1
|
Ismael LQ, Keong YY, Bahari H, Lan CA, Yin KB. Bombesin-like receptor 3 expression induced by bisphenol A is likely associated with reduced cell proliferation by inhibiting DNA synthesis and inducing inflammation in liver cells. Mol Biol Rep 2024; 51:271. [PMID: 38302795 DOI: 10.1007/s11033-023-09080-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/29/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Bisphenol A (BPA) is an exogenous endocrine disruptor mimicking hormones closely associated with health complications, such as cancer progression. BPA is also related to an increase in the prevalence of obesity-related diseases due to its obesogenic action. Bombesin-like receptor 3 (BRS3) is an important factor that should be considered in the adipogenic gene network, as depletion of this gene alters adiposity. METHODS Therefore, the present study aimed to investigate the messenger ribonucleic acid (mRNA) expression of BRS3 in human liver THLE-2 cells post-BPA treatment by real-time polymerase chain reaction. The effects of BPA on the levels of pro-inflammatory proteins, interleukin 6 (IL6) and CC motif chemokine ligand 2 (CCL2), in conditioned media of BPA-treated THLE-2 cells and deoxyribonucleic acid (DNA) synthesis in replicating BPA-treated THLE-2 cells during the cell cycle were also examined by enzyme-linked immunosorbent assay (ELISA) and flow cytometry, respectively. RESULTS The study found that the mRNA expression of BRS3 was increased in THLE-2 cells treated with BPA. The study also showed that the expression levels of IL6 and CCL2 reached an optimum level in the conditioned media of BPA-treated THLE-2 cells after 48 h of treatment. Subsequently, the DNA synthesis analysis showed that bromodeoxyuridine/propidium iodide (BrdU/PI) stained positive cells were decreased in BPA-treated THLE-2 cells at 72 h of treatment. CONCLUSION The study demonstrates that BRS3 expression induced by BPA is likely associated with reduced cell proliferation by inhibiting DNA synthesis and inducing cellular inflammation in liver cells.
Collapse
Affiliation(s)
- Layla Qasim Ismael
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800, USM, Penang, Malaysia
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil, 44001, Iraq
| | - Yong Yoke Keong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, 43400, Serdang, Selangor, Malaysia
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, 43400, Serdang, Selangor, Malaysia
| | - Chew Ai Lan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800, USM, Penang, Malaysia
| | - Khoo Boon Yin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800, USM, Penang, Malaysia.
| |
Collapse
|
2
|
Wang Z, Wu L, Wang H, Zhang Y, Xiao H. Agonist-induced extracellular vesicles contribute to the transfer of functional bombesin receptor-subtype 3 to recipient cells. Cell Mol Life Sci 2022; 79:72. [PMID: 35032194 PMCID: PMC11072852 DOI: 10.1007/s00018-021-04114-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/03/2022]
Abstract
Extracellular vesicles (EVs) are important carriers for biomolecules in the microenvironment that greatly promote intercellular and extracellular communications. However, it is unclear whether bombesin receptor-subtype 3 (BRS-3), an orphan G-protein coupled receptor, can be packed into EVs and functionally transferred to recipient cells. In this study, we applied the synthetic agonist and antagonist to activate and inhibit the BRS-3 in HEK293-BRS-3 cells, whose EVs release was BRS-3 activation dependent. The presence of BRS-3 in harvested EVs was further confirmed by an enhanced green fluorescent protein tag. After recipient cells were co-cultured with these EVs, the presence of BRS-3 in the recipient cells was discovered, whose function was experimentally validated. Quantitative proteomics approach was utilized to decipher the proteome of the EVs derived from HEK293-BRS-3 cells after different stimulations. More than 900 proteins were identified, including 51 systematically dysregulated EVs proteins. The Ingenuity Pathway Analysis (IPA) revealed that RhoA signaling pathway was as an essential player for the secretion of EVs. Selective inhibition of RhoA signaling pathway after BRS-3 activation dramatically reversed the increased secretion of EVs. Our data, collectively, demonstrated that EVs contributed to the transfer of functional BRS-3 to the recipient cells, whose secretion was partially regulated by RhoA signaling pathway.
