1
|
Del Gaudio I, Nitzsche A, Boyé K, Bonnin P, Poulet M, Nguyen TQ, Couty L, Ha HTT, Nguyen DT, Cazenave-Gassiot A, Ben Alaya K, Thérond P, Chun J, Wenk MR, Proia RL, Henrion D, Nguyen LN, Eichmann A, Camerer E. Zonation and ligand and dose dependence of sphingosine 1-phosphate receptor-1 signalling in blood and lymphatic vasculature. Cardiovasc Res 2024; 120:1794-1810. [PMID: 39086170 PMCID: PMC11587562 DOI: 10.1093/cvr/cvae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 06/12/2024] [Indexed: 08/02/2024] Open
Abstract
AIMS Circulating levels of sphingosine 1-phosphate (S1P), an HDL-associated ligand for the endothelial cell (EC) protective S1P receptor-1 (S1PR1), are reduced in disease states associated with endothelial dysfunction. Yet, as S1PR1 has high affinity for S1P and can be activated by ligand-independent mechanisms and EC autonomous S1P production, it is unclear if relative reductions in circulating S1P can cause endothelial dysfunction. It is also unclear how EC S1PR1 insufficiency, whether induced by deficiency in circulating ligand or by S1PR1-directed immunosuppressive therapy, affects different vascular subsets. METHODS AND RESULTS We here fine map the zonation of S1PR1 signalling in the murine blood and lymphatic vasculature, superimpose cell-type-specific and relative deficiencies in S1P production to define ligand source and dose dependence, and correlate receptor engagement to essential functions. In naïve blood vessels, despite broad expression, EC S1PR1 engagement was restricted to resistance-size arteries, lung capillaries, and a subset of high-endothelial venules (HEVs). Similar zonation was observed for albumin extravasation in EC S1PR1-deficient mice, and brain extravasation was reproduced with arterial EC-selective S1pr1 deletion. In lymphatic ECs, S1PR1 engagement was high in collecting vessels and lymph nodes and low in blind-ended capillaries that drain tissue fluids. While EC S1P production sustained S1PR1 signalling in lymphatics and HEV, haematopoietic cells provided ∼90% of plasma S1P and sustained signalling in resistance arteries and lung capillaries. S1PR1 signalling and endothelial function were both surprisingly sensitive to reductions in plasma S1P with apparent saturation around 50% of normal levels. S1PR1 engagement did not depend on sex or age but modestly increased in arteries in hypertension and diabetes. Sphingosine kinase (Sphk)-2 deficiency also increased S1PR1 engagement selectively in arteries, which could be attributed to Sphk1-dependent S1P release from perivascular macrophages. CONCLUSION This study highlights vessel subtype-specific S1PR1 functions and mechanisms of engagement and supports the relevance of S1P as circulating biomarker for endothelial function.
Collapse
Affiliation(s)
- Ilaria Del Gaudio
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| | - Anja Nitzsche
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| | - Kevin Boyé
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| | - Philippe Bonnin
- Physiologie Clinique, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Lariboisière, Paris, France
- Université Paris Cité, INSERM U1144, UFR de Pharmacie, Paris, France
| | - Mathilde Poulet
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| | - Toan Q Nguyen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Ludovic Couty
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| | - Hoa T T Ha
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Dat T Nguyen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Amaury Cazenave-Gassiot
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Khaoula Ben Alaya
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| | - Patrice Thérond
- Service de Biochimie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital de Bicêtre, Le Kremlin Bicêtre, France
- UFR de Pharmacie, EA 4529, Châtenay-Malabry, France
| | - Jerold Chun
- Neuroscience Drug Discovery, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Markus R Wenk
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Richard L Proia
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Institutes of Health, Bethesda, MD, USA
| | - Daniel Henrion
- MitoVasc Department, Angers University, Team 2 (CarMe), Angers University Hospital (CHU of Angers), CNRS, INSERM U1083, Angers, France
| | - Long N Nguyen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Anne Eichmann
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
- Department of Internal Medicine and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, USA
| | - Eric Camerer
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| |
Collapse
|
2
|
Wang D, Xu R, Wang Z. Protective Role of Sphingosine-1-Phosphate During Radiation-Induced Testicular Injury. Antioxidants (Basel) 2024; 13:1322. [PMID: 39594464 PMCID: PMC11591009 DOI: 10.3390/antiox13111322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
The impact of ionizing radiation on the male reproductive system is gaining increasing attention, particularly when it comes to testicular damage, which may result in decreased sperm quality and hormonal imbalances. Finding effective protective measures to mitigate testicular damage caused by radiation has become a focal point in the biomedical field. S1P, an essential biological signaling molecule, has garnered significant interest due to its multiple roles in regulating cellular functions and its protective effects against radiation-induced testicular injury. S1P not only effectively reduces the generation of ROS induced by radiation but also alleviates oxidative stress by enhancing the activity of antioxidant enzymes. Furthermore, S1P inhibits radiation-induced cell apoptosis by regulating the expression of anti-apoptotic and pro-apoptotic proteins. Additionally, S1P alleviates radiation-induced inflammation by inhibiting the production of inflammatory factors, thereby further protecting testicular tissue. In summary, S1P effectively reduces radiation-induced testicular damage through multiple mechanisms, offering a promising therapeutic approach to safeguard male reproductive health. Future research should explore the specific mechanisms of action and clinical application potential of S1P, aiming to contribute significantly to the prevention and treatment of radiation damage.
Collapse
Affiliation(s)
- Defan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen 361102, China;
| | - Renfeng Xu
- Fujian Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China;
| | - Zhengchao Wang
- Fujian Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China;
| |
Collapse
|
3
|
Liang T, Liu R, Liu J, Hong J, Gong F, Yang X. miRNA506 Activates Sphk1 Binding with Sirt1 to Inhibit Brain Injury After Intracerebral Hemorrhage via PI3K/AKT Signaling Pathway. Mol Neurobiol 2024:10.1007/s12035-024-04534-5. [PMID: 39395147 DOI: 10.1007/s12035-024-04534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024]
Abstract
Intracerebral hemorrhage (ICH) is an acute neurological disorder characterized by high mortality and disability rates. Previous studies have shown that 75% of patients who survive ICH experience varying degrees of neurological deficits. Sphk1 has been implicated in a multitude of phylogenetic processes, including innate immunity and cell proliferation. An in vivo rat model of ICH and an in vitro model of neuronal oxyhemoglobin (OxyHb) were constructed. The expression level of Sphk1 was assessed using western blotting and immunofluorescence, whereas cell death following ICH was evaluated using fluoro-Jade B and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Immunofluorescence facilitated the examination of microglial phenotypic alterations, while enzyme-linked immunosorbent assays were used to determine the concentrations of inflammatory markers. Behavioral assays were employed to assess the overall behavioral modifications of animals. Neuronal Sphk1/Sirt1 protein levels gradually increased following the induction of ICH. Elevated Sphk1 expression resulted in increased levels of anti-inflammatory microglia and reduced levels of pro-inflammatory factors. In contrast, suppression of Sphk1 expression resulted in an increased number of dead cells, thereby exacerbating neurological deficits. In vitro findings indicated that the levels of phosphorylated PI3K and AKT proteins increased in conjunction with Sphk1 expression. This study established that after ICH, Sphk1 interacts with Sirt1 to mitigate neuroinflammation, cell death, oxidative stress, and brain edema via the PI3K/AKT signaling pathway. Augmenting expression of Sphk1 significantly can ameliorate neurological impairments induced by ICH, offering novel targets and perspectives for therapeutic interventions in ICH treatment.
