mechanisms. Methods: A high-intraocular pressure (HIOP) model was used to simulate RIRI in Wistar rats. EA was applied to the EA1 group [Jingming (BL1) + Shuigou (GV26)] and the EA2 group [Jingming (BL1) + Hegu (LI4)] respectively for 30 min starting immediately after the onset of reperfusion and repeated (30 min/time) at 12 h and then every 24 h until days 7 after reperfusion. The pathological changes in the retina were observed by H and E staining after HIOP. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was utilized to observe retinal cell apoptosis. The mRNA expression of IL1-β, TNF-α, IL-4, IL-10, δ-opioid receptor (DOR), brain-derived neurotrophic factor (BDNF), and tropomyosin-related kinase B (TrkB) in the retina was measured by quantitative real-time PCR. Results: HIOP caused structural disorders of the retina, decreased RGCs, and increased retinal cell apoptosis. At 1 and 3 days of RIRI, retinal apoptotic cells in the EA group were significantly reduced, while there was no distinct difference in the EA group compared with the HIOP group at 7 days of RIRI. Compared with that in the HIOP group, the expression of anti-inflammatory factors, DOR and TrkB was increased, and the expression of pro-inflammatory factors was decreased in the EA group. In contrast, HIOP had no appreciable effect on BDNF expression. Conclusion: EA at Jingming (BL1) and Shuigou (GV26) or at Jingming (BL1) and Hegu (LI4) may inhibit RIRI induced inflammation through activating the DOR-BDNF/TrkB pathway to protect the retina, especially the pair of Jingming (BL1) and Shuigou (GV26) has better inhibitory effects on inflammation.
Collapse
Affiliation(s)
- Runjie Guo
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongjie Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Geng
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Chen
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tiantian Fu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong Xia
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ren Zhang
- Shanghai Chinese Medicine Literature Museum, Shanghai, China
| | - Yuan Zhu
- Shanghai Jinshan District Hospital of Traditional Chinese and Western Medicine, Shanghai, China
| | - Jingling Jin
- Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, United States
| | - Nange Jin
- Department of Vision Sciences, University of Houston College of Optometry, Houston, TX, United States
| | - Hong Xu
- Department of Acupuncture-Moxibustion, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Hong Xu Xuesong Tian
| | - Xuesong Tian
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Hong Xu Xuesong Tian
| |
Collapse
|
23
|
Xiang Y, Fan D, An Q, Zhang T, Wu X, Ding J, Xu X, Yue G, Tang S, Du Q, Xu J, Xie R. Effects of Ion-Transporting Proteins on the Digestive System Under Hypoxia. Front Physiol 2022; 13:870243. [PMID: 36187789 PMCID: PMC9515906 DOI: 10.3389/fphys.2022.870243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxia refers to a state of oxygen limitation, which mainly mediates pathological processes in the human body and participates in the regulation of normal physiological processes. In the hypoxic environment, the main regulator of human body homeostasis is the hypoxia-inducible factor family (HIF). HIF can regulate the expression of many hypoxia-induced genes and then participate in various physiological and pathological processes of the human body. Ion-transporting proteins are extremely important types of proteins. Ion-transporting proteins are distributed on cell membranes or organelles and strictly control the inflow or outflow of ions in cells or organelles. Changes in ions in cells are often closely related to extensive physiological and pathological processes in the human body. Numerous studies have confirmed that hypoxia and its regulatory factors can regulate the transcription and expression of ion-transporting protein-related genes. Under hypoxic stress, the regulation and interaction of ion-transporting proteins by hypoxia often leads to diseases of various human systems and even tumors. Using ion-transporting proteins and hypoxia as targets to explore the mechanism of digestive system diseases and targeted therapy is expected to become a new breakthrough point.
Collapse
Affiliation(s)
- Yiwei Xiang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Dongdong Fan
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Qimin An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Ting Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Xianli Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Jianhong Ding
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Xiaolin Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Gengyu Yue
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Siqi Tang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Qian Du
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
- *Correspondence: Jingyu Xu, ; Rui Xie,
| | - Rui Xie
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
- *Correspondence: Jingyu Xu, ; Rui Xie,
| |
Collapse
|
24
|
To Explore the Molecular Mechanism of Acupuncture Alleviating Inflammation and Treating Obesity Based on Text Mining. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3133096. [PMID: 36105933 PMCID: PMC9467717 DOI: 10.1155/2022/3133096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/03/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
Objective To explore the related mechanism of acupuncture affecting obesity by regulating inflammation using bioinformatics methods. Methods The genes related to obesity, inflammation, and acupuncture and inflammation were mined using GenCLiP 3, and the intersecting genes were extracted using Venn diagram. The DAVID database was employed for pathway enrichment analysis and functional annotation of coexpressed genes. Then, the protein-protein interaction (PPI) network was constructed with the STRING database and visualized by the Cytoscape software and screened out important hub genes. Finally, the Boxplot and Survival Analysis of the hub genes in various cancers were performed by GEPIA. Results 755 genes related to obesity and inflammation and 38 genes related to acupuncture and inflammation were identified, and 24 coexpressed genes related to obesity, inflammation, and acupuncture were extracted from the Venn diagram. Eight hub genes including interleukin-6 (IL-6), interleukin-10 (IL-10), Toll-like receptor 4 (TLR4), signal transduction and transcriptional activation factor 3 (STAT3), C-X-C motif chemokine 10 (CXCL10), interleukin-17A (IL-17A), prostaglandin peroxide synthesis-2 (PTGS2), signal transistors, and transcriptional activation factor 6 (STAT6) were identified by gene ontology (GO), Kyoto Encyclopedia of Genes (KEGG), and PPI network analysis. Among them, IL-6 is suggested to play an essential role in the treatment of obesity and inflammation by acupuncture, and IL-6 was significant in both Boxplot and Survival Analysis of pancreatic cancer (PAAD). Therefore, in this study, the core gene, IL-6 was used as the breakthrough point to explore the possible mechanism of acupuncture in treating obesity and pancreatic cancer by regulating IL-6. Conclusion (1) Acupuncture can regulate the expression of IL-6 through the TLR4/nuclear factor-κB (NF-κB) pathway, thereby alleviating inflammation, which can be used as a potential strategy for the treatment of obesity. (2) IL-6/STAT3 is closely related to the occurrence, development, and metastasis of pancreatic cancer. Acupuncture affecting pancreatic cancer through TLR4/NF-κB/IL-6/STAT3 pathway may be a potential method for the treatment of pancreatic cancer.
