1
|
Li H, Hou M, Zhang P, Ren L, Guo Y, Zou L, Cao J, Bai Z. Wedelolactone suppresses breast cancer growth and metastasis via regulating TGF-β1/Smad signaling pathway. J Pharm Pharmacol 2024; 76:1038-1050. [PMID: 38848454 DOI: 10.1093/jpp/rgae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
OBJECTIVE Breast cancer is a malignant tumor with high invasion and metastasis. TGF-β1-induced epithelial-mesenchymal transition (EMT) is crucially involved in the growth and metastasis of breast cancer. Wedelolactone (Wed) is extracted from herbal medicine Ecliptae Herba, which is reported to have antineoplastic activity. Here, we aimed to elucidate the efficacy and mechanism of Wed against breast cancer. METHODS The effects of Wed on migration and invasion of 4T1 were detected. The expression of EMT-related markers was detected by Western blot and qPCR. The 4T1 orthotopic murine breast cancer model was established to evaluate the therapeutic effect of Wed on the growth and metastasis of breast cancer through TGF-β1/Smad pathway. RESULTS Wed inhibited the proliferation, migration and invasion of 4T1. It exhibited concentration-dependent inhibition of p-Smad2/3. Wed also reversed the expression of EMT-markers induced by TGF-β1. In addition, Wed suppressed the growth and metastasis of breast cancer in mice. It also affected p-Smad3 expression as well as EMT-related genes, suggesting that its anti-breast cancer effect may be related to the TGF-β1/Smad pathway. CONCLUSION Wed reverses EMT by regulating TGF-β1/Smad pathway, potentially serving as a therapeutic agent for breast cancer. Wed is expected to be a potential drug to inhibit TGF-β1/Smad pathway-related diseases.
Collapse
Affiliation(s)
- Hui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Manting Hou
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Ping Zhang
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, China
| | - Lutong Ren
- Department of Pharmacy, Inner Mongolia People's Hospital, Hohhot 010010, China
| | - Yuanyuan Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Junling Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Zhaofang Bai
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| |
Collapse
|
2
|
Peinado RDS, Saivish MV, Menezes GDL, Fulco UL, da Silva RA, Korostov K, Eberle RJ, Melo PA, Nogueira ML, Pacca CC, Arni RK, Coronado MA. The search for an antiviral lead molecule to combat the neglected emerging Oropouche virus. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100238. [PMID: 38745914 PMCID: PMC11090880 DOI: 10.1016/j.crmicr.2024.100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Oropouche virus (OROV) is a member of the Peribunyaviridae family and the causative agent of a dengue-like febrile illness transmitted by mosquitoes. Although mild symptoms generally occur, complications such as encephalitis and meningitis may develop. A lack of proper diagnosis, makes it a potential candidate for new epidemics and outbreaks like other known arboviruses such as Dengue, Yellow Fever and Zika virus. The study of natural molecules as potential antiviral compounds is a promising alternative for antiviral therapies. Wedelolactone (WDL) has been demonstrated to inhibit some viral proteins and virus replication, making it useful to target a wide range of viruses. In this study, we report the in silico effects of WDL on the OROV N-terminal polymerase and its potential inhibitory effects on several steps of viral infection in mammalian cells in vitro, which revealed that WDL indeed acts as a potential inhibitor molecule against OROV infection.
Collapse
Affiliation(s)
- Rafaela dos Santos Peinado
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto-SP 15054-000, Brazil
| | - Marielena Vogel Saivish
- Laboratórios de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP 15090-000, Brazil
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-100, Brazil
| | - Gabriela de Lima Menezes
- Bioinformatics Multidisciplinary Environment, Programa de Pós Graduação em Bioinformática, Universidade Federal do Rio Grande do Norte, Natal 59078-400, RN, Brazil
| | - Umberto Laino Fulco
- Bioinformatics Multidisciplinary Environment, Programa de Pós Graduação em Bioinformática, Universidade Federal do Rio Grande do Norte, Natal 59078-400, RN, Brazil
| | | | - Karolina Korostov
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52428, Germany
| | - Raphael Josef Eberle
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52428, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße, Düsseldorf 40225, Germany
| | - Paulo A. Melo
- Departamento de Farmacologia Básica e Clínica - ICB, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Maurício Lacerda Nogueira
- Laboratórios de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP 15090-000, Brazil
- Sealy Center for Vector-Borne and Zoonotic Diseases, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Carolina Colombelli Pacca
- Laboratórios de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP 15090-000, Brazil
| | - Raghuvir Krishnaswamy Arni
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto-SP 15054-000, Brazil
| | - Mônika Aparecida Coronado
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto-SP 15054-000, Brazil
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52428, Germany
| |
Collapse
|
3
|
Peinado RDS, Martins LG, Pacca CC, Saivish MV, Borsatto KC, Nogueira ML, Tasic L, Arni RK, Eberle RJ, Coronado MA. HR-MAS NMR Metabolomics Profile of Vero Cells under the Influence of Virus Infection and nsP2 Inhibitor: A Chikungunya Case Study. Int J Mol Sci 2024; 25:1414. [PMID: 38338694 PMCID: PMC10855909 DOI: 10.3390/ijms25031414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
The arbovirus Chikungunya (CHIKV) is transmitted by Aedes mosquitoes in urban environments, and in humans, it triggers debilitating symptoms involving long-term complications, including arthritis and Guillain-Barré syndrome. The development of antiviral therapies is relevant, as no efficacious vaccine or drug has yet been approved for clinical application. As a detailed map of molecules underlying the viral infection can be obtained from the metabolome, we validated the metabolic signatures of Vero E6 cells prior to infection (CC), following CHIKV infection (CV) and also upon the inclusion of the nsP2 protease inhibitor wedelolactone (CWV), a coumestan which inhibits viral replication processes. The metabolome groups evidenced significant changes in the levels of lactate, myo-inositol, phosphocholine, glucose, betaine and a few specific amino acids. This study forms a preliminary basis for identifying metabolites through HR-MAS NMR (High Resolution Magic Angle Spinning Nuclear Magnetic Ressonance Spectroscopy) and proposing the affected metabolic pathways of cells following viral infection and upon incorporation of putative antiviral molecules.
Collapse
Affiliation(s)
- Rafaela dos S. Peinado
- Multiuser Center for Biomolecular Innovation, Department of Physics, Institute of Biosciences, Languages and Exact Sciences (Ibilce—UNESP), Sao Jose do Rio Preto, Sao Paulo 15054000, Brazil; (R.d.S.P.); (K.C.B.); (R.K.A.)
| | - Lucas G. Martins
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083862, Brazil; (L.G.M.); (L.T.)
| | - Carolina C. Pacca
- Virology Research Laboratory, Medical School of Sao Jose do Rio Preto (FAMERP), Sao Paulo 15090000, Brazil; (C.C.P.); (M.V.S.); (M.L.N.)
| | - Marielena V. Saivish
- Virology Research Laboratory, Medical School of Sao Jose do Rio Preto (FAMERP), Sao Paulo 15090000, Brazil; (C.C.P.); (M.V.S.); (M.L.N.)
| | - Kelly C. Borsatto
- Multiuser Center for Biomolecular Innovation, Department of Physics, Institute of Biosciences, Languages and Exact Sciences (Ibilce—UNESP), Sao Jose do Rio Preto, Sao Paulo 15054000, Brazil; (R.d.S.P.); (K.C.B.); (R.K.A.)
| | - Maurício L. Nogueira
- Virology Research Laboratory, Medical School of Sao Jose do Rio Preto (FAMERP), Sao Paulo 15090000, Brazil; (C.C.P.); (M.V.S.); (M.L.N.)
| | - Ljubica Tasic
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083862, Brazil; (L.G.M.); (L.T.)
| | - Raghuvir K. Arni
- Multiuser Center for Biomolecular Innovation, Department of Physics, Institute of Biosciences, Languages and Exact Sciences (Ibilce—UNESP), Sao Jose do Rio Preto, Sao Paulo 15054000, Brazil; (R.d.S.P.); (K.C.B.); (R.K.A.)
| | - Raphael J. Eberle
- Institute of Biological Information Processing IBI-7: Structural Biochemistry, Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Mônika A. Coronado
- Institute of Biological Information Processing IBI-7: Structural Biochemistry, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
4
|
Phan TKP, Wang SL, Nguyen QV, Phan TQ, Nguyen TT, Tran TTT, Nguyen AD, Nguyen VB, Doan MD. Assessment of the Chemical Profile and Potential Medical Effects of a Flavonoid-Rich Extract of Eclipta prostrata L. Collected in the Central Highlands of Vietnam. Pharmaceuticals (Basel) 2023; 16:1476. [PMID: 37895947 PMCID: PMC10609904 DOI: 10.3390/ph16101476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Eclipta prostrata L. (EPL), a medicinal plant, is widely utilized in the central highlands of Vietnam. This study aims to assess the chemical profile and potential medical effects of an EPL extract rich in flavonoids. A total of 36 secondary metabolites were identified from the EPL extract through GC-MS and UHPLC-UV analysis. Among them, 15 volatile compounds and several phenolic and flavonoid chemicals, including salicylic acid, epicatechin gallate, isovitexin, and apigetrin, were reported in EPL extract for the first time. This herbal extract demonstrated moderate inhibition against α-amylase and α-glucosidase, and high anti-oxidant and anti-acetylcholinesterase activities (IC50 = 76.8 ± 0.8 μg/mL). These promising attributes can be likely attributed to the high levels of major compounds, including wedelolactone (1), chlorogenic acid (3), epicatechin gallate (6), salicylic acid (8), isovitexin (9), apigetrin (11), and myricetin (12). These findings align with the traditional use of EPL for enhancing memory and cognitive function, as well as its potential benefits in diabetes management. The results of the molecular docking study reveal that the major identified compounds (1, 6, 9, and 11) showed a more effective acetylcholinesterase inhibitory effect than berberine chloride, with good binding energy (DS values, -12.3 to -14.3 kcal/mol) and acceptable values of RMSD (1.02-1.67 Å). Additionally, almost all the identified major compounds exhibited good ADMET properties within the required limits.
Collapse
Affiliation(s)
- Thi Kim Phung Phan
- Faculty of Medicine and Pharmacy, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
| | - Quang Vinh Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (Q.V.N.); (A.D.N.); (V.B.N.)
| | - Tu Quy Phan
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Tan Thanh Nguyen
- School of Chemistry Biology and Environment, Vinh University, Vinh City 43100, Vietnam;
| | | | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (Q.V.N.); (A.D.N.); (V.B.N.)
| | - Van Bon Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (Q.V.N.); (A.D.N.); (V.B.N.)
| | - Manh Dung Doan
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (Q.V.N.); (A.D.N.); (V.B.N.)
| |
Collapse
|
5
|
Mo Q, Zhang T, Wu J, Wang L, Luo J. Identification of thrombopoiesis inducer based on a hybrid deep neural network model. Thromb Res 2023; 226:36-50. [PMID: 37119555 DOI: 10.1016/j.thromres.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 05/01/2023]
Abstract
Thrombocytopenia is a common haematological problem worldwide. Currently, there are no relatively safe and effective agents for the treatment of thrombocytopenia. To address this challenge, we propose a computational method that enables the discovery of novel drug candidates with haematopoietic activities. Based on different types of molecular representations, three deep learning (DL) algorithms, namely recurrent neural networks (RNNs), deep neural networks (DNNs), and hybrid neural networks (RNNs+DNNs), were used to develop classification models to distinguish between active and inactive compounds. The evaluation results illustrated that the hybrid DL model exhibited the best prediction performance, with an accuracy of 97.8 % and Matthews correlation coefficient of 0.958 on the test dataset. Subsequently, we performed drug discovery screening based on the hybrid DL model and identified a compound from the FDA-approved drug library that was structurally divergent from conventional drugs and showed a potential therapeutic action against thrombocytopenia. The novel drug candidate wedelolactone significantly promoted megakaryocyte differentiation in vitro and increased platelet levels and megakaryocyte differentiation in irradiated mice with no systemic toxicity. Overall, our work demonstrates how artificial intelligence can be used to discover novel drugs against thrombocytopenia.