Collapse
Affiliation(s)
- Zeyuan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lehao Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huiyu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hua Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Moody TW, Lee L, Ramos-Alvarez I, Iordanskaia T, Mantey SA, Jensen RT. Bombesin Receptor Family Activation and CNS/Neural Tumors: Review of Evidence Supporting Possible Role for Novel Targeted Therapy. Front Endocrinol (Lausanne) 2021; 12:728088. [PMID: 34539578 PMCID: PMC8441013 DOI: 10.3389/fendo.2021.728088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are increasingly being considered as possible therapeutic targets in cancers. Activation of GPCR on tumors can have prominent growth effects, and GPCRs are frequently over-/ectopically expressed on tumors and thus can be used for targeted therapy. CNS/neural tumors are receiving increasing attention using this approach. Gliomas are the most frequent primary malignant brain/CNS tumor with glioblastoma having a 10-year survival <1%; neuroblastomas are the most common extracranial solid tumor in children with long-term survival<40%, and medulloblastomas are less common, but one subgroup has a 5-year survival <60%. Thus, there is an increased need for more effective treatments of these tumors. The Bombesin-receptor family (BnRs) is one of the GPCRs that are most frequently over/ectopically expressed by common tumors and is receiving particular attention as a possible therapeutic target in several tumors, particularly in prostate, breast, and lung cancer. We review in this paper evidence suggesting why a similar approach in some CNS/neural tumors (gliomas, neuroblastomas, medulloblastomas) should also be considered.
Collapse
Affiliation(s)
- Terry W. Moody
- Department of Health and Human Services, National Cancer Institute, Center for Cancer Training, Office of the Director, Bethesda, MD, United States
| | - Lingaku Lee
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- Department of Gastroenterology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Irene Ramos-Alvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Tatiana Iordanskaia
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Samuel A. Mantey
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Robert T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Robert T. Jensen,
| |
Collapse
|
4
|
Ramos-Alvarez I, Lee L, Mantey SA, Jensen RT. Development and Characterization of a Novel, High-Affinity, Specific, Radiolabeled Ligand for BRS-3 Receptors. J Pharmacol Exp Ther 2019; 369:454-465. [PMID: 30971479 PMCID: PMC6519687 DOI: 10.1124/jpet.118.255141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/05/2019] [Indexed: 02/06/2023] Open
Abstract
Bombesin (Bn) receptor subtype 3(BRS-3) is an orphan G-protein-coupled receptor of the Bn family, which does not bind any natural Bn peptide with high affinity. Receptor knockout studies show that the animals develop diabetes, obesity, altered temperature control, and other central nervous system (CNS)/endocrine/gastrointestinal changes. It is present in CNS, peripheral tissues, and tumors; however, its role in normal physiology/pathophysiology, as well as its receptor localization/pharmacology is largely unknown, in part due to the lack of a convenient, specific, direct radiolabeled ligand. This study was designed to address this problem and to develop and characterize a specific radiolabeled ligand for BRS-3. The peptide antagonist Bantag-1 had >10,000-fold selectivity for human BRS-3 (hBRS-3) over other mammalian Bn receptors (BnRs) [i.e., gastrin-releasing peptide receptor (GRPR) and neuromedin B receptor (NMBR)]. Using iodogen and basic conditions, it was radiolabeled to high specific activity (2200 Ci/mmol) and found to bind with high affinity/specificity to hBRS-3. Binding was saturable, rapid, and reversible. The ligand only interacted with known BRS-3 ligands, and not with other specific GRPR/NMBR ligands or ligands for unrelated receptors. The magnitude of 125I-Bantag-1 binding correlated with BRS-3 mRNA expression and the magnitude of activation of phospholipase C in lung cancer cells, as well as readily identifying BRS-3 in lung cancer cells and normal tissues, allowing the direct assessment of BRS-3 receptor pharmacology/numbers on cells containing BRS-3 with other BnRs, which is usually the case. This circumvents the need for subtraction assays, which are now frequently used to assess BRS-3 indirectly using radiolabeled pan-ligands, which interact with all BnRs.