Collapse
Affiliation(s)
- Tianyu Liang
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Renyang Liu
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Jinquan Liu
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Jun Hong
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Fangxiao Gong
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie, Guizhou, 551799, China
| | - Xianghong Yang
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
4
|
Kao WH, Liao LZ, Chen YA, Lo UG, Pong RC, Hernandez E, Chen MC, Teng CLJ, Wang HY, Tsai SCS, Kapur P, Lai CH, Hsieh JT, Lin H. SPHK1 promotes bladder cancer metastasis via PD-L2/c-Src/FAK signaling cascade. Cell Death Dis 2024; 15:678. [PMID: 39284838 PMCID: PMC11405731 DOI: 10.1038/s41419-024-07044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
SPHK1 (sphingosine kinase type 1) is characterized as a rate-limiting enzyme in sphingolipid metabolism to phosphorylate sphingosine into sphingosine-1-phosphate (S1P) that can bind to S1P receptors (S1PRs) to initiate several signal transductions leading to cell proliferation and survival of normal cell. Many studies have indicated that SPHK1 is involved in several types of cancer development, however, a little is known in bladder cancer. The TCGA database analysis was utilized for analyzing the clinical relevance of SPHK1 in bladder cancer. Through CRISPR/Cas9 knockout (KO) and constitutive activation (CA) strategies on SPHK1 in the bladder cancer cells, we demonstrated the potential downstream target could be programmed cell death 1 ligand 2 (PD-L2). On the other hand, we demonstrated that FDA-approved SPHK1 inhibitor Gilenya® (FTY720) can successfully suppress bladder cancer metastasis by in vitro and in vivo approaches. This finding indicated that SPHK1 as a potent therapeutic target for metastatic bladder cancer by dissecting the mechanism of action, SPHK1/S1P-elicited Akt/β-catenin activation promoted the induction of PD-L2 that is a downstream effector in facilitating bladder cancer invasion and migration. Notably, PD-L2 interacted with c-Src that further activates FAK. Here, we unveil the clinical relevance of SPHK1 in bladder cancer progression and the driver role in bladder cancer metastasis. Moreover, we demonstrated the inhibitory effect of FDA-approved SPHK1 inhibitor FTY720 on bladder cancer metastasis from both in vitro and in vivo models.
Collapse
Affiliation(s)
- Wei-Hsiang Kao
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Li-Zhu Liao
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yu-An Chen
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - U-Ging Lo
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rey-Chen Pong
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth Hernandez
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mei-Chih Chen
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Chieh-Lin Jerry Teng
- Division of Hematology/Medical Oncology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hsin-Yi Wang
- Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Stella Chin-Shaw Tsai
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Superintendent Office, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
- College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Payal Kapur
- Urology and Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
5
|
Lepiarz-Raba I, Gbadamosi I, Florea R, Paolicelli RC, Jawaid A. Metabolic regulation of microglial phagocytosis: Implications for Alzheimer's disease therapeutics. Transl Neurodegener 2023; 12:48. [PMID: 37908010 PMCID: PMC10617244 DOI: 10.1186/s40035-023-00382-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023] Open
Abstract
Microglia, the resident immune cells of the brain, are increasingly implicated in the regulation of brain health and disease. Microglia perform multiple functions in the central nervous system, including surveillance, phagocytosis and release of a variety of soluble factors. Importantly, a majority of their functions are closely related to changes in their metabolism. This natural inter-dependency between core microglial properties and metabolism offers a unique opportunity to modulate microglial activities via nutritional or metabolic interventions. In this review, we examine the existing scientific literature to synthesize the hypothesis that microglial phagocytosis of amyloid beta (Aβ) aggregates in Alzheimer's disease (AD) can be selectively enhanced via metabolic interventions. We first review the basics of microglial metabolism and the effects of common metabolites, such as glucose, lipids, ketone bodies, glutamine, pyruvate and lactate, on microglial inflammatory and phagocytic properties. Next, we examine the evidence for dysregulation of microglial metabolism in AD. This is followed by a review of in vivo studies on metabolic manipulation of microglial functions to ascertain their therapeutic potential in AD. Finally, we discuss the effects of metabolic factors on microglial phagocytosis of healthy synapses, a pathological process that also contributes to the progression of AD. We conclude by enlisting the current challenges that need to be addressed before strategies to harness microglial phagocytosis to clear pathological protein deposits in AD and other neurodegenerative disorders can be widely adopted.
Collapse
Affiliation(s)
- Izabela Lepiarz-Raba
- Laboratory for Translational Research in Neuropsychiatric Disorders (TREND), BRAINCITY: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland.
| | - Ismail Gbadamosi
- Laboratory for Translational Research in Neuropsychiatric Disorders (TREND), BRAINCITY: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Roberta Florea
- Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | | | - Ali Jawaid
- Laboratory for Translational Research in Neuropsychiatric Disorders (TREND), BRAINCITY: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
6
|
Sonsalla MM, Lamming DW. Geroprotective interventions in the 3xTg mouse model of Alzheimer's disease. GeroScience 2023; 45:1343-1381. [PMID: 37022634 PMCID: PMC10400530 DOI: 10.1007/s11357-023-00782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disease. As the population ages, the increasing prevalence of AD threatens massive healthcare costs in the coming decades. Unfortunately, traditional drug development efforts for AD have proven largely unsuccessful. A geroscience approach to AD suggests that since aging is the main driver of AD, targeting aging itself may be an effective way to prevent or treat AD. Here, we discuss the effectiveness of geroprotective interventions on AD pathology and cognition in the widely utilized triple-transgenic mouse model of AD (3xTg-AD) which develops both β-amyloid and tau pathologies characteristic of human AD, as well as cognitive deficits. We discuss the beneficial impacts of calorie restriction (CR), the gold standard for geroprotective interventions, and the effects of other dietary interventions including protein restriction. We also discuss the promising preclinical results of geroprotective pharmaceuticals, including rapamycin and medications for type 2 diabetes. Though these interventions and treatments have beneficial effects in the 3xTg-AD model, there is no guarantee that they will be as effective in humans, and we discuss the need to examine these interventions in additional animal models as well as the urgent need to test if some of these approaches can be translated from the lab to the bedside for the treatment of humans with AD.
Collapse
Affiliation(s)
- Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-Madison, 2500 Overlook Terrace, VAH C3127 Research 151, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, 2500 Overlook Terrace, VAH C3127 Research 151, Madison, WI, 53705, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA.
