1
|
Beetler DJ, Giresi P, Di Florio DN, Fliess JJ, McCabe EJ, Watkins MM, Xu V, Auda ME, Bruno KA, Whelan ER, Kocsis SPC, Edenfield BH, Walker S, Macomb LP, Keegan KC, Jain A, Morales-Lara AC, Chekuri I, Hill AR, Farres H, Wolfram J, Behfar A, Stalboerger PG, Terzic A, Cooper L, Fairweather D. Therapeutic effects of platelet-derived extracellular vesicles on viral myocarditis correlate with biomolecular content. Front Immunol 2025; 15:1468969. [PMID: 39835120 PMCID: PMC11743460 DOI: 10.3389/fimmu.2024.1468969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/18/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Extracellular vesicles (EVs) can potently inhibit inflammation yet there is a lack of understanding about the impact of donor characteristics on the efficacy of EVs. The goal of this study was to determine whether the sex and age of donor platelet-derived EVs (PEV) affected their ability to inhibit viral myocarditis. Methods PEV, isolated from men and women of all ages, was compared to PEV obtained from women under 50 years of age, which we termed premenopausal PEV (pmPEV). Because of the protective effect of estrogen against myocardial inflammation, we hypothesized that pmPEV would be more effective than PEV at inhibiting myocarditis. We injected PEV, pmPEV, or vehicle control in a mouse model of viral myocarditis and examined histology, gene expression, protein profiles, and performed proteome and microRNA (miR) sequencing of EVs. Results We found that both PEV and pmPEV significantly inhibited myocarditis; however, PEV was more effective, which was confirmed by a greater reduction of inflammatory cells and proinflammatory and profibrotic markers determined using gene expression and immunohistochemistry. Proteome and miR sequencing of EVs revealed that PEV miRs specifically targeted antiviral, Toll-like receptor (TLR)4, and inflammasome pathways known to contribute to myocarditis while pmPEV contained general immunoregulatory miRs. Discussion These differences in EV content corresponded to the differing anti-inflammatory effects of the two types of EVs on viral myocarditis.
Collapse
Affiliation(s)
- Danielle J. Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Presley Giresi
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Damian N. Di Florio
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Jessica J. Fliess
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Elizabeth J. McCabe
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Molly M. Watkins
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Vivian Xu
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Matthew E. Auda
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Katelyn A. Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Division of Cardiovascular Medicine, University of Florida, Gainesville, FL, United States
| | - Emily R. Whelan
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Stephen P. C. Kocsis
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | | | - Sierra A. Walker
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, United States
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Logan P. Macomb
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Kevin C. Keegan
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Angita Jain
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | | | - Isha Chekuri
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Anneliese R. Hill
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Houssam Farres
- Department of Vascular Surgery, Mayo Clinic, Jacksonville, FL, United States
| | - Joy Wolfram
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Atta Behfar
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic Center for Regenerative Medicine, Rochester, MN, United States
| | - Paul G. Stalboerger
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic Center for Regenerative Medicine, Rochester, MN, United States
| | - Andre Terzic
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic Center for Regenerative Medicine, Rochester, MN, United States
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States
| | - Leslie T. Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
2
|
Báez BB, Bacaglio CR, Prendergast JM, Rozés-Salvador V, Sheikh KA, Bianchet M, Farah MH, Schnaar RL, Bisbal M, Lopez PHH. Tumor necrosis factor α receptor 1A transduces the inhibitory effect on axon regeneration triggered by IgG anti-ganglioside GD1a antibodies. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167315. [PMID: 38897255 DOI: 10.1016/j.bbadis.2024.167315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Anti-ganglioside antibodies (anti-Gg Abs) have been linked to delayed/poor clinical recovery in both axonal and demyelinating forms of Guillain-Barrè Syndrome (GBS). In many instances, the incomplete recovery is attributed to the peripheral nervous system's failure to regenerate. The cross-linking of cell surface gangliosides by anti-Gg Abs triggers inhibition of nerve repair in both in vitro and in vivo axon regeneration paradigms. This mechanism involves the activation of the small GTPase RhoA, which negatively modulates the growth cone cytoskeleton. At present, the identity/es of the receptor/s responsible for transducing the signal that ultimately leads to RhoA activation remains poorly understood. The aim of this work was to identify the transducer molecule responsible for the inhibitory effect of anti-Gg Abs on nerve repair. Putative candidate molecules were identified through proteomic mass spectrometry of ganglioside affinity-captured proteins from rat cerebellar granule neurons (Prendergast et al., 2014). These candidates were evaluated using an in vitro model of neurite outgrowth with primary cultured dorsal root ganglion neurons (DRGn) and an in vivo model of axon regeneration. Using an shRNA-strategy to silence putative candidates on DRGn, we identified tumor necrosis factor receptor 1A protein (TNFR1A) as a transducer molecule for the inhibitory effect on neurite outgrowth from rat/mouse DRGn cultures of a well characterized mAb targeting the related gangliosides GD1a and GT1b. Interestingly, lack of TNFr1A expression on DRGn abolished the inhibitory effect on neurite outgrowth caused by anti-GD1a but not anti-GT1b specific mAbs, suggesting specificity of GD1a/transducer signaling. Similar results were obtained using primary DRGn cultures from TNFR1a-null mice, which did not activate RhoA after exposure to anti-GD1a mAbs. Generation of single point mutants at the stalk region of TNFR1A identified a critical amino acid for transducing GD1a signaling, suggesting a direct interaction. Finally, passive immunization with an anti-GD1a/GT1b mAb in an in vivo model of axon regeneration exhibited reduced inhibitory activity in TNFR1a-null mice compared to wild type mice. In conclusion, these findings identify TNFR1A as a novel transducer receptor for the inhibitory effect exerted by anti-GD1a Abs on nerve repair, representing a significant step forward toward understanding the factors contributing to poor clinical recovery in GBS associated with anti-Gg Abs.
Collapse
Affiliation(s)
- Bárbara B Báez
- Departamento de Química Biológica "Dr Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba-CIQUIBIC-CONICET-UNC, Argentina; Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martin Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Argentina
| | - Cristian R Bacaglio
- Departamento de Química Biológica "Dr Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba-CIQUIBIC-CONICET-UNC, Argentina; Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martin Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Argentina
| | - Jillian M Prendergast
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins Medicine, Baltimore, United States
| | - Victoria Rozés-Salvador
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martin Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Argentina
| | - Kazim A Sheikh
- Department of Neurology, University of Texas Medical School at Houston, Houston, United States
| | - Mario Bianchet
- Department of Biophysics & Biophysical Chemistry, School of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Mohamed H Farah
- Department of Neurology and Neuroscience, School of Medicine, Johns Hopkins Medicine, Baltimore, United States
| | - Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins Medicine, Baltimore, United States
| | - Mariano Bisbal
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martin Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Argentina
| | - Pablo H H Lopez
- Departamento de Química Biológica "Dr Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba-CIQUIBIC-CONICET-UNC, Argentina; Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martin Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Argentina.
| |
Collapse
|
3
|
Min L, Li X, Liang L, Ruan Z, Yu S. Targeting HSP90 in Gynecologic Cancer: Molecular Mechanisms and Therapeutic Approaches. Cell Biochem Biophys 2024:10.1007/s12013-024-01502-7. [PMID: 39249180 DOI: 10.1007/s12013-024-01502-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2024] [Indexed: 09/10/2024]
Abstract
One of the leading causes of mortality for women is gynecologic cancer (GC). Numerous molecules (tumor suppressor genes or oncogenes) are involved in this form of cancer's invasion, metastasis, tumorigenic process, and therapy resistance. Currently, there is a shortage of efficient methods to eliminate these diseases, hence it is crucial to carry out more extensive studies on GCs. Novel pharmaceuticals are required to surmount this predicament. Highly conserved molecular chaperon, heat shock protein (HSP) 90, is essential for the maturation of recently produced polypeptides and offers a refuge for misfolding or denatured proteins to be turned around. In cancer, the client proteins of HSP90 play a role in the entire process of oncogenesis, which is linked to all the characteristic features of cancer. In this study, we explore the various functions of HSPs in GC progression. We also discuss their potential as promising targets for pharmacological therapy.
Collapse
Affiliation(s)
- Lu Min
- Changchun University of Chinese Medicine Hospital, Changchun, 130000, China
| | - Xuewei Li
- Changchun University of Chinese Medicine Hospital, Changchun, 130000, China
| | - Lily Liang
- Changchun University of Chinese Medicine Hospital, Changchun, 130000, China
| | - Zheng Ruan
- Department of Traditional Chinese Medicine, 964th Hospital, Changchun, 130000, China
| | - Shaohui Yu
- Changchun University of Chinese Medicine Hospital, Changchun, 130000, China.
| |
Collapse
|
4
|
Zuo WF, Pang Q, Zhu X, Yang QQ, Zhao Q, He G, Han B, Huang W. Heat shock proteins as hallmarks of cancer: insights from molecular mechanisms to therapeutic strategies. J Hematol Oncol 2024; 17:81. [PMID: 39232809 PMCID: PMC11375894 DOI: 10.1186/s13045-024-01601-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
Heat shock proteins are essential molecular chaperones that play crucial roles in stabilizing protein structures, facilitating the repair or degradation of damaged proteins, and maintaining proteostasis and cellular functions. Extensive research has demonstrated that heat shock proteins are highly expressed in cancers and closely associated with tumorigenesis and progression. The "Hallmarks of Cancer" are the core features of cancer biology that collectively define a series of functional characteristics acquired by cells as they transition from a normal state to a state of tumor growth, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, enabled replicative immortality, the induction of angiogenesis, and the activation of invasion and metastasis. The pivotal roles of heat shock proteins in modulating the hallmarks of cancer through the activation or inhibition of various signaling pathways has been well documented. Therefore, this review provides an overview of the roles of heat shock proteins in vital biological processes from the perspective of the hallmarks of cancer and summarizes the small-molecule inhibitors that target heat shock proteins to regulate various cancer hallmarks. Moreover, we further discuss combination therapy strategies involving heat shock proteins and promising dual-target inhibitors to highlight the potential of targeting heat shock proteins for cancer treatment. In summary, this review highlights how targeting heat shock proteins could regulate the hallmarks of cancer, which will provide valuable information to better elucidate and understand the roles of heat shock proteins in oncology and the mechanisms of cancer occurrence and development and aid in the development of more efficacious and less toxic novel anticancer agents.
Collapse
Affiliation(s)
- Wei-Fang Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xinyu Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian-Qian Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian Zhao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gu He
- Department of Dermatology and Venereology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
5
|
Jiang YJ, Guo NT, Xia XP, Ji Y, Huo JG. Immunotherapy strategies and traditional Chinese medicine treatment for microsatellite stable metastatic colorectal cancer. Shijie Huaren Xiaohua Zazhi 2023; 31:1007-1013. [DOI: 10.11569/wcjd.v31.i24.1007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/24/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023] Open
Abstract
The incidence and mortality of colorectal cancer (CRC) have increased year by year. In addition to traditional radiotherapy, chemotherapy, and targeted therapy, immunotherapy also brings hope to more patients with metastatic colorectal cancer (mCRC). However, these treatments are limited to patients with high microsatellite instability, and about 95% of mCRC patients with microsatellite stability (MSS) can not benefit from them. How to enhance the response of MSS mCRC patients to immunotherapy is the focus of current research. In recent years, it has been found that immunotherapy strategies are expected to improve the clinical efficacy for such patients, and the research reports of TCM combined with immunotherapy are increasing day by day. Therefore, this article aims to review the immunotherapy and traditional Chinese medicine treatment for MSS colorectal cancer.