Collapse
Affiliation(s)
- Qi Mo
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Ting Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jianming Wu
- Basic Medical College, Southwest Medical University, Luzhou 646000, China.
| | - Long Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Jiesi Luo
- Basic Medical College, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
6
|
Ha NM, Hop NQ, Son NT. Wedelolactone: A molecule of interests. Fitoterapia 2023; 164:105355. [PMID: 36410612 DOI: 10.1016/j.fitote.2022.105355] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND The search for bioactive molecules from medicinal plants of the family Asteraceae has been one of the targets in various phytochemical and pharmacological investigations for many years. According to these studies, wedelolactone, a coumestan of the secondary metabolite type, is a key compound found in several Eclipta and Wedelia herbal plants. To date, numerous experimental studies with intention of highlighting its role in drug development programs were carried out, but an extensive review is not sufficient. OBJECTIVE The current review aims to fill the gaps in extensive knowledge about phytochemistry, synthesis, pharmacology, and pharmacokinetics of coumestan wedelolactone. MATERIALS AND METHODS The databases Google Scholar, Scopus, PubMed, Web of Science, Science Direct, Medline, and CNKI were used to compile the list of references. In order to find references, "wedelolactone" was considered separately or in combination with "phytochemistry", "synthesis", "pharmacology", and "pharmacokinetics." Since the 1950s, >100 publications have been collected and reviewed. RESULTS Wedelolactone is likely to be a characteristic metabolite of two genera Eclipta and Wedelia, the family Asteraceae, while it could be synthetically derived from mono-phenol derivatives, through Sonogashira and cross-coupling reactions. Numerous biomedical investigations on wedelolactone revealed that its pharmacological values included anticancer, antiinflammatory, antidiabetic, antiobesity, antimyotoxicity, antibacterial, antioxidant, antivirus, anti-aging, cardiovascular, serine protease inhibition, especially its protective health benefits to living organs such as liver, kidney, lung, neuron, eye, bone, and tooth. The combination of wedelolactone and potential agents is a preferential approach to improve its biomedical values. Pharmacokinetic study exhibited that wedelolactone was metabolized in rat plasma due to hydrolysis, open-ring lactone, methylation, demethylation, and glucuronidation. CONCLUSIONS Wedelolactone is a promising agent with the great pharmacological values. Molecular mechanisms of the actions of this compound at both in vitro and in vivo levels are now available. However, reports highlighting biosynthesis and structure-activity relationship are still not adequate. Moreover, chemo-preventive records utilizing nano-technological approaches to improve its bioavailability are needed since the solubility in the living body environment is still limited.
Collapse
Affiliation(s)
- Nguyen Manh Ha
- Faculty of Chemical Technology, Hanoi University of Industry, Hanoi, Viet Nam
| | - Nguyen Quang Hop
- Faculty of Chemistry, Hanoi Pedagogical University 2 (HPU2), Nguyen Van Linh, Xuanhoa, Phucyen, Vinhphuc, Viet Nam
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam.
| |
Collapse
|
7
|
Gomaa MS, Ali IAI, El Enany G, El Ashry ESH, El Rayes SM, Fathalla W, Ahmed AHA, Abubshait SA, Abubshait HA, Nafie MS. Facile Synthesis of Some Coumarin Derivatives and Their Cytotoxicity through VEGFR2 and Topoisomerase II Inhibition. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238279. [PMID: 36500372 PMCID: PMC9737644 DOI: 10.3390/molecules27238279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
Novel semisynthetic coumarin derivatives were synthesized to be developed as chemotherapeutic anticancer agents through topoisomerase II, VEGFR2 inhibition that leads to apoptotic cancer cell death. The coumarin amino acids and dipeptides derivatives were prepared by the reaction of coumarin-3-carboxylic acid with amino acid methyl esters following the N,N-dicyclohexylcarbodiimide (DCC) method and 1-hydroxy-benzotriazole (HOBt), as coupling reagents. The synthesized compounds were screened towards VEGFR2, and topoisomerase IIα proteins to highlight their binding affinities and virtual mechanism of binding. Interestingly, compounds 4k (Tyr) and 6c (β-Ala-L-Met) shared the activity towards the three proteins by forming the same interactions with the key amino acids, such as the co-crystallized ligands. Both compounds 4k and 6c exhibited potent cytotoxic activities against MCF-7 cells with IC50 values of 4.98 and 5.85 µM, respectively causing cell death by 97.82 and 97.35%, respectively. Validating the molecular docking studies, both compounds demonstrated promising VEGFR-2 inhibition with IC50 values of 23.6 and 34.2 µM, compared to Sorafenib (30 µM) and topoisomerase-II inhibition with IC50 values of 4.1 and 8.6 µM compared to Doxorubicin (9.65 µM). Hence, these two promising compounds could be further tested as effective and selective target-oriented active agents against cancer.
Collapse
Affiliation(s)
- Mohamed S. Gomaa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ibrahim A. I. Ali
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Gaber El Enany
- Department of Physics, College of Science and Arts in Uglat Asugour, Qassim University, Buraidah 52571, Saudi Arabia
- Scientific Department, Faculty of Engineering, Port Said University, Port Said 42526, Egypt
| | - El Sayed H. El Ashry
- Chemistry Department, Faculty of Science, University of Alexandria, Alexandria 21526, Egypt
| | - Samir M. El Rayes
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: or
| | - Walid Fathalla
- Scientific Department, Faculty of Engineering, Port Said University, Port Said 42526, Egypt
| | - Abdulghany H. A. Ahmed
- Chemistry Department, Faculty of Medicinal Science, University of Science and Technology, Aden 15201, Yemen
| | - Samar A. Abubshait
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Haya A. Abubshait
- Basic Science Department, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
8
|
Jiang H, Niu C, Guo Y, Liu Z, Jiang Y. Wedelolactone induces apoptosis and pyroptosis in retinoblastoma through promoting ROS generation. Int Immunopharmacol 2022; 111:108855. [PMID: 35905560 DOI: 10.1016/j.intimp.2022.108855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/05/2022]
Abstract
Retinoblastoma is a most frequently occurring primary intraocular tumor in infancy and children, highlighting the requirement to find and develop novel and more effective therapeutic approaches. Wedelolactone (WDL), a nature compound isolated from E. prostrata, exhibits multiple biological activities through regulating various signaling pathways; however, its potential influences on retinoblastoma progression are still unknown, and thus was investigated in our study, as well as the underlying mechanisms. Here, we found that WDL treatments significantly reduced the proliferation of retinoblastoma cells by inducing apoptosis and pyroptosis through increasing Caspase-3, Caspase-1, gasdermin E (GSDME) and gasdermin D (GSDMD) activation. Mitochondrial impairment and reactive oxygen species (ROS) generation were considerably up-regulated in WDL-incubated retinoblastoma cells through a dose-dependent manner. Notably, we found that ROS scavenge significantly abolished the function of WDL to provoke apoptosis and pyroptosis in retinoblastoma cell lines, revealing that ROS was required for WDL to perform its anti-cancer role in retinoblastoma. Moreover, our in vivo experiments indicated that WDL administration significantly reduced the tumor growth in the established retinoblastoma mouse models with undetectable toxicity. Collectively, these findings highlighted the potential of WDL to inhibit the growth and induce cell death of retinoblastoma in vitro and in vivo, and thereby showed promise as a therapeutic agent for the treatment of retinoblastoma.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Interventional Radiology and Vascular, The Affiliated Hospital of Guangzhou Medical University, Guangzhou Women and Children's Medical Center, Guangzhou 510060, China
| | - Chuanqiang Niu
- Department of Interventional Radiology and Vascular, The Affiliated Hospital of Guangzhou Medical University, Guangzhou Women and Children's Medical Center, Guangzhou 510060, China
| | - Yiqun Guo
- Department of Interventional Radiology and Vascular, The Affiliated Hospital of Guangzhou Medical University, Guangzhou Women and Children's Medical Center, Guangzhou 510060, China
| | - Zhenyin Liu
- Department of Interventional Radiology and Vascular, The Affiliated Hospital of Guangzhou Medical University, Guangzhou Women and Children's Medical Center, Guangzhou 510060, China
| | - Yizhou Jiang
- Department of Interventional Radiology and Vascular, The Affiliated Hospital of Guangzhou Medical University, Guangzhou Women and Children's Medical Center, Guangzhou 510060, China.
| |
Collapse
|
9
|
Zhang W, He X, Yin H, Cao W, Lin T, Chen W, Diao W, Ding M, Hu H, Mo W, Zhang Q, Guo H. Allosteric activation of the metabolic enzyme GPD1 inhibits bladder cancer growth via the lysoPC-PAFR-TRPV2 axis. J Hematol Oncol 2022; 15:93. [PMID: 35836291 PMCID: PMC9284842 DOI: 10.1186/s13045-022-01312-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bladder cancer is the most common malignant tumor of the urinary system. Surgical resection and chemotherapy are the two mainstream treatments for bladder cancer. However, the outcomes are not satisfactory for patients with advanced bladder cancer. There is a need to further explore more effective targeted therapeutic strategies. METHODS Proteomics were performed to compare protein expression differences between human bladder cancer tissues and adjacent normal tissues. The function of GPD1 on bladder cancer cells were confirmed through in vivo and in vitro assays. Transcriptomics and metabolomics were performed to reveal the underlying mechanisms of GPD1. Virtual screening was used to identify allosteric activator of GPD1. RESULTS Here, we used proteomics to find that GPD1 expression was at low levels in bladder cancer tissues. Further investigation showed that GPD1 overexpression significantly promoted apoptosis in bladder cancer cells. Based on transcriptomics and metabolomics, GPD1 promotes Ca2+ influx and apoptosis of tumor cells via the lysoPC-PAFR-TRPV2 axis. Finally, we performed a virtual screening to obtain the GPD1 allosteric activator wedelolactone and demonstrated its ability to inhibit bladder tumor growth in vitro and in vivo. CONCLUSIONS This study suggests that GPD1 may act as a novel tumor suppressor in bladder cancer. Pharmacological activation of GPD1 is a potential therapeutic approach for bladder cancer.
Collapse
Affiliation(s)
- Wenlong Zhang
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xin He
- Department of Urology, Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Haoli Yin
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Wenmin Cao
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Tingsheng Lin
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Wei Chen
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Wenli Diao
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Meng Ding
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Hao Hu
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University of Chinese Medicine, 321 Zhongshan Rd, Nanjing, 210008, Jiangsu, China
| | - Wenjing Mo
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University of Chinese Medicine, 321 Zhongshan Rd, Nanjing, 210008, Jiangsu, China
| | - Qing Zhang
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Hongqian Guo
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
10
|
Lu YC, Chang TK, Lin TC, Yeh ST, Fang HW, Huang CH, Huang CH. The potential role of herbal extract Wedelolactone for treating particle-induced osteolysis: an in vivo study. J Orthop Surg Res 2022; 17:335. [PMID: 35765082 PMCID: PMC9237967 DOI: 10.1186/s13018-022-03228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background Osteolysis is one of the most prevalent clinical complications affecting people who undergo total joint replacement (TJR). Wedelolactone (WDL) is a coumestan compound derived from the Wedelia chinensis plant and has been demonstrated to exhibit anti-inflammatory properties. This study aimed to investigate the oral administration of WDL as a potential treatment for particle-induced osteolysis using a well-established mice calvarial disease model. Methods Thirty-two C57BL/6 J mice were randomized into four groups: Sham, vehicle, osteolysis group with oral WDL treatment for 4 weeks (WDL 4w), and osteolysis group treated for 8 weeks (WDL 8w). Micro-CT was used to quantitatively analyze the bone mineral density (BMD), bone volume/tissue volume (BV/TV) and trabecular bone thickness (Tb.Th). Osteoclast numbers were also measured from histological slides by two investigators who were blind to the treatment used. Results The results from micro-CT observation showed that BMD in the WDL 8w group improved significantly over the vehicle group (p < 0.05), but there was no significant difference between WDL 4w and 8w for BV/TV and Tb.Th. Osteoclast numbers in the WDL 4w group were also lower than the vehicle group (p < 0.05), but the difference between WDL 8w and 4w groups was not significant. Conclusions Particle-induced osteolysis is an inevitable long-term complication after TJR. The results of this animal study indicate that an oral administration of WDL can help reduce the severity of osteolysis without adverse effects.