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
7
|
Rigamonti AE, Dei Cas M, Caroli D, De Col A, Cella SG, Paroni R, Sartorio A. Identification of a Specific Plasma Sphingolipid Profile in a Group of Normal-Weight and Obese Subjects: A Novel Approach for a "Biochemical" Diagnosis of Metabolic Syndrome? Int J Mol Sci 2023; 24:ijms24087451. [PMID: 37108620 PMCID: PMC10138812 DOI: 10.3390/ijms24087451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Metabolic syndrome is nosographically defined by using clinical diagnostic criteria such as those of the International Diabetes Federation (IDF) ones, including visceral adiposity, blood hypertension, insulin resistance and dyslipidemia. Due to the pathophysiological implications of the cardiometabolic risk of the obese subject, sphingolipids, measured in the plasma, might be used to biochemically support the diagnosis of metabolic syndrome. A total of 84 participants, including normal-weight (NW) and obese subjects without (OB-SIMET-) and with (OB-SIMET+) metabolic syndrome, were included in the study, and sphingolipidomics, including ceramides (Cer), dihydroceramides (DHCer), hexosyl-ceramides (HexCer), lactosyl-ceramides (LacCer), sphingomyelins (SM) and GM3 ganglosides families, and sphingosine-1-phosphate (S1P) and its congeners, was performed in plasma. Only total DHCers and S1P were significantly higher in OB-SIMET+ than NW subjects (p < 0.05), while total Cers decreased in both obese groups, though statistical significance was reached only in OB-SIMET- (vs. NW) subjects (p < 0.05). When considering the comparisons of the single sphingolipid species in the obese groups (OB-SIMET- or OB-SIMET+) vs. NW subjects, Cer 24:0 was significantly decreased (p < 0.05), while Cer 24:1, DHCer 16:0, 18:0, 18:1 and 24:1, and SM 18:0, 18:1 and 24:1 were significantly increased (p < 0.05). Furthermore, taking into account the same groups for comparison, HexCer 22:0 and 24:0, and GM3 22:0 and 24:0 were significantly decreased (p < 0.05), while HexCer 24:1 and S1P were significantly increased (p < 0.05). After having analyzed all data via a PLS-DA-based approach, the subsequent determination of the VIP scores evidenced the existence of a specific cluster of 15 sphingolipids endowed with a high discriminating performance (i.e., VIP score > 1.0) among the three groups, including DHCer 18:0, DHCer 24:1, Cer 18:0, HexCer 22:0, GM3 24:0, Cer C24:1, SM 18:1, SM 18:0, DHCer 18:1, HexCer 24:0, SM 24:1, S1P, SM 16:0, HexCer 24:1 and LacCer 22:0. After having run a series of multiple linear regressions, modeled by inserting each sphingolipid having a VIP score > 1.0 as a dependent variable, and waist circumference (WC), systolic/diastolic blood pressures (SBP/DBP), homeostasis model assessment-estimated insulin resistance (HOMA-IR), high-density lipoprotein (HDL), triglycerides (TG) (surrogates of IDF criteria) and C-reactive protein (CRP) (a marker of inflammation) as independent variables, WC was significantly associated with DHCer 18:0, DHCer 24:1, Cer 18:0, HexCer 22:0, Cer 24:1, SM 18:1, and LacCer 22:0 (p < 0.05); SBP with Cer 18:0, Cer 24:1, and SM 18:0 (p < 0.05); HOMA-IR with DHCer 18:0, DHCer 24:1, Cer 18:0, Cer 24:1, SM 18:1, and SM 18:0 (p < 0.05); HDL with HexCer 22:0, and HexCer 24:0 (p < 0.05); TG with DHCer 18:1, DHCer 24:1, SM 18:1, and SM 16:0 (p < 0.05); CRP with DHCer 18:1, and SP1 (p < 0.05). In conclusion, a cluster of 15 sphingolipid species is able to discriminate, with high performance, NW, OB-SIMET- and OB-SIMET+ groups. Although (surrogates of) the IDF diagnostic criteria seem to predict only partially, but congruently, the observed sphingolipid signature, sphingolipidomics might represent a promising "biochemical" support for the clinical diagnosis of metabolic syndrome.
Collapse
Affiliation(s)
- Antonello E Rigamonti
- Department of Clinical Sciences and Community Health, University of Milan, 20129 Milan, Italy
| | - Michele Dei Cas
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Diana Caroli
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy
| | - Alessandra De Col
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy
| | - Silvano G Cella
- Department of Clinical Sciences and Community Health, University of Milan, 20129 Milan, Italy
| | - Rita Paroni
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Alessandro Sartorio
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 20145 Milan, Italy
| |
Collapse
|
8
|
Dai X, Zhou G, Xu L. Associations between red blood cell count and metabolic dysfunction-associated fatty liver disease(MAFLD). PLoS One 2022; 17:e0279274. [PMID: 36574367 PMCID: PMC9794081 DOI: 10.1371/journal.pone.0279274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/03/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Some studies found that red blood cell count (RBC) was an unrecognized risk factor for non-alcoholic fatty liver disease (NAFLD). While the epidemiological data underpinning the evidence is very limited. As there are some differences between the latest criteria of metabolic dysfunction-associated fatty liver disease (MAFLD) and NAFLD, itis necessary to evaluate the relationship between RBC and MAFLD. METHODS We performed a cross-sectional analysis of the National Health and Nutritional Examination Survey (NHANES)2017-2018 cohort, including 4477 participants. Hepatic steatosis was determined when the value of controlled attenuation parameter (CAP) obtained by Fibroscan was ≥274 dB/m. Multivariate logistic regression analysis was used to estimate the association between RBC and MAFLD. We estimated the adjusted odds ratio (OR) of RBC for MAFLD, and the nonlinear relationship between RBC and MAFLD was further described using smooth curve fittings and threshold-effect analysis. RESULTS We found that MAFLD risk was significantly higher according to RBC quartiles. The adjusted odds ratio (OR) and 95% confidence intervals (CIs)for the highest RBC quartile were 1.5(1.0, 2.3) for male and 1.1 (0.8, 1.6) for female, respectively. As for male, a non-linear relationship was discovered between RBCs and MAFLD, with a RBC threshold of 4.2. The effect sizes and confidence intervals on the right side of the inflection point were 1.5 (1.0, 2.0) (P for nonlinearity = 0.027). The sensitivity analysis showed a similar result. CONCLUSION We demonstrated that that elevated RBC level is associated with the higher risk of MAFLD in male. The positive relationship was not significant in females after full adjustment. Our finding provided novel evidence indicating that RBCs might be a potential biomarker for MAFLD.
Collapse
Affiliation(s)
- Xinyi Dai
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Guowei Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Luzhou Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- * E-mail:
| |
Collapse
|
9
|
Feng T, Zhang W, Li Z. Potential Mechanisms of Gut-Derived Extracellular Vesicle Participation in Glucose and Lipid Homeostasis. Genes (Basel) 2022; 13:genes13111964. [PMID: 36360201 PMCID: PMC9689624 DOI: 10.3390/genes13111964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 01/19/2023] Open
Abstract
The intestine participates in the regulation of glucose and lipid metabolism in multiple facets. It is the major site of nutrient digestion and absorption, provides the interface as well as docking locus for gut microbiota, and harbors hormone-producing cells scattered throughout the gut epithelium. Intestinal extracellular vesicles are known to influence the local immune response, whereas their roles in glucose and lipid homeostasis have barely been explored. Hence, this current review summarizes the latest knowledge of cargo substances detected in intestinal extracellular vesicles, and connects these molecules with the fine-tuning regulation of glucose and lipid metabolism in liver, muscle, pancreas, and adipose tissue.