Collapse
Affiliation(s)
- Irene Ramos-Alvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Lingaku Lee
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Samuel A Mantey
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Robert T Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
5
|
Chen L, Pan X, Zhang YH, Huang T, Cai YD. Analysis of Gene Expression Differences between Different Pancreatic Cells. ACS OMEGA 2019; 4:6421-6435. [DOI: 10.1021/acsomega.8b02171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
- Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China
| | - Xiaoyong Pan
- Department of Medical Informatics, Erasmus MC, Rotterdam 3014ZK, Netherlands
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
6
|
Moreno-Villegas Z, Martín-Duce A, Aparicio C, Portal-Núñez S, Sanz R, Mantey SA, Jensen RT, Lorenzo O, Egido J, González N. Activation of bombesin receptor Subtype-3 by [D-Tyr 6,β-Ala 11,Phe 13,Nle 14]bombesin 6-14 increased glucose uptake and lipogenesis in human and rat adipocytes. Mol Cell Endocrinol 2018; 474:10-19. [PMID: 29402494 DOI: 10.1016/j.mce.2018.01.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/20/2017] [Accepted: 01/29/2018] [Indexed: 11/19/2022]
Abstract
BRS-3 has an important role in glucose homeostasis. Its expression was reduced in skeletal muscle from obese and/or diabetic patients, and BRS-3 KO-mice developed obesity. In this work, focused on rat/human adipose tissue, BRS-3 gene-expression was lower than normal-levels in hyperlipidemic, type-2-diabetic (T2D), and type-1-diabetic rats and also in obese (OB) and T2D patients. Moreover, BRS-3 protein levels were decreased in diabetic rat and in obese and diabetic human fat pieces; but neither mutation nor even polymorphism in the BRS-3-gene was found in OB or T2D patients. Interestingly, in rat and human adipocytes, without metabolic alterations, [D-Tyr6,β-Ala11,Phe13,Nle14]bombesin6-14 -BRS-3-agonist-, as insulin, enhanced BRS-3 gene/protein expression, increased, PKB, p70s6K, MAPKs and p90RSK1 phosphorylation-levels, and induced a concentration-related stimulation of glucose transport, GLUT-4 membrane translocation and lipogenesis, exclusively mediated by BRS-3, and abolished by wortmannin, PD98059 or rapamacyn. These results confirm that BRS-3 and/or its agonist are a potential therapeutic tool for obesity/diabetes.
Collapse
Affiliation(s)
- Zaida Moreno-Villegas
- Renal, Vascular and Diabetes Research Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio Martín-Duce
- Department of Nursery, Unit of Surgery, Universidad de Alcalá, Madrid, Spain
| | - César Aparicio
- Department of Vascular Surgery, Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Sergio Portal-Núñez
- Bone and Joint Research Unit, IIS-FJD, Madrid, Spain; Applied Molecular Medicine Institute, School of Medicine, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | | | - Samuel A Mantey
- National Institutes of Health, Cell Biology Section, NIDDK, Digestive Disease Branch, Bethesda, MD, USA
| | - Robert T Jensen
- National Institutes of Health, Cell Biology Section, NIDDK, Digestive Disease Branch, Bethesda, MD, USA
| | - Oscar Lorenzo
- Renal, Vascular and Diabetes Research Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, Madrid, Spain; Spanish Biomedical Research Network in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, Madrid, Spain; Spanish Biomedical Research Network in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Nieves González
- Renal, Vascular and Diabetes Research Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, Madrid, Spain; Spanish Biomedical Research Network in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.
