1
|
Lin CH, Chin Y, Zhou M, Sobol RW, Hung MC, Tan M. Protein lipoylation: mitochondria, cuproptosis, and beyond. Trends Biochem Sci 2024; 49:729-744. [PMID: 38714376 DOI: 10.1016/j.tibs.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/09/2024]
Abstract
Protein lipoylation, a crucial post-translational modification (PTM), plays a pivotal role in mitochondrial function and emerges as a key player in cell death through cuproptosis. This novel copper-driven cell death pathway is activated by excessive copper ions binding to lipoylated mitochondrial proteins, disrupting energy production and causing lethal protein aggregation and cell death. The intricate relationship among protein lipoylation, cellular energy metabolism, and cuproptosis offers a promising avenue for regulating essential cellular functions. This review focuses on the mechanisms of lipoylation and its significant impact on cell metabolism and cuproptosis, emphasizing the key genes involved and their implications for human diseases. It offers valuable insights into targeting dysregulated cellular metabolism for therapeutic purposes.
Collapse
Affiliation(s)
- Cheng-Han Lin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Yeh Chin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Ming Zhou
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Robert W Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School and Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| | - Mien-Chie Hung
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
| | - Ming Tan
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
2
|
Yan S, Lu J, Chen B, Yuan L, Chen L, Ju L, Cai W, Wu J. The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment. Antioxidants (Basel) 2024; 13:897. [PMID: 39199143 PMCID: PMC11351715 DOI: 10.3390/antiox13080897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Alpha-lipoic acid (ALA) is a naturally occurring compound synthesized by mitochondria and widely distributed in both animal and plant tissues. It primarily influences cellular metabolism and oxidative stress networks through its antioxidant properties and is an important drug for treating metabolic diseases associated with oxidative damage. Nevertheless, research indicates that the mechanism by which ALA affects cancer cells is distinct from that observed in normal cells, exhibiting pro-oxidative properties. Therefore, this review aims to describe the main chemical and biological functions of ALA in the cancer environment, including its mechanisms and effects in tumor prevention and anticancer activity, as well as its role as an adjunctive drug in cancer therapy. We specifically focus on the interactions between ALA and various carcinogenic and anti-carcinogenic pathways and discuss ALA's pro-oxidative capabilities in the unique redox environment of cancer cells. Additionally, we elaborate on ALA's roles in nanomedicine, hypoxia-inducible factors, and cancer stem cell research, proposing hypotheses and potential explanations for currently unresolved issues.
Collapse
Affiliation(s)
- Shuai Yan
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Jiajie Lu
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Bingqing Chen
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Liuxia Yuan
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Lin Chen
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Linglin Ju
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Weihua Cai
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China;
| | - Jinzhu Wu
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China;
| |
Collapse
|
3
|
Abdullah KM, Sharma G, Takkar S, Kaushal JB, Pothuraju R, Chakravarti B, Batra SK, Siddiqui JA. α-lipoic acid modulates prostate cancer cell growth and bone cell differentiation. Sci Rep 2024; 14:4404. [PMID: 38388663 PMCID: PMC10884017 DOI: 10.1038/s41598-024-54479-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Prostate cancer (PCa) progression leads to bone modulation in approximately 70% of affected men. A nutraceutical, namely, α-lipoic acid (α-LA), is known for its potent anti-cancer properties towards various cancers and has been implicated in treating and promoting bone health. Our study aimed to explore the molecular mechanism behind the role of α-LA as therapeutics in preventing PCa and its associated bone modulation. Notably, α-LA treatment significantly reduced the cell viability, migration, and invasion of PCa cell lines in a dose-dependent manner. In addition, α-LA supplementation dramatically increased reactive oxygen species (ROS) levels and HIF-1α expression, which started the downstream molecular cascade and activated JNK/caspase-3 signaling pathway. Flow cytometry data revealed the arrest of the cell cycle in the S-phase, which has led to apoptosis of PCa cells. Furthermore, the results of ALP (Alkaline phosphatase) and TRAP (tartrate-resistant acid phosphatase) staining signifies that α-LA supplementation diminished the PCa-mediated differentiation of osteoblasts and osteoclasts, respectively, in the MC3T3-E1 and bone marrow macrophages (BMMs) cells. In summary, α-LA supplementation enhanced cellular apoptosis via increased ROS levels, HIF-1α expression, and JNK/caspase-3 signaling pathway in advanced human PCa cell lines. Also, the treatment of α-LA improved bone health by reducing PCa-mediated bone cell modulation.
Collapse
Affiliation(s)
- K M Abdullah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Simran Takkar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jyoti B Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Bandana Chakravarti
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
| |
Collapse
|
4
|
Lateef Al-Awsi GR, Arshed U, Arif A, Ramírez-Coronel AA, Alhassan MS, Mustafa YF, Rahman FF, Zabibah RS, Gupta J, Iqbal MS, Iswanto AH, Farhood B. The Chemoprotective Potentials of Alpha-lipoic Acid against Cisplatin-induced Ototoxicity: A Systematic Review. Curr Med Chem 2024; 31:3588-3603. [PMID: 37165582 DOI: 10.2174/0929867330666230509162513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/08/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
PURPOSE Ototoxicity is one of the major adverse effects of cisplatin therapy which restrict its clinical application. Alpha-lipoic acid administration may mitigate cisplatin-induced ototoxicity. In the present study, we reviewed the protective potentials of alpha-lipoic acid against the cisplatin-mediated ototoxic adverse effects. METHODS Based on the PRISMA guideline, we performed a systematic search for the identification of all relevant studies in various electronic databases up to June 2022. According to the inclusion and exclusion criteria, the obtained articles (n=59) were screened and 13 eligible articles were finally included in the present study. RESULTS The findings of in-vitro experiments showed that cisplatin treatment significantly reduced the auditory cell viability in comparison with the control group; nevertheless, the alpha-lipoic acid co-administration protected the cells against the reduction of cell viability induced by cisplatin treatment. Moreover, the in-vivo results of the auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) tests revealed a decrease in DPOAE and an increase in ABR threshold of cisplatin-injected animals; however, it was shown that alpha-lipoic acid co-treatment had an opposite pattern on the evaluated parameters. Other findings demonstrated that cisplatin treatment could significantly induce the biochemical and histopathological alterations in inner ear cells/tissue; in contrast, alpha-lipoic acid co-treatment ameliorated the cisplatin-mediated biochemical and histological changes. CONCLUSION The findings of audiometry, biochemical parameters, and histological evaluation showed that alpha-lipoic acid co-administration alleviates the cisplatin-induced ototoxicity. The protective role of alpha-lipoic acid against the cisplatin-induced ototoxicity can be due to different mechanisms of anti-oxidant, anti-apoptotic, anti-inflammatory activities, and regulation of cell cycle progression.