Collapse
Affiliation(s)
- Tiange Feng
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Correspondence: (W.Z.); (Z.L.); Tel.: +1-734-615-0360 (W.Z.); +1-207-396-8050 (Z.L.)
| | - Ziru Li
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME 04074, USA
- Correspondence: (W.Z.); (Z.L.); Tel.: +1-734-615-0360 (W.Z.); +1-207-396-8050 (Z.L.)
| |
Collapse
|
10
|
Tolksdorf C, Moritz E, Wolf R, Meyer U, Marx S, Bien-Möller S, Garscha U, Jedlitschky G, Rauch BH. Platelet-Derived S1P and Its Relevance for the Communication with Immune Cells in Multiple Human Diseases. Int J Mol Sci 2022; 23:ijms231810278. [PMID: 36142188 PMCID: PMC9499465 DOI: 10.3390/ijms231810278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a versatile signaling lipid involved in the regulation of numerous cellular processes. S1P regulates cellular proliferation, migration, and apoptosis as well as the function of immune cells. S1P is generated from sphingosine (Sph), which derives from the ceramide metabolism. In particular, high concentrations of S1P are present in the blood. This originates mainly from erythrocytes, endothelial cells (ECs), and platelets. While erythrocytes function as a storage pool for circulating S1P, platelets can rapidly generate S1P de novo, store it in large quantities, and release it when the platelet is activated. Platelets can thus provide S1P in a short time when needed or in the case of an injury with subsequent platelet activation and thereby regulate local cellular responses. In addition, platelet-dependently generated and released S1P may also influence long-term immune cell functions in various disease processes, such as inflammation-driven vascular diseases. In this review, the metabolism and release of platelet S1P are presented, and the autocrine versus paracrine functions of platelet-derived S1P and its relevance in various disease processes are discussed. New pharmacological approaches that target the auto- or paracrine effects of S1P may be therapeutically helpful in the future for pathological processes involving S1P.
Collapse
Affiliation(s)
- Céline Tolksdorf
- Division of Pharmacology and Toxicology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
- Department of General Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Eileen Moritz
- Department of General Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Robert Wolf
- Department of General Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Ulrike Meyer
- Division of Pharmacology and Toxicology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Sascha Marx
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Sandra Bien-Möller
- Department of General Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Ulrike Garscha
- Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
| | - Gabriele Jedlitschky
- Department of General Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Bernhard H. Rauch
- Division of Pharmacology and Toxicology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
- Correspondence:
| |
Collapse
|
11
|
Is Sphingosine-1-Phosphate a Regulator of Tumor Vascular Functionality? Cancers (Basel) 2022; 14:cancers14051302. [PMID: 35267610 PMCID: PMC8909747 DOI: 10.3390/cancers14051302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Despite substantial theoretical and experimental support for using vascular normalization as cancer therapy, effectively achieving this strategy in the clinic remains complex. In the present paper, we propose a novel potential approach for the induction of tumor vascular normalization, reduction of hypoxia, and improvement of conventional treatment in cancer patients. This approach consists of the pharmacological modulation of a patient’s plasma S1P levels which through a PDGF signaling can enhance tumor vasculature functionality and reduce hypoxia. This approach is proposed following a clinical observation in pancreatic adenocarcinoma patients and pre-clinical data in different in vivo tumor models, and is supported by a review of the literature describing the biological role of S1P in vascular functionality regulation. Abstract Increasing evidence indicates that tumor vasculature normalization could be an appropriate strategy to increase therapies’ efficacy in solid tumors by decreasing hypoxia and improving drug delivery. We searched for a novel approach that reduces hypoxia and enhances chemotherapy efficacy in pancreatic adenocarcinoma which is characterized by disrupted blood vasculature associated with poor patient survival. Clinical significance of plasma levels of the angiogenic lipid sphingosine-1-phosphate (S1P) was assessed at baseline in 175 patients. High plasma S1P concentration was found to be a favorable prognostic/predictive marker in advanced/metastatic pancreatic adenocarcinoma patients treated by gemcitabine alone but not in patients receiving a combination gemcitabine and PDGFR-inhibitor. In pancreatic adenocarcinoma PDX models, oral administration of an S1P lyase inhibitor (LX2931) significantly increased plasma S1P levels, decreased tumor expression of the hypoxia marker (CA IX), and enhanced chemotherapy efficacy when combined with gemcitabine treatment. The direct effect of S1P on tumor oxygenation was assessed by administration of S1P onto tumor-grafted CAM model and measuring intra-tumoral pO2 using a tissue oxygen monitor. S1P increased pO2 in a tumor-CAM model. Thus, increasing plasma S1P is a promising strategy to decrease tumor hypoxia and enhance therapy efficacy in solid tumors. S1P may act as a tumor vasculature normalizer.
Collapse
|
12
|
Sphingosine Kinase 1 Plays an Important Role in Atorvastatin-Mediated Anti-Inflammatory Effect against Acute Lung Injury. Mediators Inflamm 2022; 2021:9247285. [PMID: 34970075 PMCID: PMC8714370 DOI: 10.1155/2021/9247285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/20/2021] [Indexed: 02/05/2023] Open
Abstract
Atorvastatin is a 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) inhibitor and inhibits cholesterol synthesis. Recently, atorvastatin also showed anti-inflammatory effect in acute lung injury, ameliorating pulmonary gas-blood exchanging function. Sphingosine kinase 1 plays a central role in endothelial (EC) cytoskeleton rearrangement and EC barrier integrity regulation. In this study, the role of sphingosine kinase 1 in atorvastatin anti-inflammatory effect against acute lung injury was investigated. Both wild-type (WT) and SphK1-/- mice were challenged with high tidal volume ventilation (40 ml/kg body weight, 65 breathing/min, 4 hours). The acute lung injury was evaluated and the mechanisms were explored. In WT mice, atorvastatin treatment significantly decreased acute lung injury responding to high tidal volume ventilation (HT), including protein, cellular infiltration, and cytokine releasing; comparing to WT mice, SphK1-/- mice showed significantly worsen pulmonary injuries on HT model. Moreover, the atorvastatin-mediated anti-inflammatory effect was diminished in SphK1-/- mice. To further confirm the role of SphK1 in VILI, we then compared the inflammatory response of endothelial cells that were isolated from WT and SphK1-/- mice to cyclic stretching. Similarly, atorvastatin significantly decreased cytokine generation from WT EC responding to cyclic stretching. Atorvastatin also significantly preserved endothelial junction integrity in WT EC against thrombin challenge. However, the inhibitory effect of atorvastatin on cytokine generation induced by cyclic stretching was abolished on SphK1-/- mice EC. The endothelial junction integrity effects of atorvastatin also diminished on SphK1-/- mouse EC. Signal analysis indicated that atorvastatin inhibited JNK activation induced by cyclic stretch. SphK1 knockout also blocked atorvastatin-mediated VE-cadherin junction enhancement. In summary, by inhibition of MAPK activity and maintenance of EC junction homeostasis, SphK1 plays a critical role in atorvastatin-mediated anti-inflammatory effects in both cellular and in vivo model. This study also offers an insight into mechanical stress-mediated acute lung injury and potential therapy in the future.