Collapse
|
25
|
Helianthi DR, Barasila AC, Harris S, Sinto R, Khaedir Y, Irman. The Adjunctive Effects of Acupuncture for Hospitalized COVID-19 Patients: a Single-Blinded Randomized Clinical Study. J Acupunct Meridian Stud 2022; 15:247-254. [DOI: 10.51507/j.jams.2022.15.4.247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/07/2022] [Accepted: 05/05/2022] [Indexed: 01/04/2025] Open
Affiliation(s)
- Dwi Rachma Helianthi
- Department of Medical Acupuncture, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo National Central Public Hospital, Jakarta, Indonesia
| | - Atikah C. Barasila
- Department of Medical Acupuncture, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo National Central Public Hospital, Jakarta, Indonesia
- Department of Histology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Salim Harris
- Department of Neurology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo National Central Public Hospital, Jakarta, Indonesia
| | - Robert Sinto
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo National Central Public Hospital, Jakarta, Indonesia
| | - Yordan Khaedir
- Department of Histology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Irman
- Department of Medical Acupuncture, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo National Central Public Hospital, Jakarta, Indonesia
| |
Collapse
|
26
|
Effect of Electroacupuncture on Short-Chain Fatty Acids in Peripheral Blood after Middle Cerebral Artery Occlusion/Reperfusion in Rats Based on Gas Chromatography–Mass Spectrometry. Mediators Inflamm 2022; 2022:3997947. [PMID: 36052308 PMCID: PMC9427317 DOI: 10.1155/2022/3997947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022] Open
Abstract
Previous fundamental and clinical research has shown that electroacupuncture (EA) at the acupoints of Quchi (LI11) and Zusanli (ST36) can successfully alleviate motor dysfunction following stroke. Additionally, it has been discovered that gut microbiota and their metabolites play an essential role in stroke. However, the relationship between the metabolites of gut microbiota and the efficacy of EA is still unclear. Therefore, the aim of this study was to evaluate the mechanism of EA at LI11 and ST36 in the treatment of motor dysfunction after middle cerebral artery occlusion/reperfusion (MCAO/R) in model rats by comparing the differences and correlation between different short-chain fatty acids (SCFAs) and the recovery of motor function. The results indicated that EA at LI11 and ST36 acupoints enhanced the neurological function, motor function, and infarct volume of MCAO/R rats. The levels of acetic acid, propionic acid, and total SCFAs were considerably lower in the MCAO/R group than in the sham group (P < 0.05). Acetic acid, propionic acid, and total SCFA concentrations were substantially higher in the MCAO/R + EA group than in the MCAO/R group (P < 0.05). Finally, Pearson correlation analysis revealed that the propionic acid concentration was substantially favorably connected with the duration on the rotarod (r = 0.633 and P < 0.05) and highly negatively correlated with the modified neurological severity score (mNSS) (r = −0.698 and P < 0.05) and the percentage of cerebral infarct volume (r = −0.729 and P < 0.05). Taken together, these findings indicate that the increase in propionic acid may be one of the mechanisms and targets of EA at LI11 and ST36 acupoints to improve poststroke motor dysfunction in MCAO/R rats.
Collapse
|
27
|
Dl-3-n-Butylphthalide Improves Neuroinflammation in Mice with Repeated Cerebral Ischemia-Reperfusion Injury through the Nrf2-Mediated Antioxidant Response and TLR4/MyD88/NF- κB Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8652741. [PMID: 35615581 PMCID: PMC9126665 DOI: 10.1155/2022/8652741] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 12/15/2022]
Abstract
Increasing evidence shows that oxidative stress and neuroinflammation play a crucial role in the pathology of vascular dementia (VD). Previously, we have found that Dl-3-n-butylphthalide (NBP) has antioxidant and anti-inflammatory activities in VD, whereas little is known about its mechanism. Therefore, the objective of our study was to explore the contribution of nuclear factor erythroid-2 related factor 2 (Nrf2) to NBP and its effects on anti-inflammatory activity in a mouse model of VD. Our studies revealed that NBP could effectively mitigate cognitive deficits, neuron cell loss, and apoptosis in mice subjected to repeated cerebral ischemia-reperfusion (RCIR). Additionally, NBP promoted both the expression of brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB) in hippocampus tissue. NBP exhibited antioxidant activity by enhancing Nrf2 nuclear accumulation, increasing HO-1 and NQO1 expression, enhancing SOD activity, and inhibiting RCIR-induced MDA and 8-iso PGF2α generation in the hippocampus. NBP also significantly inhibited TLR4/MyD88/NF-κB signaling and suppressed microglial proliferation and the production of proinflammatory mediators in RCIR mice. Importantly, the antioxidant, antineuroinflammatory, and neuroprotective effects of NBP above were abolished by Nrf2 knockout. Collectively, these results indicated the effects of NBP on neuroinflammation were strongly associated with the Nrf2 pathway. Modulation of TLR4/MyD88/NF-κB pathway by Nrf2 is involved in the neuroprotective effect of NBP against VD induced by RCIR injury. With antioxidant and anti-neuroinflammatory properties, NBP could be a promising drug candidate for the prevention and/or treatment of VD and other neuroinflammatory disorders.
Collapse
|
28
|
Publication Trends in Rehabilitative Effects of Acupuncture: A Visual Analysis of the Literature. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7705256. [PMID: 35449821 PMCID: PMC9017514 DOI: 10.1155/2022/7705256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/23/2022] [Indexed: 12/04/2022]
Abstract
Objectives To conduct a comprehensive analysis of scientific outputs in 2011–2021 regarding the rehabilitative effects of acupuncture on diseases. Methods The study was conducted in the form of knowledge graph and data visualization, with data being drawn from the Web of Science Core Collection database. Results Articles and reviews were the dominant types; China, Guangzhou University of Chinese Medicine and Medicine ranked was the active country, institution, and journal, respectively, in terms of issued articles. Systematic reviews and the meta-analyses of stroke and pain were extensively carried out in the past decade, whose principal interventions were manual acupuncture, electroacupuncture, scalp acupuncture, and dry needling correspondingly at Baihui (DU20) and Zusanli (ST36). And most frequently utilized rehabilitation assessment criteria were the Fugl-Meyer Assessment Scale and the Barthel Index. More recently, motor function and chronic obstructive pulmonary disease have captured researchers' attention, which might be the futuristic frontier. Conclusions This article provided a relatively panoramic picture of the scientific outputs in acupuncture for disease rehabilitation, which may help readers embrace the heated topic and grasp the recent research focus on this field.