Collapse
Affiliation(s)
- Yu-Jing Jiang
- The Third Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China
| | - Nai-Ting Guo
- The Third Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China
| | - Xue-Ping Xia
- The Third Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China
| | - Yi Ji
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China
| | - Jie-Ge Huo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China
| |
Collapse
|
6
|
Chiosis G, Digwal CS, Trepel JB, Neckers L. Structural and functional complexity of HSP90 in cellular homeostasis and disease. Nat Rev Mol Cell Biol 2023; 24:797-815. [PMID: 37524848 PMCID: PMC10592246 DOI: 10.1038/s41580-023-00640-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 08/02/2023]
Abstract
Heat shock protein 90 (HSP90) is a chaperone with vital roles in regulating proteostasis, long recognized for its function in protein folding and maturation. A view is emerging that identifies HSP90 not as one protein that is structurally and functionally homogeneous but, rather, as a protein that is shaped by its environment. In this Review, we discuss evidence of multiple structural forms of HSP90 in health and disease, including homo-oligomers and hetero-oligomers, also termed epichaperomes, and examine the impact of stress, post-translational modifications and co-chaperones on their formation. We describe how these variations influence context-dependent functions of HSP90 as well as its interaction with other chaperones, co-chaperones and proteins, and how this structural complexity of HSP90 impacts and is impacted by its interaction with small molecule modulators. We close by discussing recent developments regarding the use of HSP90 inhibitors in cancer and how our new appreciation of the structural and functional heterogeneity of HSP90 invites a re-evaluation of how we discover and implement HSP90 therapeutics for disease treatment.
Collapse
Affiliation(s)
- Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Institute, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Institute, New York, NY, USA.
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Institute, New York, NY, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
7
|
Avolio R, Agliarulo I, Criscuolo D, Sarnataro D, Auriemma M, De Lella S, Pennacchio S, Calice G, Ng MY, Giorgi C, Pinton P, Cooperman BS, Landriscina M, Esposito F, Matassa DS. Cytosolic and mitochondrial translation elongation are coordinated through the molecular chaperone TRAP1 for the synthesis and import of mitochondrial proteins. Genome Res 2023; 33:1242-1257. [PMID: 37487647 PMCID: PMC10547376 DOI: 10.1101/gr.277755.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
A complex interplay between mRNA translation and cellular respiration has been recently unveiled, but its regulation in humans is poorly characterized in either health or disease. Cancer cells radically reshape both biosynthetic and bioenergetic pathways to sustain their aberrant growth rates. In this regard, we have shown that the molecular chaperone TRAP1 not only regulates the activity of respiratory complexes, behaving alternatively as an oncogene or a tumor suppressor, but also plays a concomitant moonlighting function in mRNA translation regulation. Herein, we identify the molecular mechanisms involved, showing that TRAP1 (1) binds both mitochondrial and cytosolic ribosomes, as well as translation elongation factors; (2) slows down translation elongation rate; and (3) favors localized translation in the proximity of mitochondria. We also provide evidence that TRAP1 is coexpressed in human tissues with the mitochondrial translational machinery, which is responsible for the synthesis of respiratory complex proteins. Altogether, our results show an unprecedented level of complexity in the regulation of cancer cell metabolism, strongly suggesting the existence of a tight feedback loop between protein synthesis and energy metabolism, based on the demonstration that a single molecular chaperone plays a role in both mitochondrial and cytosolic translation, as well as in mitochondrial respiration.
Collapse
Affiliation(s)
- Rosario Avolio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Ilenia Agliarulo
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"-IEOS, National Research Council of Italy (CNR), Naples 80131, Italy
| | - Daniela Criscuolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Margherita Auriemma
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Sabrina De Lella
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Sara Pennacchio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Giovanni Calice
- Laboratory of Preclinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture 85028, Italy
| | - Martin Y Ng
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Carlotta Giorgi
- Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Matteo Landriscina
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"-IEOS, National Research Council of Italy (CNR), Naples 80131, Italy
- Department Medical and Surgical Science, University of Foggia, Foggia 71122, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy;
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy;
| |
Collapse
|
8
|
Dernovšek J, Tomašič T. Following the design path of isoform-selective Hsp90 inhibitors: Small differences, great opportunities. Pharmacol Ther 2023; 245:108396. [PMID: 37001734 DOI: 10.1016/j.pharmthera.2023.108396] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/03/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
The heat shock protein 90 (Hsp90) family consists of four highly conserved isoforms: the mitochondrial TRAP-1, the endoplasmic reticulum-localised Grp94, and the cytoplasmic Hsp90α and Hsp90β. Since the late 1990s, this family has been extensively studied as a potential target for the treatment of cancer, neurological disorders, and infectious diseases. The initial approach was to develop non-selective, so-called pan-Hsp90 ATP-competitive inhibitors of the N-terminal domain. Many of these agents were tested in clinical trials, mainly for the treatment of cancer, but none of them succeeded in the clinic. This was mainly due to the lack of efficacy and various toxicities associated with the induction of heat shock response (HSR). This lack of success has prompted a turn to new approaches of Hsp90 inhibition. Thus, inhibitors selective for a particular isoform of Hsp90 have been developed. These isoform-selective inhibitors do not induce HSR and have a more targeted effect because not all client proteins are equally dependent on all four paralogues of Hsp90. However, it is extremely difficult to develop such selective compounds because the family is highly conserved. Hsp90α and Hsp90β have an amazing 95% identity of the N-terminal ATP binding site, differing only in two amino acid residues. Therefore, the focus of this review is to fully elucidate the key structural features of the selective inhibitor classes in terms of binding site dissimilarities. In addition to a methodological characterisation of the structure-activity relationships, the main advantages of selective inhibition of the TRAP-1, Grp94, Hsp90α and Hsp90β isoforms are discussed.
Collapse
Affiliation(s)
- Jaka Dernovšek
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
9
|
Avolio R, Agliarulo I, Criscuolo D, Sarnataro D, Auriemma M, Pennacchio S, Calice G, Ng MY, Giorgi C, Pinton P, Cooperman B, Landriscina M, Esposito F, Matassa DS. Cytosolic and mitochondrial translation elongation are coordinated through the molecular chaperone TRAP1 for the synthesis and import of mitochondrial proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524708. [PMID: 36712063 PMCID: PMC9882373 DOI: 10.1101/2023.01.19.524708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A complex interplay between mRNA translation and cellular respiration has been recently unveiled, but its regulation in humans is poorly characterized in either health or disease. Cancer cells radically reshape both biosynthetic and bioenergetic pathways to sustain their aberrant growth rates. In this regard, we have shown that the molecular chaperone TRAP1 not only regulates the activity of respiratory complexes, behaving alternatively as an oncogene or a tumor suppressor, but also plays a concomitant moonlighting function in mRNA translation regulation. Herein we identify the molecular mechanisms involved, demonstrating that TRAP1: i) binds both mitochondrial and cytosolic ribosomes as well as translation elongation factors, ii) slows down translation elongation rate, and iii) favors localized translation in the proximity of mitochondria. We also provide evidence that TRAP1 is coexpressed in human tissues with the mitochondrial translational machinery, which is responsible for the synthesis of respiratory complex proteins. Altogether, our results show an unprecedented level of complexity in the regulation of cancer cell metabolism, strongly suggesting the existence of a tight feedback loop between protein synthesis and energy metabolism, based on the demonstration that a single molecular chaperone plays a role in both mitochondrial and cytosolic translation, as well as in mitochondrial respiration.
Collapse
Affiliation(s)
- Rosario Avolio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
| | - Ilenia Agliarulo
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” - IEOS, National Research Council of Italy (CNR), Naples, 80131, Italy
| | - Daniela Criscuolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
| | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
| | - Margherita Auriemma
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
| | - Sara Pennacchio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
| | - Giovanni Calice
- Laboratory of Pre-clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, 85028, Italy
| | - Martin Y. Ng
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Carlotta Giorgi
- Dept. of Medical Sciences, University of Ferrara, Ferrara, 44121, Italy
| | - Paolo Pinton
- Dept. of Medical Sciences, University of Ferrara, Ferrara, 44121, Italy
| | - Barry Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Matteo Landriscina
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” - IEOS, National Research Council of Italy (CNR), Naples, 80131, Italy
- Department Medical and Surgical Science, University of Foggia, Foggia, 71122, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
| |
Collapse
|
10
|
Matassa DS, Criscuolo D, Avolio R, Agliarulo I, Sarnataro D, Pacelli C, Scrima R, Colamatteo A, Matarese G, Capitanio N, Landriscina M, Esposito F. Regulation of mitochondrial complex III activity and assembly by TRAP1 in cancer cells. Cancer Cell Int 2022; 22:402. [PMID: 36510251 PMCID: PMC9743594 DOI: 10.1186/s12935-022-02788-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Metabolic reprogramming is an important issue in tumor biology. A recently-identified actor in this regard is the molecular chaperone TRAP1, that is considered an oncogene in several cancers for its high expression but an oncosuppressor in others with predominant oxidative metabolism. TRAP1 is mainly localized in mitochondria, where it interacts with respiratory complexes, although alternative localizations have been described, particularly on the endoplasmic reticulum, where it interacts with the translational machinery with relevant roles in protein synthesis regulation. RESULTS Herein we show that, inside mitochondria, TRAP1 binds the complex III core component UQCRC2 and regulates complex III activity. This decreases respiration rate during basal conditions but allows sustained oxidative phosphorylation when glucose is limiting, a condition in which the direct TRAP1-UQCRC2 binding is disrupted, but not TRAP1-complex III binding. Interestingly, several complex III components and assembly factors show an inverse correlation with survival and response to platinum-based therapy in high grade serous ovarian cancers, where TRAP1 inversely correlates with stage and grade and directly correlates with survival. Accordingly, drug-resistant ovarian cancer cells show high levels of complex III components and high sensitivity to complex III inhibitory drug antimycin A. CONCLUSIONS These results shed new light on the molecular mechanisms involved in TRAP1-dependent regulation of cancer cell metabolism and point out a potential novel target for metabolic therapy in ovarian cancer.
Collapse
Affiliation(s)
- Danilo Swann Matassa
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Daniela Criscuolo
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Rosario Avolio
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Ilenia Agliarulo
- grid.5326.20000 0001 1940 4177Institute of Biochemistry and Cellular Biology, National Research Council of Italy (CNR), 80131 Naples, Italy
| | - Daniela Sarnataro
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Consiglia Pacelli
- grid.10796.390000000121049995Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Rosella Scrima
- grid.10796.390000000121049995Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Alessandra Colamatteo
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Giuseppe Matarese
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy ,grid.5326.20000 0001 1940 4177Institute Experimental Endocrinology and Oncology “Gaetano Salvatore”, National Research Council (IEOS-CNR), 80131 Naples, Italy
| | - Nazzareno Capitanio
- grid.10796.390000000121049995Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Matteo Landriscina
- grid.10796.390000000121049995Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy ,Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Franca Esposito
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
11
|
Bruno G, Bergolis VL, Piscazzi A, Crispo F, Condelli V, Zoppoli P, Maddalena F, Pietrafesa M, Giordano G, Matassa DS, Esposito F, Landriscina M. TRAP1 regulates the response of colorectal cancer cells to hypoxia and inhibits ribosome biogenesis under conditions of oxygen deprivation. Int J Oncol 2022; 60:79. [PMID: 35543151 PMCID: PMC9097768 DOI: 10.3892/ijo.2022.5369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
Metabolic rewiring fuels rapid cancer cell proliferation by promoting adjustments in energetic resources, and increasing glucose uptake and its conversion into lactate, even in the presence of oxygen. Furthermore, solid tumors often contain hypoxic areas and can rapidly adapt to low oxygen conditions by activating hypoxia inducible factor (HIF)‑1α and several downstream pathways, thus sustaining cell survival and metabolic reprogramming. Since TNF receptor‑associated protein 1 (TRAP1) is a HSP90 molecular chaperone upregulated in several human malignancies and is involved in cancer cell adaptation to unfavorable environments and metabolic reprogramming, in the present study, its role was investigated in the adaptive response to hypoxia in human colorectal cancer (CRC) cells and organoids. In the present study, glucose uptake, lactate production and the expression of key metabolic genes were evaluated in TRAP1‑silenced CRC cell models under conditions of hypoxia/normoxia. Whole genome gene expression profiling was performed in TRAP1‑silenced HCT116 cells exposed to hypoxia to establish the role of TRAP1 in adaptive responses to oxygen deprivation. The results revealed that TRAP1 was involved in regulating hypoxia‑induced HIF‑1α stabilization and glycolytic metabolism and that glucose transporter 1 expression, glucose uptake and lactate production were partially impaired in TRAP1‑silenced CRC cells under hypoxic conditions. At the transcriptional level, the gene expression reprogramming of cancer cells driven by HIF‑1α was partially inhibited in TRAP1‑silenced CRC cells and organoids exposed to hypoxia. Moreover, Gene Set Enrichment Analysis of TRAP1‑silenced HCT116 cells exposed to hypoxia demonstrated that TRAP1 was involved in the regulation of ribosome biogenesis and this occurred with the inhibition of the mTOR pathway. Therefore, as demonstrated herein, TRAP1 is a key factor in maintaining HIF‑1α‑induced genetic/metabolic program under hypoxic conditions and may represent a promising target for novel metabolic therapies.