Collapse
Affiliation(s)
- Yung-Chang Lu
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan.,Department of Orthopaedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ting-Kuo Chang
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan.,Department of Orthopaedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Tzu-Chiao Lin
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan
| | - Shu-Ting Yeh
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan
| | - Hsu-Wei Fang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Chun-Hsiung Huang
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan.,Department of Orthopaedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Orthopaedic Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Chang-Hung Huang
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan. .,Department of Orthopaedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan. .,School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Institute of Geriatric Welfare Technology and Science, MacKay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
11
|
Jana A, Ali D, Bhaumick P, Choudhury LH. Sc(OTf) 3-Mediated One-Pot Synthesis of Coumarin-Fused Furans: A Thiol-Dependent Reaction for the Easy Access of 2-Phenyl-4H-furo[3,2- c]chromen-4-ones. J Org Chem 2022; 87:7763-7777. [PMID: 35642787 DOI: 10.1021/acs.joc.2c00353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report a simple and efficient method for the preparation of novel thioether-linked coumarin-fused furans from the one-pot three-component reaction of arylglyoxal, 4-hydroxycoumarin, and various aromatic thiols in the presence of Sc(OTf)3 as a catalyst. This methodology is also applicable to cyclic 1,3-dicarbonyls such as cyclohexane-1,3-dione and dimedone. Depending upon the thiols, this methodology can either give a three-component thioether-linked coumarin-fused furan (4) or a two-component furocoumarin product (5). Wide substrate scope, good to excellent yields, and products having more than one pharmaceutically important motif are the salient features of this methodology.
Collapse
Affiliation(s)
- Asim Jana
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna 801106, India
| | - Danish Ali
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna 801106, India
| | - Prabhas Bhaumick
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna 801106, India
| | - Lokman H Choudhury
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna 801106, India
| |
Collapse
|
12
|
Sohel M, Sultana H, Sultana T, Mamun AA, Amin MN, Hossain MA, Ali MC, Aktar S, Sultana A, Rahim ZB, Mitra S, Dash R. Chemotherapeutics activities of dietary phytoestrogens against prostate cancer: From observational to clinical studies. Curr Pharm Des 2022; 28:1561-1580. [PMID: 35652403 DOI: 10.2174/1381612828666220601153426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
Prostate cancer remains one of the most frequent and deadliest malignancies in males, where the rate of disease progression is closely associated with the type of dietary intake, specifically Western-style diet. Indeed intake of the Asian diet, which contains abundant phytoestrogens, is inversely correlated with a higher risk of prostate cancer, suggesting a chemoprotective effect of phytoestrogen against cancer progression. Although the role of phytoestrogens in cancer treatment was well documented, their impact on prostate cancer is not well understood. Therefore, the present review discusses the possible chemopreventive effect of phytoestrogens, emphasizing their efficacy at the different stages of carcinogenesis. Furthermore, phytoestrogens provide a cytoprotective effect in conventional chemotherapy and enhance chemosensitivity to tumor cells, which have also been discussed. This compilation provides a solid basis for future research on phytoestrogens as a promising avenue for anticancer drug development and also recommends these beneficiary compounds in the daily diet to manage and prevent prostate cancer.
Collapse
Affiliation(s)
- Md Sohel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh.,Pratyasha Health Biomedical Research Center, Dhaka-1230. Bangladesh
| | - Habiba Sultana
- Department of Biotechnology and Genetic Engineering, Faculty of life science, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Tayeba Sultana
- Department of Biotechnology and Genetic Engineering, Faculty of life science, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Abdullah Al Mamun
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Mohammad Nurul Amin
- Department of Pharmacy, Atish Dipankar University of Science and Technology, Dhaka-1230. Bangladesh.,Pratyasha Health Biomedical Research Center, Dhaka-1230. Bangladesh
| | - Md Arju Hossain
- Department of Biotechnology and Genetic Engineering, Faculty of life science, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Md Chayan Ali
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Suraiya Aktar
- Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi, Bangladesh
| | - Armin Sultana
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Zahed Bin Rahim
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| |
Collapse
|
13
|
Lacouture A, Lafront C, Peillex C, Pelletier M, Audet-Walsh É. Impacts of endocrine-disrupting chemicals on prostate function and cancer. ENVIRONMENTAL RESEARCH 2022; 204:112085. [PMID: 34562481 DOI: 10.1016/j.envres.2021.112085] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Because of their historical mode of action, endocrine-disrupting chemicals (EDCs) are associated with sex-steroid receptors, namely the two estrogen receptors (ERα and ERβ) and the androgen receptor (AR). Broadly, EDCs can modulate sex-steroid receptor functions. They can also indirectly impact the androgen and estrogen pathways by influencing steroidogenesis, expression of AR or ERs, and their respective activity as transcription factors. Additionally, many of these chemicals have multiple cellular targets other than sex-steroid receptors, which results in a myriad of potential effects in humans. The current article reviews the association between prostate cancer and the endocrine-disrupting functions of four prominent EDC families: bisphenols, phthalates, phytoestrogens, and mycoestrogens. Results from both in vitro and in vivo models are included and discussed to better assess the molecular mechanisms by which EDCs can modify prostate biology. To overcome the heterogeneity of results published, we established common guidelines to properly study EDCs in the context of endocrine diseases. Firstly, the expression of sex-steroid receptors in the models used must be determined before testing. Then, in parallel to EDCs, pharmacological compounds acting as positive (agonists) and negative controls (antagonists) have to be employed. Finally, EDCs need to be used in a precise range of concentrations to modulate sex-steroid receptors and avoid off-target effects. By adequately integrating molecular endocrinology aspects in EDC studies and identifying their underlying molecular mechanisms, we will truly understand their impact on prostate cancer and distinguish those that favor the progression of the disease from those that slow down tumor development.
Collapse
Affiliation(s)
- Aurélie Lacouture
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, Canada; Endocrinology - Nephrology Research Axis, CHU de Québec-Université Laval Research Center, Québec, Canada; Cancer Research Center (CRC), Laval University, Québec, Canada
| | - Camille Lafront
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, Canada; Endocrinology - Nephrology Research Axis, CHU de Québec-Université Laval Research Center, Québec, Canada; Cancer Research Center (CRC), Laval University, Québec, Canada
| | - Cindy Peillex
- Infectious and Immune Diseases Research Axis, CHU de Québec-Université Laval Research Center, Québec, Canada; ARThrite Research Center, Laval University, Québec, Canada; Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
| | - Martin Pelletier
- Infectious and Immune Diseases Research Axis, CHU de Québec-Université Laval Research Center, Québec, Canada; ARThrite Research Center, Laval University, Québec, Canada; Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Québec, Canada.
| | - Étienne Audet-Walsh
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, Canada; Endocrinology - Nephrology Research Axis, CHU de Québec-Université Laval Research Center, Québec, Canada; Cancer Research Center (CRC), Laval University, Québec, Canada.
| |
Collapse
|
14
|
Bhattacharyya S, Law S. Environmental pollutant N-N'ethylnitrosourea-induced leukemic NLRP3 inflammasome activation and its amelioration by Eclipta prostrata and its active compound wedelolactone. ENVIRONMENTAL TOXICOLOGY 2022; 37:322-334. [PMID: 34726823 DOI: 10.1002/tox.23400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Environmental exposure of N-nitroso compounds (NOCs) from various sources like tobacco smoke, pesticides, smoked meat, and rubber manufacturing industries has been an alarming cause of carcinogenesis. Neonatal exposure to the carcinogenic N-N'ethylnitrosourea (ENU), a NOC has been established to cause leukemogenesis. Our world is constantly battling against cancer with consistent investigations of new anti-cancer therapeutics. Plant derived compounds have grasped worldwide attention of researchers for their promising anti-cancer potentials. Eclipta prostrata is one such ayurvedic herb, renowned for its anti-inflammatory properties. Currently, it has been explored in various cancer cell lines to establish its anti-cancer effect, but rarely in in-vivo cancer models. Wedelolactone (WDL), the major coumestan of E. prostrata is recognized as an inhibitor of IKK, a master regulator of the NF-kB inflammatory pathway. As persistent inflammation and activated inflammasome contribute to leukemogenesis, we tried to observe anti-leukemogenic efficacy of E. prostrata and its active compound WDL on the marrow cells of ENU induced experimental leukemic mice. Treatment groups were administered an oral gavage at a dose of 1200 mg/kg and 50 mg/kg b.w of crude extract and WDL respectively for 4 weeks. Various parameters like hemogram, survivability, cytological and histological investigations, migration assay, cell culture, flowcytometry and confocal microscopy were taken into consideration pre- and post-treatment. Interestingly, the plant concoction portrayed maximum effects in comparison to WDL alone. The study suggests E. prostrata and WDL as vital complementary adjuncts for anti-inflammasome mechanism in ENU-induced leukemia.
Collapse
Affiliation(s)
- Subhashree Bhattacharyya
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| | - Sujata Law
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| |
Collapse
|
15
|
Singh N, Rajotiya K, Lamba N, Singh HL, Ameta KL, Singh S. Versatile approach for the synthesis of furo-coumarin derivatives. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220126155703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Owing to useful physio-chemical properties of furo-coumarin derivatives, their synthetic and mechanistic investigation has been reported here. We have demonstrated a range of synthetic approach to access furan-fused coumarin derivatives. Many metal mediated, base and acid catalyzed approach have been revealed for the construction of thiscoumarin based fused heterocycles of biological importance. In addition to this, microwave assisted synthetic routes have been also revealed. The last and useful approach for the synthesis of these heterocycles includes use of purely solvent as a reaction media for synthesizing these interesting classes of heterocycles.
Collapse
Affiliation(s)
- Nidhi Singh
- Department of Chemistry, University of Allahabad, Allahabad, UP, India
| | - Krishna Rajotiya
- Mody University of Science and Technology, Lakshmangarh-Rajasthan 332311, India
| | - Nikita Lamba
- Mody University of Science and Technology, Lakshmangarh-Rajasthan 332311, India
| | - H. L. Singh
- Mody University of Science and Technology, Lakshmangarh-Rajasthan 332311, India
| | - K. L. Ameta
- Mody University of Science and Technology, Lakshmangarh-Rajasthan 332311, India
| | - Shivendra Singh
- Mody University of Science and Technology, Lakshmangarh-Rajasthan 332311, India
| |
Collapse
|
16
|
Amewu RK, Sakyi PO, Osei-Safo D, Addae-Mensah I. Synthetic and Naturally Occurring Heterocyclic Anticancer Compounds with Multiple Biological Targets. Molecules 2021; 26:7134. [PMID: 34885716 PMCID: PMC8658833 DOI: 10.3390/molecules26237134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 01/09/2023] Open
Abstract
Cancer is a complex group of diseases initiated by abnormal cell division with the potential of spreading to other parts of the body. The advancement in the discoveries of omics and bio- and cheminformatics has led to the identification of drugs inhibiting putative targets including vascular endothelial growth factor (VEGF) family receptors, fibroblast growth factors (FGF), platelet derived growth factors (PDGF), epidermal growth factor (EGF), thymidine phosphorylase (TP), and neuropeptide Y4 (NY4), amongst others. Drug resistance, systemic toxicity, and drug ineffectiveness for various cancer chemo-treatments are widespread. Due to this, efficient therapeutic agents targeting two or more of the putative targets in different cancer cells are proposed as cutting edge treatments. Heterocyclic compounds, both synthetic and natural products, have, however, contributed immensely to chemotherapeutics for treatments of various diseases, but little is known about such compounds and their multimodal anticancer properties. A compendium of heterocyclic synthetic and natural product multitarget anticancer compounds, their IC50, and biological targets of inhibition are therefore presented in this review.
Collapse
Affiliation(s)
- Richard Kwamla Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| | - Patrick Opare Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani P.O. Box 214, Ghana
| | - Dorcas Osei-Safo
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| | - Ivan Addae-Mensah
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| |
Collapse
|
17
|
Bai B, Chen Q, Jing R, He X, Wang H, Ban Y, Ye Q, Xu W, Zheng C. Molecular Basis of Prostate Cancer and Natural Products as Potential Chemotherapeutic and Chemopreventive Agents. Front Pharmacol 2021; 12:738235. [PMID: 34630112 PMCID: PMC8495205 DOI: 10.3389/fphar.2021.738235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the second most common malignant cancer in males. It involves a complex process driven by diverse molecular pathways that closely related to the survival, apoptosis, metabolic and metastatic characteristics of aggressive cancer. Prostate cancer can be categorized into androgen dependent prostate cancer and castration-resistant prostate cancer and cure remains elusive due to the developed resistance of the disease. Natural compounds represent an extraordinary resource of structural scaffolds with high diversity that can offer promising chemical agents for making prostate cancer less devastating and curable. Herein, those natural compounds of different origins and structures with potential cytotoxicity and/or in vivo anti-tumor activities against prostate cancer are critically reviewed and summarized according to the cellular signaling pathways they interfere. Moreover, the anti-prostate cancer efficacy of many nutrients, medicinal plant extracts and Chinese medical formulations were presented, and the future prospects for the application of these compounds and extracts were discussed. Although the failure of conventional chemotherapy as well as involved serious side effects makes natural products ideal candidates for the treatment of prostate cancer, more investigations of preclinical and even clinical studies are necessary to make use of these medical substances reasonably. Therefore, the elucidation of structure-activity relationship and precise mechanism of action, identification of novel potential molecular targets, and optimization of drug combination are essential in natural medicine research and development.