Collapse
Affiliation(s)
| | - Uzma Arshed
- Gujranwala Medical College, Gujranwala, Pakistan
| | - Anam Arif
- Gujranwala Medical College, Gujranwala, Pakistan
| | | | - Muataz S Alhassan
- Division of Advanced Nanomaterial Technologies, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul-41001, Iraq
| | - Ferry Fadzlul Rahman
- Public Health Department, Universitas Muhammadiyah Kalimantan Timur, Samarinda, Indonesia
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U.P., India
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Acim Heri Iswanto
- Public Health Department, Faculty of Health Science, University of Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
Gómez-Sierra T, Ortega-Lozano AJ, Rojas-Morales P, Medina-Reyes EI, Barrera-Oviedo D, Pedraza-Chaverri J. Isoliquiritigenin pretreatment regulates ER stress and attenuates cisplatin-induced nephrotoxicity in male Wistar rats. J Biochem Mol Toxicol 2023; 37:e23492. [PMID: 37561086 DOI: 10.1002/jbt.23492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
Cisplatin (CP) is a chemotherapeutic drug used to treat solid tumors. However, studies have revealed its nephrotoxic effect. Oxidative stress, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction are involved in CP-induced renal damage. Thus, preconditioning (hormetic effect) of ER stress is a strategy to prevent CP-induced renal damage. On the other hand, isoliquiritigenin (IsoLQ) is recognized as a flavonoid with antioxidant properties and an inducer of ER stress. Therefore, we evaluated the ER stress-inducing capacity of IsoLQ and its possible protective effect against CP-induced nephrotoxicity in adult male Wistar rats. The findings reflected that IsoLQ pretreatment might decrease renal damage by reducing plasma creatinine and blood urea nitrogen levels in animals with CP-induced nephrotoxicity. These may be associated with IsoLQ activating ER stress and unfolded protein response (UPR). We found increased messenger RNA levels of the ER stress marker glucose-related protein 78 kDa (GRP78). In addition, we also found that pretreatment with IsoLQ reduced the levels of CCAAT/enhancer-binding protein-homologous protein (CHOP) and X-box-binding protein 1 (XBP1) in the renal cortex, reflecting that IsoLQ can regulate the UPR and activation of the apoptotic pathway. Moreover, this preconditioning with IsoLQ of ER stress had oxidative stress-regulatory effects, as it restored the activity of glutathione peroxidase and glutathione reductase enzymes. Finally, IsoLQ modifies the protein expression of mitofusin 2 (Mfn-2) and voltage-dependent anion channel (VDAC). In conclusion, these data suggest that IsoLQ pretreatment has a nephroprotective effect; it could functionally regulate the ER and mitochondria and reduce CP-induced renal damage by attenuating hormesis-mediated ER stress.
Collapse
Affiliation(s)
- Tania Gómez-Sierra
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico, Mexico
| | - Ariadna J Ortega-Lozano
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico, Mexico
| | - Pedro Rojas-Morales
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico, Mexico
| | - Estefany I Medina-Reyes
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico, Mexico
| | - Diana Barrera-Oviedo
- Department of Pharmacology, National Autonomous University of Mexico (UNAM), Mexico, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico, Mexico
| |
Collapse
|
6
|
Bai J, Chen C, Sun Y, Li S, He R, Zhang Q, Sun Q, Huang Y, Tan A, Yuan L, Huang Y, Lan Y, Han Z. α-LA attenuates microcystin-LR-induced hepatocellular oxidative stress in mice through Nrf2-mediated antioxidant and detoxifying enzymes. Toxicon 2023; 235:107313. [PMID: 37832850 DOI: 10.1016/j.toxicon.2023.107313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Microcystins constitute a class of toxins synthesized by cyanobacteria and are known to inflict significant damage on the antioxidant defense system of living organisms, primarily targeting the liver. α-Lipoic acid (α-LA) is universally recognized as a potent antioxidant in biological systems. It exerts its beneficial effects through multiple mechanisms-directly neutralizing reactive oxygen species (ROS) and free radicals, and indirectly enhancing antioxidant defenses by facilitating the regeneration of glutathione (GSH). However, the precise modus operandi of α-LA's protective effect against Microcystin-LR-induced hepatotoxicity remains incompletely elucidated. The present study, therefore, employed α-LA to explore its protective role against Microcystin-LR exposure in mice. A model of Microcystin-LR-induced hepatic injury was established by administering Microcystin-LR into the peritoneal cavity of BALB/c mice daily over a two-week period. Thereafter, BALB/c mice were pre-treated with varying concentrations of α-LA via oral gavage for a duration of 7 days, followed by a 7-day exposure to Microcystin-LR. Our findings reveal that α-LA pre-treatment significantly mitigated hepatic pathologies in Microcystin-LR-exposed mice. Furthermore, α-LA administration led to a notable elevation in the activities and expression levels of nuclear factor erythroid 2-related factor 2, superoxide dismutase, glutathione peroxidase, glutathione S-transferase, and glutathione-indicative of its antioxidative capacity. Concurrently, a significant decrease was observed in the activities and expression levels of malondialdehyde and cytochrome P450 2E1. Consequently, α-LA emerges as a promising therapeutic candidate for the amelioration of liver oxidative damage subsequent to Microcystin-LR exposure.
Collapse
Affiliation(s)
- Jun Bai
- School of Public Health, Southwest Medical University, Luzhou, 646000, China; Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China.
| | - Chaoyun Chen
- School of Public Health, Southwest Medical University, Luzhou, 646000, China.
| | - Yaochuan Sun
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 404100, China
| | - Shangchun Li
- School of Public Health, Southwest Medical University, Luzhou, 646000, China; Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Renjiang He
- School of Public Health, Southwest Medical University, Luzhou, 646000, China; Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Qingbi Zhang
- School of Public Health, Southwest Medical University, Luzhou, 646000, China; Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China.