Collapse
Affiliation(s)
- Giuseppina Bruno
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, I-71122 Foggia, Italy
| | - Valeria Li Bergolis
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, I-71122 Foggia, Italy
| | - Annamaria Piscazzi
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, I-71122 Foggia, Italy
| | - Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, I-85028 Rionero in Vulture, Potenza, Italy
| | - Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, I-85028 Rionero in Vulture, Potenza, Italy
| | - Pietro Zoppoli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, I-85028 Rionero in Vulture, Potenza, Italy
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, I-85028 Rionero in Vulture, Potenza, Italy
| | - Michele Pietrafesa
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, I-85028 Rionero in Vulture, Potenza, Italy
| | - Guido Giordano
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, I-71122 Foggia, Italy
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80131 Naples, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80131 Naples, Italy
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, I-71122 Foggia, Italy
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, I-85028 Rionero in Vulture, Potenza, Italy
| |
Collapse
|
12
|
Criscuolo D, Avolio R, Matassa DS, Esposito F. Targeting Mitochondrial Protein Expression as a Future Approach for Cancer Therapy. Front Oncol 2021; 11:797265. [PMID: 34888254 PMCID: PMC8650000 DOI: 10.3389/fonc.2021.797265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022] Open
Abstract
Extensive metabolic remodeling is a fundamental feature of cancer cells. Although early reports attributed such remodeling to a loss of mitochondrial functions, it is now clear that mitochondria play central roles in cancer development and progression, from energy production to synthesis of macromolecules, from redox modulation to regulation of cell death. Biosynthetic pathways are also heavily affected by the metabolic rewiring, with protein synthesis dysregulation at the hearth of cellular transformation. Accumulating evidence in multiple organisms shows that the metabolic functions of mitochondria are tightly connected to protein synthesis, being assembly and activity of respiratory complexes highly dependent on de novo synthesis of their components. In turn, protein synthesis within the organelle is tightly connected with the cytosolic process. This implies an entire network of interactions and fine-tuned regulations that build up a completely under-estimated level of complexity. We are now only preliminarily beginning to reconstitute such regulatory level in human cells, and to perceive its role in diseases. Indeed, disruption or alterations of these connections trigger conditions of proteotoxic and energetic stress that could be potentially exploited for therapeutic purposes. In this review, we summarize the available literature on the coordinated regulation of mitochondrial and cytosolic mRNA translation, and their effects on the integrity of the mitochondrial proteome and functions. Finally, we highlight the potential held by this topic for future research directions and for the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Daniela Criscuolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Rosario Avolio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
13
|
TRAP1 in Oxidative Stress and Neurodegeneration. Antioxidants (Basel) 2021; 10:antiox10111829. [PMID: 34829705 PMCID: PMC8614808 DOI: 10.3390/antiox10111829] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022] Open
Abstract
Tumor necrosis factor receptor-associated protein 1 (TRAP1), also known as heat shock protein 75 (HSP75), is a member of the heat shock protein 90 (HSP90) chaperone family that resides mainly in the mitochondria. As a mitochondrial molecular chaperone, TRAP1 supports protein folding and contributes to the maintenance of mitochondrial integrity even under cellular stress. TRAP1 is a cellular regulator of mitochondrial bioenergetics, redox homeostasis, oxidative stress-induced cell death, apoptosis, and unfolded protein response (UPR) in the endoplasmic reticulum (ER). TRAP1 has attracted increasing interest as a therapeutical target, with a special focus on the design of TRAP1 specific inhibitors. Although TRAP1 was extensively studied in the oncology field, its role in central nervous system cells, under physiological and pathological conditions, remains largely unknown. In this review, we will start by summarizing the biology of TRAP1, including its structure and related pathways. Thereafter, we will continue by debating the role of TRAP1 in the maintenance of redox homeostasis and protection against oxidative stress and apoptosis. The role of TRAP1 in neurodegenerative disorders will also be discussed. Finally, we will review the potential of TRAP1 inhibitors as neuroprotective drugs.
Collapse
|
14
|
Lizano-Fallas V, Carrasco Del Amor A, Cristobal S. Systematic analysis of chemical-protein interactions from zebrafish embryo by proteome-wide thermal shift assay, bridging the gap between molecular interactions and toxicity pathways. J Proteomics 2021; 249:104382. [PMID: 34555547 DOI: 10.1016/j.jprot.2021.104382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
The molecular interaction between chemicals and proteins often promotes alteration of cellular function. One of the challenges of the toxicology is to predict the impact of exposure to chemicals. Assessing the impact of exposure implies to understand their mechanism of actions starting from identification of specific protein targets of the interaction. Current methods can mainly predict effects of characterized chemicals with knowledge of its targets, and mechanism of actions. Here, we show that proteome-wide thermal shift methods can identify chemical-protein interactions and the protein targets from bioactive chemicals. We analyzed the identified targets from a soluble proteome extracted from zebrafish embryo, that is a model system for toxicology. To evaluate the utility to predict mechanism of actions, we discussed the applicability in four cases: single chemicals, chemical mixtures, novel chemicals, and novel drugs. Our results showed that this methodology could identify the protein targets, discriminate between protein increasing and decreasing in solubility, and offering additional data to complement the map of intertwined mechanism of actions. We anticipate that the proteome integral solubility alteration (PISA) assay, as it is defined here for the unbiased identification of protein targets of chemicals could bridge the gap between molecular interactions and toxicity pathways. SIGNIFICANCE: One of the challenges of the environmental toxicology is to predict the impact of exposure to chemicals on environment and human health. Our phenotype should be explained by our genotype and the environmental exposure. Genomic methodologies can offer a deep analysis of human genome that alone cannot explain our risks of disease. We are starting to understand the key role of exposure to chemicals on our health and risks of disease. Here, we present a proteomic-based method for the identification of soluble proteins interacting with chemicals in zebrafish embryo and discuss the opportunities to complement the map of toxicity pathway perturbations. We anticipate that this PISA assay could bridge the gap between molecular interactions and toxicity pathways.
Collapse
Affiliation(s)
- Veronica Lizano-Fallas
- Department of Biomedical and Clinical Sciences, Cell Biology, Medical Faculty, Linköping University, Linköping 581 85, Sweden
| | - Ana Carrasco Del Amor
- Department of Biomedical and Clinical Sciences, Cell Biology, Medical Faculty, Linköping University, Linköping 581 85, Sweden
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences, Cell Biology, Medical Faculty, Linköping University, Linköping 581 85, Sweden.; Ikerbasque, Basque Foundation for Science, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain..
| |
Collapse
|
15
|
Yang S, Yoon NG, Kim D, Park E, Kim SY, Lee JH, Lee C, Kang BH, Kang S. Design and Synthesis of TRAP1 Selective Inhibitors: H-Bonding with Asn171 Residue in TRAP1 Increases Paralog Selectivity. ACS Med Chem Lett 2021; 12:1173-1180. [PMID: 34267888 DOI: 10.1021/acsmedchemlett.1c00213] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor receptor-associated protein 1 (TRAP1) is overexpressed in the mitochondria of various cancer cells, reprograms cellular metabolism to enable cancer cells to adapt to harsh tumor environments. As inactivation of TRAP1 induces massive apoptosis in cancer cells in vitro and in vivo, the development of TRAP1-selective inhibitors has become an attractive approach. A series of purine-8-one and pyrrolo[2,3-d]pyrimidine derivatives was developed based on TRAP1 structure and identified to be highly selective in vitro for TRAP1 over the paralogous enzymes, Hsp90α and Grp94. The TRAP1-selective inhibition strategy via utilization of the Asn171 residue of the ATP-lid was investigated using X-ray crystallography and molecular dynamics simulation studies. Among various synthesized potent TRAP1 inhibitors, 5f possessed a 65-fold selectivity over Hsp90α and a 13-fold selectivity over Grp94. Additionally, 6f had a half-maximal inhibitory concentration (IC50) of 63.5 nM for TRAP1, with a 78-fold and 30-fold selectivity over Hsp90α and Grp94, respectively.
Collapse
Affiliation(s)
- Sujae Yang
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Nam Gu Yoon
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dongyoung Kim
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eunsun Park
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - So-Yeon Kim
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ji Hoon Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Changwook Lee
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Byoung Heon Kang
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Soosung Kang
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
16
|
Dekker FA, Rüdiger SGD. The Mitochondrial Hsp90 TRAP1 and Alzheimer's Disease. Front Mol Biosci 2021; 8:697913. [PMID: 34222342 PMCID: PMC8249562 DOI: 10.3389/fmolb.2021.697913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s Disease (AD) is the most common form of dementia, characterised by intra- and extracellular protein aggregation. In AD, the cellular protein quality control (PQC) system is derailed and fails to prevent the formation of these aggregates. Especially the mitochondrial paralogue of the conserved Hsp90 chaperone class, tumour necrosis factor receptor-associated protein 1 (TRAP1), is strongly downregulated in AD, more than other major PQC factors. Here, we review molecular mechanism and cellular function of TRAP1 and subsequently discuss possible links to AD. TRAP1 is an interesting paradigm for the Hsp90 family, as it chaperones proteins with vital cellular function, despite not being regulated by any of the co-chaperones that drive its cytosolic paralogues. TRAP1 encloses late folding intermediates in a non-active state. Thereby, it is involved in the assembly of the electron transport chain, and it favours the switch from oxidative phosphorylation to glycolysis. Another key function is that it ensures mitochondrial integrity by regulating the mitochondrial pore opening through Cyclophilin D. While it is still unclear whether TRAP1 itself is a driver or a passenger in AD, it might be a guide to identify key factors initiating neurodegeneration.
Collapse
Affiliation(s)
- Françoise A Dekker
- Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands.,Science for Life, Utrecht University, Utrecht, Netherlands
| | - Stefan G D Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands.,Science for Life, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
17
|
Lallier M, Marchandet L, Moukengue B, Charrier C, Baud’huin M, Verrecchia F, Ory B, Lamoureux F. Molecular Chaperones in Osteosarcoma: Diagnosis and Therapeutic Issues. Cells 2021; 10:cells10040754. [PMID: 33808130 PMCID: PMC8067202 DOI: 10.3390/cells10040754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma (OS) is the most common form of primary bone tumor affecting mainly children and young adults. Despite therapeutic progress, the 5-year survival rate is 70%, but it drops drastically to 30% for poor responders to therapies or for patients with metastases. Identifying new therapeutic targets is thus essential. Heat Shock Proteins (HSPs) are the main effectors of Heat Shock Response (HSR), the expression of which is induced by stressors. HSPs are a large family of proteins involved in the folding and maturation of other proteins in order to maintain proteostasis. HSP overexpression is observed in many cancers, including breast, prostate, colorectal, lung, and ovarian, as well as OS. In this article we reviewed the significant role played by HSPs in molecular mechanisms leading to OS development and progression. HSPs are directly involved in OS cell proliferation, apoptosis inhibition, migration, and drug resistance. We focused on HSP27, HSP60, HSP70 and HSP90 and summarized their potential clinical uses in OS as either biomarkers for diagnosis or therapeutic targets. Finally, based on different types of cancer, we consider the advantage of targeting heat shock factor 1 (HSF1), the major transcriptional regulator of HSPs in OS.