Collapse
Affiliation(s)
- Bingke Bai
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Qianbo Chen
- Department of Anesthesiology, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Rui Jing
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yanfei Ban
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Qi Ye
- Department of Biological Science, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiheng Xu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
18
|
Ghosh S, Hazra J, Pal K, Nelson VK, Pal M. Prostate cancer: Therapeutic prospect with herbal medicine. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100034. [PMID: 34909665 PMCID: PMC8663990 DOI: 10.1016/j.crphar.2021.100034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is a major cause of morbidity and mortality in men worldwide. A geographic variation on the burden of the disease suggested that the environment, genetic makeup, lifestyle, and food habits modulate one's susceptibility to the disease. Although it has been generally thought to be an older age disease, and awareness and timely execution of screening programs have managed to contain the disease in the older population over the last decades, the incidence is still increasing in the population younger than 50. Existing treatment is efficient for PCa that is localized and responsive to androgen. However, the androgen resistant and metastatic PCa are challenging to treat. Conventional radiation and chemotherapies are associated with severe side effects in addition to being exorbitantly expensive. Many isolated phytochemicals and extracts of plants used in traditional medicine are known for their safety and diverse healing properties, including many with varying levels of anti-PCa activities. Many of the phytochemicals discussed here, as shown by many laboratories, inhibit tumor cell growth and proliferation by interfering with the components in the pathways responsible for the enhanced proliferation, metabolism, angiogenesis, invasion, and metastasis in the prostate cells while upregulating the mechanisms of cell death and cell cycle arrest. Notably, many of these agents simultaneously target multiple cellular pathways. We analyzed the available literature and provided an update on this issue in this review article.
Collapse
Affiliation(s)
- Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Joyita Hazra
- Department of Biotechnology, Indian Institute of Technology Madras, Tamil Nadu, India
| | | | - Vinod K. Nelson
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, Andhra Pradesh, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
19
|
Sarwar S, Alamro AA, Alghamdi AA, Naeem K, Ullah S, Arif M, Yu JQ, Huq F. Enhanced Accumulation of Cisplatin in Ovarian Cancer Cells from Combination with Wedelolactone and Resulting Inhibition of Multiple Epigenetic Drivers. Drug Des Devel Ther 2021; 15:2211-2227. [PMID: 34079223 PMCID: PMC8164677 DOI: 10.2147/dddt.s288707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/15/2021] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Cisplatin resistance is a major concern in ovarian cancer treatment. The aim of this study was to investigate if wedelolactone could perform better in resistant ovarian cancer cells when used in combination with cisplatin. METHODS Growth inhibitory potential of wedelolactone and cisplatin was investigated through MTT reduction assay in ovarian cancer cell lines including A2780 (sensitive), A2780cisR (cisplatin resistant) and A2780ZD0473R. Resistance factor (RF) of drugs was determined in these three cell lines. Combination index (CI) was calculated as a measure of combined drug action. Effect of this combination on changes in the cellular accumulation of platinum levels and platinum-DNA binding was also determined in vitro using AutoDock Vina while the effect of wedelolactone on inhibition of possible key culprits of resistance including Chk1, CD73, AT tip60, Nrf2, Brd1, PCAF, IGF1, mTOR1 and HIF2α was investigated in silico. RESULTS Cisplatin and wedelolactone showed a dose-dependent growth inhibitory effect. RF value of wedelolactone was 1.1 in the case of A2780cisR showing its potential to bring more cell death in cisplatin-resistant cells. CI values were found to vary showing antagonistic to additive outcomes. Additive effect was observed for all sequences of administration (0/0, 0/4 and 4/0 h) in A2780cisR. Enhanced cellular accumulation of cisplatin was observed in parent and resistant cells on combination. Docking results revealed that among the selected oncotargets, Chk1, CD73, Nrf2, PCAF and AT tip60 were more vulnerable to wedelolactone than their respective standard inhibitors. CONCLUSION These findings have shown that additive outcome of drug combination in A2780cisR and raised levels of platinum accumulation followed a clear pattern. This observation indicates that the presence of wedelolactone might have contributed to sensitize A2780cisR. However, in silico results point to the possible effects of this compound on epigenetic factors involving tumor microenvironment, epithelial mesenchymal transition, and immune-checkpoint kinases.
Collapse
Affiliation(s)
- Sadia Sarwar
- Discipline of Biomedical Sciences, Sydney Medical School, The University of Sydney, Cumberland Campus, Sydney, NSW, Australia
- Department of Pharmacognosy, Riphah Institute of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Abir A Alamro
- Department of Biochemistry, College of Science, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Amani A Alghamdi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Komal Naeem
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Salamat Ullah
- Acute Medicine, Northampton General Hospital, NHS, UK
| | - Muazzam Arif
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Jun Qing Yu
- Discipline of Biomedical Sciences, Sydney Medical School, The University of Sydney, Cumberland Campus, Sydney, NSW, Australia
| | - Fazlul Huq
- Eman Research Journal, Eman Research, Sydney, NSW, Australia
| |
Collapse
|
20
|
Zhi D, Zhang M, Lin J, Liu P, Wang Y, Duan M. Wedelolactone improves the renal injury induced by lipopolysaccharide in HK-2 cells by upregulation of protein tyrosine phosphatase non-receptor type 2. J Int Med Res 2021; 49:3000605211012665. [PMID: 33983070 PMCID: PMC8127797 DOI: 10.1177/03000605211012665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective To explore the effects of wedelolactone (WEL) on sepsis-induced renal injury in the human renal proximal tubular epithelial cell line HK-2. Methods HK-2 cells were stimulated by 1 µg/ml lipopolysaccharide (LPS) to trigger renal injury in vitro. HK-2 cells were pretreated with or without WEL (0.1, 1 and 10 µM) before LPS stimulation. Protein and mRNA analyses were performed using enzyme-linked immunosorbent assays, Western blot analysis and quantitative reverse transcription–polymerase chain reaction. The MTT assay and flow cytometry were used to measure cell viability and the rate of cell apoptosis. Protein tyrosine phosphatase non-receptor type 2 (PTPN2) knockdown was induced by the transection of HK-2 cells with short hairpin RNA. Results Cell viability was significantly increased in a dose-dependent manner by WEL in LPS-induced HK-2 cells. WEL also decreased the levels of four inflammatory cytokines and cell apoptosis in LPS-induced HK-2 cells. The level of PTPN2 was increased after WEL treatment. PTPN2 knockdown partly abolished the inhibitory effects of WEL on cell apoptosis, the levels of inflammatory cytokines and on p38 mitogen-activated protein kinase/nuclear factor-kappaB signalling in LPS-induced HK-2 cells. Conclusion WEL improved renal injury by suppressing inflammation and cell apoptosis through upregulating PTPN2 in HK-2 cells. PTPN2 might be used as a potential therapeutic target for LPS-induced sepsis.
Collapse
Affiliation(s)
- Deyuan Zhi
- Department of Critical Care Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Meng Zhang
- Department of Critical Care Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jin Lin
- Department of Critical Care Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Pei Liu
- Department of Critical Care Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yajun Wang
- Department of Critical Care Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Meili Duan
- Department of Critical Care Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Tu Y, Yang Y, Li Y, He C. Naturally occurring coumestans from plants, their biological activities and therapeutic effects on human diseases. Pharmacol Res 2021; 169:105615. [PMID: 33872808 DOI: 10.1016/j.phrs.2021.105615] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Naturally occurring coumestans are known as a collection of plant-derived polycyclic aromatic secondary metabolites which are characterized by the presence of an oxygen heterocyclic four-ring system comprising a coumarin moiety and a benzofuran moiety sharing a C˭C bond. Recently, there is an increasing attention in excavating the medicinal potential of coumestans, particularly coumestrol, wedelolactone, psoralidin and glycyrol, in a variety of diseases. This review is a comprehensive inventory of the chemical structures of coumestans isolated from various plant sources during the period of 1956-2020, together with their reported biological activities. 120 molecules were collected and further classified as coumestans containing core skeleton, dimethylpyranocoumestans, furanocoumestans, O-glycosylated coumestans and others, which showed a wide range of pharmacological activities including estrogenic, anti-cancer, anti-inflammatory, anti-osteoporotic, organ protective, neuroprotective, anti-diabetic and anti-obesity, antimicrobial, immunosuppressive, antioxidant and skin-protective activities. Furthermore, this review focuses on the counteraction of coumestans against bone diseases and organ damages, and the involved molecular mechanisms, which could provide important information to better understand the medicinal values of these compounds. This review is intended to be instructive for the rational design and development of less toxic and more effective drugs with a coumestan scaffold.
Collapse
Affiliation(s)
- Yanbei Tu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Ying Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yanfang Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China.
| |
Collapse
|
22
|
Duc NH, Vo AT, Haddidi I, Daood H, Posta K. Arbuscular Mycorrhizal Fungi Improve Tolerance of the Medicinal Plant Eclipta prostrata (L.) and Induce Major Changes in Polyphenol Profiles Under Salt Stresses. FRONTIERS IN PLANT SCIENCE 2021; 11:612299. [PMID: 33519869 PMCID: PMC7843587 DOI: 10.3389/fpls.2020.612299] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/16/2020] [Indexed: 05/17/2023]
Abstract
Eclipta prostrata (L.) is an important and well-known medicinal plant due to its valuable bioactive compounds. Microorganisms, including arbuscular mycorrhizal fungi (AMF), and salinity could directly impact plant metabolome, thus influencing their secondary metabolites and the efficacy of herbal medicine. In this study, the role of different single AMF species (Funneliformis mosseae, Septoglomus deserticola, Acaulospora lacunosa) and a mixture of six AMF species in plant growth and physio-biochemical characteristics of E. prostrata under non-saline conditions was investigated. Next, the most suitable AM treatment was chosen to examine the impact of AMF on physio-biochemical features and polyphenol profiles of E. prostrata under saline conditions (100 and 200 mM NaCl). The findings indicated that AMF mixture application resulted in more effective promotion on the aboveground part of non-saline plants than single AMF species. AM mixture application improved growth and salt tolerance of E. prostrata through increasing the activity of catalase, peroxidase (at 4 weeks), proline, and total phenolic content (at 8 weeks). Such benefits were not observed under high salinity, except for a higher total phenolic concentration in mycorrhizal plants at 8 weeks. Through high-performance liquid chromatography, 14 individual phenolic compounds were analyzed, with wedelolactone and/or 4,5-dicaffeoylquinic acid abundant in all treatments. Salinity and mycorrhizal inoculation sharply altered the polyphenol profiles of E. prostrata. Moderate salinity boosted phenolic compound production in non-AM plants at 4 weeks, while at 8 weeks, the decline in the content of phenolic compounds occurred in uncolonized plants subjected to both saline conditions. Mycorrhization augmented polyphenol concentration and yield under non-saline and saline conditions, depending on the growth stages and salt stress severity. Plant age influenced polyphenol profiles with usually a higher content of phenolic compounds in older plants and changed the production of individual polyphenols of both non-AM and AM plants under non-stress and salt stress conditions. A better understanding of factors (involving mycorrhiza and salinity) affecting the phenolic compounds of E. prostrata facilitates the optimization of individual polyphenol production in this medicinal plant.