Collapse
|
29
|
Reduction of serum level of interleukin-2 and pruritus severity after acupuncture at Quchi (LI11) in hemodialysis patients: a placebo-controlled randomized clinical trial. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2022. [DOI: 10.1007/s11726-022-1299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Huang Y, Wang X, Guan S, Lin H, Mei Z, Huang Z. Syringin protects against cerebral ischemia and reperfusion injury via suppression of inflammatory mediators and toll-like receptor/MyD88 signaling pathway in rats. Pharmacogn Mag 2022. [DOI: 10.4103/pm.pm_98_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
31
|
Yang C, Liu J, Wang J, Yin A, Jiang Z, Ye S, Liu X, Zhang X, Wang F, Xiong L. Activation of astroglial CB1R mediates cerebral ischemic tolerance induced by electroacupuncture. J Cereb Blood Flow Metab 2021; 41:2295-2310. [PMID: 33663269 PMCID: PMC8393297 DOI: 10.1177/0271678x21994395] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
There are no effective treatments for stroke. The activation of endogenous protective mechanisms is a promising therapeutic approach, which evokes the intrinsic ability of the brain to protect itself. Accumulated evidence strongly suggests that electroacupuncture (EA) pretreatment induces rapid tolerance to cerebral ischemia. With regard to mechanisms underlying ischemic tolerance induced by EA, many molecules and signaling pathways are involved, such as the endocannabinoid system, although the exact mechanisms have not been fully elucidated. In the current study, we employed mutant mice, neuropharmacology, microdialysis, and virus transfection techniques in a middle cerebral artery occlusion (MCAO) model to explore the cell-specific and brain region-specific mechanisms of EA-induced neuroprotection. EA pretreatment resulted in increased ambient endocannabinoid (eCB) levels and subsequent activation of ischemic penumbral astroglial cannabinoid type 1 receptors (CB1R) which led to moderate upregulation of extracellular glutamate that protected neurons from cerebral ischemic injury. These findings provide a novel cellular mechanism of EA and a potential therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Cen Yang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi Province, China.,Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Jingjing Liu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi Province, China.,The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Jingyi Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi Province, China.,The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Anqi Yin
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi Province, China
| | - Zhenhua Jiang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi Province, China
| | - Shuwei Ye
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Xue Liu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Xia Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi Province, China.,University of Ottawa Institute of Mental Health Research at the Royal, Department of Psychiatry, and Department of Cellular & Molecular Medicine, Ottawa, Canada
| | - Feng Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi Province, China.,The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Lize Xiong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi Province, China.,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Zhang D, Shen X, Pang K, Yang Z, Yu A. VSIG4 alleviates intracerebral hemorrhage induced brain injury by suppressing TLR4-regulated inflammatory response. Brain Res Bull 2021; 176:67-75. [PMID: 34419512 DOI: 10.1016/j.brainresbull.2021.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
AIMS Numerous evidence demonstrated that macrophage mediated inflammation contributed to brain injury following ICH, but the molecular mechanism had not been well studied. V-set immunoglobulin-domain-containing 4 (VSIG4), specifically expresses in resting tissue-resident macrophages, can deliver anti-inflammatory signals into various inflammatory diseases. However, the role of VSIG4 on ICH has not been reported. METHODS In the present study, we investigated the levels of VSIG4 in macrophages following ICH. Furthermore, Macrophage M1/M2 polarization, pro-inflammatory cytokine production, BBB disruption, brain water content and neurological function were examined in ICH mice. In addition, TLR4/NF-κβ downstream signals were also analyzed. RESULTS The results showed that VSIG4 levels of macrophage decreased following ICH, leading to macrophage M1 polarization. Up-regulation of VSIG4 inhibited macrophage M1 polarization, pro-inflammatory cytokine production, BBB disruption, as well as neurological deficits. Up-regulation of VSIG4 attenuated macrophage TLR4 levels following ICH. Co-IP demonstrated that VSIG4 could interact with TLR4 and inhibit its expression. CONCLUSIONS Our data demonstrated that VSIG4 was negatively correlated with TLR4 and involved in the pathogenesis of ICH, which prevented brain injury and attenuated deleterious inflammatory responses following ICH. In addition, the anti-inflammatory effect of VSIG4 was mainly through the blockage of TLR4/NF-κβ signaling.
Collapse
Affiliation(s)
- Dongzhu Zhang
- Department of Ultrasound, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Xue Shen
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Ke Pang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Zhao Yang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China.
| | - Anyong Yu
- Emergency Department of Emergency, Affiliated Hospital of Zunyi Medical University, Guizhou 563003, China.
| |
Collapse
|
33
|
Targeting Nuclear Factor-Kappa B Signaling Pathway by Curcumin: Implications for the Treatment of Multiple Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 34331683 DOI: 10.1007/978-3-030-56153-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system, which involves an auto-immune mechanism that leads to perivascular demyelination. The role of nuclear factor-kappa B (NF-κB) signaling pathway in the pathogenesis of MS has been suggested by genome-wide association studies. Therefore, strategies targeting this pathway could be potentially beneficial. Curcumin is the active component of turmeric and a phenolic phytochemical. This phytochemical has anti-inflammatory properties and has been shown by multiple studies to downregulate NF-κB and its downstream gene targets including cyclooxygenase-2, tumor necrosis factor-α, interleukin-1, and interleukin-6. This review discusses the modulatory effects of curcumin on the NF-κB signaling pathway and its downstream effectors, and the therapeutic implications of this modulation on MS.
Collapse
|
34
|
Wang D, Li L, Zhang Q, Liang Z, Huang L, He C, Wei Q. Combination of Electroacupuncture and Constraint-Induced Movement Therapy Enhances Functional Recovery After Ischemic Stroke in Rats. J Mol Neurosci 2021; 71:2116-2125. [PMID: 34101150 DOI: 10.1007/s12031-021-01863-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023]
Abstract
Both electroacupuncture and constraint-induced movement therapy have been reported to produce therapeutic effects on the recovery of ischemic stroke. The combined use of these two therapies is not rare clinically, although its effectiveness is not yet clear. We aimed to evaluate the efficacy of the combination of electroacupuncture and constraint-induced movement therapy in ischemic stroke rats, and to explore the potential molecular mechanisms. Ischemic stroke rat models were established by middle cerebral artery occlusion. Then, the rats were assigned to receive one of the following interventions: sole electroacupuncture, sole constraint-induced movement therapy, the combination of both therapies, and no treatment. Functional recovery was assessed with the beam balance test and rotarod test. The infarct volume of the brain and the expression of the molecules Nogo-A, P75NTR, NGF, BDNF, and VEGF in the brain tissue were investigated. The results demonstrated that the combination of the two therapies significantly improved neurological functional recovery in ischemic stroke rats compared to each therapy alone (P < 0.01). We also observed a significant decrease in infarct volume in rats receiving the combined treatment. Nogo-A and P75NTR were downregulated and NGF, BDNF, and VEGF were upregulated in the combined treatment rats compared to the control rats. In conclusion, the combination of electroacupuncture and constraint-induced movement therapy enhanced functional recovery after ischemic stroke in rats, and it is a promising treatment strategy in the rehabilitation of stroke. The anti-Nogo-A effect of electroacupuncture may explain its good compatibility with CIMT in ischemic stroke rats.