Collapse
Affiliation(s)
- Morgane Lallier
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
| | - Louise Marchandet
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
| | - Brice Moukengue
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
| | - Celine Charrier
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
| | - Marc Baud’huin
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
- CHU Nantes, 44035 Nantes, France
| | - Franck Verrecchia
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
| | - Benjamin Ory
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
| | - François Lamoureux
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
- Correspondence:
| |
Collapse
|
18
|
Sanchez J, Carter TR, Cohen MS, Blagg BSJ. Old and New Approaches to Target the Hsp90 Chaperone. Curr Cancer Drug Targets 2020; 20:253-270. [PMID: 31793427 DOI: 10.2174/1568009619666191202101330] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/30/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
Abstract
The 90-kDa heat shock protein (Hsp90) is a molecular chaperone that ensures cellular proteostasis by maintaining the folding, stabilization, activation, and degradation of over 400 client proteins. Hsp90 is not only critical for routine protein maintenance in healthy cells, but also during states of cellular stress, such as cancer and neurodegenerative diseases. Due to its ability to affect phosphorylation of numerous client proteins, inhibition of Hsp90 has been an attractive anticancer approach since the early 1990's, when researchers identified a druggable target on the amino terminus of Hsp90 for a variety of cancers. Since then, 17 Hsp90 inhibitors that target the chaperone's Nterminal domain, have entered clinical trials. None, however, have been approved thus far by the FDA as a cancer monotherapy. In these trials, a major limitation observed with Hsp90 inhibition at the N-terminal domain was dose-limiting toxicities and relatively poor pharmacokinetic profiles. Despite this, preclinical and clinical research continues to show that Hsp90 inhibitors effectively target cancer cell death and decrease tumor progression supporting the rationale for the development of novel Hsp90 inhibitors. Here, we present an in-depth overview of the Hsp90 inhibitors used in clinical trials. Finally, we present current shifts in the field related to targeting the carboxy-terminal domain of Hsp90 as well as to the development of isoform-selective inhibitors as a means to bypass the pitfalls of current Hsp90 inhibitors and improve clinical trial outcomes.
Collapse
Affiliation(s)
- Jackee Sanchez
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Trever R Carter
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Mark S Cohen
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States.,Department of Surgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| |
Collapse
|
19
|
Lettini G, Condelli V, Pietrafesa M, Crispo F, Zoppoli P, Maddalena F, Laurenzana I, Sgambato A, Esposito F, Landriscina M. TRAP1 Regulates Wnt/β-Catenin Pathway through LRP5/6 Receptors Expression Modulation. Int J Mol Sci 2020; 21:E7526. [PMID: 33065966 PMCID: PMC7589514 DOI: 10.3390/ijms21207526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/01/2022] Open
Abstract
Wnt/β-Catenin signaling is involved in embryonic development, regeneration, and cellular differentiation and is responsible for cancer stemness maintenance. The HSP90 molecular chaperone TRAP1 is upregulated in 60-70% of human colorectal carcinomas (CRCs) and favors stem cells maintenance, modulating the Wnt/β-Catenin pathway and preventing β-Catenin phosphorylation/degradation. The role of TRAP1 in the regulation of Wnt/β-Catenin signaling was further investigated in human CRC cell lines, patient-derived spheroids, and CRC specimens. TRAP1 relevance in the activation of Wnt/β-Catenin signaling was highlighted by a TCF/LEF Cignal Reporter Assay in Wnt-off HEK293T and CRC HCT116 cell lines. Of note, this regulation occurs through the modulation of Wnt ligand receptors LRP5 and LRP6 that are both downregulated in TRAP1-silenced cell lines. However, while LRP5 mRNA is significantly downregulated upon TRAP1 silencing, LRP6 mRNA is unchanged, suggesting independent mechanisms of regulation by TRAP1. Indeed, LRP5 is regulated upon promoter methylation in CRC cell lines and human CRCs, whereas LRP6 is controlled at post-translational level by protein ubiquitination/degradation. Consistently, human CRCs with high TRAP1 expression are characterized by the co-upregulation of active β-Catenin, LRP5 and LRP6. Altogether, these data suggest that Wnt/β-Catenin signaling is modulated at multiple levels by TRAP1.
Collapse
Affiliation(s)
- Giacomo Lettini
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy; (G.L.); (V.C.); (M.P.); (F.C.); (P.Z.); (F.M.); (I.L.); (A.S.)
| | - Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy; (G.L.); (V.C.); (M.P.); (F.C.); (P.Z.); (F.M.); (I.L.); (A.S.)
| | - Michele Pietrafesa
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy; (G.L.); (V.C.); (M.P.); (F.C.); (P.Z.); (F.M.); (I.L.); (A.S.)
| | - Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy; (G.L.); (V.C.); (M.P.); (F.C.); (P.Z.); (F.M.); (I.L.); (A.S.)
| | - Pietro Zoppoli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy; (G.L.); (V.C.); (M.P.); (F.C.); (P.Z.); (F.M.); (I.L.); (A.S.)
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy; (G.L.); (V.C.); (M.P.); (F.C.); (P.Z.); (F.M.); (I.L.); (A.S.)
| | - Ilaria Laurenzana
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy; (G.L.); (V.C.); (M.P.); (F.C.); (P.Z.); (F.M.); (I.L.); (A.S.)
| | - Alessandro Sgambato
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy; (G.L.); (V.C.); (M.P.); (F.C.); (P.Z.); (F.M.); (I.L.); (A.S.)
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy; (G.L.); (V.C.); (M.P.); (F.C.); (P.Z.); (F.M.); (I.L.); (A.S.)
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
| |
Collapse
|
20
|
Faienza F, Rizza S, Giglio P, Filomeni G. TRAP1: A Metabolic Hub Linking Aging Pathophysiology to Mitochondrial S-Nitrosylation. Front Physiol 2020; 11:340. [PMID: 32411008 PMCID: PMC7201090 DOI: 10.3389/fphys.2020.00340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Fiorella Faienza
- Department of Biology, Tor Vergata University of Rome, Rome, Italy
| | - Salvatore Rizza
- Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Paola Giglio
- Department of Biology, Tor Vergata University of Rome, Rome, Italy
| | - Giuseppe Filomeni
- Department of Biology, Tor Vergata University of Rome, Rome, Italy.,Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| |
Collapse
|
21
|
Tumor Necrosis Factor Receptor-Associated Protein 1 Protects against Mitochondrial Injury by Preventing High Glucose-Induced mPTP Opening in Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6431517. [PMID: 32215175 PMCID: PMC7079224 DOI: 10.1155/2020/6431517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/23/2020] [Indexed: 01/14/2023]
Abstract
Diabetic kidney disease (DKD) has become the leading cause of end-stage renal disease worldwide. Renal tubular epithelial cell apoptosis and tubular atrophy have been recognized as indicators of the severity and progression of DKD, while the mechanism remains elusive. Tumor necrosis factor receptor-associated protein 1 (TRAP1) plays critical roles in apoptosis. The aim of this study was to investigate the protective role TRAP1 plays in DKD and to study the potential underlying mechanisms. TRAP1 expression was decreased, and mitochondria were injured in NRK-52e cells under high-glucose (HG) conditions. The overexpression of TRAP1 ameliorated HG-induced apoptosis, increased cell viability, maintained mitochondrial morphology, adenosine triphosphate (ATP) levels, and mitochondrial membrane potential (MMP), and buffered oxidative stress, whereas TRAP1 knockdown aggravated these effects. The protective effects of TRAP1 may be exerted via the inhibition of mitochondrial permeability transition pore (mPTP) opening, and the damage caused by TRAP1 knockdown can be partially reversed by treatment with the mPTP opening inhibitor cyclosporin A (CsA). In vivo, TRAP1 expression upregulation by AAV2/9 injection prevented renal dysfunction, ameliorated histopathological changes, maintained mitochondrial morphology and function, and reduced apoptosis and reactive oxygen species (ROS) in STZ-treated DKD rats. Thus, our results suggest that TRAP1 ameliorates diabetes-induced renal injury by preventing abnormal mPTP opening and maintaining mitochondrial structure and function, which may be treated as a potential target for DKD treatment.
Collapse
|
22
|
Faienza F, Lambrughi M, Rizza S, Pecorari C, Giglio P, Salamanca Viloria J, Allega MF, Chiappetta G, Vinh J, Pacello F, Battistoni A, Rasola A, Papaleo E, Filomeni G. S-nitrosylation affects TRAP1 structure and ATPase activity and modulates cell response to apoptotic stimuli. Biochem Pharmacol 2020; 176:113869. [PMID: 32088262 DOI: 10.1016/j.bcp.2020.113869] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/18/2020] [Indexed: 12/21/2022]
Abstract
The mitochondrial chaperone TRAP1 has been involved in several mitochondrial functions, and modulation of its expression/activity has been suggested to play a role in the metabolic reprogramming distinctive of cancer cells. TRAP1 posttranslational modifications, i.e. phosphorylation, can modify its capability to bind to different client proteins and modulate its oncogenic activity. Recently, it has been also demonstrated that TRAP1 is S-nitrosylated at Cys501, a redox modification associated with its degradation via the proteasome. Here we report molecular dynamics simulations of TRAP1, together with analysis of long-range structural communication, providing a model according to which Cys501 S-nitrosylation induces conformational changes to distal sites in the structure of the protein. The modification is also predicted to alter open and closing motions for the chaperone function. By means of colorimetric assays and site directed mutagenesis aimed at generating C501S variant, we also experimentally confirmed that selective S-nitrosylation of Cys501 decreases ATPase activity of recombinant TRAP1. Coherently, C501S mutant was more active and conferred protection to cell death induced by staurosporine. Overall, our results provide the first in silico, in vitro and cellular evidence of the relevance of Cys501 S-nitrosylation in TRAP1 biology.
Collapse
Affiliation(s)
- Fiorella Faienza
- Department of Biology, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Matteo Lambrughi
- Computational Biology Laboratory, Center of Excellence in Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Salvatore Rizza
- Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Chiara Pecorari
- Department of Biology, Tor Vergata University of Rome, 00133 Rome, Italy; Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Paola Giglio
- Department of Biology, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Juan Salamanca Viloria
- Computational Biology Laboratory, Center of Excellence in Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Maria Francesca Allega
- Computational Biology Laboratory, Center of Excellence in Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Giovanni Chiappetta
- Laboratory of Proteomics and Biological Mass Spectrometry, USR, CNRS - ESPCI Paris, PSL University, 3149, 10 rue, Vauquelin, Paris cedex, 05 75231, France
| | - Joëlle Vinh
- Laboratory of Proteomics and Biological Mass Spectrometry, USR, CNRS - ESPCI Paris, PSL University, 3149, 10 rue, Vauquelin, Paris cedex, 05 75231, France
| | - Francesca Pacello
- Department of Biology, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Andrea Battistoni
- Department of Biology, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Elena Papaleo
- Computational Biology Laboratory, Center of Excellence in Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Giuseppe Filomeni
- Department of Biology, Tor Vergata University of Rome, 00133 Rome, Italy; Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Center for Healthy Aging, University of Copenhagen, Denmark.
| |
Collapse
|
23
|
Modulation of Mitochondrial Metabolic Reprogramming and Oxidative Stress to Overcome Chemoresistance in Cancer. Biomolecules 2020; 10:biom10010135. [PMID: 31947673 PMCID: PMC7023176 DOI: 10.3390/biom10010135] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/18/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming, carried out by cancer cells to rapidly adapt to stress such as hypoxia and limited nutrient conditions, is an emerging concepts in tumor biology, and is now recognized as one of the hallmarks of cancer. In contrast with conventional views, based on the classical Warburg effect, these metabolic alterations require fully functional mitochondria and finely-tuned regulations of their activity. In turn, the reciprocal regulation of the metabolic adaptations of cancer cells and the microenvironment critically influence disease progression and response to therapy. This is also realized through the function of specific stress-adaptive proteins, which are able to relieve oxidative stress, inhibit apoptosis, and facilitate the switch between metabolic pathways. Among these, the molecular chaperone tumor necrosis factor receptor associated protein 1 (TRAP1), the most abundant heat shock protein 90 (HSP90) family member in mitochondria, is particularly relevant because of its role as an oncogene or a tumor suppressor, depending on the metabolic features of the specific tumor. This review highlights the interplay between metabolic reprogramming and cancer progression, and the role of mitochondrial activity and oxidative stress in this setting, examining the possibility of targeting pathways of energy metabolism as a therapeutic strategy to overcome drug resistance, with particular emphasis on natural compounds and inhibitors of mitochondrial HSP90s.