Collapse
Affiliation(s)
- Nguyen Hong Duc
- Department of Genetics, Microbiology and Biotechnology, Szent István University, Gödöllõ, Hungary
| | - Au Trung Vo
- Department of Genetics, Microbiology and Biotechnology, Szent István University, Gödöllõ, Hungary
| | - Imane Haddidi
- Department of Genetics, Microbiology and Biotechnology, Szent István University, Gödöllõ, Hungary
| | - Hussein Daood
- Regional Knowledge Center, Szent István University, Gödöllõ, Hungary
| | - Katalin Posta
- Department of Genetics, Microbiology and Biotechnology, Szent István University, Gödöllõ, Hungary
| |
Collapse
|
23
|
Sarwar S, Yu JQ, Nadeem H, Huq F. Synergistic Cytotoxic Effect from Combination of Wedelolactone and Cisplatin in HeLa Cell Line: A Novel Finding. Drug Des Devel Ther 2020; 14:3841-3852. [PMID: 33061291 PMCID: PMC7519871 DOI: 10.2147/dddt.s261321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/11/2020] [Indexed: 01/24/2023] Open
Abstract
CONTEXT AND OBJECTIVE Cisplatin is a platinum drug in current clinical use for the treatment of cervical cancer. However, drug toxicity and resistance are its two major limitations. The aim of this investigation was to test the cytotoxic activity of potential phytochemicals alone and in combination with cisplatin in cervical cancer cells. METHODS In this study, cytotoxicity of phytochemicals including wedelolactone (WDL), betulinic acid (BA) and epigallocatechin gallate (EGCG) was investigated in human cervical cancer cell line HeLa through 3-(4, 5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) reduction assay. Combined drug action resulting from the combination of cisplatin with WDL and BA was investigated in the same cell line through median effect principle. The combination index (CI) was taken as a measure of combined drug action. RESULTS BA resulted in synergistic outcome when co-administered with cisplatin at 0/0 time; (bolus administration) while administration of either drug (cisplatin or BA) four hours before the other (0/4 or 4/0) resulted in antagonistic action. WDL, on the other hand, was found out to be synergistic at any of the applied sequence of drug administration (0/0, 0/4 or 4/0). DISCUSSION AND CONCLUSION This is the first study reporting cytotoxic activity of WDL in HeLa cells either as single agent or in combination with cisplatin. These results support the idea that sequential combination of cisplatin with WDL and BA may work effectively in cervical cancer cells.
Collapse
Affiliation(s)
- Sadia Sarwar
- Discipline of Biomedical Sciences, Sydney Medical School, The University of Sydney, Cumberland Campus, Sydney, NSW, Australia
- Department of Pharmacognosy, Riphah Institute of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Jun Qing Yu
- Discipline of Biomedical Sciences, Sydney Medical School, The University of Sydney, Cumberland Campus, Sydney, NSW, Australia
| | - Humaira Nadeem
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Fazlul Huq
- Discipline of Biomedical Sciences, Sydney Medical School, The University of Sydney, Cumberland Campus, Sydney, NSW, Australia
| |
Collapse
|
24
|
Manandhar S, Kabekkodu SP, Pai KSR. Aberrant canonical Wnt signaling: Phytochemical based modulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153243. [PMID: 32535482 DOI: 10.1016/j.phymed.2020.153243] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/07/2020] [Accepted: 05/10/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Wnt signaling pathway plays a major role during development like gastrulation, axis formation, organ development and organization of body plan development. Wnt signaling aberration has been linked with various disease conditions like osteoporosis, colon cancer, hair follicle tumor, Leukemia, and Alzheimer's disease. Phytochemicals like flavonoid, glycosides, polyphenols, have been reported to directly target the markers of Wnt signaling in different disease models. PURPOSE The study deals in detail about the different phytochemical targeting key players of Wnt signaling pathway in diseases like Cancer, Osteoporosis, and Alzheimer's disease. We have focused on the Pharmacological basis of disease alleviation by phytochemical specifically targeting the Wnt signaling markers in this study. METHODS The study focused on the published articles from the preclinical rodent and invitro cell line studies related to Wnt signaling and Phytochemicals related to Cancer, Alzheimer's and Osteoporosis. The electronic databases Scopus, Web of Science and Pubmed database were used for the systematic search of literatures from 2005 up to 2019 using keywords Canonical Wnt signaling pathway, Cancer, Alzheimer's disease, Osteoporosis, Phytochemicals. The focus was to identify the target specific modulation of Wnt signaling mediated by phytochemicals. RESULTS Approximately 30 phytochemicals of different class have been identified to modulate Wnt signaling pathway acting through Axin, β-catenin translocation, GSK-3β, AKT, Wif-1 in various experimental studies. The down regulation of Wnt signaling is observed in Cancer mostly colorectal cancer, breast cancer mediated through mutations in APC and Axin genes. Different class of Phytochemicals such as flavonoid, glycosides, polyphenol, alkaloids etc. have been found to target Wnt signaling markers and alleviate Cancer. Similarly, Up regulation of Wnt signaling has been reported in Osteoporosis and neurodegenerative disease like Alzheimer's disease. CONCLUSION This review highlights the possibility of the Phytochemicals to target Wnt markers and its potential to either activate or deactivate the Wnt signaling pathway. It also describes the challenges in proper targeting of Wnt signaling and the potential risk and consequences of either up regulation or down regulation of the signaling pathway. This article highlights the possibility of Wnt signaling pathway as a therapeutic option in different diseases.
Collapse
Affiliation(s)
- Suman Manandhar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
25
|
Tarvainen I, Zimmermann T, Heinonen P, Jäntti MH, Yli-Kauhaluoma J, Talman V, Franzyk H, Tuominen RK, Christensen SB. Missing Selectivity of Targeted 4β-Phorbol Prodrugs Expected to be Potential Chemotherapeutics. ACS Med Chem Lett 2020; 11:671-677. [PMID: 32435369 DOI: 10.1021/acsmedchemlett.9b00554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022] Open
Abstract
Targeting cytotoxic 4β-phorbol esters toward cancer tissue was attempted by conjugating a 4β-pborbol derivative with substrates for the proteases prostate-specific antigen (PSA) and prostate-specific membrane antigen (PSMA) expressed in cancer tissue. The hydrophilic peptide moiety was hypothesized to prevent penetration of the prodrugs into cells and prevent interaction with PKC. Cleavage of the peptide in cancer tumors was envisioned to release lipophilic cytotoxins, which subsequently penetrate into cancer cells. The 4β-phorbol esters were prepared from 4β-phorbol isolated from Croton tiglium seeds, while the peptides were prepared by solid-phase synthesis. Cellular assays revealed activation of PKC by the prodrugs and efficient killing of both peptidase positive as well as peptidase negative cells. Consequently no selectivity for enzyme expressing cells was found.
Collapse
Affiliation(s)
- Ilari Tarvainen
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| | - Tomáš Zimmermann
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
- Department of Chemistry of Natural Compounds, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Pia Heinonen
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| | - Maria Helena Jäntti
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| | - Virpi Talman
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| | - Raimo K. Tuominen
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| | - Søren Brøgger Christensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| |
Collapse
|
26
|
Coumarins as Modulators of the Keap1/Nrf2/ARE Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1675957. [PMID: 32377290 PMCID: PMC7196981 DOI: 10.1155/2020/1675957] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/14/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022]
Abstract
The Keap1/Nrf2/ARE system is a central defensive mechanism against oxidative stress which plays a key role in the pathogenesis and progression of many diseases. Nrf2 is a redox-sensitive transcription factor controlling a variety of downstream antioxidant and cytodefensive genes. Nrf2 has a powerful anti-inflammatory activity mediated via modulating NF-κB. Therefore, pharmacological activation of Nrf2 is a promising therapeutic strategy for the treatment/prevention of several diseases that are underlined by both oxidative stress and inflammation. Coumarins are natural products with promising pharmacological activities, including antioxidant, anticancer, antimicrobial, and anti-inflammatory efficacies. Coumarins are found in many plants, fungi, and bacteria and have been widely used as complementary and alternative medicines. Some coumarins have shown an ability to activate Nrf2 signaling in different cells and animal models. The present review compiles the research findings of seventeen coumarin derivatives of plant origin (imperatorin, visnagin, urolithin B, urolithin A, scopoletin, esculin, esculetin, umbelliferone, fraxetin, fraxin, daphnetin, anomalin, wedelolactone, glycycoumarin, osthole, hydrangenol, and isoimperatorin) as antioxidant and anti-inflammatory agents, emphasizing the role of Nrf2 activation in their pharmacological activities. Additionally, molecular docking simulations were utilized to investigate the potential binding mode of these coumarins with Keap1 as a strategy to disrupt Keap1/Nrf2 protein-protein interaction and activate Nrf2 signaling.
Collapse
|
27
|
Li X, Wang T, Liu J, Liu Y, Zhang J, Lin J, Zhao Z, Chen D. Effect and mechanism of wedelolactone as antioxidant-coumestan on OH-treated mesenchymal stem cells. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
28
|
Cordani M, Strippoli R, Somoza Á. Nanomaterials as Inhibitors of Epithelial Mesenchymal Transition in Cancer Treatment. Cancers (Basel) 2019; 12:E25. [PMID: 31861725 PMCID: PMC7017008 DOI: 10.3390/cancers12010025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Abstract: Epithelial-mesenchymal transition (EMT) has emerged as a key regulator of cell invasion and metastasis in cancers. Besides the acquisition of migratory/invasive abilities, the EMT process is tightly connected with the generation of cancer stem cells (CSCs), thus contributing to chemoresistance. However, although EMT represents a relevant therapeutic target for cancer treatment, its application in the clinic is still limited due to various reasons, including tumor-stage heterogeneity, molecular-cellular target specificity, and appropriate drug delivery. Concerning this last point, different nanomaterials may be used to counteract EMT induction, providing novel therapeutic tools against many different cancers. In this review, (1) we discuss the application of various nanomaterials for EMT-based therapies in cancer, (2) we summarize the therapeutic relevance of some of the proposed EMT targets, and (3) we review the potential benefits and weaknesses of each approach.
Collapse
Affiliation(s)
- Marco Cordani
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- National Institute for Infectious Diseases “Lazzaro Spallanzani” I.R.C.C.S., 00149 Rome, Italy
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain
- CNB-CSIC-IMDEA Nanociencia Associated Unit “Unidad de Nanobiotecnología”, 28049 Madrid, Spain
| |
Collapse
|
29
|
Satheesh Naik K, Gurushanthaiah M, Kavimani M, Prabhu K, Lokanadham S. Hepatoprotective Role of Eclipta alba against High Fatty Diet Treated Experimental Models - A Histopathological Study. MÆDICA 2019; 13:217-222. [PMID: 31490461 DOI: 10.26574/maedica.2018.13.3.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Background The hepatic injury due to oxidative stress was ameliorated through administration of an aqueous extract of Eclipta alba leaves and suggested that wedelolactone and demethylwedelolactone were the possible components of Eclipta alba behind the protective effect on liver as well as against liver disorders. Objective To study the hepato-protective effects of Eclipta alba on high fatty diet treated experimental models. Material and methods A total of 30 adult albino rats of Wistar strain weighing 165-215 grams, from the animal house of the Basaveshwara Medical College, Hospital and Research Centre, Chitradurga, were used for the present study: group 1 included animals fed with normal diet (control); group 2, animals treated with hyperlipidemic diet for eight weeks; group 3, animals treated with hyperlipidemic diet for eight weeks, followed by one week post treatment of Eclipta alba with normal diet; group 4, animals treated with hyperlipidemic diet for eight weeks, followed by two weeks post-treatment of Eclipta alba with normal diet; and group 5, animals treated with hyperlipidemic diet for eight weeks, followed by three weeks posttreatment of Eclipta alba with normal diet. Results In animals with high fat diet (30%), we observed the deposition of fat in the form of fat lobules in and around the hepatocytes, mononuclear in filtration in the liver parenchyma, dilation of blood vessels, necrotic foci and damaged hepatocytes. Conclusion The components of Eclipta alba like wedelolactone, demethylwedelolactone and saponins reduced fat deposition, mononuclear infiltration, and necrotic foci, and stimulated hepatocyte regeneration in the liver.