Collapse
Affiliation(s)
- Dong Wang
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, 61004, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Lijuan Li
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, 61004, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Qing Zhang
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, 61004, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Zejun Liang
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, 61004, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Liyi Huang
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, 61004, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Chengqi He
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, 61004, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Quan Wei
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, 61004, Sichuan, People's Republic of China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
35
|
Acupuncture at Back-Shu and Front-Mu Acupoints Prevents Gastric Ulcer by Regulating the TLR4/MyD88/NF- κB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8214052. [PMID: 33628315 PMCID: PMC7886517 DOI: 10.1155/2021/8214052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/22/2022]
Abstract
Purpose To assess the preventive effects of acupuncture at back-shu and front-mu acupoints on rats with restraint water-immersion stress (RWIS)-induced gastric ulcer. Methods Thirty-six rats were randomly divided into four groups for 10 days of treatment as follows: the normal group received no treatment; the model group received RWIS-induced gastric ulcer; the omeprazole group was administered omeprazole orally every 2 days; and the electroacupuncture group received electroacupuncture at the RN12 and BL21 acupoints every 2 days. After 10 days of treatment, except for the normal group, all rats were induced with gastric ulcer by RWIS for 3 h. The ulcer index (UI), ulcer inhibition rate, and histopathological score were calculated. We determined the levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in serum, and the activities of myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD), nitric oxide (NO), and glutathione peroxidase (GSH-Px) in serum and gastric tissues. Protein expression of MyD88, nuclear factor (NF)-κB (p65), and toll-like receptor (TLR) 4 was quantified in gastric tissues. Results The electroacupuncture and omeprazole groups were equivalent in terms of UI, ulcer inhibition rate, and histopathological score. The serum levels of TNF-α and IL-6 were significantly lower in the electroacupuncture group compared with the omeprazole group (P < 0.05). Compared with the model group, there were significant changes in the levels of NO, MPO, GSH-Px, and MDA in all other groups, while the expression of TLR4, MyD88, and NF-κB p65 in gastric tissue decreased significantly in the electroacupuncture group. The expression of TLR4 was substantially lower in the electroacupuncture group compared with the omeprazole group. Conclusion Acupuncture at back-shu and front-mu acupoints played a role in preventing gastric ulcer by inhibiting extracellular signals, stimulating kinases in serum and gastric tissues, and activating the inhibition of the TLR4 signaling pathway.
Collapse
|
36
|
Nazarinia D, Dolatshahi M, Faezi M, Nasseri Maleki S, Aboutaleb N. TLR4 /NF-ĸB and JAK2/STAT3 signaling pathways: Cellular signaling pathways targeted by cell-conditioned medium therapy in protection against ischemic stroke. J Chem Neuroanat 2021; 113:101938. [PMID: 33636320 DOI: 10.1016/j.jchemneu.2021.101938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/21/2022]
Abstract
Human amniotic membrane-derived mesenchymal stem cell-conditioned medium (hAMSC-CM) has been known to improve neuronal survival following ischemic stroke. The present study was designed to examine whether protective effects of hAMSC-CM against stroke can be linked to reducing neuroinflamation by targeting TLR4 /NF-ĸB and Jak2/Stat3 signaling pathways. Immunohistochemistry of hippocampus and western blot assay were performed to evaluate the expression of TLR4 /NF-ĸB and Jak2/Stat3, respectively. Real-time PCR assay was applied to investigate the mRNA levels of Jak2/Stat3. Hematoxylin and eosin (H&E) staining was used to investigate tissue damage and morphological changes in the CA1 region of hippocampus. Increased brain edema was seen in middle cerebral artery occlusion (MCAO) rats compared to sham. Post-treatment with hAMSC-CM markedly reduced brain edema in comparison with MCAO group (P < 0.05). Compared to sham, significantly increased levels of TLR4 /NF-ĸB and Jak2/Stat3 were seen in MCAO rats. Intravenous injection of hAMSC-CM after reperfusion markedly reduced levels of TLR4 /NF-ĸB and Jak2/Stat3 in hippocampus region (P < 0.05). Tissue damage and neuronal cell increased in the CA1 region of hippocampus that reversed by post-treatment by hAMSC-CM. Interestingly, our finding showed that hAMSC-CM can be considered as good candidate to reduce injury following ischemic stroke by decreasing activity of TLR4 /NF-ĸB and Jak2/Stat3 signaling pathways.
Collapse
Affiliation(s)
- Donya Nazarinia
- Department of Physiology, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran.
| | - Mojtaba Dolatshahi
- Department of Physiology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran.
| | - Masoumeh Faezi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Solmaz Nasseri Maleki
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Nahid Aboutaleb
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Acupuncture Ameliorates Neuronal Cell Death, Inflammation, and Ferroptosis and Downregulated miR-23a-3p After Intracerebral Hemorrhage in Rats. J Mol Neurosci 2021; 71:1863-1875. [PMID: 33403590 DOI: 10.1007/s12031-020-01770-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
Baihui-penetrating-Qubin acupuncture is frequently used to treat intracerebral hemorrhage (ICH) in China. Acupuncture affects multiple microRNAs in diseases. MicroRNA-23a-3p (miR-23a-3p) has been demonstrated to be up-regulated in ICH patients. Herein, the effect of Baihui-penetrating-Qubin acupuncture on miR-23a-3p expression after ICH and the role of miR-23a-3p in ICH were discussed. A rat model of ICH was induced by infusing autologous blood into caudate nucleus. Acupuncture was performed after ICH once a day for 30 min. After 3 consecutive days of acupuncture, the neurobehavioral function, brain edema, neuronal cell death, inflammation, ferroptosis, nuclear factor E2-like 2 (NFE2L2) signaling and miR-23a-3p levels in brain tissues were analyzed. Additionally, antagomiR-23a-3p was injected into rats 3 days prior to ICH modeling to analyze the function of miR-23a-3p in neuronal cell death, inflammation, ferroptosis, and NFE2L2 signaling. Acupuncture relieved the ICH-induced neurological function deficits, increases in brain water content and Fluoro-Jade B (FJB)-positive cells and release of proinflammatory cytokines. Acupuncture also alleviated ferroptosis and decreased miR-23a-3p expression, as evidenced by the increased NFE2L2 nuclear translocation and expressions of heme oxygenase-1 and glutathione peroxidase 4 and the decreased iron and malondialdehyde contents and reactive oxygen species accumulation. Additionally, antagomiR-23a-3p inhibited the ICH-induced increases in FJB-positive cells, release of proinflammatory cytokines, ferroptosis, and promoted NFE2L2 activation. Notably, the binding site of miR-23a-3p existed in NFE2L2. Taken together, acupuncture may alleviate the neuronal cell death, inflammation, and ferroptosis after ICH by down-regulating miR-23a-3p. This study provides a potential mechanism underlying the Baihui-penetrating-Qubin acupuncture improving the early injury after ICH.