Collapse
|
24
|
Hoter A, Naim HY. Heat Shock Proteins and Ovarian Cancer: Important Roles and Therapeutic Opportunities. Cancers (Basel) 2019; 11:E1389. [PMID: 31540420 PMCID: PMC6769485 DOI: 10.3390/cancers11091389] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022] Open
Abstract
Ovarian cancer is a serious cause of death in gynecological oncology. Delayed diagnosis and poor survival rates associated with late stages of the disease are major obstacles against treatment efforts. Heat shock proteins (HSPs) are stress responsive molecules known to be crucial in many cancer types including ovarian cancer. Clusterin (CLU), a unique chaperone protein with analogous oncogenic criteria to HSPs, has also been proven to confer resistance to anti-cancer drugs. Indeed, these chaperone molecules have been implicated in diagnosis, prognosis, metastasis and aggressiveness of various cancers. However, relative to other cancers, there is limited body of knowledge about the molecular roles of these chaperones in ovarian cancer. In the current review, we shed light on the diverse roles of HSPs as well as related chaperone proteins like CLU in the pathogenesis of ovarian cancer and elucidate their potential as effective drug targets.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| |
Collapse
|
25
|
Zhang X, Zhong Z, Li W. Downregulation of TRAP1 aggravates injury of H9c2 cardiomyocytes in a hyperglycemic state. Exp Ther Med 2019; 18:2681-2686. [PMID: 31572516 DOI: 10.3892/etm.2019.7847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Diabetic cardiomyopathy increases the risk of heart failure and is one of the major causes of death in patients with diabetes. The present study investigated the expression and function of tumor necrosis factor receptor-associated protein 1 (TRAP1) in cardiomyocytes in a hyperglycemic state. For the in vitro study, H9c2 cells (rat cardiomyoblasts) were treated with normal glucose, high glucose. TRAP1 expression was determined by reverse transcription-quantitative PCR and western blot analysis. Viability of cardiomyocytes was detected using the CellTiter 96® AQueous One Solution assay. The intracellular reactive oxygen species (ROS) content was detected using a fluorescent 2',7'-dichlorodihydrofluorescein diacetate probe, and the change in mitochondrial membrane potential was detected by JC-1 fluorescent staining. Changes in cell viability, ROS content and mitochondrial membrane potential were determined following small interfering (si) RNA-mediated knockdown of TRAP1. Results demonstrated that compared with the normal control group, the expression of TRAP1 in H9c2 cells decreased in the high glucose group which was accompanied by a reduction in mitochondrial membrane potential and cell viability, and increased intracellular ROS production. TRAP1 expression was significantly decreased following TRAP1-siRNA transfection which was accompanied by enhanced ROS production, lower mitochondrial membrane potential and impaired cell viability. In conclusion, the present findings suggested that the decrease in cardiomyocyte TRAP1 expression under high glucose conditions was associated with myocardial injury. It was hypothesized that TRAP1 may have a protective role on cardiomyocytes under high glucose surroundings.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Zhen Zhong
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Wangen Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| |
Collapse
|
26
|
Lettini G, Lepore S, Crispo F, Sisinni L, Esposito F, Landriscina M. Heat shock proteins in cancer stem cell maintenance: A potential therapeutic target? Histol Histopathol 2019; 35:25-37. [PMID: 31322279 DOI: 10.14670/hh-18-153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) are a subpopulation of tumor cells with unlimited self-renewal capability, multilineage differentiation potential and long-term tumor repopulation capacity. CSCs reside in anatomically distinct regions within the tumor microenvironment, called niches, and this favors the maintenance of CSC properties and preserves their phenotypic plasticity. Indeed, CSCs are characterized by a flexible state based on their capacity to interconvert between a differentiated and a stem-like phenotype, and this depends on the activation of adaptive mechanisms in response to different environmental conditions. Heat Shock Proteins (HSPs) are molecular chaperones, upregulated upon cell exposure to several stress conditions and are responsible for normal maturation, localization and activity of intra and extracellular proteins. Noteworthy, HSPs play a central role in several cellular processes involved in tumor initiation and progression (i.e. cell viability, resistance to apoptosis, stress conditions and drug therapy, EMT, bioenergetics, invasiveness, metastasis formation) and, thus, are widely considered potential molecular targets. Furthermore, much evidence suggests a key regulatory function for HSPs in CSC maintenance and their upregulation has been proposed as a mechanism used by CSCs to adapt to unfavorable environmental conditions, such as nutrient deprivation, hypoxia, inflammation. This review discusses the relevance of HSPs in CSC biology, highlighting their role as novel potential molecular targets to develop anticancer strategies aimed at CSC targeting.
Collapse
Affiliation(s)
- Giacomo Lettini
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Silvia Lepore
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Lorenza Sisinni
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy.,Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
27
|
Condelli V, Crispo F, Pietrafesa M, Lettini G, Matassa DS, Esposito F, Landriscina M, Maddalena F. HSP90 Molecular Chaperones, Metabolic Rewiring, and Epigenetics: Impact on Tumor Progression and Perspective for Anticancer Therapy. Cells 2019; 8:cells8060532. [PMID: 31163702 PMCID: PMC6627532 DOI: 10.3390/cells8060532] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/31/2022] Open
Abstract
Heat shock protein 90 (HSP90) molecular chaperones are a family of ubiquitous proteins participating in several cellular functions through the regulation of folding and/or assembly of large multiprotein complexes and client proteins. Thus, HSP90s chaperones are, directly or indirectly, master regulators of a variety of cellular processes, such as adaptation to stress, cell proliferation, motility, angiogenesis, and signal transduction. In recent years, it has been proposed that HSP90s play a crucial role in carcinogenesis as regulators of genotype-to-phenotype interplay. Indeed, HSP90 chaperones control metabolic rewiring, a hallmark of cancer cells, and influence the transcription of several of the key-genes responsible for tumorigenesis and cancer progression, through either direct binding to chromatin or through the quality control of transcription factors and epigenetic effectors. In this review, we will revise evidence suggesting how this interplay between epigenetics and metabolism may affect oncogenesis. We will examine the effect of metabolic rewiring on the accumulation of specific metabolites, and the changes in the availability of epigenetic co-factors and how this process can be controlled by HSP90 molecular chaperones. Understanding deeply the relationship between epigenetic and metabolism could disclose novel therapeutic scenarios that may lead to improvements in cancer treatment.
Collapse
Affiliation(s)
- Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| | - Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| | - Michele Pietrafesa
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| | - Giacomo Lettini
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy.
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| |
Collapse
|
28
|
Xiang F, Ma SY, Lv YL, Zhang DX, Song HP, Huang YS. Tumor necrosis factor receptor-associated protein 1 regulates hypoxia-induced apoptosis through a mitochondria-dependent pathway mediated by cytochrome c oxidase subunit II. BURNS & TRAUMA 2019; 7:16. [PMID: 31143823 PMCID: PMC6532166 DOI: 10.1186/s41038-019-0154-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/02/2019] [Indexed: 12/21/2022]
Abstract
Background Tumor necrosis factor receptor-associated protein 1 (TRAP1) plays a protective effect in hypoxic cardiomyocytes, but the precise mechanisms are not well clarified. The study is aimed to identify the mechanism of TRAP1 on hypoxic damage in cardiomyocytes. Methods In this study, the effects of TRAP1 and cytochrome c oxidase subunit II (COXII) on apoptosis in hypoxia-induced cardiomyocytes were explored using overexpression and knockdown methods separately. Results Hypoxia induced cardiomyocyte apoptosis, and TRAP1 overexpression notably inhibited apoptosis induced by hypoxia. Conversely, TRAP1 silencing promoted apoptosis in hypoxic cardiomyocytes. Further investigation revealed that the proapoptotic effects caused by the silencing of TRAP1 were prevented by COXII overexpression, whereas COXII knockdown reduced the antiapoptotic function induced by TRAP1 overexpression. Additionally, changes in the release of cytochrome c from mitochondria into the cytosol and the caspase-3 activity in the cytoplasm, as well as reactive oxygen species production, were found to be correlated with the changes in apoptosis. Conclusions The current study uncovered that TRAP1 regulates hypoxia-induced cardiomyocyte apoptosis through a mitochondria-dependent apoptotic pathway mediated by COXII, in which reactive oxygen species presents as an important component. Electronic supplementary material The online version of this article (10.1186/s41038-019-0154-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fei Xiang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Si-Yuan Ma
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Yan-Ling Lv
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Dong-Xia Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Hua-Pei Song
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Yue-Sheng Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| |
Collapse
|
29
|
Sisinni L, Pietrafesa M, Lepore S, Maddalena F, Condelli V, Esposito F, Landriscina M. Endoplasmic Reticulum Stress and Unfolded Protein Response in Breast Cancer: The Balance between Apoptosis and Autophagy and Its Role in Drug Resistance. Int J Mol Sci 2019; 20:ijms20040857. [PMID: 30781465 PMCID: PMC6412864 DOI: 10.3390/ijms20040857] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023] Open
Abstract
The unfolded protein response (UPR) is a stress response activated by the accumulation of unfolded or misfolded proteins in the lumen of the endoplasmic reticulum (ER) and its uncontrolled activation is mechanistically responsible for several human pathologies, including metabolic, neurodegenerative, and inflammatory diseases, and cancer. Indeed, ER stress and the downstream UPR activation lead to changes in the levels and activities of key regulators of cell survival and autophagy and this is physiologically finalized to restore metabolic homeostasis with the integration of pro-death or/and pro-survival signals. By contrast, the chronic activation of UPR in cancer cells is widely considered a mechanism of tumor progression. In this review, we focus on the relationship between ER stress, apoptosis, and autophagy in human breast cancer and the interplay between the activation of UPR and resistance to anticancer therapies with the aim to disclose novel therapeutic scenarios. The hypothesis that autophagy and UPR may provide novel molecular targets in human malignancies is discussed.
Collapse
Affiliation(s)
- Lorenza Sisinni
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Michele Pietrafesa
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Silvia Lepore
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Napoli Federico II, 80131 Naples, Italy.