Collapse
Affiliation(s)
- K Satheesh Naik
- Department of Anatomy, Bharath University (BIHER), Chennai, Tamilnadu, India
| | - M Gurushanthaiah
- Department of Anatomy, Basaveshwara Medical College, Chitradurga, Karnataka, India
| | - M Kavimani
- Department of Anatomy, Sree Balaji Medical College and Hospital, Chennai, Tamilnadu, India
| | - K Prabhu
- Department of Anatomy, Sree Balaji Medical College and Hospital, Chennai, Tamilnadu, India
| | - S Lokanadham
- Department of Anatomy, Santhiram Medical College and Hospital, Nandyal, Andhra Pradesh, India
| |
Collapse
|
30
|
Yang JY, Tao LJ, Liu B, You XY, Zhang CF, Xie HF, Li RS. Wedelolactone Attenuates Pulmonary Fibrosis Partly Through Activating AMPK and Regulating Raf-MAPKs Signaling Pathway. Front Pharmacol 2019; 10:151. [PMID: 30890932 PMCID: PMC6411994 DOI: 10.3389/fphar.2019.00151] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/08/2019] [Indexed: 12/18/2022] Open
Abstract
Pulmonary fibrosis is common in a variety of inflammatory lung diseases, there is currently no effective clinical drug treatment. It has been reported that the ethanol extract of Eclipta prostrata L. can improve the lung collagen deposition and fibrosis pathology induced by bleomycin (BLM) in mice. In the present study, we studied whether wedelolactone (WEL), a major coumarin ingredient of E. prostrata, provided protection against BLM-induced pulmonary fibrosis. ICR or C57/BL6 strain mice were treated with BLM to establish lung fibrosis model. WEL (2 or 10 mg/kg) was given daily via intragastric administration for 2 weeks starting at 7-day after intratracheal instillation. WEL at 10 mg/kg significantly reduced BLM-induced inflammatory cells infiltration, pro-inflammatory factors expression, and collagen deposition in lung tissues. Additionally, treatment with WEL also impaired BLM-induced increases in fibrotic marker expression (collagen I and α-SMA) and decrease in an anti-fibrotic marker (E-cadherin). Treatment with WEL significantly prevented BLM-induced increase in TGF-β1 and Smad2/3 phosphorylation in the lungs. WEL administration (10 mg/kg) also significantly promoted AMPK activation compared to model group in BLM-treated mice. Further investigation indicated that activation of AMPK by WEL can suppressed the transdifferentiation of primary lung fibroblasts and the epithelial mesenchymal transition (EMT) of alveolar epithelial cells, the inhibitive effects of WEL was significantly blocked by an AMPK inhibitor (compound C) in vitro. Together, these results suggest that activation of AMPK by WEL followed by reduction in TGFβ1/Raf-MAPK signaling pathways may have a therapeutic potential in pulmonary fibrosis.
Collapse
Affiliation(s)
- Jin-Yu Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Li-Jun Tao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Bei Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Xin-Yi You
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Chao-Feng Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Hai-Feng Xie
- Chengdu Biopurify Phytochemicals Ltd., Chengdu, China
| | - Ren-Shi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
31
|
Delgadillo-Silva LF, Tsakmaki A, Akhtar N, Franklin ZJ, Konantz J, Bewick GA, Ninov N. Modelling pancreatic β-cell inflammation in zebrafish identifies the natural product wedelolactone for human islet protection. Dis Model Mech 2019; 12:12/1/dmm036004. [PMID: 30679186 PMCID: PMC6361155 DOI: 10.1242/dmm.036004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/30/2018] [Indexed: 12/29/2022] Open
Abstract
Islet inflammation and cytokine production are implicated in pancreatic β-cell dysfunction and diabetes pathogenesis. However, we lack therapeutics to protect the insulin-producing β-cells from inflammatory damage. Closing this clinical gap requires the establishment of new disease models of islet inflammation to facilitate screening efforts aimed at identifying new protective agents. Here, we have developed a genetic model of Interleukin-1β (Il-1β)-driven islet inflammation in zebrafish, a vertebrate that allows for non-invasive imaging of β-cells and in vivo drug discovery. Live imaging of immune cells and β-cells in our model revealed dynamic migration, increased visitation and prolonged macrophage retention in the islet, together with robust activation of NF-κB signalling in β-cells. We find that Il-1β-mediated inflammation does not cause β-cell destruction but, rather, it impairs β-cell function and identity. In vivo, β-cells exhibit impaired glucose-stimulated calcium influx and reduced expression of genes involved in function and maturity. These defects are accompanied by α-cell expansion, glucose intolerance and hyperglycemia following a glucose challenge. Notably, we show that a medicinal plant derivative (wedelolactone) is capable of reducing the immune-cell infiltration while also ameliorating the hyperglycemic phenotype of our model. Importantly, these anti-diabetic properties in zebrafish are predictive of wedelolactone's efficacy in protecting rodent and human islets from cytokine-induced apoptosis. In summary, this new zebrafish model of diabetes opens a window to study the interactions between immune and β-cells in vivo, while also allowing the identification of therapeutic agents for protecting β-cells from inflammation. Summary: A model of islet inflammation in zebrafish exhibits functional β-cell silencing and a lack of glucose responsiveness. A natural compound that rescues the glucose defect in zebrafish can protect human islets from inflammation.
Collapse
Affiliation(s)
- Luis Fernando Delgadillo-Silva
- Centre for Regenerative Therapies TU Dresden, Dresden 01307, Germany.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus of TU Dresden, German Center for Diabetes Reseach (DZD e.V.), Dresden 01307, Germany
| | - Anastasia Tsakmaki
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 91UL, UK
| | - Nadeem Akhtar
- Centre for Regenerative Therapies TU Dresden, Dresden 01307, Germany
| | - Zara J Franklin
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 91UL, UK
| | - Judith Konantz
- Centre for Regenerative Therapies TU Dresden, Dresden 01307, Germany
| | - Gavin A Bewick
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 91UL, UK
| | - Nikolay Ninov
- Centre for Regenerative Therapies TU Dresden, Dresden 01307, Germany.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus of TU Dresden, German Center for Diabetes Reseach (DZD e.V.), Dresden 01307, Germany.,Centre for Regenerative Therapies TU Dresden, Dresden 01307, Germany
| |
Collapse
|
32
|
Das S, Mukherjee P, Chatterjee R, Jamal Z, Chatterji U. Enhancing Chemosensitivity of Breast Cancer Stem Cells by Downregulating SOX2 and ABCG2 Using Wedelolactone-encapsulated Nanoparticles. Mol Cancer Ther 2018; 18:680-692. [PMID: 30587555 DOI: 10.1158/1535-7163.mct-18-0409] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/03/2018] [Accepted: 12/11/2018] [Indexed: 11/16/2022]
Abstract
A major caveat in the treatment of breast cancer is disease recurrence after therapeutic regime at both local and distal sites. Tumor relapse is attributed to the persistence of chemoresistant cancer stem cells (CSC), which need to be obliterated along with conventional chemotherapy. Wedelolactone, a naturally occurring coumestan, demonstrates anticancer effects in different cancer cells, although with several limitations, and is mostly ineffective against CSCs. To enhance its biological activity in cancer cells and additionally target the CSCs, wedelolactone-encapsulated PLGA nanoparticles (nWdl) were formulated. Initial results indicated that nanoformulation of wedelolactone not only increased its uptake in breast cancer cells and the CSC population, it enhanced drug retention and sustained release within the cells. Enhanced drug retention was achieved by downregulation of SOX2 and ABCG2, both of which contribute to drug resistance of the CSCs. In addition, nWdl prevented epithelial-to-mesenchymal transition, suppressed cell migration and invasion, and reduced the percentage of breast cancer stem cells (BCSC) in MDA-MB-231 cells. When administered in combination with paclitaxel, which is known to be ineffective against BCSCs, nWdl sensitized the cells to the effects of paclitaxel and reduced the percentage of ALDH+ BCSCs and mammospheres. Furthermore, nWdl suppressed growth of solid tumors in mice and also reduced CD44+/CD24-/low population. Taken together, our data imply that nWdl decreased metastatic potential of BCSCs, enhanced chemosensitivity through coordinated regulation of pluripotent and efflux genes, and thereby provides an insight into effective drug delivery specifically for obliterating BCSCs.
Collapse
Affiliation(s)
- Sreemanti Das
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, India
| | - Pritha Mukherjee
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, India
| | - Ranodeep Chatterjee
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, India
| | - Zarqua Jamal
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, India.
| |
Collapse
|
33
|
Peng YG, Zhang L. Wedelolactone suppresses cell proliferation and migration through AKT and AMPK signaling in melanoma. J DERMATOL TREAT 2018; 30:389-395. [PMID: 30252545 DOI: 10.1080/09546634.2018.1527996] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ya-Guang Peng
- Huaiyin District, Shandong Provincial Hospital affiliated to Shandong University, Jinan City, Shandong Province, China
| | - Li Zhang
- Huaiyin District, Shandong Provincial Hospital affiliated to Shandong University, Jinan City, Shandong Province, China
| |
Collapse
|
34
|
Wang C, Song Y, Gu Z, Lian M, Huang D, Lu X, Feng X, Lu Q. Wedelolactone Enhances Odontoblast Differentiation by Promoting Wnt/β-Catenin Signaling Pathway and Suppressing NF-κB Signaling Pathway. Cell Reprogram 2018; 20:236-244. [PMID: 30089027 DOI: 10.1089/cell.2018.0004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Chenfei Wang
- Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu, China
| | - Yihua Song
- Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu, China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Min Lian
- Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu, China
| | - Dan Huang
- Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu, China
| | - Xiaohui Lu
- Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu, China
| | - Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
35
|
Shahab U, Faisal M, Alatar AA, Ahmad S. Impact of wedelolactone in the anti-glycation and anti-diabetic activity in experimental diabetic animals. IUBMB Life 2018; 70:547-552. [DOI: 10.1002/iub.1744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/24/2018] [Accepted: 03/07/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Uzma Shahab
- Department of Biochemistry; King George Medical University; Lucknow Uttar Pradesh India
| | - Mohammad Faisal
- Department of Botany and Microbiology, College of Science; King Saud University; Riyadh Saudi Arabia
| | - Abdulrahman A. Alatar
- Department of Botany and Microbiology, College of Science; King Saud University; Riyadh Saudi Arabia
| | - Saheem Ahmad
- Department of Bioscience; Integral University; Lucknow Uttar Pradesh India
- IIRC-1 Laboratory of Glycation Biology and Metabolic Disorders; Integral University; Lucknow Uttar Pradesh India
| |
Collapse
|
36
|
Nurraihana H, Wan Rosli WI, Sabreena S, Norfarizan-Hanoon NA. Optimisation extraction procedure and identification of phenolic compounds from fractional extract of corn silk (Zea mays hair) using LC-TOF/MS system. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9799-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Wedelolactone Enhances Osteoblastogenesis through ERK- and JNK-mediated BMP2 Expression and Smad/1/5/8 Phosphorylation. Molecules 2018; 23:molecules23030561. [PMID: 29498687 PMCID: PMC6017959 DOI: 10.3390/molecules23030561] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/16/2018] [Accepted: 02/28/2018] [Indexed: 02/01/2023] Open
Abstract
Our previous study showed that wedelolactone, a compound isolated from Ecliptae herba, has the potential to enhance osteoblastogenesis. However, the molecular mechanisms by which wedelolactone promoted osteoblastogenesis from bone marrow mesenchymal stem cells (BMSCs) remain largely unknown. In this study, treatment with wedelolactone (2 μg/mL) for 3, 6, and 9 days resulted in an increase in phosphorylation of extracellular signal-regulated kinases (ERKs), c-Jun N-terminal protein kinase (JNK), and p38. Phosphorylation of mitogen-activated protein kinases (MAPKs), ERK and JNK started to increase on day 3 of treatment, and p38 phosphorylation was increased by day 6 of treatment. Expression of bone morphogenetic protein (BMP2) mRNA and phosphorylation of Smad1/5/8 was enhanced after treatment of cells with wedelolactone for 6 and 9 days. The addition of the JNK inhibitor SP600125, ERK inhibitor PD98059, and p38 inhibitor SB203580 suppressed wedelolactone-induced alkaline-phosphatase activity, bone mineralization, and osteoblastogenesis-related marker genes including Runx2, Bglap, and Sp7. Increased expression of BMP2 mRNA and Smad1/5/8 phosphorylation was blocked by SP600125 and PD98059, but not by SB203580. These results suggested that wedelolactone enhanced osteoblastogenesis through induction of JNK- and ERK-mediated BMP2 expression and Smad1/5/8 phosphorylation.