| | - Qian Sun
- Luzhou Ecological Environment Monitoring Center of Sichuan Province, Luzhou, 646000, China
| | - Yu Huang
- School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Ailin Tan
- School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Li Yuan
- School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Yinxing Huang
- School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Yuanyuan Lan
- School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Zhixia Han
- School of Public Health, Southwest Medical University, Luzhou, 646000, China; Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
7
|
Celik A, Bakar-Ates F. Alpha-lipoic acid induced apoptosis of PC3 prostate cancer cells through an alteration on mitochondrial membrane depolarization and MMP-9 mRNA expression. Med Oncol 2023; 40:244. [PMID: 37453954 DOI: 10.1007/s12032-023-02113-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Cancer has become an important cause of mortality and morbidity in the world. Over the past decades, biomedical research revealed insights into the molecular events and signaling pathways involved in carcinogenesis and cancer progression. Matrix metalloproteinases (MMPs) are a diverse family of enzymes that can degrade various components of the extracellular matrix and are considered as potential diagnostic and prognostic biomarkers for many cancer types and cancer stages. Recently, studies on the role of natural-origin active substances in the prevention of cancer development gained importance. Among them, the α-lipoic acid, which is commonly found in plants, displayed potent anti-proliferative effects on cancer cell lines. However, the effect of the compound on the induction of apoptosis and mRNA expression of MMPs in human prostate cancer cells remains unclear. The present study aimed to evaluate the anti-proliferative and apoptotic activity of α-lipoic acid in human PC3 prostate carcinoma cells considering different concentrations and exposure durations. The findings showed that, α-lipoic acid significantly decreased PC3 cell viability with an IC50 value of 1.71 mM at 48 h (p < 0.05). Additionally, the compound significantly increased Annexin-V binding in cells compared to control and induced a significant alteration in mitochondrial membrane potential and caspase levels (p < 0.05). Furhermore, the RT-PCR analyses have revealed that α-lipoic acid reduced MMP-9 mRNA expression in PC3 cells compared to the control (p < 0.05). In conclusion, this study highlights that α-lipoic acid induced apoptosis in human PC3 prostate cancer cells and inhibited the MMP-9 gene at the mRNA level, which is known to play a role in metastasis development.
Collapse
Affiliation(s)
- Aybuke Celik
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Anadolu, 06560, Ankara, Turkey
| | - Filiz Bakar-Ates
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Anadolu, 06560, Ankara, Turkey.
| |
Collapse
|
8
|
Zhu H, Yip HC, Cheung MK, Chan HC, Ng C, Lau EHL, Yeung ZWC, Wong EWY, Leung L, Qu X, Wang D, Cai L, Chan PKS, Chan JYK, Chen Z. Convergent dysbiosis of upper aerodigestive microbiota between patients with esophageal and oral cavity squamous cell carcinoma. Int J Cancer 2023; 152:1903-1915. [PMID: 36752573 DOI: 10.1002/ijc.34460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/09/2023]
Abstract
The bidirectional association between primary esophageal squamous cell carcinoma (ESCC) and oral cavity squamous cell carcinoma (OSCC) suggests common risk factors and oncogenic molecular processes but it is unclear whether these two cancers display similar patterns of dysbiosis in their upper aerodigestive microbiota (UADM). We conducted a case-control study to characterize the microbial communities in esophageal lavage samples from 49 ESCC patients and oral rinse samples from 91 OSCC patients using 16S rRNA V3-V4 amplicon sequencing. Compared with their respective non-SCC controls from the same anatomical sites, 32 and 45 discriminative bacterial genera were detected in ESCC and OSCC patients, respectively. Interestingly, 20 of them were commonly enriched or depleted in both types of cancer, suggesting a convergent niche adaptation of upper aerodigestive SCC-associated bacteria that may play important roles in the pathogenesis of malignancies. Notably, Fusobacterium, Selenomonas, Peptoanaerobacter and Peptostreptococcus were enriched in both ESCC and OSCC, whereas Streptococcus and Granulicatelia were commonly depleted. We further identified Fusobacterium nucleatum as the most abundant species enriched in the upper aerodigestive SCC microenvironment, and the higher relative abundances of Selenomonas danae and Treponema maroon were positively correlated with smoking. In addition, predicted functional analysis revealed several depleted (eg, lipoic acid and pyruvate metabolism) and enriched (eg, RNA polymerase and nucleotide excision repair) pathways common to both cancers. Our findings reveal a convergent dysbiosis in the UADM between patients with ESCC and OSCC, suggesting a shared niche adaptation of host-microbiota interactions in the pathogenesis of upper aerodigestive tract malignancies.
Collapse
Affiliation(s)
- Hengyan Zhu
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hon Chi Yip
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Man Kit Cheung
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hiu Ching Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Cherrie Ng
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Eric H L Lau
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zenon W C Yeung
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Eddy W Y Wong
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Leanne Leung
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xinyu Qu
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Daijuanru Wang
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Liuyang Cai
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Paul K S Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jason Y K Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zigui Chen
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
The effects of lipoic acid on respiratory diseases. Int Immunopharmacol 2023; 116. [PMCID: PMC9933494 DOI: 10.1016/j.intimp.2023.109713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Respiratory diseases, including lung cancer, pulmonary fibrosis, asthma, and the recently emerging fatal coronavirus disease-19 (COVID-19), are the leading causes of illness and death worldwide. The increasing incidence and mortality rates have attracted much attention to the prevention and treatment of these conditions. Lipoic acid (LA), a naturally occurring organosulfur compound, is not only essential for mitochondrial aerobic metabolism but also shows therapeutic potential via certain pharmacological effects (e.g., antioxidative and anti-inflammatory effects). In recent years, accumulating evidence (animal experiments and in vitro studies) has suggested a role of LA in ameliorating many respiratory diseases (e.g., lung cancer, fibrosis, asthma, acute lung injury and smoking-induced lung injury). Therefore, this review will provide an overview of the present investigational evidence on the therapeutic effect of LA against respiratory diseases in vitro and in vivo. We also summarize the corresponding mechanisms of action to inspire further basic studies and clinical trials to confirm the health benefits of LA in the context of respiratory diseases.