| |
Collapse
|
7
|
Greydanus DE, Agana M, Kamboj MK, Shebrain S, Soares N, Eke R, Patel DR. Pediatric obesity: Current concepts. Dis Mon 2018; 64:98-156. [DOI: 10.1016/j.disamonth.2017.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Qu X, Wang H, Liu R. Recent insights into biological functions of mammalian bombesin-like peptides and their receptors. Curr Opin Endocrinol Diabetes Obes 2018; 25:36-41. [PMID: 29120926 DOI: 10.1097/med.0000000000000375] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The current review highlights recent advances in physiological and pharmacological researches in biology of mammalian bombesin-like peptides (BLPs). RECENT FINDINGS BLPs and their receptors were found to have regulatory roles in many biological processes in central nervous system. Two BLPs, neuromedin B and gastrin-releasing peptide (GRP), and their receptors are required for regulation of basal and induced sighing activity in rodents. This is the first study demonstrating central pathways involved in regulation of sighing activity. GRP receptor (GRPR) expressing neurons are excitatory glutamatergic interneurons located in the dorsal lamina without projections outside the spinal cord and mediate itch signals via vesicular glutamate transporter 2. Those neurons receive itch signals and make synapses with the parabrachial nucleus projecting spinal neurons to transmit itch signals to parabrachial nucleus. GRP expressing interneurons function in a proposed 'leaky gate model' to interpret the mechanism of both pain and itch transmission. In addition to recent advances of biology in nervous system, BLPs and their receptors were found to play potential regulatory roles in innate and adaptive immune responses and tissue development. SUMMARY Several important biological roles of BLPs and their receptors in nervous system were identified. Together with researches regarding central roles of BLPs, studies revealing the regulatory roles of BLPs and their receptors in immunology and tissue development provide us with novel insights into understanding of the biology of BLPs and their receptors.
Collapse
Affiliation(s)
- Xiangping Qu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
| | | | | |
Collapse
|
9
|
Bombesin-like receptor 3 (Brs3) expression in glutamatergic, but not GABAergic, neurons is required for regulation of energy metabolism. Mol Metab 2017; 6:1540-1550. [PMID: 29107299 PMCID: PMC5681273 DOI: 10.1016/j.molmet.2017.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 02/03/2023] Open
Abstract
Objective Bombesin-like receptor 3 (BRS-3) is an orphan G protein-coupled receptor. Brs3 null mice have reduced resting metabolic rate and body temperature, increased food intake, and obesity. Here we study the role of Brs3 in different neuron types. Methods Mice able to undergo Cre recombinase-dependent inactivation or re-expression of Brs3 were generated, respectively Brs3fl/y and Brs3loxTB/y. We then studied four groups of mice with Brs3 selectively inactivated or re-expressed in cells expressing Vglut2-Cre or Vgat-Cre. Results Deletion of Brs3 in glutamatergic neurons expressing Vglut2 reproduced the global null phenotype for regulation of food intake, metabolic rate, body temperature, adiposity, and insulin resistance. These mice also no longer responded to a BRS-3 agonist, MK-5046. In contrast, deletion of Brs3 in GABAergic neurons produced no detectable phenotype. Conversely, the wild type phenotype was restored by selective re-expression of Brs3 in glutamatergic neurons, with no normalization achieved by re-expressing Brs3 in GABAergic neurons. Conclusions Brs3 expression in glutamatergic neurons is both necessary and sufficient for full Brs3 function in energy metabolism. In these experiments, no function was identified for Brs3 in GABAergic neurons. The data suggest that the anti-obesity pharmacologic actions of BRS-3 agonists occur via agonism of receptors on glutamatergic neurons. Brs3 in glutamatergic neurons regulates food intake, metabolic rate, and body weight. Brs3 in glutamatergic neurons is both necessary and sufficient for these functions. No phenotypes were identified by Brs3 loss or re-expression in GABAergic neurons. BRS-3 agonists likely act on glutamatergic neurons for their anti-obesity effects.