Collapse
|
38
|
Cuong TT, Diem GH, Doan TT, Huy NQ, Phuong N, Hung HT. Wedelolactone from Vietnamese Eclipta prostrata (L) L . Protected Zymosan-induced shock in Mice. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:653-660. [PMID: 29881422 PMCID: PMC5985182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Wedelolactone is known to have biological activities such as anti-inflammation hepatitis, anti-hepatotoxic activity, and trypsin inhibitory effect. However, up to date, there has not been any deep study on the role of wedelolactone for zymosan-induced signaling pathways in the process of regulating the excessive inflammatory responses in host. Here, we demonstrated that wedelolactone plays an essential role for regulation of zymosan-induced inflammatory responses in murine bone marrow-derived macrophages (BMDMs). The zymosan-mediated secretion of tumor necrosis factor-α (TNF)-α), interleukin (IL)-6), and IL12p40 but not IL-10 in BMDMs was significantly inhibited by pre-treatment with wedelolactone (30 µg/mL, P < 0.001). Furthermore, zymosan-induced supreoxide generation, NADPH oxidase (P < 0.001), phosphorylation of p47phox in BMDMs were significantly reduced by pre-treatment of wedelolactone (30 µg/mL). Collectively, these data indicated that wedelolactone reduced zymosan-induced inflammatory responses. Moreover, in-vivo wedelolactone (30 mg/kg) was significantly rescued from zymosan-induced shock through inhibition of systemic inflammatory cytokine levels.
Collapse
Affiliation(s)
- Trinh Tat Cuong
- Key Laboratory for Enzyme and Protein Technology, Hanoi University of Science, Hanoi, Vietnam.,Corresponding author: E-mail:
| | - Giang Huy Diem
- Key Laboratory for Enzyme and Protein Technology, Hanoi University of Science, Hanoi, Vietnam.
| | - Tran Trung Doan
- Key Laboratory for Enzyme and Protein Technology, Hanoi University of Science, Hanoi, Vietnam.
| | - Nguyen Quang Huy
- Faculty of Biology, Hanoi University of Science, Hanoi, Vietnam.
| | - Nguyen Phuong
- National centre for Technological progress, Hanoi, Vietnam.
| | - Hoang the Hung
- Institute of scientific research in military logistics/military academy of logistic, Hanoi, Vietnam.
| |
Collapse
|
39
|
Kampa M, Notas G, Castanas E. Natural extranuclear androgen receptor ligands as endocrine disruptors of cancer cell growth. Mol Cell Endocrinol 2017; 457:43-48. [PMID: 28212843 DOI: 10.1016/j.mce.2017.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 01/08/2023]
Abstract
Even though the term endocrine disruption primarily designates environmental chemicals that can interfere with the action of hormones, in recent years it has been extended to include also plant derived compounds that can reach the human body, naturally, or have been identified and studied as alternative pharmaceutical agents. In fact, for a large number of them, their antihormonal action was appreciated by different traditional herbal medicines. In the present review we report the majority of the plant derived compounds that exhibit an antiandrogenic effect and the known mechanisms of action. These include a disruption at testosterone production level and at the classical androgen receptor triggered pathways, including membrane initiated ones. Finally, for the first time we describe the possible involvement of alternative cell membrane androgen receptor systems and the lipid signaling disruption by natural androgen, providing hints about a novel class of therapeutic involvement of androgens.
Collapse
Affiliation(s)
- Marilena Kampa
- Department of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece.
| | - George Notas
- Department of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | - Elias Castanas
- Department of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| |
Collapse
|
40
|
A standardized herbal extract mitigates tumor inflammation and augments chemotherapy effect of docetaxel in prostate cancer. Sci Rep 2017; 7:15624. [PMID: 29142311 PMCID: PMC5688072 DOI: 10.1038/s41598-017-15934-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/03/2017] [Indexed: 01/28/2023] Open
Abstract
Activation of the NFκB pathway is often associated with advanced cancer and has thus been regarded as a rational therapeutic target. Wedelia chinensis is rich in luteolin, apigenin, and wedelolactone that act synergistically to suppress androgen receptor activity in prostate cancer. Interestingly, our evaluation of a standardized Wedelia chinensis herbal extract (WCE) concluded its efficacy on hormone-refractory prostate cancer through systemic mechanisms. Oral administration of WCE significantly attenuated tumor growth and metastasis in orthotopic PC-3 and DU145 xenografts. Genome-wide transcriptome analysis of these tumors revealed that WCE suppressed the expression of IKKα/β phosphorylation and downstream cytokines/chemokines, e.g., IL6, CXCL1, and CXCL8. Through restraining the cytokines expression, WCE reduced tumor-elicited infiltration of myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs) and endothelial cells into the tumors, therefore inhibiting angiogenesis, tumor growth, and metastasis. In MDSCs, WCE also reduced STAT3 activation, downregulated S100A8 expression and prevented their expansion. Use of WCE in combination with docetaxel significantly suppressed docetaxel-induced NFκB activation, boosted the therapeutic effect and reduced the systemic toxicity caused by docetaxel monotherapy. These data suggest that a standardized preparation of Wedelia chinensis extract improved prostate cancer therapy through immunomodulation and has potential application as an adjuvant agent for castration-resistant prostate cancer.
Collapse
|
41
|
Tsai CH, Tzeng SF, Hsieh SC, Tsai CJ, Yang YC, Tsai MH, Hsiao PW. A Standardized Wedelia chinensis Extract Overcomes the Feedback Activation of HER2/3 Signaling upon Androgen-Ablation in Prostate Cancer. Front Pharmacol 2017; 8:721. [PMID: 29066975 PMCID: PMC5641394 DOI: 10.3389/fphar.2017.00721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/25/2017] [Indexed: 11/13/2022] Open
Abstract
Crosstalk between the androgen receptor (AR) and other signaling pathways in prostate cancer (PCa) severely affects the therapeutic outcome of hormonal therapy. Although anti-androgen therapy prolongs overall survival in PCa patients, resistance rapidly develops and is often associated with increased AR expression and upregulation of the HER2/3-AKT signaling pathway. However, single agent therapy targeting AR, HER2/3 or AKT usually fails due to the reciprocal feedback loop. Previously, we reported that wedelolactone, apigenin, and luteolin are the active compounds in Wedelia chinensis herbal extract, and act synergistically to inhibit the AR activity in PCa. Here, we further demonstrated that an herbal extract of W. chinensis (WCE) effectively disrupted the AR, HER2/3, and AKT signaling networks and therefore enhanced the therapeutic efficacy of androgen ablation in PCa. Furthermore, WCE remained effective in suppressing AR and HER2/3 signaling in an in vivo adapted castration-resistant PCa (CRPC) LNCaP cell model that was insensitive to androgen withdrawal and second-line antiandrogen, enzalutamide. This study provides preclinical evidence that the use of a defined, single plant-derived extract can augment the therapeutic efficacy of castration with significantly prolonged progression-free survival. These data also establish a solid basis for using WCE as a candidate agent in clinical studies.
Collapse
Affiliation(s)
- Chin-Hsien Tsai
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Sheue-Fen Tzeng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Chuan Hsieh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Jui Tsai
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Chih Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Mong-Hsun Tsai
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.,Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Pei-Wen Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
42
|
Wedelolactone Acts as Proteasome Inhibitor in Breast Cancer Cells. Int J Mol Sci 2017; 18:ijms18040729. [PMID: 28353647 PMCID: PMC5412315 DOI: 10.3390/ijms18040729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/20/2017] [Accepted: 03/25/2017] [Indexed: 11/17/2022] Open
Abstract
Wedelolactone is a multi-target natural plant coumestan exhibiting cytotoxicity towards cancer cells. Although several molecular targets of wedelolactone have been recognized, the molecular mechanism of its cytotoxicity has not yet been elucidated. In this study, we show that wedelolactone acts as an inhibitor of chymotrypsin-like, trypsin-like, and caspase-like activities of proteasome in breast cancer cells. The proteasome inhibitory effect of wedelolactone was documented by (i) reduced cleavage of fluorogenic proteasome substrates; (ii) accumulation of polyubiquitinated proteins and proteins with rapid turnover in tumor cells; and (iii) molecular docking of wedelolactone into the active sites of proteasome catalytic subunits. Inhibition of proteasome by wedelolactone was independent on its ability to induce reactive oxygen species production by redox cycling with copper ions, suggesting that wedelolactone acts as copper-independent proteasome inhibitor. We conclude that the cytotoxicity of wedelolactone to breast cancer cells is partially mediated by targeting proteasomal protein degradation pathway. Understanding the structural basis for inhibitory mode of wedelolactone might help to open up new avenues for design of novel compounds efficiently inhibiting cancer cells.
Collapse
|
43
|
Jain CK, Majumder HK, Roychoudhury S. Natural Compounds as Anticancer Agents Targeting DNA Topoisomerases. Curr Genomics 2017; 18:75-92. [PMID: 28503091 PMCID: PMC5321768 DOI: 10.2174/1389202917666160808125213] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 12/14/2022] Open
Abstract
DNA topoisomerases are important cellular enzymes found in almost all types of living cells (eukaryotic and prokaryotic). These enzymes are essential for various DNA metabolic processes e.g. replication, transcription, recombination, chromosomal decatenation etc. These enzymes are important molecular drug targets and inhibitors of these enzymes are widely used as effective anticancer and antibacterial drugs. However, topoisomerase inhibitors have some therapeutic limitations and they exert serious side effects during cancer chemotherapy. Thus, development of novel anticancer topoisomerase inhibitors is necessary for improving cancer chemotherapy. Nature serves as a repertoire of structurally and chemically diverse molecules and in the recent years many DNA topoisomerase inhibitors have been identified from natural sources. The present review discusses anticancer properties and therapeutic importance of eighteen recently identified natural topoisomerase inhibitors (from the year 2009 to 2015). Structural characteristics of these novel inhibitors provide backbones for designing and developing new anticancer drugs.
Collapse
Affiliation(s)
- Chetan Kumar Jain
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Hemanta Kumar Majumder
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Susanta Roychoudhury
- Division of Research, Saroj Gupta Cancer Centre & Research Institute, M G Road, Thakurpukur, Kolkata-700 063, India
| |
Collapse
|
44
|
Qwebani-Ogunleye T, Kolesnikova NI, Steenkamp P, de Koning CB, Brady D, Wellington KW. A one-pot laccase-catalysed synthesis of coumestan derivatives and their anticancer activity. Bioorg Med Chem 2016; 25:1172-1182. [PMID: 28041801 DOI: 10.1016/j.bmc.2016.12.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 11/25/2022]
Abstract
Suberase®, a commercial laccase from Novozymes, was used to catalyse the synthesis of coumestans. The yields, in some cases, were similar to or better than that obtained by other enzymatic, chemical or electrochemical syntheses. The compounds were screened against renal TK10, melanoma UACC62 and breast MCF7 cancer cell-lines and the GI50, TGI and LC50 values determined. Anticancer screening showed that the cytostatic effects of the coumestans were most effective against the melanoma UACC62 and breast MCF7 cancer cell-lines exhibiting potent activities, GI50=5.35 and 7.96μM respectively. Moderate activity was obtained against the renal TK10 cancer cell-line. The total growth inhibition, based on the TGI values, of several of the compounds was better than that of etoposide against the melanoma UACC62 and the breast MCF7 cancer cell lines. Several compounds, based on the LC50 values, were also more lethal than etoposide against the same cancer cell lines. The SAR for the coumestans is similar against the melanoma UACC62 and breast MCF7 cell lines. The compound having potent activity against both breast MCF7 and melanoma UACC62 cell lines has a methyl group on the benzene ring (ring A) as well as on the catechol ring (ring B). Anticancer activity decreases when methoxy and halogen substituents are inserted on rings A and B.