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy.
| |
Collapse
|
30
|
Hoter A, El-Sabban ME, Naim HY. The HSP90 Family: Structure, Regulation, Function, and Implications in Health and Disease. Int J Mol Sci 2018; 19:E2560. [PMID: 30158430 PMCID: PMC6164434 DOI: 10.3390/ijms19092560] [Citation(s) in RCA: 399] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/22/2022] Open
Abstract
The mammalian HSP90 family of proteins is a cluster of highly conserved molecules that are involved in myriad cellular processes. Their distribution in various cellular compartments underlines their essential roles in cellular homeostasis. HSP90 and its co-chaperones orchestrate crucial physiological processes such as cell survival, cell cycle control, hormone signaling, and apoptosis. Conversely, HSP90, and its secreted forms, contribute to the development and progress of serious pathologies, including cancer and neurodegenerative diseases. Therefore, targeting HSP90 is an attractive strategy for the treatment of neoplasms and other diseases. This manuscript will review the general structure, regulation and function of HSP90 family and their potential role in pathophysiology.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover 30559, Germany.
| | - Marwan E El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover 30559, Germany.
| |
Collapse
|
31
|
Matassa DS, Agliarulo I, Avolio R, Landriscina M, Esposito F. TRAP1 Regulation of Cancer Metabolism: Dual Role as Oncogene or Tumor Suppressor. Genes (Basel) 2018; 9:genes9040195. [PMID: 29621137 PMCID: PMC5924537 DOI: 10.3390/genes9040195] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 12/20/2022] Open
Abstract
Metabolic reprogramming is an important issue in tumor biology. An unexpected inter- and intra-tumor metabolic heterogeneity has been strictly correlated to tumor outcome. Tumor Necrosis Factor Receptor-Associated Protein 1 (TRAP1) is a molecular chaperone involved in the regulation of energetic metabolism in cancer cells. This protein is highly expressed in several cancers, such as glioblastoma, colon, breast, prostate and lung cancers and is often associated with drug resistance. However, TRAP1 is also downregulated in specific tumors, such as ovarian, bladder and renal cancers, where its lower expression is correlated with the worst prognoses and chemoresistance. TRAP1 is the only mitochondrial member of the Heat Shock Protein 90 (HSP90) family that directly interacts with respiratory complexes, contributing to their stability and activity but it is still unclear if such interactions lead to reduced or increased respiratory capacity. The role of TRAP1 is to enhance or suppress oxidative phosphorylation; the effects of such regulation on tumor development and progression are controversial. These observations encourage the study of the mechanisms responsible for the dualist role of TRAP1 as an oncogene or oncosuppressor in specific tumor types. In this review, TRAP1 puzzling functions were recapitulated with a special focus on the correlation between metabolic reprogramming and tumor outcome. We wanted to investigate whether metabolism-targeting drugs can efficiently interfere with tumor progression and whether they might be combined with chemotherapeutics or molecular-targeted agents to counteract drug resistance and reduce therapeutic failure.
Collapse
Affiliation(s)
- Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Ilenia Agliarulo
- Institute of Protein Biochemistry (IBP), National Research Council, 80131 Naples, Italy.
| | - Rosario Avolio
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain.
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 7100 Foggia, Italy.
- Laboratory of Pre-clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| |
Collapse
|
32
|
Maddalena F, Simeon V, Vita G, Bochicchio A, Possidente L, Sisinni L, Lettini G, Condelli V, Matassa DS, Li Bergolis V, Fersini A, Romito S, Aieta M, Ambrosi A, Esposito F, Landriscina M. TRAP1 protein signature predicts outcome in human metastatic colorectal carcinoma. Oncotarget 2017; 8:21229-21240. [PMID: 28177905 PMCID: PMC5400579 DOI: 10.18632/oncotarget.15070] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/09/2017] [Indexed: 11/28/2022] Open
Abstract
TRAP1 is a HSP90 molecular chaperone upregulated in colorectal carcinomas and involved in control of intracellular signaling, cell cycle, apoptosis and drug resistance, stemness and bioenergetics through co-traslational regulation of a network of client proteins. Thus, the clinical significance of TRAP1 protein network was analyzed in human colorectal cancers. TRAP1 and/or its client proteins were quantified, by immunoblot analysis, in 60 surgical specimens of colorectal carcinomas at different stages and, by immunohistochemistry, in 9 colorectal adenomatous polyps, 11 in situ carcinomas and 55 metastatic colorectal tumors. TRAP1 is upregulated at the transition between low- and high-grade adenomas, in in situ carcinomas and in about 60% of human colorectal carcinomas, being downregulated only in a small cohort of tumors. The analysis of TCGA database showed that a subgroup of colorectal tumors is characterized by gain/loss of TRAP1 copy number, this correlating with its mRNA and protein expression. Interestingly, TRAP1 is co-expressed with the majority of its client proteins and hierarchical cluster analysis showed that the upregulation of TRAP1 and associated 6-protein signature (i.e., IF2α, eF1A, TBP7, MAD2, CDK1 and βCatenin) identifies a cohort of metastatic colorectal carcinomas with a significantly shorter overall survival (HR 5.4; 95% C.I. 1.1-26.6; p=0.037). Consistently, the prognostic relevance of TRAP1 was confirmed in a cohort of 55 metastatic colorectal tumors. Finally, TRAP1 positive expression and its prognostic value are more evident in left colon cancers. These data suggest that TRAP1 protein network may provide a prognostic signature in human metastatic colorectal carcinomas.
Collapse
Affiliation(s)
- Francesca Maddalena
- Laboratory of Preclinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Vittorio Simeon
- Laboratory of Preclinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Giulia Vita
- Pathology, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Annamaria Bochicchio
- Medical Oncology Units, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Luciana Possidente
- Pathology, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Lorenza Sisinni
- Laboratory of Preclinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Giacomo Lettini
- Laboratory of Preclinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Valentina Condelli
- Laboratory of Preclinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Valeria Li Bergolis
- Medical Oncology, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
| | - Alberto Fersini
- General Surgery Units, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
| | - Sante Romito
- Medical Oncology, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
| | - Michele Aieta
- Medical Oncology Units, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Antonio Ambrosi
- General Surgery Units, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Matteo Landriscina
- Laboratory of Preclinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.,Medical Oncology, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
| |
Collapse
|
33
|
Sisinni L, Maddalena F, Condelli V, Pannone G, Simeon V, Li Bergolis V, Lopes E, Piscazzi A, Matassa DS, Mazzoccoli C, Nozza F, Lettini G, Amoroso MR, Bufo P, Esposito F, Landriscina M. TRAP1 controls cell cycle G2-M transition through the regulation of CDK1 and MAD2 expression/ubiquitination. J Pathol 2017; 243:123-134. [PMID: 28678347 DOI: 10.1002/path.4936] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/23/2017] [Accepted: 06/21/2017] [Indexed: 12/16/2022]
Abstract
Regulation of tumour cell proliferation by molecular chaperones is still a complex issue. Here, the role of the HSP90 molecular chaperone TRAP1 in cell cycle regulation was investigated in a wide range of human breast, colorectal, and lung carcinoma cell lines, and tumour specimens. TRAP1 modulates the expression and/or the ubiquitination of key cell cycle regulators through a dual mechanism: (i) transcriptional regulation of CDK1, CYCLIN B1, and MAD2, as suggested by gene expression profiling of TRAP1-silenced breast carcinoma cells; and (ii) post-transcriptional quality control of CDK1 and MAD2, being the ubiquitination of these two proteins enhanced upon TRAP1 down-regulation. Mechanistically, TRAP1 quality control on CDK1 is crucial for its regulation of mitotic entry, since TRAP1 interacts with CDK1 and prevents CDK1 ubiquitination in cooperation with the proteasome regulatory particle TBP7, this representing the limiting factor in TRAP1 regulation of the G2-M transition. Indeed, TRAP1 silencing results in enhanced CDK1 ubiquitination, lack of nuclear translocation of CDK1/cyclin B1 complex, and increased MAD2 degradation, whereas CDK1 forced up-regulation partially rescues low cyclin B1 and MAD2 levels and G2-M transit in a TRAP1-poor background. Consistently, the CDK1 inhibitor RO-3306 is less active in a TRAP1-high background. Finally, a significant correlation was observed between TRAP1 and Ki67, CDK1 and/or MAD2 expression in breast, colorectal, and lung human tumour specimens. This study represents the first evidence that TRAP1 is relevant in the control of the complex machinery that governs cell cycle progression and mitotic entry and provides a strong rationale to regard TRAP1 as a biomarker to select tumours with deregulated cell cycle progression and thus likely poorly responsive to novel cell cycle inhibitors. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lorenza Sisinni
- Laboratory of Pre-clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Francesca Maddalena
- Laboratory of Pre-clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Valentina Condelli
- Laboratory of Pre-clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Giuseppe Pannone
- Anatomic Pathology Unit, Department of Clinic and Experimental Medicine, University of Foggia, Italy
| | - Vittorio Simeon
- Laboratory of Pre-clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Valeria Li Bergolis
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Italy
| | - Elvira Lopes
- Laboratory of Pre-clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Annamaria Piscazzi
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Italy
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Italy
| | - Carmela Mazzoccoli
- Laboratory of Pre-clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Filomena Nozza
- Laboratory of Pre-clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Giacomo Lettini
- Laboratory of Pre-clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Maria Rosaria Amoroso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Italy
| | - Pantaleo Bufo
- Anatomic Pathology Unit, Department of Clinic and Experimental Medicine, University of Foggia, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Italy
| | - Matteo Landriscina
- Laboratory of Pre-clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy.,Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Italy
| |
Collapse
|
34
|
Zielonka J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, Cheng G, Lopez M, Kalyanaraman B. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chem Rev 2017; 117:10043-10120. [PMID: 28654243 PMCID: PMC5611849 DOI: 10.1021/acs.chemrev.7b00042] [Citation(s) in RCA: 1004] [Impact Index Per Article: 125.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, ul. Wroblewskiego 15, 93-590 Lodz, Poland
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Jeannette Vasquez-Vivar
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Marcos Lopez
- Translational Biomedical Research Group, Biotechnology Laboratories, Cardiovascular Foundation of Colombia, Carrera 5a No. 6-33, Floridablanca, Santander, Colombia, 681003
- Graduate Program of Biomedical Sciences, Faculty of Health, Universidad del Valle, Calle 4B No. 36-00, Cali, Colombia, 760032
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
35
|
Lettini G, Maddalena F, Sisinni L, Condelli V, Matassa DS, Costi MP, Simoni D, Esposito F, Landriscina M. TRAP1: a viable therapeutic target for future cancer treatments? Expert Opin Ther Targets 2017; 21:805-815. [PMID: 28664757 DOI: 10.1080/14728222.2017.1349755] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION HSP90 molecular chaperones (i.e., HSP90α, HSP90β, GRP94 and TRAP1) are potential therapeutic targets to design novel anticancer agents. However, despite numerous designed HSP90 inhibitors, most of them have failed due to unfavorable toxicity profiles and lack of specificity toward different HSP90 paralogs. Indeed, a major limitation in this field is the high structural homology between different HSP90 chaperones, which significantly limits our capacity to design paralog-specific inhibitors. Area covered: This review examines the relevance of TRAP1 in tumor development and progression, with an emphasis on its oncogenic/oncosuppressive role in specific human malignancies and its multifaceted and context-dependent functions in cancer cells. Herein, we discuss the rationale for considering TRAP1 as a potential molecular target and the strategies used to date, to achieve its compartmentalized inhibition directly in mitochondria. Expert opinion: TRAP1 targeting may represent a promising strategy for cancer therapy, based on the increasing and compelling evidence supporting TRAP1 involvement in human carcinogenesis. However, considering the complexity of TRAP1 biology, future strategies of drug discovery need to improve selectivity and specificity toward TRAP1 respect to other HSP90 paralogs. The characterization of specific human malignancies suitable for TRAP1 targeting is also mandatory.