Collapse
|
38
|
Liu F, Lu Z, Li Z, Wang S, Zhuang L, Hong M, Huang K. Electroacupuncture Improves Cerebral Ischemic Injury by Enhancing the EPO-JAK2-STAT5 Pathway in Rats. Neuropsychiatr Dis Treat 2021; 17:2489-2498. [PMID: 34354356 PMCID: PMC8331202 DOI: 10.2147/ndt.s316136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Clinically, electroacupuncture (EA) improves cerebral ischemic injury, but its mechanism remains unknown. The aim of this study was to confirm the protective effects of EA on focal cerebral ischemia (FCI)-induced injury and the possible mechanism. METHODS Sprague-Dawley (SD) rats served as the FCI model and were divided into the sham, model, EA, AG490 and EA+AG490 groups. Rats in the EA and EA+AG490 groups were acupunctured at the Baihui (GV20) and Dazhui (GV14) acupoints, and those in the AG490 and EA+AG490 groups were administered an intracerebroventricular injection of AG490 (a Janus-tyrosine kinase-2 (JAK-2) phosphorylation inhibitor). Neurological deficits and morphological changes in the ischemic cortex were observed through neurological deficit scoring and HE staining, respectively, and neuronal apoptosis was examined using the TUNEL assay. Transmission electron microscopy was used to observe neuronal ultrastructure, and HIF-1α, erythropoietin (EPO), phosphorylated (p)-JAK2, p-STAT5, HSP70, Bax and Bcl-2 expression was measured by RT-PCR and immunohistochemistry. RESULTS FCI model rats showed obvious neurological deficits and neuronal apoptosis compared with sham rats. EA alleviated FCI-induced neurological deficits, improved neuronal ultrastructure, reduced neuronal apoptosis, and induced HIF-1α, EPO, p-JAK2, p-STAT5, HSP70 and Bcl-2 expression in a time-dependent manner. In contrast, AG490 treatment impaired the effects of EA on neurological deficits, neuronal apoptosis and HIF-1α, EPO, p-JAK2, p-STAT5, HSP70, Bax and Bcl-2 expression. CONCLUSION EA at GV20 and GV14 could improve neurological deficits and reduce neuronal apoptosis, thereby improving FCI-induced injury, which may be related to enhancing the EPO-JAK2-STAT5 pathway.
Collapse
Affiliation(s)
- Fang Liu
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Department of Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Zhen Lu
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Ziyu Li
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Shichao Wang
- Department of Cardiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Shichao Wang Department of Cardiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No.16 Jichang Road, Baiyun District, Guangzhou, 510405, People's republic of ChinaTel +86020-36591357 Email
| | - Lixing Zhuang
- Department of Acupuncture, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Min Hong
- Department of Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Kangbai Huang
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Correspondence: Kangbai Huang Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, No.12 Jichang Road, Baiyun District, Guangzhou, 510405, People’s Republic of ChinaTel +86020-36585261 Email
| |
Collapse
|
39
|
Cao BQ, Tan F, Zhan J, Lai PH. Mechanism underlying treatment of ischemic stroke using acupuncture: transmission and regulation. Neural Regen Res 2021; 16:944-954. [PMID: 33229734 PMCID: PMC8178780 DOI: 10.4103/1673-5374.297061] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The inflammatory response after cerebral ischemia/reperfusion is an important cause of neurological damage and repair. After cerebral ischemia/reperfusion, microglia are activated, and a large number of circulating inflammatory cells infiltrate the affected area. This leads to the secretion of inflammatory mediators and an inflammatory cascade that eventually causes secondary brain damage, including neuron necrosis, blood-brain barrier destruction, cerebral edema, and an oxidative stress response. Activation of inflammatory signaling pathways plays a key role in the pathological process of ischemic stroke. Increasing evidence suggests that acupuncture can reduce the inflammatory response after cerebral ischemia/reperfusion and promote repair of the injured nervous system. Acupuncture can not only inhibit the activation and infiltration of inflammatory cells, but can also regulate the expression of inflammation-related cytokines, balance the effects of pro-inflammatory and anti-inflammatory factors, and interfere with inflammatory signaling pathways. Therefore, it is important to study the transmission and regulatory mechanism of inflammatory signaling pathways after acupuncture treatment for cerebral ischemia/reperfusion injury to provide a theoretical basis for clinical treatment of this type of injury using acupuncture. Our review summarizes the overall conditions of inflammatory cells, mediators, and pathways after cerebral ischemia/reperfusion, and discusses the possible synergistic intervention of acupuncture in the inflammatory signaling pathway network to provide a foundation to explore the multiple molecular mechanisms by which acupuncture promotes nerve function restoration.
Collapse
Affiliation(s)
- Bing-Qian Cao
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong Province, China
| | - Feng Tan
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong Province, China
| | - Jie Zhan
- Department of Rehabilitation, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Peng-Hui Lai
- Department of Rehabilitation, Nan'ao People's Hospital Dapeng New District, Shenzhen, Guangdong Province, China
| |
Collapse
|
40
|
Su XT, Wang L, Ma SM, Cao Y, Yang NN, Lin LL, Fisher M, Yang JW, Liu CZ. Mechanisms of Acupuncture in the Regulation of Oxidative Stress in Treating Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7875396. [PMID: 33178387 PMCID: PMC7644298 DOI: 10.1155/2020/7875396] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/04/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
Ischemic stroke is the major type of cerebrovascular disease usually resulting in death or disability among the aging population globally. Oxidative stress has been closely linked with ischemic stroke. Disequilibrium between excessive production of reactive oxygen species (ROS) and inherent antioxidant capacity leads to subsequent oxidative damage in the pathological progression of ischemic brain injury. Acupuncture has been applied widely in treating cerebrovascular diseases from time immemorial in China. This review mainly lays stress on the evidence to illuminate the possible mechanisms of acupuncture therapy in treating ischemic stroke through regulating oxidative stress. We found that by regulating a battery of molecular signaling pathways involved in redox modulation, acupuncture not only activates the inherent antioxidant enzyme system but also inhibits the excessive generation of ROS. Acupuncture therapy possesses the potential in alleviating oxidative stress caused by cerebral ischemia, which may be linked with the neuroprotective effect of acupuncture.
Collapse
Affiliation(s)
- Xin-Tong Su
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Lu Wang
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Si-Ming Ma
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Yan Cao
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Na-Na Yang
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Lu-Lu Lin
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Marc Fisher
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jing-Wen Yang
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Cun-Zhi Liu
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
41
|
Belskaya GN, Stepanova SB, Makarova LD, Sergienko DA, Krylova LG, Antimonova KV. [Acupuncture in the prevention and treatment of stroke: a review of foreign studies]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOĬ FIZICHESKOĬ KULTURY 2020; 97:68-77. [PMID: 32356637 DOI: 10.17116/kurort20209702168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Acupuncture has been recommended by the World Health Organization (WHO) as an alternative and complementary method for treating stroke and a way to increase the effectiveness of rehabilitation. The data available in the literature suggest that acupuncture has a beneficial effect on the status of patients with stroke. The mechanism of action of acupuncture for stroke includes the following components: 1) stimulation of neurogenesis and cell proliferation in the CNS; 2) regulation of cerebral blood flow; 3) antiapoptosis; 4) regulation of neurotransmitters; 5) improvement of the neuronal synaptic function, stimulation of long-term potentiation; 6) stimulation of neuroplasticity; and 7) decrease in blood-brain barrier permeability. Acupuncture has been proven to have a positive impact on the restoration of stroke-related dysfunctions, such as motor disorders, spasticity, cognitive impairment, and dysphagia. The most commonly used acupuncture points for the treatment of motor disorders are GV20, GB20, LI4, ST36, SP6, LI11, GB39, and motor scalp area; those for the treatment of cognitive dysfunction are GV20 and EX-HN-1, and those for the treatment of dysphagia are GV20, GV16, and CV23. A review of the literature indicates that studies of the clinical potential of acupuncture in the treatment of complications and the prevention of stroke are insufficient. It is assumed that the international community's recent interest in acupuncture methods used in the treatment of stroke will lead to the emergence of new studies and publications.