Collapse
Affiliation(s)
| | | | - Paul Steenkamp
- CSIR Biosciences, PO Box 395, Pretoria, South Africa; Department of Biochemistry, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
| | - Charles B de Koning
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Box, Wits 2050, South Africa
| | - Dean Brady
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Box, Wits 2050, South Africa
| | | |
Collapse
|
45
|
Yang JL, Lien JC, Chen YY, Hsu SC, Chang SJ, Huang AC, Amagaya S, Funayana S, Wood WG, Kuo CL, Chung JG. Crude extract of Euphorbia formosana induces apoptosis of DU145 human prostate cancer cells acts through the caspase-dependent and independent signaling pathway. ENVIRONMENTAL TOXICOLOGY 2016; 31:1600-1611. [PMID: 26122529 DOI: 10.1002/tox.22164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/07/2015] [Indexed: 06/04/2023]
Abstract
Prostate cancer is the most frequently diagnosed malignancy in men and the second highest contributor of male cancer mortality. The crude extract of Euphorbia formosana (CEEF) has been used for treatment of different diseases but the cytotoxic effects of CEEF on human cancer cells have not been reported. The purpose of the present experiments was to determine effects of CEEF on cell cycle distribution and induction of apoptosis in DU145 human prostate cancer cells in vitro. Contrast-phase microscope was used for examining cell morphological changes. Flow cytometric assays were used for cell viability, cell cycle, apoptosis, reactive oxygen species, and Ca2+ production and mitochondria membrane potential (ΔΨm ). Western blotting was used for examining protein expression of cell cycle and apoptosis associated proteins. Real-time PCR was used for examining mRNA levels of caspase-3, -8, and -9, AIF, and Endo G. Confocal laser microscope was used to examine the translocation of AIF, Endo G, and cytochrome in DU145 cells after CEEF exposure. CEEF-induced cell morphological changes, decreased the percentage of viable cells, and induced S phase arrest and apoptosis in DU145 cells. Furthermore, CEEF promoted RAS and Ca2+ production and reduced ΔΨm levels. Real-time QPCR confirmed that CEEF promoted the mRNA expression of caspase-3 and -9, AIF and Endo G and we found that AIF and Endo G and cytochrome c were released from mitochondria. Taken together, CEEF-induced cytotoxic effects via ROS production, induced S phase arrest and induction of apoptosis through caspase-dependent and independent and mitochondria-dependent pathways in DU245 cancer cells. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1600-1611, 2016.
Collapse
Affiliation(s)
- Jiun-Long Yang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, 404, Taiwan
| | - Jin-Cherng Lien
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, 404, Taiwan
| | - Ya-Yin Chen
- Department of Chinese-Western Medicine Integration, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Shu-Chun Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shu-Jen Chang
- School of Pharmacy, China Medical University, Taichung, 404, Taiwan
| | - An-Cheng Huang
- Department of Nursing, St. Mary's Medicine Nursing and Management College, Yilan, 266, Taiwan
| | - Sakae Amagaya
- Department of Kampo Pharmaceutical Sciences, Nihon Pharmaceutical University, Saitama, Japan
| | - Shinji Funayana
- Department of Medicinal Chemistry, Nihon Pharmaceutical University, Saitama, Japan
| | - W Gibson Wood
- Department of Pharmacology, University of Minnesota, School of Medicine, Geriatric Research, Education and Clinical Center, VA Medical Center, Minneapolis, Minnesota, 55455, USA
| | - Chao-Lin Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, 404, Taiwan.
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
46
|
Liu YQ, Han XF, Bo JX, Ma HP. Wedelolactone Enhances Osteoblastogenesis but Inhibits Osteoclastogenesis through Sema3A/NRP1/PlexinA1 Pathway. Front Pharmacol 2016; 7:375. [PMID: 27803667 PMCID: PMC5067540 DOI: 10.3389/fphar.2016.00375] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/27/2016] [Indexed: 02/02/2023] Open
Abstract
Bone remodeling balance is maintained by tight coupling of osteoblast-mediated bone formation and osteoclast-mediated bone resorption. Thus, agents with the capacity to regulate osteoblastogenesis and osteoclastogenesis have been investigated for therapy of bone-related diseases such as osteoporosis. In this study, we found that wedelolactone, a compound isolated from Ecliptae herba, and a 9-day incubation fraction of conditioned media obtained from wedelolactone-treated bone marrow mesenchymal stem cell (BMSC) significantly inhibited tartrate-resistant acid phosphatase (TRAP) activity in RANKL-stimulated osteoclastic RAW264.7 cells. Addition of the semaphorin 3A (Sema3A) antibody to the conditioned media partially blocked the medium’s inhibitory effects on the RAW264.7 cells. In BMSC, mRNA expression of Sema3A increased in the presence of different wedelolactone concentrations. Blocking Sema3A activity with its antibody reversed wedelolactone-induced alkaline phosphatase activity in BMSC and concurrently enhanced wedelolactone-reduced TRAP activity in osteoclastic RAW264.7 cells. Moreover, in BMSC, wedelolactone enhanced binding of Sema3A with cell-surface receptors, including neuropilin (NRP)1 and plexinA1. Furthermore, nuclear accumulation of β-catenin, a transcription factor acting downstream of wedelolactone-induced Sema3A signaling, was blocked by the Sema3A antibody. In osteoclastic RAW264.7 cells, conditioned media and wedelolactone promoted the formation of plexin A1-NRP1, but conditioned media also caused the sequestration of the plexin A1-DNAX-activating protein 12 (DAP12) complex and suppressed the phosphorylation of phospholipase C (PLC)γ2. These data suggest that wedelolactone promoted osteoblastogenesis through production of Sema3A, thus inducing the formation of a Sema3A-plexinA1-Nrp1 complex and β-catenin activation. In osteoclastic RAW264.7 cells, wedelolactone inhibited osteoclastogenesis through sequestration of the plexinA1-DAP12 complex, induced the formation of plexinA1-Nrp1 complex, and suppressed PLCγ2 activation.
Collapse
Affiliation(s)
- Yan-Qiu Liu
- Institute (College) of Integrative Medicine, Dalian Medical University Dalian, China
| | - Xiao-Fei Han
- Glucose and Lipid Metabolism Laboratory of Liaoning Province, College of Life Science and Technology, Dalian University Dalian, China
| | - Jun-Xia Bo
- Glucose and Lipid Metabolism Laboratory of Liaoning Province, College of Life Science and Technology, Dalian University Dalian, China
| | - Hui-Peng Ma
- College of Medical Laboratory, Dalian Medical University Dalian, China
| |
Collapse
|
47
|
Zhang X, Li N, Liu Y, Ji B, Wang Q, Wang M, Dai K, Gao D. On-demand drug release of ICG-liposomal wedelolactone combined photothermal therapy for tumor. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2019-2029. [DOI: 10.1016/j.nano.2016.05.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 04/06/2016] [Accepted: 05/18/2016] [Indexed: 01/16/2023]
|
48
|
Wedelolactone enhances osteoblastogenesis by regulating Wnt/β-catenin signaling pathway but suppresses osteoclastogenesis by NF-κB/c-fos/NFATc1 pathway. Sci Rep 2016; 6:32260. [PMID: 27558652 PMCID: PMC4997609 DOI: 10.1038/srep32260] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/04/2016] [Indexed: 11/08/2022] Open
Abstract
Bone homeostasis is maintained by formation and destruction of bone, which are two processes tightly coupled and controlled. Targeting both stimulation on bone formation and suppression on bone resorption becomes a promising strategy for treating osteoporosis. In this study, we examined the effect of wedelolactone, a natural product from Ecliptae herba, on osteoblastogenesis as well as osteoclastogenesis. In mouse bone marrow mesenchymal stem cells (BMSC), wedelolactone stimulated osteoblast differentiation and bone mineralization. At the molecular level, wedelolactone directly inhibited GSK3β activity and enhanced the phosphorylation of GSK3β, thereafter stimulated the nuclear translocation of β-catenin and runx2. The expression of osteoblastogenesis-related marker gene including osteorix, osteocalcin and runx2 increased. At the same concentration range, wedelolactone inhibited RANKL-induced preosteoclastic RAW264.7 actin-ring formation and bone resorption pits. Further, wedelolactone blocked NF-kB/p65 phosphorylation and abrogated the NFATc1 nuclear translocation. As a result, osteoclastogenesis-related marker gene expression decreased, including c-src, c-fos, and cathepsin K. In ovariectomized mice, administration of wedelolactone prevented ovariectomy-induced bone loss by enhancing osteoblast activity and inhibiting osteoclast activity. Together, these data demonstrated that wedelolactone facilitated osteoblastogenesis through Wnt/GSK3β/β-catenin signaling pathway and suppressed RANKL-induced osteoclastogenesis through NF-κB/c-fos/NFATc1 pathway. These results suggested that wedelolacone could be a novel dual functional therapeutic agent for osteoporosis.
Collapse
|
49
|
Sarveswaran S, Ghosh R, Parikh R, Ghosh J. Wedelolactone, an Anti-inflammatory Botanical, Interrupts c-Myc Oncogenic Signaling and Synergizes with Enzalutamide to Induce Apoptosis in Prostate Cancer Cells. Mol Cancer Ther 2016; 15:2791-2801. [PMID: 27474149 DOI: 10.1158/1535-7163.mct-15-0861] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 07/19/2016] [Indexed: 11/16/2022]
Abstract
The c-Myc gene encodes an oncoprotein transcription factor that is frequently upregulated in almost all cancer types and is the subject of intense investigation for management of cancer because of its pleiotropic effects controlling a spectrum of cellular functions. However, due of its nonenzymatic nature, development of suitable strategies to block its protein-protein or protein-DNA interaction is challenging. Thus, c-Myc has been recognized as an elusive molecular target for cancer control, and various approaches are in development to inhibit c-Myc transcriptional activity. We observed that wedelolactone (WDL), an anti-inflammatory botanical compound, severely downregulates the expression of c-Myc mRNA in prostate cancer cells. Moreover, WDL dramatically decreases the protein level, nuclear accumulation, DNA-binding, and transcriptional activities of c-Myc. c-Myc is a transforming oncogene widely expressed in prostate cancer cells and is critical for maintaining their transformed phenotype. Interestingly, WDL was found to strongly affect the viability of Myc-activated prostate cancer cells and completely block their invasion as well as soft agar colony formation in vitro WDL was also found to downregulate c-Myc in vivo in nude mice xenografts. Moreover, WDL synergizes with enzalutamide to decrease the viability of androgen-sensitive prostate cancer cells via induction of apoptosis. These findings reveal a novel anticancer mechanism of the natural compound WDL, and suggest that the oncogenic function of c-Myc in prostate cancer cells can be effectively downregulated by WDL for the development of a new therapeutic strategy against Myc-driven prostate cancer. Mol Cancer Ther; 15(11); 2791-801. ©2016 AACR.
Collapse
Affiliation(s)
| | - Ritisha Ghosh
- Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan
| | - Rujul Parikh
- Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan
| | - Jagadananda Ghosh
- Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan. .,Josephine Ford Cancer Center, Henry Ford Health System, Detroit, Michigan
| |
Collapse
|
50
|
Rahman HP, Hofland J, Foster PA. In touch with your feminine side: how oestrogen metabolism impacts prostate cancer. Endocr Relat Cancer 2016; 23:R249-66. [PMID: 27194038 DOI: 10.1530/erc-16-0118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 05/18/2016] [Indexed: 12/18/2022]
Abstract
Prostate cancer is the primary cancer in males, with increasing global incidence rates making this malignancy a significant healthcare burden. Androgens not only promote normal prostate maturity but also influence the development and progression of prostate cancer. Intriguingly, evidence now suggests endogenous and exogenous oestrogens, in the form of phytoestrogens, may be equally as relevant as androgens in prostate cancer growth. The prostate gland has the molecular mechanisms, catalysed by steroid sulphatase (STS), to unconjugate and utilise circulating oestrogens. Furthermore, prostate tissue also expresses enzymes essential for local oestrogen metabolism, including aromatase (CYP19A1) and 3β- and 17β-hydroxysteroid dehydrogenases. Increased expression of these enzymes in malignant prostate tissue compared with normal prostate indicates that oestrogen synthesis is favoured in malignancy and thus may influence tumour progression. In contrast to previous reviews, here we comprehensively explore the epidemiological and scientific evidence on how oestrogens impact prostate cancer, particularly focusing on pre-receptor oestrogen metabolism and subsequent molecular action. We analyse how molecular mechanisms and metabolic pathways involved in androgen and oestrogen synthesis intertwine to alter prostate tissue. Furthermore, we speculate on whether oestrogen receptor status in the prostate affects progression of this malignancy.
Collapse
Affiliation(s)
- Habibur P Rahman
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK
| | - Johannes Hofland
- Department of Internal MedicineErasmus Medical Center, Rotterdam, The Netherlands
| | - Paul A Foster
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK Centre for EndocrinologyDiabetes and Metabolism, Birmingham Healthcare Partners, Birmingham, UK
| |
Collapse
|