Collapse
Affiliation(s)
- Giacomo Lettini
- a Laboratory of Pre-Clinical and Translational Research , IRCCS, Referral Cancer Center of Basilicata , Rionero in Vulture , Italy
| | - Francesca Maddalena
- a Laboratory of Pre-Clinical and Translational Research , IRCCS, Referral Cancer Center of Basilicata , Rionero in Vulture , Italy
| | - Lorenza Sisinni
- a Laboratory of Pre-Clinical and Translational Research , IRCCS, Referral Cancer Center of Basilicata , Rionero in Vulture , Italy
| | - Valentina Condelli
- a Laboratory of Pre-Clinical and Translational Research , IRCCS, Referral Cancer Center of Basilicata , Rionero in Vulture , Italy
| | - Danilo Swann Matassa
- b Department of Molecular Medicine and Medical Biotechnology , University of Naples Federico II , Napoli , Italy
| | - Maria Paola Costi
- c Department of Life Sciences , University of Modena and Reggio Emilia , Modena , Italy
| | - Daniele Simoni
- d Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Franca Esposito
- b Department of Molecular Medicine and Medical Biotechnology , University of Naples Federico II , Napoli , Italy
| | - Matteo Landriscina
- a Laboratory of Pre-Clinical and Translational Research , IRCCS, Referral Cancer Center of Basilicata , Rionero in Vulture , Italy.,e Medical Oncology Unit, Department of Medical and Surgical Sciences , University of Foggia , Foggia , Italy
| |
Collapse
|
36
|
Abstract
Shadoo (Sho), a member of prion protein family, has been shown to prevent embryonic lethality in Prnp0/0 mice and to be reduced in the brains of rodents with terminal prion diseases. Sho can also affect PrP structural dynamics and can increase the prion conversion into its misfolded isoform (PrPSc), which is amyloidogenic and strictly related to expression, intracellular localization and association of PrPC to lipid rafts. We reasoned that if Sho possesses a natural tendency to convert to amyloid-like forms in vitro, it should be able to exhibit “prion-like” properties, such as PK-resistance and aggregation state, also in live cells. We tested this hypothesis, by different approaches in neuronal cells, finding that Sho shows folding properties partially dependent on lipid rafts integrity whose alteration, as well as proteasomal block, regulated generation of intermediate Sho isoforms and exacerbated its misfolding. Moreover, a 18 kDa isoform of Sho, likely bearing the signal peptide, was targeted to mitochondria by interacting with the molecular chaperone TRAP1 which, in turn controlled Sho dual targeting to ER or mitochondria. Our studies contribute to understand the role of molecular chaperones and of PrP-related folding intermediates in “prion-like” conversion.
Collapse
|
37
|
Amoroso MR, Matassa DS, Agliarulo I, Avolio R, Maddalena F, Condelli V, Landriscina M, Esposito F. Stress-Adaptive Response in Ovarian Cancer Drug Resistance: Role of TRAP1 in Oxidative Metabolism-Driven Inflammation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 108:163-198. [PMID: 28427560 DOI: 10.1016/bs.apcsb.2017.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metabolic reprogramming is one of the most frequent stress-adaptive response of cancer cells to survive environmental changes and meet increasing nutrient requirements during their growth. These modifications involve cellular bioenergetics and cross talk with surrounding microenvironment, in a dynamic network that connect different molecular processes, such as energy production, inflammatory response, and drug resistance. Even though the Warburg effect has long been considered the main metabolic feature of cancer cells, recent reports identify mitochondrial oxidative metabolism as a driving force for tumor growth in an increasing number of cellular contexts. In recent years, oxidative phosphorylation has been linked to a remodeling of inflammatory response due to autocrine or paracrine secretion of interleukines that, in turn, induces a regulation of gene expression involving, among others, molecules responsible for the onset of drug resistance. This process is especially relevant in ovarian cancer, characterized by low survival, high frequency of disease relapse and chemoresistance. Recently, the molecular chaperone TRAP1 (tumor necrosis factor-associated protein 1) has been identified as a key junction molecule in these processes in ovarian cancer: in fact, TRAP1 mediates a metabolic switch toward oxidative phosphorylation that, in turn, triggers cytokines secretion, with consequent gene expression remodeling, finally leading to cisplatin resistance and epithelial-to-mesenchymal transition in ovarian cancer models. This review summarizes how metabolism, chemoresistance, inflammation, and epithelial-to-mesenchymal transition are strictly interconnected, and how TRAP1 stays at the crossroads of these processes, thus shedding new lights on molecular networks at the basis of ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | - Francesca Maddalena
- Laboratorio di ricerca preclinica e traslazionale, IRCCS-CROB, Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, Italy
| | - Valentina Condelli
- Laboratorio di ricerca preclinica e traslazionale, IRCCS-CROB, Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, Italy
| | - Matteo Landriscina
- Laboratorio di ricerca preclinica e traslazionale, IRCCS-CROB, Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, Italy; Università degli Studi di Foggia, Foggia, Italy.
| | | |
Collapse
|
38
|
Amoroso MR, Matassa DS, Agliarulo I, Avolio R, Lu H, Sisinni L, Lettini G, Gabra H, Landriscina M, Esposito F. TRAP1 downregulation in human ovarian cancer enhances invasion and epithelial-mesenchymal transition. Cell Death Dis 2016; 7:e2522. [PMID: 27977010 PMCID: PMC5260997 DOI: 10.1038/cddis.2016.400] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/27/2016] [Accepted: 10/31/2016] [Indexed: 01/09/2023]
Abstract
Ovarian cancer (OC) is the second leading cause of gynecological cancer death worldwide. Although the list of biomarkers is still growing, molecular mechanisms involved in OC development and progression remain elusive. We recently demonstrated that lower expression of the molecular chaperone TRAP1 in OC patients correlates with higher tumor grade and stage, and platinum resistance. Herein we show that TRAP1 is often deleted in high-grade serous OC patients (N=579), and that TRAP1 expression is correlated with the copy number, suggesting this could be one of the driving mechanisms for the loss of TRAP1 expression in OC. At molecular level, downregulation of TRAP1 associates with higher expression of p70S6K, a kinase frequently active in OC with emerging roles in cell migration and tumor metastasis. Indeed, TRAP1 silencing in different OC cells induces upregulation of p70S6K expression and activity, enhancement of cell motility and epithelial-mesenchymal transition (EMT). Consistently, in a large cohort of OC patients, TRAP1 expression is reduced in tumor metastases and directly correlates with the epithelial marker E-Cadherin, whereas it inversely correlates with the transcription factor Slug and the matrix metallopeptidases 2 and 9. Strikingly, pharmacological inhibition of p70S6K reverts the high motility phenotype of TRAP1 knock-down cells. However, although p70S6K inhibition or silencing reduces the expression of the transcription factors Snail and Slug, thus inducing upregulation of E-Cadherin expression, it is unable to revert EMT induced by TRAP1 silencing; furthermore, p70S6K did not show any significant correlation with EMT genes in patients, nor with overall survival or tumor stage, suggesting an independent and predominant role for TRAP1 in OC progression. Altogether, these results may provide novel approaches in OC with reduced TRAP1 expression, which could be resistant to therapeutic strategies based on the inhibition of the p70S6K pathway, with potential future intervention in OC invasion and metastasis.
Collapse
Affiliation(s)
- Maria R Amoroso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli 'Federico II', Napoli, Italy
| | - Danilo S Matassa
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli 'Federico II', Napoli, Italy
| | - Ilenia Agliarulo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli 'Federico II', Napoli, Italy
| | - Rosario Avolio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli 'Federico II', Napoli, Italy
| | - Haonan Lu
- Imperial College London, Ovarian Cancer Action Research Centre, Department of Cancer and Surgery, Institute of Reproductive and Developmental Biology, London, UK
| | - Lorenza Sisinni
- Laboratorio di Ricerca Preclinica e Traslazionale, IRCCS-CROB, Centro di Riferimento Oncologico Della Basilicata, Rionero in Vulture, Italy
| | - Giacomo Lettini
- Laboratorio di Ricerca Preclinica e Traslazionale, IRCCS-CROB, Centro di Riferimento Oncologico Della Basilicata, Rionero in Vulture, Italy
| | - Hani Gabra
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Matteo Landriscina
- Laboratorio di Ricerca Preclinica e Traslazionale, IRCCS-CROB, Centro di Riferimento Oncologico Della Basilicata, Rionero in Vulture, Italy.,Dipartimento di Scienze Mediche e Chirurgiche, Università Degli Studi di Foggia, Foggia, Italy
| | - Franca Esposito
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli 'Federico II', Napoli, Italy
| |
Collapse
|
39
|
Biasutto L, Azzolini M, Szabò I, Zoratti M. The mitochondrial permeability transition pore in AD 2016: An update. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:2515-30. [PMID: 26902508 DOI: 10.1016/j.bbamcr.2016.02.012] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/13/2022]
Abstract
Over the past 30years the mitochondrial permeability transition - the permeabilization of the inner mitochondrial membrane due to the opening of a wide pore - has progressed from being considered a curious artifact induced in isolated mitochondria by Ca(2+) and phosphate to a key cell-death-inducing process in several major pathologies. Its relevance is by now universally acknowledged and a pharmacology targeting the phenomenon is being developed. The molecular nature of the pore remains to this day uncertain, but progress has recently been made with the identification of the FOF1 ATP synthase as the probable proteic substrate. Researchers sharing this conviction are however divided into two camps: these believing that only the ATP synthase dimers or oligomers can form the pore, presumably in the contact region between monomers, and those who consider that the ring-forming c subunits in the FO sector actually constitute the walls of the pore. The latest development is the emergence of a new candidate: Spastic Paraplegia 7 (SPG7), a mitochondrial AAA-type membrane protease which forms a 6-stave barrel. This review summarizes recent developments of research on the pathophysiological relevance and on the molecular nature of the mitochondrial permeability transition pore. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy
| | - Michele Azzolini
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy
| | - Ildikò Szabò
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biology, Viale G. Colombo 3, 35121 Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
40
|
Lettini G, Sisinni L, Condelli V, Matassa DS, Simeon V, Maddalena F, Gemei M, Lopes E, Vita G, Del Vecchio L, Esposito F, Landriscina M. TRAP1 regulates stemness through Wnt/β-catenin pathway in human colorectal carcinoma. Cell Death Differ 2016; 23:1792-1803. [PMID: 27662365 DOI: 10.1038/cdd.2016.67] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/30/2016] [Accepted: 06/08/2016] [Indexed: 12/14/2022] Open
Abstract
Colorectal carcinoma (CRC) is a common cause of cancer-related death worldwide. Indeed, treatment failures are triggered by cancer stem cells (CSCs) that give rise to tumor repopulation upon initial remission. Thus, the role of the heat shock protein TRAP1 in stemness was investigated in CRC cell lines and human specimens, based on its involvement in colorectal carcinogenesis, through regulation of apoptosis, protein homeostasis and bioenergetics. Strikingly, co-expression between TRAP1 and stem cell markers was observed in stem cells located at the bottom of intestinal crypts and in CSCs sorted from CRC cell lines. Noteworthy, TRAP1 knockdown reduced the expression of stem cell markers and impaired colony formation, being the CSC phenotype and the anchorage-independent growth conserved in TRAP1-rich cancer cells. Consistently, the gene expression profiling of HCT116 cells showed that TRAP1 silencing results in the loss of the stem-like signature with acquisition of a more-differentiated phenotype and the downregulation of genes encoding for activating ligands and target proteins of Wnt/β-catenin pathway. Mechanistically, TRAP1 maintenance of stemness is mediated by the regulation of Wnt/β-catenin signaling, through the modulation of the expression of frizzled receptor ligands and the control of β-catenin ubiquitination/phosphorylation. Remarkably, TRAP1 is associated with higher expression of β-catenin and several Wnt/β-catenin target genes in human CRCs, thus supporting the relevance of TRAP1 regulation of β-catenin in human pathology. This study is the first demonstration that TRAP1 regulates stemness and Wnt/β-catenin pathway in CRC and provides novel landmarks in cancer biology and therapeutics.