Collapse
Key Words
- lipoic acid
- respiratory diseases
- antioxidation
- anti-inflammatory effects
- mechanism of action
- akt, protein kinase b;
- aif, apoptosis-inducing factor;
- ampk, adenosine monophosphate-activated protein kinase;
- α-sma, alpha-smooth muscle actin;
- bcl-2, b-cell lymphoma 2;
- cox-2, cyclooxygenase-2;
- dna, deoxyribonucleic acid;
- er, endoplasmic reticulum;
- erk, extracellular-regulated kinase;
- egfr, epidermal growth factor receptor;
- gr, glutathione reductase;
- gpx, glutathione peroxidase;
- grb2, growth factor receptor-bound protein 2;
- gsh, reduced glutathione;
- gssg, oxidized glutathione;
- hif, hypoxia-inducible factor;
- ho-1, heme oxygenase 1;
- keap-1, kelch-like ech-associated protein 1;
- ig-e, immunoglobulin e;
- il, interleukin
- oct-4, octamer-binding transcription factor 4;
- parp-1, poly (adp-ribose) polymerase-1;
- pdk1, phosphoinositide-dependent kinase-1;
- pdh, pyruvate dehydrogenase;
- pi3k, phosphoinositide 3-kinase;
- pge2, prostaglandin e2;
- pgc1α, peroxisome proliferator-activated receptor‑γ co-activator 1α;
- p70s6k, p70 ribosomal protein s6 kinase;
- fak, focal adhesion kinase;
- sod, superoxide dismutase;
- mapk, mitogen-activated protein kinase;
- mtor, mammalian target of rapamycin;
- nf-κb, nuclear factor-kappa b;
- no, nitric oxide;
- nox-4, nicotinamide adenine dinucleotide phosphate (nadph) oxidase-4;
- nqo1, nadph quinone oxidoreductase 1;
- tnf-α, tumor necrosis factor-α;
- tgf-β1, transforming growth factor beta-1;
- vegf, vascular endothelial growth factor;
Collapse
|
10
|
Wang J, Luo Z, Lin L, Sui X, Yu L, Xu C, Zhang R, Zhao Z, Zhu Q, An B, Wang Q, Chen B, Leung ELH, Wu Q. Anoikis-Associated Lung Cancer Metastasis: Mechanisms and Therapies. Cancers (Basel) 2022; 14:cancers14194791. [PMID: 36230714 PMCID: PMC9564242 DOI: 10.3390/cancers14194791] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 12/08/2022] Open
Abstract
Simple Summary Anoikis is a programmed cell death process resulting from the loss of interaction between cells and the extracellular matrix. Therefore, it is necessary to overcome anoikis when tumor cells acquire metastatic potential. In lung cancer, the composition of the extracellular matrix, cell adhesion-related membrane proteins, cytoskeletal regulators, and epithelial–mesenchymal transition are involved in the process of anoikis, and the initiation of apoptosis signals is a critical step in anoikis. Inversely, activation of growth signals counteracts anoikis. This review summarizes the regulators of lung cancer-related anoikis and explores potential drug applications targeting anoikis. Abstract Tumor metastasis occurs in lung cancer, resulting in tumor progression and therapy failure. Anoikis is a mechanism of apoptosis that combats tumor metastasis; it inhibits the escape of tumor cells from the native extracellular matrix to other organs. Deciphering the regulators and mechanisms of anoikis in cancer metastasis is urgently needed to treat lung cancer. Several natural and synthetic products exhibit the pro-anoikis potential in lung cancer cells and in vivo models. These products include artonin E, imperatorin, oroxylin A, lupalbigenin, sulforaphane, renieramycin M, avicequinone B, and carbenoxolone. This review summarizes the current understanding of the molecular mechanisms of anoikis regulation and relevant regulators involved in lung cancer metastasis and discusses the therapeutic potential of targeting anoikis in the treatment of lung cancer metastasis.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Zhijie Luo
- The First Clinical Medical College, The First Hospital Affiliated, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Lizhu Lin
- The First Clinical Medical College, The First Hospital Affiliated, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xinbing Sui
- School of Pharmacy, Department of Medical Oncology, Hangzhou Normal University, Hangzhou 311121, China
| | - Lili Yu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Cong Xu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Ruonan Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Qianru Zhu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Bo An
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Qiao Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Bi Chen
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China
- Correspondence: (E.L.-H.L.); (Q.W.)
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong University of Technology, Guangzhou 510006, China
- Zhuhai MUST Science and Technology Research Institute, Zhuhai 519031, China
- Correspondence: (E.L.-H.L.); (Q.W.)
| |
Collapse
|
11
|
Choi HS, Kim JH, Jang SJ, Yun JW, Kang KM, Jeong H, Ha IB, Jeong BK. Synergistic Tumoricidal Effects of Alpha-Lipoic Acid and Radiotherapy on Human Breast Cancer Cells via HMGB1. Cancer Res Treat 2021; 53:685-694. [PMID: 33321563 PMCID: PMC8291200 DOI: 10.4143/crt.2020.1015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/13/2020] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Radiotherapy (RT) is one of main strategies of cancer treatment. However, some cancer cells are resistant to radiation-induced cell death, including apoptosis. Therefore, alternative approaches targeting different anti-tumor mechanisms such as cell senescence are required. This study aimed to investigate the synergistic effect of alpha-lipoic acid (ALA) on radiation-induced cell death and senescence in MDA-MB-231 human breast cancer cells. MATERIALS AND METHODS The cells were divided into four groups depending on the cell treatment (control, ALA, RT, and ALA+RT). Cells were analyzed for morphology, apoptotic cell death, mitochondrial reactive oxygen species, membrane potential, cellular senescence, and cell cycle. RESULTS Our data showed that ALA significantly promoted apoptotic cell death when combined with RT, as reflected by Annexin V staining, expression of apoptosis-related factors, mitochondrial damages as well as cell morphological changes and reduction of cell numbers. In addition, ALA significantly enhanced radiation-induced cellular senescence, which was shown by increased HMGB1 expression in the cytosol fraction compared to the control, increased p53 expression compared to the control, activation of p38 as well as nuclear factor кB, and G2/M cell cycle arrest. CONCLUSION The current study is the first report showing a new mode of action (senescence induction) of ALA beyond apoptotic cell death in MDA-MB-231 cancer cells known to be resistant to RT.