Collapse
|
13
|
Park JH, Park KK, Choe JY, Jang KM. Identification of sphingosine 1-phosphate level and MAPK/ERK signaling in pancreatic β cells. Ann Pediatr Endocrinol Metab 2021; 26:252-258. [PMID: 34015900 PMCID: PMC8749023 DOI: 10.6065/apem.2040266.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/11/2021] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Sphingosine kinase is a lipid kinase that phosphorylates sphingosine to generate sphingosine 1-phosphate (S1P). S1P regulates pancreatic islet β-cell endoplasmic reticulum stress and proliferation. Type 1 and type 2 diabetes share some key pathogenic processes. In this study, we investigated whether secretion of insulin and production of S1P is altered in alloxan and glucose-treated cells from the rat pancreatic β-cell line RIN-5F. METHODS RIN-5F cells were treated with 2 mM alloxan and 20 mM glucose for 6 hours or 24 hours before being evaluated by enzyme linked immunosorbent assay (ELISA) and Western blotting. RESULTS Insulin secretion and expression was higher in RIN-5F cells treated with glucose compared to control cells. In contrast, alloxan treatment did not affect insulin secretion and expression in RIN-5F cells. Interestingly, compared with normal control levels, S1P/EDG-5 was increased in both alloxan and glucose-treated pancreatic β cell than normal control. Mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) inhibition strongly decreased the expression of insulin and S1P in glucose- or alloxan-treated RIN-5F cells. CONCLUSION We observe that production of S1P is increased in both diabetic cell models. In addition, MAPK/ERK signaling regulates secretion of insulin and S1P expression in pancreatic β-cells. Based on the literature and our findings, S1P may be a promising agent for the treatment of insulin-related disorders.
Collapse
Affiliation(s)
- Ji Hyun Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Kwan Kyu Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Jae Young Choe
- Department of Emergency Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Kyung Mi Jang
- Department of Pediatrics, College of Medicine, Yeungnam University, Daegu, Korea,Address for correspondence: Kyung Mi Jang Department of Pediatrics, College of Medicine, Yeungnam University, Hyeonchung-ro, Nam-gu, Daegu 42415, Korea
| |
Collapse
|
14
|
Strassheim D, Sullivan T, Irwin DC, Gerasimovskaya E, Lahm T, Klemm DJ, Dempsey EC, Stenmark KR, Karoor V. Metabolite G-Protein Coupled Receptors in Cardio-Metabolic Diseases. Cells 2021; 10:3347. [PMID: 34943862 PMCID: PMC8699532 DOI: 10.3390/cells10123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have originally been described as a family of receptors activated by hormones, neurotransmitters, and other mediators. However, in recent years GPCRs have shown to bind endogenous metabolites, which serve functions other than as signaling mediators. These receptors respond to fatty acids, mono- and disaccharides, amino acids, or various intermediates and products of metabolism, including ketone bodies, lactate, succinate, or bile acids. Given that many of these metabolic processes are dysregulated under pathological conditions, including diabetes, dyslipidemia, and obesity, receptors of endogenous metabolites have also been recognized as potential drug targets to prevent and/or treat metabolic and cardiovascular diseases. This review describes G protein-coupled receptors activated by endogenous metabolites and summarizes their physiological, pathophysiological, and potential pharmacological roles.
Collapse
Affiliation(s)
- Derek Strassheim
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Timothy Sullivan
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - David C. Irwin
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Evgenia Gerasimovskaya
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Tim Lahm
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Dwight J. Klemm
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Edward C. Dempsey
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R. Stenmark
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Vijaya Karoor
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
15
|
Bu Y, Wu H, Deng R, Wang Y. Therapeutic Potential of SphK1 Inhibitors Based on Abnormal Expression of SphK1 in Inflammatory Immune Related-Diseases. Front Pharmacol 2021; 12:733387. [PMID: 34737701 PMCID: PMC8560647 DOI: 10.3389/fphar.2021.733387] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/04/2021] [Indexed: 01/12/2023] Open
Abstract
Sphingosine kinase 1(SphK1) a key enzyme that catalyzes the conversion of sphingosine (Sph) to sphingosine 1-phosphate (S1P), so as to maintain the dynamic balance of sphingolipid-rheostat in cells and participate in cell growth and death, proliferation and migration, vasoconstriction and remodeling, inflammation and metabolism. The normal expression of SphK1 maintains the balance of physiological and pathological states, which is reflected in the regulation of inflammatory factor secretion, immune response in traditional immune cells and non-traditional immune cells, and complex signal transduction. However, abnormal SphK1 expression and activity are found in various inflammatory and immune related-diseases, such as hypertension, atherosclerosis, Alzheimer’s disease, inflammatory bowel disease and rheumatoid arthritis. In view of the therapeutic potential of regulating SphK1 and its signal, the current research is aimed at SphK1 inhibitors, such as SphK1 selective inhibitors and dual SphK1/2 inhibitor, and other compounds with inhibitory potency. This review explores the regulatory role of over-expressed SphK1 in inflammatory and immune related-diseases, and investigate the latest progress of SphK1 inhibitors and the improvement of disease or pathological state.
Collapse
Affiliation(s)
- Yanhong Bu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Hong Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Ran Deng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Yan Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| |
Collapse
|
16
|
Yayeh T, Jeong HR, Park YS, Moon S, Sur B, Yoo HS, Oh S. Fumonisin B1-Induced Toxicity Was Not Exacerbated in Glutathione Peroxidase-1/Catalase Double Knock Out Mice. Biomol Ther (Seoul) 2021; 29:52-57. [PMID: 32632050 PMCID: PMC7771844 DOI: 10.4062/biomolther.2020.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/29/2022] Open
Abstract
Fumonisin B1 (FB1) structurally resembles sphingolipids and interferes with their metabolism leading to sphingolipid dysregulation. We questioned if FB1 could exacerbate liver or kidney toxicities in glutathione peroxidase 1 (Gpx1) and catalase (Cat) knockout mice. While higher serum levels of thiobarbituric acid reactive substances (TBARS) and sphinganine (Sa) were measured in Gpx1/Cat knockout mice (Gpx1/Cat KO) than wild type mice after 5 days of FB1 treatment, serum levels of alanine aminotransferase (ALT), sphingosine-1 phosphate (So-1-P), and sphinganine-1 phosphate (Sa-1-P) were found to be relatively low. Although Sa was highly elevated in Gpx1/Cat KO mice and wild mice, lower levels of So and Sa were found in both the kidney and liver tissues of Gpx/Cat KO mice than wild type mice after FB1 treatment. Paradoxically, FB1-induced cellular apoptosis and necrosis were hastened under oxidative stress in Gpx1/Cat KO mice.
Collapse
Affiliation(s)
- Taddesse Yayeh
- Department of Veterinary Science, College of Agriculture and Environmental Sciences, Bahir Dar University, Bahir Dar 5501, Ethiopia
| | - Ha Ram Jeong
- St. Louis College of Pharmacy, St. Louis, MO 63108, USA
| | - Yoon Soo Park
- St. Louis College of Pharmacy, St. Louis, MO 63108, USA
| | - Sohyeon Moon
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Bongjun Sur
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Hwan-Soo Yoo
- College of Pharmacy, Chungbuk National University, Osong 28160, Republic of Korea
| | - Seikwan Oh
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| |
Collapse
|
17
|
Ganbaatar B, Fukuda D, Shinohara M, Yagi S, Kusunose K, Yamada H, Soeki T, Hirata KI, Sata M. Inhibition of S1P Receptor 2 Attenuates Endothelial Dysfunction and Inhibits Atherogenesis in Apolipoprotein E-Deficient Mice. J Atheroscler Thromb 2020; 28:630-642. [PMID: 32879149 PMCID: PMC8219539 DOI: 10.5551/jat.54916] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aim:
The bioactive lipid, sphingosine-1-phosphate (S1P), has various roles in the physiology and pathophysiology of many diseases. There are five S1P receptors; however, the role of each S1P receptor in atherogenesis is still obscure. Here we investigated the contribution of S1P receptor 2 (S1P2) to atherogenesis by using a specific S1P2 antagonist, ONO-5430514, in apolipoprotein E-deficient (
Apoe−/−
) mice.