Collapse
Affiliation(s)
- G N Belskaya
- South Ural State Medical University, Ministry of Health of Russia, Chelyabinsk, Russia
| | - S B Stepanova
- South Ural State Medical University, Ministry of Health of Russia, Chelyabinsk, Russia
| | - L D Makarova
- South Ural State Medical University, Ministry of Health of Russia, Chelyabinsk, Russia
| | - D A Sergienko
- South Ural State Medical University, Ministry of Health of Russia, Chelyabinsk, Russia
| | - L G Krylova
- South Ural State Medical University, Ministry of Health of Russia, Chelyabinsk, Russia
| | - K V Antimonova
- South Ural State Medical University, Ministry of Health of Russia, Chelyabinsk, Russia
| |
Collapse
|
42
|
A20-Binding Inhibitor of NF- κB 1 Ameliorates Neuroinflammation and Mediates Antineuroinflammatory Effect of Electroacupuncture in Cerebral Ischemia/Reperfusion Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6980398. [PMID: 33110436 PMCID: PMC7582058 DOI: 10.1155/2020/6980398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022]
Abstract
A20-binding inhibitor of NF-κB 1 (ABIN1) is an inhibitor of NF-κB and exerts anti-inflammatory effect. Electroacupuncture (EA) is considered as a neuroprotective strategy by inhibiting neuroinflammatory damage after cerebral ischemia. This study was performed to explore the role of ABIN1 and investigate whether the ABIN1 is involved in the mechanism of EA in cerebral ischemia/reperfusion (I/R) rats. Male Sprague-Dawley (SD) rats were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) and received EA after reperfusion once a day. Lentivirus-mediated ABIN1 gene knockdown was used to detect the role of ABIN1 in neuroinflammation after I/R. ABIN1 expression, proinflammatory cytokine levels, microglial activation, neurological function, infarct volumes, and NF-κB activation were assessed. ABIN1 expression was elevated in the peri-infarct cortex and was further upregulated by EA. ABIN1 knockdown increased the levels of proinflammatory cytokines and activation of microglia, worsened neurological deficits, and enlarged the infarct volume. Moreover, ABIN1 was blocked to partially reverse the neuroprotective effect of EA, and this treatment weakened the ability of EA to suppress NF-κB activity. Based on these findings, ABIN1 is a potential suppressor of neuroinflammation and ABIN1 mediates the antineuroinflammatory effect of EA in cerebral I/R rats.
Collapse
|
43
|
Electroacupuncture Attenuates Inflammation after Ischemic Stroke by Inhibiting NF- κB-Mediated Activation of Microglia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8163052. [PMID: 32922507 PMCID: PMC7453260 DOI: 10.1155/2020/8163052] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 01/07/2023]
Abstract
Microglial activation and microglia-mediated inflammation play an important role in the occurrence, development, and outcome of stroke. Brain injury induces the activation and release of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin- (IL-) 1β, and IL-6. Many studies have confirmed that acupuncture is effective in treating ischemic stroke. However, its protective mechanism against ischemic brain injury is complex and multifactorial. In this study, we observed the effects of electroacupuncture at Baihui (GV20) and Dazhui (GV14) on microglial activation and inflammation in the cortical ischemic penumbra (IP) of permanent middle cerebral artery occlusion (pMCAO) rats. It was found that electroacupuncture inhibited the degeneration and necrosis of microglia in the cortical IP and ameliorated mitochondrial damage. Immunofluorescence and western blot analysis showed that microglia were in a resting state or weakly activated in the normal brain. After cerebral ischemia, the expression of microglial markers (Iba-1 and CD11b) increased, and NF-κB p65, IL-1β, and TNF-α expression gradually increased. The dynamic changes were generally temporally consistent. Electroacupuncture downregulated the expressions of Iba-1 and CD11b. Additionally, it inhibited the expression of NF-κB p65, IL-1β, and TNF-α and reduced the conversion of microglia to the M1 phenotype after ischemia. Electroacupuncture regulated the activation of microglia and microglia-mediated inflammation after cerebral ischemia, confirming the relevant theories regarding the effect of acupuncture treatment on cerebral ischemia and guiding clinical practice.