Collapse
Affiliation(s)
- Hoon Sik Choi
- Department of Radiation Oncology, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon, Korea
- Institute of Health Science, Gyeongsang National University, Jinju, Korea
| | - Jin Hyun Kim
- Institute of Health Science, Gyeongsang National University, Jinju, Korea
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, Korea
| | - Si Jung Jang
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, Korea
| | - Jeong Won Yun
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, Korea
| | - Ki Mun Kang
- Department of Radiation Oncology, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon, Korea
- Institute of Health Science, Gyeongsang National University, Jinju, Korea
| | - Hojin Jeong
- Institute of Health Science, Gyeongsang National University, Jinju, Korea
- Department of Radiation Oncology, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, Korea
| | - In Bong Ha
- Institute of Health Science, Gyeongsang National University, Jinju, Korea
- Department of Radiation Oncology, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Bae Kwon Jeong
- Institute of Health Science, Gyeongsang National University, Jinju, Korea
- Department of Radiation Oncology, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, Korea
| |
Collapse
|
12
|
Chemosensitizing activity of peptide from Lentinus squarrosulus (Mont.) on cisplatin-induced apoptosis in human lung cancer cells. Sci Rep 2021; 11:4060. [PMID: 33603033 PMCID: PMC7892851 DOI: 10.1038/s41598-021-83606-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
The limitations of cisplatin, a standard chemotherapy for lung cancer, have been documented with serious adverse effects and drug resistance. To address the need for novel therapy, this study firstly reveals the potential of peptide from Lentinus squarrosulus (Mont.) as a chemotherapeutic adjuvant for cisplatin treatment. The purified peptide from L. squarrosulus aqueous extracts was obtained after eluting with 0.4 M NaCl through FPLC equipped with anion exchange column. Preincubation for 24 h with 5 µg/mL of the peptide at prior to treatment with 5 µM cisplatin significantly diminished %cell viability in various human lung cancer cells but not in human dermal papilla and proximal renal cells. Flow cytometry indicated the augmentation of cisplatin-induced apoptosis in lung cancer cells pretreated with peptide from L. squarrosulus. Preculture with the peptide dramatically inhibited colony formation in lung cancer cells derived after cisplatin treatment. Strong suppression on integrin-mediated survival was evidenced with the diminution of integrins (β1, β3, β5, α5, αV) and down-stream signals (p-FAK/FAK, p-Src/Src, p-Akt/Akt) consequence with alteration of p53, Bax, Blc-2 and Mcl-1 in cisplatin-treated lung cancer cells preincubated with peptide from L. squarrosulus. These results support the development of L. squarrosulus peptide as a novel combined chemotherapy with cisplatin for lung cancer treatment.
Collapse
|
13
|
Dakal TC. SARS-CoV-2 attachment to host cells is possibly mediated via RGD-integrin interaction in a calcium-dependent manner and suggests pulmonary EDTA chelation therapy as a novel treatment for COVID 19. Immunobiology 2021; 226:152021. [PMID: 33232865 PMCID: PMC7642744 DOI: 10.1016/j.imbio.2020.152021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/18/2020] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 is a highly contagious virus that has caused serious health crisis world-wide resulting into a pandemic situation. As per the literature, the SARS-CoV-2 is known to exploit humanACE2 receptors (similar toprevious SARS-CoV-1) for gaining entry into the host cell for invasion, infection, multiplication and pathogenesis. However, considering the higher infectivity of SARS-CoV-2 along with the complex etiology and pathophysiological outcomes seen in COVID-19 patients, it seems that there may be an alternate receptor for SARS-CoV-2. I performed comparative protein sequence analysis, database based gene expression profiling, bioinformatics based molecular docking using authentic tools and techniques for unveiling the molecular basis of high infectivity of SARS-CoV-2 as compared to previous known coronaviruses. My study revealed that SARS-CoV-2 (previously known as 2019-nCoV) harbors a RGD motif in its receptor binding domain (RBD) and the motif is absent in all other previously known SARS-CoVs. The RGD motif is well known for its role in cell-attachment and cell-adhesion. My hypothesis is that the SARS-CoV-2 may be (via RGD) exploiting integrins, that have high expression in lungs and all other vital organs, for invading host cells. However, an experimental verification is required. The expression of ACE2, which is a known receptor for SARS-CoV-2, was found to be negligible in lungs. I assume that higher infectivity of SARS-CoV-2 could be due to this RGD-integrin mediated acquired cell-adhesive property. Gene expression profiling revealed that expression of integrins is significantly high in lung cells, in particular αvβ6, α5β1, αvβ8 and an ECM protein, ICAM1. The molecular docking experiment showed the RBD of spike protein binds with integrins precisely at RGD motif in a similar manner as a synthetic RGD peptide binds to integrins as found by other researchers. SARS-CoV-2 spike protein has a number of phosphorylation sites that can induce cAMP, PKC, Tyr signaling pathways. These pathways either activate calcium ion channels or get activated by calcium. In fact, integrins have calcium & metal binding sites that were predicted around and in vicinity of RGD-integrin docking site in our analysis which suggests that RGD-integrins interaction possibly occurs in calcium-dependent manner. The higher expression of integrins in lungs along with their previously known high binding affinity (~KD = 4.0 nM) for virus RGD motif could serve as a possible explanation for high infectivity of SARS-CoV-2. On the contrary, human ACE2 has lower expression in lungs and its high binding affinity (~KD = 15 nM) for spike RBD alone could not manifest significant virus-host attachment. This suggests that besides human ACE2, an additional or alternate receptor for SARS-CoV-2 is likely to exist. A highly relevant evidence never reported earlier which corroborate in favor of RGD-integrins mediated virus-host attachment is an unleashed cytokine storm which causes due to activation of TNF-α and IL-6 activation; and integrins role in their activation is also well established. Altogether, the current study has highlighted possible role of calcium and other divalent ions in RGD-integrins interaction for virus invasion into host cells and suggested that lowering divalent ion in lungs could avert virus-host cells attachment.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India.
| |
Collapse
|
14
|
Tripathi RKP, Ayyannan SR. Emerging chemical scaffolds with potential SHP2 phosphatase inhibitory capabilities - A comprehensive review. Chem Biol Drug Des 2020; 97:721-773. [PMID: 33191603 DOI: 10.1111/cbdd.13807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
The drug discovery panorama is cluttered with promising therapeutic targets that have been deserted because of inadequate authentication and screening failures. Molecular targets formerly tagged as "undruggable" are nowadays being more cautiously cross-examined, and whilst they stay intriguing, numerous targets are emerging more accessible. Protein tyrosine phosphatases (PTPs) excellently exemplifies a class of molecular targets that have transpired as druggable, with several small molecules and antibodies recently turned available for further development. In this respect, SHP2, a PTP, has emerged as one of the potential targets in the current pharmacological research, particularly for cancer, due to its critical role in various signalling pathways. Recently, few molecules with excellent potency have entered clinical trials, but none could reach the clinic. Consequently, search for novel, non-toxic, and specific SHP2 inhibitors are on purview. In this review, general aspects of SHP2 including its structure and mechanistic role in carcinogenesis have been presented. It also sheds light on the development of novel molecular architectures belonging to diverse chemical classes that have been proposed as SHP2-specific inhibitors along with their structure-activity relationships (SARs), stemming from chemical, mechanism-based and computer-aided studies reported since January 2015 to July 2020 (excluding patents), focusing on their potency and selectivity. The encyclopedic facts and discussions presented herein will hopefully facilitate researchers to design new ligands with better efficacy and selectivity against SHP2.