Methods:Apoe−/−
mice fed with a western-type diet (WTD) received ONO-5430514 (30 mg/kg/day) or vehicle. To examine the effect on atherogenesis, Sudan IV staining, histological analysis, qPCR, and vascular reactivity assay was performed. Human umbilical vein endothelial cells (HUVEC) were used for
in vitro
experiments.
Results:
WTD-fed
Apoe−/−
mice had significantly higher S1P2 expression in the aorta compared with wild-type mice. S1P2 antagonist treatment for 20 weeks reduced atherosclerotic lesion development (
p
<0.05). S1P2 antagonist treatment for 8 weeks ameliorated endothelial dysfunction (
p
<0.05) accompanied with significant reduction of lipid deposition, macrophage accumulation, and inflammatory molecule expression in the aorta compared with vehicle. S1P2 antagonist attenuated the phosphorylation of JNK in the abdominal aorta compared with vehicle (
p
<0.05). In HUVEC, S1P promoted inflammatory molecule expression such as MCP-1 and VCAM-1 (
p
<0.001), which was attenuated by S1P2 antagonist or a JNK inhibitor (
p
<0.01). S1P2 antagonist also inhibited S1P-induced JNK phosphorylation in HUVEC (
p
<0.05).
Conclusions:
Our results suggested that an S1P2 antagonist attenuates endothelial dysfunction and prevents atherogenesis. S1P2, which promotes inflammatory activation of endothelial cells, might be a therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Byambasuren Ganbaatar
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Daiju Fukuda
- Department of Cardio-Diabetes Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Masakazu Shinohara
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine.,Division of Epidemiology, Kobe University Graduate School of Medicine
| | - Shusuke Yagi
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Kenya Kusunose
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Hirotsugu Yamada
- Department of Community Medicine for Cardiology, Tokushima University Graduate School of Biomedical Sciences
| | - Takeshi Soeki
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences.,Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| |
Collapse
|
18
|
Sun M, Deng R, Wang Y, Wu H, Zhang Z, Bu Y, Zhang H. Sphingosine kinase 1/sphingosine 1-phosphate/sphingosine 1-phosphate receptor 1 pathway: A novel target of geniposide to inhibit angiogenesis. Life Sci 2020; 256:117988. [DOI: 10.1016/j.lfs.2020.117988] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022]
|
19
|
Tavernier G, Caspar-Bauguil S, Viguerie N. Apolipoprotein M: new connections with diet, adipose tissue and metabolic syndrome. Curr Opin Lipidol 2020; 31:8-14. [PMID: 31815756 DOI: 10.1097/mol.0000000000000654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To focus on state-of-the-art knowledge on the apolipoprotein M (ApoM) physiology and physiopathology regarding metabolism. RECENT FINDINGS In humans, the ApoM was recently described as secreted by adipocytes. Obesity, metabolic syndrome and type 2 diabetes are associated with low circulating ApoM and adipose tissue APOM expression. Dieting-induced weight loss enhances adipose tissue expression and secretion, and exercise training increases plasma ApoM. The ApoM is a chaperone for the bioactive sphingolipid, sphingosine-1-phosphate (S1P), which has a specific role in inflammation. Its association with S1P in the inhibition of brown adipose tissue activity and subsequent insulin sensitivity was reported with the model of ApoM-deficient mouse. SUMMARY The adipose tissue is an endocrine organ responsible for obesity-related comorbidities. Obesity and dieting impact the adipose tissue secretory profile. The recent demonstration of ApoM being secreted by healthy adipocytes questions about the possible role of this adipose production in metabolic diseases. Low-circulating ApoM is associated with unhealthy metabolic phenotype. The lower circulating apoM during metabolic syndrome might be a cause of obesity-related comorbidities. Lifestyle interventions enhance ApoM production. Whether it acts in combination to S1P or other small lipidic molecules deserves further investigations.
Collapse
Affiliation(s)
- Geneviève Tavernier
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases (I2MC)
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University
| | - Sylvie Caspar-Bauguil
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases (I2MC)
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University
- Departments of Clinical Biochemistry and Nutrition, Toulouse University Hospitals, Toulouse, France
| | - Nathalie Viguerie
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases (I2MC)
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University
| |
Collapse
|
20
|
Serum sphingolipid level in psoriatic patients with obesity. Postepy Dermatol Alergol 2019; 36:714-721. [PMID: 31998000 PMCID: PMC6986291 DOI: 10.5114/ada.2019.91422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/17/2018] [Indexed: 01/03/2023] Open
Abstract
Introduction Psoriasis is a chronic inflammatory disease associated with metabolic syndrome, including obesity. Ceramides (CER) and sphingosine-1-phosphate (S1P), which belongs to sphingolipids, have both biological and structural functions in the human epidermis. Aim To evaluate serum concentrations of selected CER in psoriatic patients in different weight ranges, the impact of obesity on the concentration of circulating CERs, their association with the course of psoriasis and selected inflammatory markers. Material and methods Eigthy-five patients with active plaque-type psoriasis and 32 healthy controls were enrolled in the study. Patients were divided into 3 groups: normal weight, overweight and obese. Serum concentrations of 14 ceramides were measured by gas-liquid chromatography. The results were correlated with the Psoriasis Area and Severity Index (PASI), serum lipid profile and inflammatory markers. Results There were no significant differences in total serum CER concentration between psoriatic groups of patients. The S1P concentration was higher in psoriatic patients with normal body weight and overweight than in the control group (p = 0.002 and p = 0.04, respectively). In psoriatic patients with normal body weight, nervonic ceramide (C24:1) correlated with PASI (r = 0.38; p = 0.042) and CRP (C-reactive protein) (r = 0.42; p = 0.023). In overweight patients, the concentration of lignoceric ceramide (C24:0) correlated inversely with the severity of the disease (r = -0.41; p = 0.022) and CRP (r = -0.6; p = 0.0004). Conclusions We have demonstrated an abnormal sphingolipid profile in psoriatic patients in different weight groups. Selected CER might be the biomarkers of psoriasis severity and inflammation, may reflect lipid disturbances and contribute to the development of metabolic syndrome.