Collapse
|
44
|
Lou Y, Yu Q, Xu K, Tu Y, Balelang MF, Lu G, Zhu C, Dai Q, Geng W, Mo Y, Wang J. Electroacupuncture pre‑conditioning protects from lung injury induced by limb ischemia/reperfusion through TLR4 and NF‑κB in rats. Mol Med Rep 2020; 22:3225-3232. [PMID: 32945486 PMCID: PMC7453533 DOI: 10.3892/mmr.2020.11429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Limb ischemia/reperfusion (I/R) can induce inflammation, causing acute lung injury. The Toll-like receptor 4 (TLR4)/NF-κB pathway plays an important role in acute and chronic inflammatory disorders. Several studies have demonstrated the efficacy of acupuncture in lung inflammatory injury. The aim of the present study was to elucidate the mechanism underlying the protective effect of electroacupuncture (EA) against lung injury induced by limb I/R. EA applied at the Zusanli and Sanyinjiao acupoints attenuated lung injury and decreased the secretion of inflammatory factors such as tumor necrosis factor-α, interleukin (IL)-1, IL-6 and myeloperoxidase. Moreover, the expression levels of TLR4 and NF-κB were suppressed by EA. Thus, the present findings suggested that EA can reduce pulmonary inflammation induced by limb I/R injury, possibly via the inhibition of the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Yingying Lou
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Qimin Yu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Kaiwei Xu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yingying Tu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Meita Felicia Balelang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Guangtao Lu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Congying Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Qinxue Dai
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wujun Geng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yunchang Mo
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Junlu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
45
|
Wang L, Yang JW, Lin LT, Huang J, Wang XR, Su XT, Cao Y, Fisher M, Liu CZ. Acupuncture Attenuates Inflammation in Microglia of Vascular Dementia Rats by Inhibiting miR-93-Mediated TLR4/MyD88/NF- κB Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8253904. [PMID: 32850002 PMCID: PMC7441436 DOI: 10.1155/2020/8253904] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/21/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND It is widely accepted that inflammation may contribute to cognitive impairment in patients with vascular dementia (VD). Our prior clinical researches have reported that acupuncture can alleviate cognitive function in VD, but the underlying mechanisms are still unclear. The purpose of this research was to explore whether acupuncture alleviates cognitive impairment by suppressing the microRNA-93- (miR-93-) mediated Toll-like receptor (TLR) signaling pathway, which triggers inflammatory responses in the central nervous system. METHODS VD was established by permanent bilateral common carotid artery occlusion in male Wistar rats. Three days after operation, the rats began daily treatment with acupuncture for two weeks. The levels of miR-93, Toll-like receptors (TLR2 and TLR4), intracellular signaling molecules (myeloid differentiation factor 88 (MyD88) and nuclear factor-kappa B (NF-κB)), and inflammatory cytokines were subsequently detected. TLR4 colocalized with neurons, microglia, and astrocytes in the hippocampus was evaluated. Neuroinflammation and cognitive function were determined after intracerebroventricular injection of TLR4 antagonist TAK-242 or agonist lipopolysaccharide (LPS) with or without acupuncture. RESULTS We found that acupuncture notably repressed the expression of inflammatory cytokines in the hippocampus and plasma of VD rats. The expression of TLR4, but not TLR2, was markedly downregulated by acupuncture, accompanied by a decrease in miR-93 and MyD88/NF-κB signaling pathway activation. The overexpression of TLR4 in microglia, but not in astrocytes and neurons, was reversed by acupuncture. Furthermore, intracerebroventricular injection of TAK-242 had similar effects to acupuncture on inflammation and cognitive function, while LPS injection abolished the beneficial effects of acupuncture. CONCLUSIONS Taken together, these findings provide evidence that acupuncture attenuates cognitive impairment associated with inflammation through inhibition of the miR-93-mediated TLR4/MyD88/NF-κB signaling pathway in experimental VD. Acupuncture serves as a promising alternative therapy and may be an underlying TLR4 inhibitor for the treatment of VD.
Collapse
Affiliation(s)
- Lu Wang
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jing-Wen Yang
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Li-Ting Lin
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jin Huang
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, China
| | - Xue-Rui Wang
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, China
| | - Xin-Tong Su
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Cao
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Marc Fisher
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, 02115 MA, USA
| | - Cun-Zhi Liu
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
46
|
Ton G, Yang YC, Lee LW, Ho WC, Chen YH, Yen HR, Lee YC. Acupuncture Decreased the Risk of Coronary Heart Disease in Patients with Osteoarthritis in Taiwan: A Nationwide Matched Cohort Study. J Altern Complement Med 2020; 27:S60-S70. [PMID: 32744906 DOI: 10.1089/acm.2020.0153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objectives: Patients with osteoarthritis (OA) are more likely to develop coronary heart disease (CHD) than the general population. Acupuncture is commonly used in OA patients; however, the therapeutic effect of acupuncture on the risk of CHD in patients with OA and the association between OA patients and their risk to develop CHD in Taiwan are unknown. We investigated the risk of CHD according to acupuncture use in OA patients and compared it with the general population. Design: Records obtained from Taiwan's National Health Insurance Research Database identified 84,773 patients with OA, which were compared with 727,359 patients without OA diagnosis. Five thousand forty-six of those who met study inclusion criteria had 1:1 frequency matching and were categorized as OA-acupuncture cohort (n = 1682), OA nonacupuncture cohort (n = 1682), and non-OA cohort (n = 1682). Cox proportional hazards regression analysis determined the risk of CHD, which was defined as the study main outcome. Therapeutic effects of acupuncture and medical expenditure were also analyzed. Results: OA nonacupuncture cohort had 3.04 higher risk to develop CHD compared with OA-acupuncture cohort (95% confidence interval [CI], 2.54-3.63, p < 0.001) and non-OA cohort had 1.88 higher risk to develop CHD compared with OA-acupuncture cohort (95% CI, 1.52-2.32, p < 0.001). In subgroup analyses, OA patients treated with both acupuncture and oral steroids were at significantly lower risk of CHD compared with those who used neither (adjusted hazard ratio 0.34; 95% CI, 0.22-0.53), and OA patients treated with acupuncture had the lowest medical expenditure in a follow-up time of 6 months, and 3 and 5 years. Conclusion: This is the first large-scale investigation in Taiwan that shows the association between OA and CHD and the beneficial effects of acupuncture in OA patients, and their associated risk to develop CHD. Our results may provide valuable information for health policy decision making. Further randomized controlled trials are needed to confirm these observational findings.
Collapse
Affiliation(s)
- Gil Ton
- College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Yu-Cih Yang
- College of Medicine, China Medical University, Taichung, Taiwan.,Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Li-Wen Lee
- Department of Acupuncture, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Chao Ho
- Department of Public Health, China Medical University, Taichung, Taiwan
| | - Yi-Hung Chen
- College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Hung-Rong Yen
- College of Chinese Medicine, Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Yu-Chen Lee
- College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan.,Department of Acupuncture, China Medical University Hospital, Taichung, Taiwan.,College of Chinese Medicine, Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
47
|
Wei TH, Hsieh CL. Effect of Acupuncture on the p38 Signaling Pathway in Several Nervous System Diseases: A Systematic Review. Int J Mol Sci 2020; 21:E4693. [PMID: 32630156 PMCID: PMC7370084 DOI: 10.3390/ijms21134693] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/16/2022] Open
Abstract
Acupuncture is clinically used to treat various diseases and exerts positive local and systemic effects in several nervous system diseases. Advanced molecular and clinical studies have continually attempted to decipher the mechanisms underlying these effects of acupuncture. While a growing understanding of the pathophysiology underlying several nervous system diseases shows it to be related to inflammation and impair cell regeneration after ischemic events, the relationship between the therapeutic mechanism of acupuncture and the p38 MAPK signal pathway has yet to be elucidated. This review discusses the latest advancements in the identification of the effect of acupuncture on the p38 signaling pathway in several nervous system diseases. We electronically searched databases including PubMed, Embase, and the Cochrane Library from their inception to April 2020, using the following keywords alone or in various combinations: "acupuncture", "p38 MAPK pathway", "signaling", "stress response", "inflammation", "immune", "pain", "analgesic", "cerebral ischemic injury", "epilepsy", "Alzheimer's disease", "Parkinson's disease", "dementia", "degenerative", and "homeostasis". Manual acupuncture and electroacupuncture confer positive therapeutic effects by regulating proinflammatory cytokines, ion channels, scaffold proteins, and transcription factors including TRPV1/4, Nav, BDNF, and NADMR1; consequently, p38 regulates various phenomena including cell communication, remodeling, regeneration, and gene expression. In this review article, we found the most common acupoints for the relief of nervous system disorders including GV20, GV14, ST36, ST37, and LI4. Acupuncture exhibits dual regulatory functions of activating or inhibiting different p38 MAPK pathways, contributing to an overall improvement of clinical symptoms and function in several nervous system diseases.