Collapse
Affiliation(s)
- Rati Kailash Prasad Tripathi
- Department of Pharmaceutical Science, Sushruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar, Assam, India.,Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
15
|
Alpha-lipoic acid protects against pressure overload-induced heart failure via ALDH2-dependent Nrf1-FUNDC1 signaling. Cell Death Dis 2020; 11:599. [PMID: 32732978 PMCID: PMC7393127 DOI: 10.1038/s41419-020-02805-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
Alpha-lipoic acid (α-LA), a well-known antioxidant, was proved to active ALDH2 in nitrate tolerance and diabetic animal model. However, the therapeutic advantage of α-LA for heart failure and related signaling pathway have not been explored. This study was designed to examine the role of α-LA–ALDH2 in heart failure injury and mitochondrial damage. ALDH2 knockout (ALDH2−/−) mice and primary neonatal rat cardiomyocytes (NRCMs) were subjected to assessment of myocardial function and mitochondrial autophagy. Our data demonstrated α-LA significantly reduced the degree of TAC-induced LV hypertrophy and dysfunction in wild-type mice, not in ALDH2−/− mice. In molecular level, α-LA significantly restored ALDH2 activity and expression as well as increased the expression of a novel mitophagy receptor protein FUNDC1 in wild-type TAC mice. Besides, we confirmed that ALDH2 which was activated by α-LA governed the activation of Nrf1–FUNDC1 cascade. Our data suggest that α-LA played a positive role in protecting the heart against adverse effects of chronic pressure overload.
Collapse
|
16
|
Protective Effect of Alpha-Lipoic Acid on Salivary Dysfunction in a Mouse Model of Radioiodine Therapy-Induced Sialoadenitis. Int J Mol Sci 2020; 21:ijms21114136. [PMID: 32531940 PMCID: PMC7312690 DOI: 10.3390/ijms21114136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 11/17/2022] Open
Abstract
Radioiodine (RI) therapy is known to cause salivary gland (SG) dysfunction. The effects of antioxidants on RI-induced SG damage have not been well described. This study was performed to investigate the radioprotective effects of alpha lipoic acid (ALA) administered prior to RI therapy in a mouse model of RI-induced sialadenitis. Four-week-old female C57BL/6 mice were divided into four groups (n = 10 per group): group I, normal control; group II, ALA alone (100 mg/kg); group III, RI alone (0.01 mCi/g body weight, orally); and group IV, ALA + RI (ALA at 100 mg/kg, 24 h and 30 min before RI exposure at 0.01 mCi/g body weight). The animals in these groups were divided into two subgroups and euthanized at 30 or 90 days post-RI treatment. Changes in salivary 99mTc pertechnetate uptake and excretion were tracked by single-photon emission computed tomography. Salivary histological examinations and TUNEL assays were performed. The 99mTc pertechnetate excretion level recovered in the ALA treatment group. Salivary epithelial (aquaporin 5) cells of the ALA + RI group were protected from RI damage. The ALA + RI group exhibited more mucin-containing parenchyma and less fibrotic tissues than the RI only group. Fewer apoptotic cells were observed in the ALA + RI group compared to the RI only group. Pretreatment with ALA before RI therapy is potentially beneficial in protecting against RI-induced salivary dysfunction.
Collapse
|
17
|
Wang MM, Xue XL, Sheng XX, Su Y, Kong YQ, Qian Y, Bao JC, Su Z, Liu HK. Unveiling the anti-cancer mechanism for half-sandwich and cyclometalated Ir(iii)-based complexes with functionalized α-lipoic acid. RSC Adv 2020; 10:5392-5398. [PMID: 35498295 PMCID: PMC9049077 DOI: 10.1039/c9ra10357k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/19/2020] [Indexed: 12/18/2022] Open
Abstract
The introduction of LA improved the anticancer activity of the complex and helped overcome the cisplatin-resistance.
Collapse
Affiliation(s)
- Meng-Meng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- China
| | - Xu-Ling Xue
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- China
| | - Xi-Xi Sheng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- China
| | - Ya-Qiong Kong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- China
| | - Yong Qian
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- China
| | - Jian-Chun Bao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- China
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- China
| | - Hong-Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- China
| |
Collapse
|
18
|
Dietary Fucoxanthin Induces Anoikis in Colorectal Adenocarcinoma by Suppressing Integrin Signaling in a Murine Colorectal Cancer Model. J Clin Med 2019; 9:jcm9010090. [PMID: 31905803 PMCID: PMC7019251 DOI: 10.3390/jcm9010090] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
Fucoxanthin (Fx), abundantly contained in edible brown algae, is a carotenoid with strong anti-cancer potential. Anoikis is an anchor-dependent apoptosis particularly related to integrin signaling, and a target for cancer preventive strategies. We recently demonstrated that Fx prevented colon cancer in azoxymethane-dextrane sodium sulfate (AOM/DSS) carcinogenic model mice, and that it increased anoikis-like integrin β1low/-/cleaved caspase-3high cells in colonic mucosal crypts. However, an induction mechanism of anoikis by Fx in adenocarcinoma tissue remains unresolved. Thus, we investigated anoikis in colonic adenocarcinoma in AOM/DSS mice. Fx administration (30 mg/kg body weight) significantly suppressed the incidence and multiplicity of colonic adenocarcinoma in AOM/DSS mice. A number of anoikis-like integrin β1low/-/cleaved caspase-3high cells in colonic adenocarcinoma and mucosal crypts were significantly increased, 8.3- and 3.5-fold in the Fx group compared with those of the control group, respectively. The results indicated the increase of anoikis-like cells occurred more strongly in colonic adenocarcinoma than in colonic mucosal crypts. In addition, integrin β1 expression, and pFAK (Tyr397) and pPaxillin (Tyr31) activation in mucosal tissue decreased 0.7-, 0.5- and 0.6-fold by Fx administration, respectively. The results suggest that Fx induces anoikis in colonic adenocarcinoma developed by AOM/DSS treatment through attenuation of integrin signaling.
Collapse
|
19
|
Farhat D, Lincet H. Lipoic acid a multi-level molecular inhibitor of tumorigenesis. Biochim Biophys Acta Rev Cancer 2019; 1873:188317. [PMID: 31669587 DOI: 10.1016/j.bbcan.2019.188317] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/09/2019] [Accepted: 09/24/2019] [Indexed: 12/27/2022]
Abstract
We discuss how lipoic acid (LA), a natural antioxidant, induces apoptosis and inhibits proliferation, EMT, metastasis and stemness of cancer cells. Furthermore, owing to its ability to reduce chemotherapy-induced side effects and chemoresistance, LA appears to be a promising compound for cancer treatment.