Collapse
|
21
|
Le Barz M, Boulet MM, Calzada C, Cheillan D, Michalski MC. Alterations of endogenous sphingolipid metabolism in cardiometabolic diseases: Towards novel therapeutic approaches. Biochimie 2019; 169:133-143. [PMID: 31614170 DOI: 10.1016/j.biochi.2019.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022]
Abstract
The increasing prevalence of obesity and metabolic diseases is a worldwide public health concern, and the advent of new analytical technologies has made it possible to highlight the involvement of some molecules, such as sphingolipids (SL), in their pathophysiology. SL are constituents of cell membranes, lipoproteins and lipid droplets (LD), and are now considered as bioactive molecules. Indeed, growing evidence suggests that SL, characterized by diverse families and species, could represent one of the main regulators of lipid metabolism. There is an increasing amount of data reporting that plasma SL profile is altered in metabolic diseases. However, less is known about SL metabolism dysfunction in cells and tissues and how it may impact the lipoprotein metabolism, its functionality and composition. In cardiometabolic pathologies, the link between serum SL concentrations and alterations of their metabolism in various organs and LD is still unclear. Pharmacological approaches have been developed in order to activate or inhibit specific key enzymes of the SL metabolism, and to positively modulate SL profile or related metabolic pathways. Nevertheless, little is known about the long-term impact of such approaches in humans and the current literature still focuses on the decomposition of the different parts of this complex system rather than performing an integrated analysis of the whole SL metabolism. In addition, since SL can be provided from exogenous sources, it is also of interest to evaluate their impact on the homeostasis of endogenous SL metabolism, which could be beneficial in prevention or treatment of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Mélanie Le Barz
- Univ Lyon, CarMeN Laboratory, Inserm, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon-Sud Medical School, Pierre-Bénite, Fr-69310, France.
| | - Marie Michèle Boulet
- Univ Lyon, CarMeN Laboratory, Inserm, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon-Sud Medical School, Pierre-Bénite, Fr-69310, France.
| | - Catherine Calzada
- Univ Lyon, CarMeN Laboratory, Inserm, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon-Sud Medical School, Pierre-Bénite, Fr-69310, France.
| | - David Cheillan
- Univ Lyon, CarMeN Laboratory, Inserm, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon-Sud Medical School, Pierre-Bénite, Fr-69310, France; Service Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie Est, Hospices Civils de Lyon, 69677, Bron, France.
| | - Marie-Caroline Michalski
- Univ Lyon, CarMeN Laboratory, Inserm, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon-Sud Medical School, Pierre-Bénite, Fr-69310, France.
| |
Collapse
|
22
|
Regulation of Serum Sphingolipids in Andean Children Born and Living at High Altitude (3775 m). Int J Mol Sci 2019; 20:ijms20112835. [PMID: 31212599 PMCID: PMC6600227 DOI: 10.3390/ijms20112835] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022] Open
Abstract
Recent studies on Andean children indicate a prevalence of dyslipidemia and hypertension compared to dwellers at lower altitudes, suggesting that despite similar food intake and daily activities, they undergo different metabolic adaptations. In the present study, the sphingolipid pattern was investigated in serum of 7 underweight (UW), 30 normal weight (NW), 13 overweight (OW), and 9 obese (O) Andean children by liquid chromatography-mass spectrometry (LC-MS). Results indicate that levels of Ceramides (Cers) and sphingomyelins (SMs) correlate positively with biochemical parameters (except for Cers and Vitamin D, which correlate negatively), whereas sphingosine-1-phosphate (S1P) correlates negatively. Correlation results and LC-MS data identify the axis high density lipoprotein-cholesterol (HDL-C), Cers, and S1P as related to hypoxia adaptation. Specifically UW children are characterized by increased levels of S1P compared to O and lower levels of Cers compared to NW children. Furthermore, O children show lower levels of S1P and similar levels of Cers and SMs as NW. In conclusion, our results indicate that S1P is the primary target of hypoxia adaptation in Andean children, and its levels are associated with hypoxia tolerance. Furthermore, S1P can act as marker of increased risk of metabolic syndrome and cardiac dysfunction in young Andeans living at altitude.
Collapse
|
23
|
Gohlke S, Zagoriy V, Cuadros Inostroza A, Méret M, Mancini C, Japtok L, Schumacher F, Kuhlow D, Graja A, Stephanowitz H, Jähnert M, Krause E, Wernitz A, Petzke KJ, Schürmann A, Kleuser B, Schulz TJ. Identification of functional lipid metabolism biomarkers of brown adipose tissue aging. Mol Metab 2019; 24:1-17. [PMID: 31003944 PMCID: PMC6531832 DOI: 10.1016/j.molmet.2019.03.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Aging is accompanied by loss of brown adipocytes and a decline in their thermogenic potential, which may exacerbate the development of adiposity and other metabolic disorders. Presently, only limited evidence exists describing the molecular alterations leading to impaired brown adipogenesis with aging and the contribution of these processes to changes of systemic energy metabolism. METHODS Samples of young and aged murine brown and white adipose tissue were used to compare age-related changes of brown adipogenic gene expression and thermogenesis-related lipid mobilization. To identify potential markers of brown adipose tissue aging, non-targeted proteomic and metabolomic as well as targeted lipid analyses were conducted on young and aged tissue samples. Subsequently, the effects of several candidate lipid classes on brown adipocyte function were examined. RESULTS Corroborating previous reports of reduced expression of uncoupling protein-1, we observe impaired signaling required for lipid mobilization in aged brown fat after adrenergic stimulation. Omics analyses additionally confirm the age-related impairment of lipid homeostasis and reveal the accumulation of specific lipid classes, including certain sphingolipids, ceramides, and dolichols in aged brown fat. While ceramides as well as enzymes of dolichol metabolism inhibit brown adipogenesis, inhibition of sphingosine 1-phosphate receptor 2 induces brown adipocyte differentiation. CONCLUSIONS Our functional analyses show that changes in specific lipid species, as observed during aging, may contribute to reduced thermogenic potential. They thus uncover potential biomarkers of aging as well as molecular mechanisms that could contribute to the degradation of brown adipocytes, thereby providing potential treatment strategies of age-related metabolic conditions.
Collapse
Affiliation(s)
- Sabrina Gohlke
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | | | | | | | - Carola Mancini
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Lukasz Japtok
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Potsdam-Rehbrücke, Nuthetal, Germany
| | - Fabian Schumacher
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Potsdam-Rehbrücke, Nuthetal, Germany; Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Doreen Kuhlow
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Antonia Graja
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | | | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München, Neuherberg, Germany
| | - Eberhard Krause
- Leibniz Institute for Molecular Pharmacology, Berlin, Germany
| | - Andreas Wernitz
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Klaus-Jürgen Petzke
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München, Neuherberg, Germany
| | - Burkhard Kleuser
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Potsdam-Rehbrücke, Nuthetal, Germany; NutriAct - Competence Cluster Nutrition Research, Berlin, Potsdam, Germany
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München, Neuherberg, Germany; Institute of Nutritional Science, University of Potsdam, Potsdam-Rehbrücke, Nuthetal, Germany.