Collapse
Affiliation(s)
- Tzu-Hsuan Wei
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan;
| | - Ching-Liang Hsieh
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
48
|
Expression of high mobility group B1 and toll-like receptor-nuclear factor κB signaling pathway in chronic subdural hematomas. PLoS One 2020; 15:e0233643. [PMID: 32479555 PMCID: PMC7263617 DOI: 10.1371/journal.pone.0233643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/09/2020] [Indexed: 12/30/2022] Open
Abstract
Chronic subdural hematoma (CSDH) is an angiogenic and inflammatory disease. Toll-like receptors (TLRs) transduce intracellular signals, resulting in the activation of nuclear factor κB (NF-κB), which leads to the production of inflammatory cytokines. High-mobility group box 1 (HMGB1) functions as a mediator of inflammatory responses through TLRs. In this study, we examined the expression of HMGB1 and components of the Toll-like receptor and NF-κB signaling pathways in the outer membrane of CSDH. Eight patients whose outer membrane was successfully obtained during trepanation surgery were included in this study. The expression of TLR4, myeloid differentiation factor 88 (MyD88), interleukin-1 receptor-associated kinase 4 (IRAK4), TNF receptor-associated factor 6 (TRAF6), TGFβ-activated kinase 1 (Tak1), interferon regulatory factors 3 (IRF3), IκB kinase β (IKKβ), IKKγ, IκBε, IκBα, NF-κB/p65 and β-actin was examined by Western blot analysis. The expression of TLR4, NF-κB/p65 and interleukin-6 (IL-6) was also examined by immunohistochemistry. The concentrations of HMGB1 and IL-6 in CSDH fluids were measured using ELISA kits. Above-mentioned molecules were detected in all cases. In addition, TLR4, NF-κB/p65 and IL-6 were localized in the endothelial cells of vessels within CSDH outer membranes. The concentrations of HMGB1 and IL-6 in CSDH fluids were significantly higher than that in the CSF and serum. There existed a correlation between the concentrations of HMGB1 and IL-6 in CSDH fluids. Our data suggest that HMGB1 in CSDH fluids produces the inflammatory cytokine IL-6 in endothelial cells through the Toll-like receptor and NF-κB signaling pathways. Anti-HMGB1 therapy might be a useful method to treat the growth of CSDH.
Collapse
|
49
|
Effect of Electroacupuncture in Mice with Dextran Sulfate Sodium-Induced Colitis and the Influence of Gut Microbiota. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2087903. [PMID: 32419794 PMCID: PMC7204379 DOI: 10.1155/2020/2087903] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Background The relationship between inflammatory bowel disease and gut microbiota is inextricable. Electroacupuncture (EA) can alleviate acute experimental colitis, but the performance of intestinal microorganisms and the mechanism are still not fully understood. We investigated the relationship between the EA and gut microbes and clarified the role of tight junction and adiponectin in the anti-inflammatory effect of EA. Methods Male C57BL/6 mice were randomized into three groups: normal control, dextran sulfate sodium- (DSS-) induced ulcerative colitis (DSS), and DSS with EA ST36 (DSS + EA). Mice body weight, DAI score, colon length, and histological score were evaluated for colitis severity. Colonic inflammation and tight junctions were demonstrated by the immunohistochemical (IHC) method. Systemic responses were confirmed by plasma cytokines and adiponectin with multiplex immunoassays. Gut microbiome profiling was conducted by 16S rRNA gene sequencing. Results EA had benefit in relieving both macroscopic and microscopic colonic inflammation. It can reduce disease activity, maintain colon length, and ameliorate histological inflammatory reaction. In IHC stain, EA decreased CD11b, F4/80, TLR4, and MyD88 and preserved claudin-1 and ZO-1 expression. Compared with the control group, the DSS group showed elevated levels of CRP, IFN-γ, TNF-α, and IL-6, but decreased adiponectin. These changes were reversed by EA, accompanied by modulation of the overall structure of gut microbiota. Conclusion Our findings suggest that EA exerts its therapeutic effect by TLR4 signaling via the MyD88-dependent pathway. EA could increase adiponectin, maintain mucosal tight junctions, and modulate gut microbiota.
Collapse
|
50
|
Chen X, Cheng C, Zuo X, Huang W. Astragalin alleviates cerebral ischemia-reperfusion injury by improving anti-oxidant and anti-inflammatory activities and inhibiting apoptosis pathway in rats. BMC Complement Med Ther 2020; 20:120. [PMID: 32316944 PMCID: PMC7171805 DOI: 10.1186/s12906-020-02902-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/23/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Astragalin (AG), a flavonoid from many traditional herbs and medicinal plants, has been described to exhibit in vitro anti-inflammatory activity. The paper aimed to study the effects of astragalin on anti-inflammatory, anti-oxidative ability and apoptosis signaling pathway in brain tissue of rats with cerebral ischemia-reperfusion injury, and to explore its possible mechanism. METHODS The rat model of focal cerebral ischemia-reperfusion injury was established by suture method. It was randomly divided into 5 groups, sham operation group, ischemia-reperfusion (I/R) treatment group, and astragalin treatment I / R group (12.5, 25, 50 mg / kg). After 24 h of reperfusion, the neurological deficits of the rats were analyzed and HE staining was performed. The volume of cerebral infarction was calculated by triphenyltetrazolium chloride (TTC) staining, and the apoptosis of nerve cells was detected by TUNEL staining. In addition, the content of malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), glutathione (GSH) assay and glutathione peroxidase (GSH-Px) were measured in rat brain tissue. Western blot analysis was used to determine the expression of related proteins. RESULTS Compared with I/R group, the neurological deficit score and infarct volume of I/R rats were reduced in the astragalin treatment group. In the astragalin treatment group, MDA and NO levels in I/R rats were reduced, antioxidant enzymes and superoxide dismutase (SOD) activity were increased. In the astragalin treatment group, NF-κB (p65) and cyclooxygenase-2 (COX-2) expression levels were down-regulated, NF-E2-related factor 2 (Nrf2) nucleus and heme oxygenase-1 (HO-1) protein expression levels were up-regulated. In addition, the astragalin treatment can inhibit apoptosis, down-regulate Bax and cleaved caspase-3 expression, up-regulate Bcl-Xl expression. CONCLUSION The antioxidant properties of astragalin may play an important role in improving cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Xiuying Chen
- Department of Neurology, Second Affiliated Hospital of Army Medical University, No.83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Chang Cheng
- Department of Neurology, Second Affiliated Hospital of Army Medical University, No.83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Xuzheng Zuo
- Department of Neurology, General Hospital of southern Theatre Command, Liuhua Road, Guangzhou, 510010, China
| | - Wen Huang
- Department of Neurology, Second Affiliated Hospital of Army Medical University, No.83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| |
Collapse
|