Collapse
Affiliation(s)
- D Farhat
- Université Lyon 1, Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France; Department of Chemistry-Biochemistry, Laboratory of Cancer Biology and Molecular Immunology, EDST-PRASE, Lebanese University, Faculty of Sciences, Hadath- Beirut, Lebanon
| | - H Lincet
- Université Lyon 1, Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France; ISPB, Faculté de Pharmacie, Lyon, France.
| |
Collapse
|
20
|
Lipoic Acid Synergizes with Antineoplastic Drugs in Colorectal Cancer by Targeting p53 for Proteasomal Degradation. Cells 2019; 8:cells8080794. [PMID: 31366086 PMCID: PMC6721634 DOI: 10.3390/cells8080794] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/17/2019] [Accepted: 07/20/2019] [Indexed: 12/14/2022] Open
Abstract
Lipoic acid (LA) is a redox-active disulphide compound, which functions as a pivotal co-factor for mitochondrial oxidative decarboxylation. LA and chemical derivatives were shown to target mitochondria in cancer cells with altered energy metabolism, thereby inducing cell death. In this study, the impact of LA on the tumor suppressor protein p53 was analyzed in various colorectal cancer (CRC) cell lines, with a focus on the mechanisms driving p53 degradation. First, LA was demonstrated to trigger the depletion of both wildtype and mutant p53 protein in all CRC cells tested without influencing its gene expression and preceded LA-triggered cytotoxicity. Depletion of p53 coincided with a moderate, LA-dependent ROS production, but was not rescued by antioxidant treatment. LA induced the autophagy receptor p62 and differentially modulated autophagosome formation in CRC cells. However, p53 degradation was not mediated via autophagy as shown by chemical inhibition and genetic abrogation of autophagy. LA treatment also stabilized and activated the transcription factor Nrf2 in CRC cells, which was however dispensable for p53 degradation. Mechanistically, p53 was found to be readily ubiquitinylated and degraded by the proteasomal machinery following LA treatment, which did not involve the E3 ubiquitin ligase MDM2. Intriguingly, the combination of LA and anticancer drugs (doxorubicin, 5-fluorouracil) attenuated p53-mediated stabilization of p21 and resulted in synergistic killing in CRC cells in a p53-dependant manner.
Collapse
|
21
|
Alphalipoic Acid Prevents Oxidative Stress and Peripheral Neuropathy in Nab-Paclitaxel-Treated Rats through the Nrf2 Signalling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3142732. [PMID: 30881589 PMCID: PMC6387730 DOI: 10.1155/2019/3142732] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/20/2018] [Accepted: 12/03/2018] [Indexed: 01/13/2023]
Abstract
Peripheral neuropathy is the major dose-limiting side effect of paclitaxel (PTX), affecting both the quality of life and the survival of cancer patients. Nab-paclitaxel (nab-PTX) was developed to provide additional clinical benefits and overcome the safety drawbacks of solvent-based PTX. However, the prevalence of peripheral neuropathy induced by nab-PTX was reported higher than that induced by solvent-based PTX. Upon investigation, oxidative stress plays a major role in the toxicity of nab-PTX. In order to assess if the antioxidant alphalipoic acid (α-LA) could prevent the nab-PTX-induced peripheral neuropathy, Sprague-Dawley (SD) rats were treated with three doses of α-LA (15, 30, and 60 mg/kg in normal saline, i.p., q.d. (days 1-30)) and/or nab-PTX (7.4 mg/kg in normal saline, i.v., q.w. (days 8, 15, and 22)). Body weight and peripheral neuropathy were measured and assessed regularly during the study. The assessment of peripheral neuropathy was performed by the von Frey and acetone tests. A tumor xenograft model of pancreatic cancer was used to assess the impact of α-LA on the antitumor effect of nab-PTX. Results showed that α-LA significantly ameliorated the peripheral neuropathy induced by nab-PTX (p < 0.05) without promoting tumor growth or reducing the chemotherapeutic effect of nab-PTX in a tumor xenograft model. Moreover, α-LA might significantly reverse the superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) levels altered by nab-PTX in the serum and the spinal cord of rats. Furthermore, α-LA could reverse the mRNA and protein expressions of Nrf2 (nuclear factor erythroid 2-related factor 2) and three Nrf2-responsive genes (HO-1, γ-GCLC, and NQO1) altered by nab-PTX in the dorsal root ganglion (DRG) of rats. In conclusion, our study suggests that α-LA could prevent oxidative stress and peripheral neuropathy in nab-PTX-treated rats through the Nrf2 signalling pathway without diminishing chemotherapeutic effect.
Collapse
|
22
|
Gómez-Sierra T, Eugenio-Pérez D, Sánchez-Chinchillas A, Pedraza-Chaverri J. Role of food-derived antioxidants against cisplatin induced-nephrotoxicity. Food Chem Toxicol 2018; 120:230-242. [DOI: 10.1016/j.fct.2018.07.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/22/2018] [Accepted: 07/06/2018] [Indexed: 12/21/2022]
|
23
|
Prateep A, Sumkhemthong S, Karnsomwan W, De-Eknamkul W, Chamni S, Chanvorachote P, Chaotham C. Avicequinone B sensitizes anoikis in human lung cancer cells. J Biomed Sci 2018; 25:32. [PMID: 29631569 PMCID: PMC5890350 DOI: 10.1186/s12929-018-0435-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/03/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND During metastasis, cancer cells require anokis resistant mechanism to survive until reach the distant secondary tissues. As anoikis sensitization may benefit for cancer therapy, this study demonstrated the potential of avicequinone B, a natural furanonaphthoquinone found in mangrove tree (Avicenniaceae) to sensitize anoikis in human lung cancer cells. METHODS Anoikis inducing effect was investigated in human lung cancer H460, H292 and H23 cells that were cultured in ultra-low attachment plate with non-cytotoxic concentrations of avicequinone B. Viability of detached cells was evaluated by XTT assay at 0-24 h of incubation time. Soft agar assay was performed to investigate the inhibitory effect of avicequinone B on anchorage-independent growth. The alteration of anoikis regulating molecules including survival and apoptosis proteins were elucidated by western blot analysis. RESULTS Avicequinone B at 4 μM significantly induced anoikis and inhibited proliferation under detachment condition in various human lung cancer cells. The reduction of anti-apoptotic proteins including anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) and myeloid cell leukemia 1 (Mcl-1) associating with the diminution of integrin/focal adhesion kinase (FAK)/Proto-oncogene tyrosine-protein kinase (Src) signals were detected in avicequinone B-treated cells. CONCLUSIONS Avicequinone B sensitized anoikis in human lung cancer cells through down-regulation of anti-apoptosis proteins and integrin-mediated survival signaling.