Collapse
Affiliation(s)
- Giacomo Lettini
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Lorenza Sisinni
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Vittorio Simeon
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Marica Gemei
- CEINGE, Biotecnologie Avanzate, University of Naples Federico II, Naples, Italy
| | - Elvira Lopes
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Giulia Vita
- Pathology Unit, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Luigi Del Vecchio
- CEINGE, Biotecnologie Avanzate, University of Naples Federico II, Naples, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy.,Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
41
|
Palladino G, Notarangelo T, Pannone G, Piscazzi A, Lamacchia O, Sisinni L, Spagnoletti G, Toti P, Santoro A, Storto G, Bufo P, Cignarelli M, Esposito F, Landriscina M. TRAP1 regulates cell cycle and apoptosis in thyroid carcinoma cells. Endocr Relat Cancer 2016; 23:699-709. [PMID: 27422900 DOI: 10.1530/erc-16-0063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 07/14/2016] [Indexed: 12/12/2022]
Abstract
Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a heat shock protein 90 (HSP90) molecular chaperone upregulated in several human malignancies and involved in protection from apoptosis and drug resistance, cell cycle progression, cell metabolism and quality control of specific client proteins. TRAP1 role in thyroid carcinoma (TC), still unaddressed at present, was investigated by analyzing its expression in a cohort of 86 human TCs and evaluating its involvement in cancer cell survival and proliferation in vitro Indeed, TRAP1 levels progressively increased from normal peritumoral thyroid gland, to papillary TCs (PTCs), follicular variants of PTCs (FV-PTCs) and poorly differentiated TCs (PDTCs). By contrast, anaplastic thyroid tumors exhibited a dual pattern, the majority being characterized by high TRAP1 levels, while a small subgroup completely negative. Consistently with a potential involvement of TRAP1 in thyroid carcinogenesis, TRAP1 silencing resulted in increased sensitivity to paclitaxel-induced apoptosis, inhibition of cell cycle progression and attenuation of ERK signaling. Noteworthy, the inhibition of TRAP1 ATPase activity by pharmacological agents resulted in attenuation of cell proliferation, inhibition of ERK signaling and reversion of drug resistance. These data suggest that TRAP1 inhibition may be regarded as potential strategy to target specific features of human TCs, i.e., cell proliferation and resistance to apoptosis.
Collapse
Affiliation(s)
- Giuseppe Palladino
- Medical Oncology UnitDepartment of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Tiziana Notarangelo
- Laboratory of Pre-Clinical and Translational ResearchIRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Potenza, Italy
| | - Giuseppe Pannone
- Anatomic Pathology UnitDepartment of Clinic and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Annamaria Piscazzi
- Medical Oncology UnitDepartment of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Olga Lamacchia
- Endocrinology UnitDepartment of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Lorenza Sisinni
- Laboratory of Pre-Clinical and Translational ResearchIRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Potenza, Italy
| | - Girolamo Spagnoletti
- Medical Oncology UnitDepartment of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Paolo Toti
- Pathology UnitDepartment of Human Pathology and Oncology, University of Siena, Siena, Italy
| | - Angela Santoro
- Institute of Histopathology and Diagnostic CytopathologyFondazione di Ricerca e Cura 'Giovanni Paolo II' UCSC, Campobasso, Italy
| | - Giovanni Storto
- Nuclear Medicine UnitIRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Potenza, Italy
| | - Pantaleo Bufo
- Anatomic Pathology UnitDepartment of Clinic and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Mauro Cignarelli
- Endocrinology UnitDepartment of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples Federico II, Naples, Italy
| | - Matteo Landriscina
- Medical Oncology UnitDepartment of Medical and Surgical Sciences, University of Foggia, Foggia, Italy Laboratory of Pre-Clinical and Translational ResearchIRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Potenza, Italy
| |
Collapse
|
42
|
Matassa DS, Amoroso MR, Lu H, Avolio R, Arzeni D, Procaccini C, Faicchia D, Maddalena F, Simeon V, Agliarulo I, Zanini E, Mazzoccoli C, Recchi C, Stronach E, Marone G, Gabra H, Matarese G, Landriscina M, Esposito F. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer. Cell Death Differ 2016; 23:1542-54. [PMID: 27206315 PMCID: PMC5072430 DOI: 10.1038/cdd.2016.39] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/07/2016] [Accepted: 03/21/2016] [Indexed: 12/14/2022] Open
Abstract
Tumour cells have long been considered defective in mitochondrial respiration and mostly dependent on glycolytic metabolism. However, this assumption is currently challenged by several lines of evidence in a growing number of tumours. Ovarian cancer (OC) is one of the most lethal cancers worldwide, but it continues to be a poorly understood disease and its metabolic features are far to be elucidated. In this context, we investigated the role of tumour necrosis factor receptor-associated protein 1 (TRAP1), which is found upregulated in several cancer types and is a key modulator of tumour cell metabolism. Surprisingly, we found that TRAP1 expression inversely correlated with grade, stage and lower survival in a large cohort of OC patients. Accordingly, TRAP1 silencing induced resistance to cisplatin, resistant cells showed increased oxidative metabolism compared with their sensitive counterpart, and the bioenergetics cellular index of higher grade tumours indicated increased mitochondrial respiration. Strikingly, cisplatin resistance was reversible upon pharmacological inhibition of mitochondrial oxidative phosphorylation by metformin/oligomycin. At molecular level, increased oxidative metabolism in low TRAP1-expressing OC cells and tissues enhanced production of inflammatory mediators such as interleukin (IL)-6 and IL-8. Mechanistically, we identified members of the multidrug resistance complex (MDR) as key mediators of such metabolism-driven, inflammation-induced process. Indeed, treatment of OC cell lines with TNFα and IL6 induced a selective increase in the expression of TAP1 and multidrug resistance protein 1, whereas TAP1 silencing sensitized cells to cisplatin-induced apoptosis. Our results unveil a novel role for TRAP1 and oxidative metabolism in cancer progression and suggest the targeting of mitochondrial bioenergetics to increase cisplatin efficacy in human OC.
Collapse
Affiliation(s)
- D S Matassa
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli 'Federico II', Napoli, Italy
| | - M R Amoroso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli 'Federico II', Napoli, Italy
| | - H Lu
- Imperial College London, Ovarian Cancer Action Research Centre, Department of Cancer and Surgery, Institute of Reproductive and Developmental Biology, London, UK
| | - R Avolio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli 'Federico II', Napoli, Italy
| | - D Arzeni
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli 'Federico II', Napoli, Italy
| | - C Procaccini
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy
| | - D Faicchia
- Dipartimento di Scienze Mediche Traslazionali, Centro Interdipartimentale di Ricerca in Scienze Immunologiche di Base Cliniche (CISI), Università di Napoli 'Federico II', Napoli, Italy
| | - F Maddalena
- Laboratorio di Ricerca Preclinica e Traslazionale, IRCCS-CROB, Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, PZ Italy
| | - V Simeon
- Laboratorio di Ricerca Preclinica e Traslazionale, IRCCS-CROB, Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, PZ Italy
| | - I Agliarulo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli 'Federico II', Napoli, Italy
| | - E Zanini
- Imperial College London, Ovarian Cancer Action Research Centre, Department of Cancer and Surgery, Institute of Reproductive and Developmental Biology, London, UK
| | - C Mazzoccoli
- Laboratorio di Ricerca Preclinica e Traslazionale, IRCCS-CROB, Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, PZ Italy
| | - C Recchi
- Imperial College London, Ovarian Cancer Action Research Centre, Department of Cancer and Surgery, Institute of Reproductive and Developmental Biology, London, UK
| | - E Stronach
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, UK
| | - G Marone
- Dipartimento di Scienze Mediche Traslazionali, Centro Interdipartimentale di Ricerca in Scienze Immunologiche di Base Cliniche (CISI), Università di Napoli 'Federico II', Napoli, Italy
| | - H Gabra
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, UK
| | - G Matarese
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli 'Federico II', Napoli, Italy
| | - M Landriscina
- Laboratorio di Ricerca Preclinica e Traslazionale, IRCCS-CROB, Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, PZ Italy.,Dipartimento di Scienze Mediche e Chirurgiche, Università degli Studi di Foggia, Foggia, Italy
| | - F Esposito
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli 'Federico II', Napoli, Italy
| |
Collapse
|
43
|
Expression of TRAP1 in gastric cancer tissue and its correlation with malignant biology. ASIAN PAC J TROP MED 2016; 9:67-71. [DOI: 10.1016/j.apjtm.2015.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/20/2015] [Accepted: 12/03/2015] [Indexed: 11/22/2022] Open
|
44
|
Overexpression of tumor necrosis factor receptor-associated protein 1 (TRAP1) are associated with poor prognosis of epithelial ovarian cancer. Tumour Biol 2015; 37:2721-7. [DOI: 10.1007/s13277-015-4112-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/20/2015] [Indexed: 01/09/2023] Open
|
45
|
Agliarulo I, Matassa DS, Amoroso MR, Maddalena F, Sisinni L, Sepe L, Ferrari MC, Arzeni D, Avolio R, Paolella G, Landriscina M, Esposito F. TRAP1 controls cell migration of cancer cells in metabolic stress conditions: Correlations with AKT/p70S6K pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2570-9. [PMID: 26071104 DOI: 10.1016/j.bbamcr.2015.05.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/14/2015] [Accepted: 05/28/2015] [Indexed: 12/17/2022]
Abstract
Cell motility is a highly dynamic phenomenon that is essential to physiological processes such as morphogenesis, wound healing and immune response, but also involved in pathological conditions such as metastatic dissemination of cancers. The involvement of the molecular chaperone TRAP1 in the regulation of cell motility, although still controversial, has been recently investigated along with some well-characterized roles in cancer cell survival and drug resistance in several tumour types. Among different functions, TRAP1-dependent regulation of protein synthesis seems to be involved in the migratory behaviour of cancer cells and, interestingly, the expression of p70S6K, a kinase responsible for translation initiation, playing a role in cell motility, is regulated by TRAP1. In this study, we demonstrate that TRAP1 silencing enhances cell motility in vitro but compromises the ability of cells to overcome stress conditions, and that this effect is mediated by the AKT/p70S6K pathway. In fact: i) inhibition of p70S6K activity specifically reduces migration in TRAP1 knock-down cells; ii) nutrient deprivation affects p70S6K activity thereby impairing cell migration only in TRAP1-deficient cells; iii) TRAP1 regulates the expression of both AKT and p70S6K at post-transcriptional level; and iii) TRAP1 silencing modulates the expression of genes involved in cell motility and epithelial-mesenchymal transition. Notably, a correlation between TRAP1 and AKT expression is found in vivo in human colorectal tumours. These results provide new insights into TRAP1 role in the regulation of cell migration in cancer cells, tumour progression and metastatic mechanisms.
Collapse
Affiliation(s)
- Ilenia Agliarulo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Lorenza Sisinni
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Leandra Sepe
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; Ceinge Biotecnologie Avanzate, Via G. Salvatore 486, 80145 Naples, Italy
| | - Maria Carla Ferrari
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; Ceinge Biotecnologie Avanzate, Via G. Salvatore 486, 80145 Naples, Italy
| | - Diana Arzeni
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Rosario Avolio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giovanni Paolella
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; Ceinge Biotecnologie Avanzate, Via G. Salvatore 486, 80145 Naples, Italy
| | - Matteo Landriscina
- Clinical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
46
|
ER stress protection in cancer cells: the multifaceted role of the heat shock protein TRAP1. ENDOPLASMIC RETICULUM STRESS IN DISEASES 2014. [DOI: 10.2478/ersc-2014-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractTRAP1 is an HSP90 chaperone, upregulated in human cancers and involved in organelles’ homeostasis and tumor cell metabolism. Indeed, TRAP1 is a key regulator of adaptive responses used by highly proliferative tumors to face the metabolic stress induced by increased demand of protein synthesis and hostile environments. Besides well-characterized roles in prevention of mitochondrial permeability transition pore opening and in regulating mitochondrial respiration, TRAP1 is involved in novel regulatory mechanisms: i) the attenuation of global protein synthesis, ii) the co-translational regulation of protein synthesis and ubiquitination of specific client proteins, and iii) the protection from Endoplasmic Reticulum stress. This provides a crucial role to TRAP1 in maintaining cellular homeostasis through protein quality control, by avoiding the accumulation of damaged or misfolded proteins and, likely, facilitating the synthesis of selective cancer-related proteins. Herein, we summarize how these regulatory mechanisms are part of an integrated network, which enables cancer cells to modulate their metabolism and to face, at the same time, oxidative and metabolic stress, oxygen and nutrient deprivation, increased demand of energy production and macromolecule biosynthesis. The possibility to undertake a new strategy to disrupt such networks of integrated control in cancer cells holds great promise for treatment of human malignancies.
Collapse
|