| |
Collapse
|
24
|
The Role of Ceramide and Sphingosine-1-Phosphate in Alzheimer's Disease and Other Neurodegenerative Disorders. Mol Neurobiol 2019; 56:5436-5455. [PMID: 30612333 PMCID: PMC6614129 DOI: 10.1007/s12035-018-1448-3] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022]
Abstract
Bioactive sphingolipids-ceramide, sphingosine, and their respective 1-phosphates (C1P and S1P)-are signaling molecules serving as intracellular second messengers. Moreover, S1P acts through G protein-coupled receptors in the plasma membrane. Accumulating evidence points to sphingolipids' engagement in brain aging and in neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis. Metabolic alterations observed in the course of neurodegeneration favor ceramide-dependent pro-apoptotic signaling, while the levels of the neuroprotective S1P are reduced. These trends are observed early in the diseases' development, suggesting causal relationship. Mechanistic evidence has shown links between altered ceramide/S1P rheostat and the production, secretion, and aggregation of amyloid β/α-synuclein as well as signaling pathways of critical importance for the pathomechanism of protein conformation diseases. Sphingolipids influence multiple aspects of Akt/protein kinase B signaling, a pathway that regulates metabolism, stress response, and Bcl-2 family proteins. The cross-talk between sphingolipids and transcription factors including NF-κB, FOXOs, and AP-1 may be also important for immune regulation and cell survival/death. Sphingolipids regulate exosomes and other secretion mechanisms that can contribute to either the spread of neurotoxic proteins between brain cells, or their clearance. Recent discoveries also suggest the importance of intracellular and exosomal pools of small regulatory RNAs in the creation of disturbed signaling environment in the diseased brain. The identified interactions of bioactive sphingolipids urge for their evaluation as potential therapeutic targets. Moreover, the early disturbances in sphingolipid metabolism may deliver easily accessible biomarkers of neurodegenerative disorders.
Collapse
|
25
|
Mihanfar A, Nejabati HR, Fattahi A, Latifi Z, Pezeshkian M, Afrasiabi A, Safaie N, Jodati AR, Nouri M. The role of sphingosine 1 phosphate in coronary artery disease and ischemia reperfusion injury. J Cell Physiol 2018; 234:2083-2094. [PMID: 30341893 DOI: 10.1002/jcp.27353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 08/17/2018] [Indexed: 12/15/2022]
Abstract
Coronary artery disease (CAD) is a common cause of morbidity and mortality worldwide. Atherosclerotic plaques, as a hallmark of CAD, cause chronic narrowing of coronary arteries over time and could also result in acute myocardial infarction (AMI). The standard treatments for ameliorating AMI are reperfusion strategies, which paradoxically result in ischemic reperfusion (I/R) injury. Sphingosine 1 phosphate (S1P), as a potent lysophospholipid, plays an important role in various organs, including immune and cardiovascular systems. In addition, high-density lipoprotein, as a negative predictor of atherosclerosis and CAD, is a major carrier of S1P in blood circulation. S1P mediates its effects through binding to specific G protein-coupled receptors, and its signaling contributes to a variety of responses, including cardiac inflammation, dysfunction, and I/R injury protection. In this review, we will focus on the role of S1P in CAD and I/R injury as a potential therapeutic target.
Collapse
Affiliation(s)
- Aynaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamid Reza Nejabati
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Latifi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Pezeshkian
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Afrasiabi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Safaie
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Reza Jodati
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Yu G, Wang S, Wang L, Che Q, Zhu T, Zhang G, Gu Q, Guo P, Li D. Lipid-Lowering Polyketides from the Fungus Penicillium Steckii HDN13-279. Mar Drugs 2018; 16:md16010025. [PMID: 29329204 PMCID: PMC5793073 DOI: 10.3390/md16010025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/02/2017] [Accepted: 01/08/2018] [Indexed: 02/07/2023] Open
Abstract
Seven new polyketides, named tanzawaic acids R–X (1–6, 11), along with seven known analogues (7–10 and 12–14), were isolated from Penicillium steckii HDN13-279. Their structures, including the absolute configurations, were elucidated by NMR, MS, X-ray diffraction, circular dichroism (CD) analyses and chemical derivatization. Five compounds (2, 3, 6, 10 and 12) significantly decreased the oleic acid (OA)-elicited lipid accumulation in HepG2 liver cells at the concentration of 10 μM, among which, four compounds (3, 6, 10 and 12) significantly decreased intracellular total cholesterol (TC) levels and three Compounds (3, 6, and 10) significantly decreased intracellular triglyceride (TG) levels. Moreover, the TG-lowering capacities of compounds 6 and 10 were comparable with those of simvastatin, with the TG levels being nearly equal to blank control. This is the first report on the lipid-lowering activity of tanzawaic acid derivatives.
Collapse
Affiliation(s)
- Guihong Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Shuai Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Lu Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Peng Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
27
|
"Dicing and Splicing" Sphingosine Kinase and Relevance to Cancer. Int J Mol Sci 2017; 18:ijms18091891. [PMID: 28869494 PMCID: PMC5618540 DOI: 10.3390/ijms18091891] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 02/06/2023] Open
Abstract
Sphingosine kinase (SphK) is a lipid enzyme that maintains cellular lipid homeostasis. Two SphK isozymes, SphK1 and SphK2, are expressed from different chromosomes and several variant isoforms are expressed from each of the isozymes, allowing for the multi-faceted biological diversity of SphK activity. Historically, SphK1 is mainly associated with oncogenicity, however in reality, both SphK1 and SphK2 isozymes possess oncogenic properties and are recognized therapeutic targets. The absence of mutations of SphK in various cancer types has led to the theory that cancer cells develop a dependency on SphK signaling (hyper-SphK signaling) or “non-oncogenic addiction”. Here we discuss additional theories of SphK cellular mislocation and aberrant “dicing and splicing” as contributors to cancer cell biology and as key determinants of the success or failure of SphK/S1P (sphingosine 1 phosphate) based therapeutics.
Collapse
|
28
|
Rohrbach T, Maceyka M, Spiegel S. Sphingosine kinase and sphingosine-1-phosphate in liver pathobiology. Crit Rev Biochem Mol Biol 2017; 52:543-553. [PMID: 28618839 DOI: 10.1080/10409238.2017.1337706] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over 20 years ago, sphingosine-1-phosphate (S1P) was discovered to be a bioactive signaling molecule. Subsequent studies later identified two related kinases, sphingosine kinase 1 and 2, which are responsible for the phosphorylation of sphingosine to S1P. Many stimuli increase sphingosine kinase activity and S1P production and secretion. Outside the cell, S1P can bind to and activate five S1P-specific G protein-coupled receptors (S1PR1-5) to regulate many important cellular and physiological processes in an autocrine or paracrine manner. S1P is found in high concentrations in the blood where it functions to control vascular integrity and trafficking of lymphocytes. Obesity increases blood S1P levels in humans and mice. With the world wide increase in obesity linked to consumption of high-fat, high-sugar diets, S1P is emerging as an accomplice in liver pathobiology, including acute liver failure, metabolic syndrome, control of blood lipid and glucose homeostasis, nonalcoholic fatty liver disease, and liver fibrosis. Here, we review recent research on the importance of sphingosine kinases, S1P, and S1PRs in liver pathobiology, with a focus on exciting insights for new therapeutic modalities that target S1P signaling axes for a variety of liver diseases.
Collapse
Affiliation(s)
- Timothy Rohrbach
- a Department of Biochemistry and Molecular Biology and the Massey Cancer Center , VCU School of Medicine , Richmond , VA , USA
| | - Michael Maceyka
- a Department of Biochemistry and Molecular Biology and the Massey Cancer Center , VCU School of Medicine , Richmond , VA , USA
| | - Sarah Spiegel
- a Department of Biochemistry and Molecular Biology and the Massey Cancer Center , VCU School of Medicine , Richmond , VA , USA
| |
Collapse
|