Collapse
Affiliation(s)
- Arisara Prateep
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Somruethai Sumkhemthong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wiranpat Karnsomwan
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 10330, Bangkok, Thailand
| | - Wanchai De-Eknamkul
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 10330, Bangkok, Thailand
| | - Supakarn Chamni
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 10330, Bangkok, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand. .,Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand. .,Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
24
|
Petpiroon N, Sritularak B, Chanvorachote P. Phoyunnanin E inhibits migration of non-small cell lung cancer cells via suppression of epithelial-to-mesenchymal transition and integrin αv and integrin β3. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:553. [PMID: 29284478 PMCID: PMC5747023 DOI: 10.1186/s12906-017-2059-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/12/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND The conversion of the epithelial phenotype of cancer cells into cells with a mesenchymal phenotype-so-called epithelial-mesenchymal transition (EMT)-has been shown to enhance the capacity of the cells to disseminate throughout the body. EMT is therefore becoming a potential target for anti-cancer drug discovery. Here, we showed that phoyunnanin E, a compound isolated from Dendrobium venustum, possesses anti-migration activity and addressed its mechanism of action. METHODS The cytotoxic and proliferative effects of phoyunnanin E on human non-small cell lung cancer-derived H460, H292, and A549 cells and human keratinocyte HaCaT cells were investigated by MTT assay. The effect of phoyunnanin E on EMT was evaluated by determining the colony formation and EMT markers. The migration and invasion of H460, H292, A549 and HaCaT cells was evaluated by wound healing assay and transwell invasion assay, respectively. EMT markers, integrins and migration-associated proteins were examined by western blot analysis. RESULTS Phoyunnanin E at the concentrations of 5 and 10 μM, which are non-toxic to H460, H292, A549 and HaCaT cells showed good potential to inhibit the migratory activity of three types of human lung cancer cells. The anti-migration effect of phoyunnanin E was shown to relate to the suppressed EMT phenotypes, including growth in anchorage-independent condition, cell motility, and EMT-specific protein markers (N-cadherin, vimentin, slug, and snail). In addition to EMT suppression, we found that phoyunnanin E treatment with 5 and 10 μM could decrease the cellular level of integrin αv and integrin β3, these integrins are frequently up-regulated in highly metastatic tumor cells. We further characterized the regulatory proteins in cell migration and found that the cells treated with phoyunnanin E exhibited a significantly lower level of phosphorylated focal adhesion kinase (p-FAK) and phosphorylated ATP-dependent tyrosine kinase (p-AKT), and their downstream effectors (including Ras-related C3 botulinum (Rac-GTP); Cell division cycle 42 (Cdc42); and Ras homolog gene family, member A (Rho-GTP)) in comparison to those of the non-treated control. CONCLUSIONS We have determined for the first time that phoyunnanin E could inhibit the motility of lung cancer cells via the suppression of EMT and metastasis-related integrins. This new information could support further development of this compound for anti-metastasis approaches.
Collapse
|
25
|
Liu J, Song Q, Huang Y, Sun W, Lu D, Zhou B. R-lipoic acid overdosing affects platelet life span via ROS mediated autophagy. Platelets 2017; 29:695-701. [DOI: 10.1080/09537104.2017.1356450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jing Liu
- Jiangsu Center for Safety Evaluation of Drugs, Jiangsu Province Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Qingqing Song
- Jiangsu Center for Safety Evaluation of Drugs, Jiangsu Province Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Yanwei Huang
- Jiangsu Center for Safety Evaluation of Drugs, Jiangsu Province Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Wu Sun
- Jiangsu Center for Safety Evaluation of Drugs, Jiangsu Province Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Dingqiang Lu
- Jiangsu Center for Safety Evaluation of Drugs, Jiangsu Province Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Bo Zhou
- Jiangsu Center for Safety Evaluation of Drugs, Jiangsu Province Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
26
|
Nur G, Nazıroğlu M, Deveci HA. Synergic prooxidant, apoptotic and TRPV1 channel activator effects of alpha-lipoic acid and cisplatin in MCF-7 breast cancer cells. J Recept Signal Transduct Res 2017; 37:569-577. [DOI: 10.1080/10799893.2017.1369121] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Gökhan Nur
- Vocational High School of Islahiye, Gaziantep University, Gaziantep, Turkey
| | - Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey
| | - Haci Ahmet Deveci
- Vocational High School of Islahiye, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
27
|
Suppression of a cancer stem-like phenotype mediated by alpha-lipoic acid in human lung cancer cells through down-regulation of β-catenin and Oct-4. Cell Oncol (Dordr) 2017; 40:497-510. [PMID: 28677037 DOI: 10.1007/s13402-017-0339-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2017] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Cancer stem cells (CSCs) that possess the ability of self-renewal and multi-potency have been shown to drive tumor progression and metastasis. The majority of recent studies has focused on potential molecules targeting CSCs so as to develop novel strategies for efficient cancer treatment or protection. Here, we show how alpha-lipoic acid (LA), an endogenous mitochondrial anti-oxidant, affects the CSC-like phenotypes of human non-small cell lung cancer-derived H23, H292 and H460 cells. METHODS CSC-like phenotypes were verified by anchorage-independent growth, three-dimensional (3D) spheroid formation and the expression of CSC markers. Enriched CSC populations were used to confirm the effects of LA. Protein ubiquitination and degradation were assessed using immunoprecipitation. RESULTS We found that treatment with LA reduced the CSC-like phenotype, as indicated by a decreased expression of known CSC markers (CD133, CD44, ALDH1A1, Oct-4 and Nanog) in H460 cells. In addition, we found that LA reduced the CSC-related abilities of anchorage-independent growth and 3D spheroid formation, and suppressed factors related to epithelial-mesenchymal transition, such as E-cadherin, Vimentin, Slug and Snail. Mechanistically, we found that LA suppresses CSC through depletion of the cellular stemness proteins β-catenin and Oct-4 via decreasing the level of active (phosphorylated) Akt. This resulted in the induction of GSK3β-dependent β-catenin ubiquitin-proteasomal degradation and a decrease in the stabilized (phosphorylated) form of Oct-4. The effects of LA on the CSC-like phenotypes were confirmed in CSC enriched H460, H292 and H23 non-small cell lung cancer-derived cells. CONCLUSION Our data are indicative for a novel regulatory role and underlying mechanism of LA in the negative regulation of a CSC-like phenotype in non-small cell lung cancer-derived cells.
Collapse
|