Collapse
|
10
|
Ramos-Álvarez I, Moreno P, Mantey SA, Nakamura T, Nuche-Berenguer B, Moody TW, Coy DH, Jensen RT. Insights into bombesin receptors and ligands: Highlighting recent advances. Peptides 2015; 72:128-44. [PMID: 25976083 PMCID: PMC4641779 DOI: 10.1016/j.peptides.2015.04.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 12/22/2022]
Abstract
This following article is written for Prof. Abba Kastin's Festschrift, to add to the tribute to his important role in the advancement of the role of peptides in physiological, as well as pathophysiological processes. There have been many advances during the 35 years of his prominent role in the Peptide field, not only as editor of the journal Peptides, but also as a scientific investigator and editor of two volumes of the Handbook of Biological Active Peptides [146,147]. Similar to the advances with many different peptides, during this 35 year period, there have been much progress made in the understanding of the pharmacology, cell biology and the role of (bombesin) Bn receptors and their ligands in various disease states, since the original isolation of bombesin from skin of the European frog Bombina bombina in 1970 [76]. This paper will briefly review some of these advances over the time period of Prof. Kastin 35 years in the peptide field concentrating on the advances since 2007 when many of the results from earlier studies were summarized [128,129]. It is appropriate to do this because there have been 280 articles published in Peptides during this time on bombesin-related peptides and it accounts for almost 5% of all publications. Furthermore, 22 Bn publications we have been involved in have been published in either Peptides [14,39,55,58,81,92,93,119,152,216,225,226,231,280,302,309,355,361,362] or in Prof. Kastin's Handbook of Biological Active Peptides [137,138,331].
Collapse
Affiliation(s)
- Irene Ramos-Álvarez
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Paola Moreno
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Samuel A Mantey
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Taichi Nakamura
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Bernardo Nuche-Berenguer
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Terry W Moody
- Center for Cancer Research, Office of the Director, NCI, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - David H Coy
- Peptide Research Laboratory, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, United States
| | - Robert T Jensen
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States.
| |
Collapse
|
11
|
González N, Moreno P, Jensen RT. Bombesin receptor subtype 3 as a potential target for obesity and diabetes. Expert Opin Ther Targets 2015; 19:1153-70. [PMID: 26066663 DOI: 10.1517/14728222.2015.1056154] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Diabetes mellitus and obesity are important health issues; increasing in prevalence, both in the USA and globally. There are only limited pharmacological treatments, and although bariatric surgery is effective, new effective pharmacologic treatments would be of great value. This review covers one area of increasing interest that could yield new novel treatments of obesity/diabetes mellitus. It involves recognition of the central role the G-protein-coupled receptor, bombesin receptor subtype 3 (BRS-3) plays in energy/glucose metabolism. AREAS COVERED Since the initial observation that BRS-3 knockout mice develop obesity, hypertension, impaired glucose metabolism and hyperphagia, there have been numerous studies of the mechanisms involved and the development of selective BRS-3 agonists/antagonists, which have marked effects on body weight, feeding and glucose/insulin homeostasis. In this review, each of these areas is briefly reviewed. EXPERT OPINION BRS-3 plays an important role in glucose/energy homeostasis. The development of potent, selective BRS-3 agonists demonstrates promise as a novel approach to treat obesity/diabetic states. One important question that needs to be addressed is whether BRS-3 agonists need to be centrally acting. This is particularly important in light of recent animal and human studies that report transient cardiovascular side effects with centrally acting oral BRS agonists.
Collapse
Affiliation(s)
- Nieves González
- The Autonomous University of Madrid, IIS-Jiménez Díaz Foundation, Renal, Vascular and Diabetes Research Laboratory, Spanish Biomedical Research Network in Diabetes and, Associated Metabolic Disorders (CIBERDEM) , Madrid , Spain
| | | | | |
Collapse
|