1
|
Yang W, Yu J, Wang H, He J, Pei R. Relationship between high-mobility group box-l and cognitive impairments induced by myocardial ischemia-reperfusion in elderly rats. Exp Gerontol 2024; 195:112540. [PMID: 39122228 DOI: 10.1016/j.exger.2024.112540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Myocardial ischemia-reperfusion (MI/R) can lead to structural and functional abnormalities in the hippocampal neurons of the brain. High-mobility group box-l (HMGB1) is implicated in the activation of immune cells and the stimulation of inflammatory responses. However, the specific role of HMGB1 in cognitive impairment induced by MI/R in elderly rats has yet to be elucidated. METHODS Elderly rats underwent surgical procedures to induce MI/R. To evaluate the learning and memory abilities of these rats, a water maze test and a new-object recognition test were administered. Nissl staining was utilised to examine hippocampal neuron damage. Enzyme-linked immunosorbent assay, western blotting, and real-time quantitative polymerase chain reaction (RT-qPCR) analyses were conducted to measure the expression levels of HMGB1, inflammatory cytokines, and molecular pathways. RESULTS The study found that MI/R induced cognitive impairment in elderly rats. There was an observed increase in serum HMGB1 levels, along with elevated concentrations of pro-inflammatory cytokines in the plasma and hippocampus, accompanied by a decrease in anti-inflammatory cytokines. Moreover, substantial damage was evident in the hippocampal neurons of rats exposed to MI/R. In the brains of these rats, there was an increased expression of HMGB1, the receptor for advanced glycation end products (RAGE), toll-like receptor 4 (TLR4), phosphorylated p65, interleukin-1β (IL-1β), IL-6, IL-23, tumour necrosis factor-α (TNF-α), caspase-3, and Bax. In contrast, the expression of B-cell lymphoma 2 was decreased. The RT-qPCR analyses indicated elevated levels of HMGB1, RAGE, TLR4, IL-1β, IL-6, IL-23, TNF-α, caspase-3, and Bax mRNA. CONCLUSION The increased concentration of serum and hippocampal inflammatory factors in the brains of elderly rats subjected to MI/R suggests that cognitive impairment may be induced through the activation of the HMGB1/TLR4/NF-κB signalling pathway.
Collapse
Affiliation(s)
- Wenqu Yang
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China.
| | - Jing Yu
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Hui Wang
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Jiandong He
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Ruomeng Pei
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| |
Collapse
|
2
|
Deng L, Gao R, Chen H, Jiao B, Zhang C, Wei L, Yan C, Ye-Lehmann S, Zhu T, Chen C. Let-7b-TLR7 Signaling Axis Contributes to the Anesthesia/Surgery-Induced Cognitive Impairment. Mol Neurobiol 2024; 61:1818-1832. [PMID: 37782443 DOI: 10.1007/s12035-023-03658-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
Perioperative neurocognitive disorders (PNDs) are severe and common neurological complications among elderly patients following anesthesia and surgery. As the first line of defense of the innate immune system, Toll-like receptors (TLRs) have been found to be involved in the occurrence of neurodegenerative diseases in recent years. However, the role of TLR7 in the pathology and development of PNDs remains largely unclear. In our current study, we hypothesized that increased microRNA let-7b (let-7b) during anesthesia and surgical operation would activate TLR7 signaling pathways and mediate PNDs. Using a mouse model of PNDs, 18-20 months wild-type (WT) mice were undergoing unilateral nephrectomy, and increased TLR7 and let-7b expression levels were found in the surgery group compared with the Sham group. Of note, increased TLR7 was found to be co-localized with let-7b in the hippocampal area CA1 in the PNDs model. In addition, TLR7 and let-7b inhibition could improve hippocampus-dependent memory and attenuate the production of inflammatory cytokines. Together, our results indicated that TLR7 activation and up-regulation might be triggered by increased let-7b under stressful conditions and initiated the downstream inflammatory signaling, playing a substantial role in the development of PNDs.
Collapse
Affiliation(s)
- Liyun Deng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Gao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Hai Chen
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Jiao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Changteng Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Liuxing Wei
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Caiyi Yan
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Shixin Ye-Lehmann
- Unité INSERM U1195, Diseases and Hormones of the Nervous System, University of Paris-Scalay, Bicêtre Hosptial, Bât. Grégory Pincus, Le Kremlin-Bicêtre, France
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Chan Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Xu HJ, Li XP, Han LY. Role and mechanism of esketamine in improving postoperative cognitive dysfunction in aged mice through the TLR4/MyD88/p38 MAPK pathway. Kaohsiung J Med Sci 2024; 40:63-73. [PMID: 38018683 DOI: 10.1002/kjm2.12778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/31/2023] [Accepted: 09/17/2023] [Indexed: 11/30/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a significant concern for the elderly population worldwide. This study explored the effects of esketamine on aged mice with POCD and investigate its mechanism of action involving the TLR4/MyD88/MAPK pathway. We administrated esketamine, along with lipopolysaccharide or anisomycin, to the aged POCD mouse models. We assessed their cognitive function using the Morris water maze test. Additionally, we evaluated histopathological changes/neuronal apoptosis in the mouse hippocampal CA1 area through HE/TUNEL stainings. Furthermore, we measured IL-1β/IL-6/TNF-α/TLR4/MyD88/MAPK (p-p38/p38) levels in mouse hippocampal tissues using ELISA/RT-qPCR/Western blotting. Lastly, we analyzed the interaction between TLR4 and MyD88 using a co-immunoprecipitation assay. Our findings showed that esketamine effectively mitigated POCD in aged mice. This was evident from the improved cognitive performance observed in the Morris water maze test, characterized by reduced escape latency/increased number of platform crossing/a higher percentage of time spent in the target quadrant. Furthermore, esketamine exhibited a protective effect against neuronal apoptosis and reduced the levels of inflammatory factors. These findings suggest that esketamine exerts an anti-inflammatory effect by downregulating TLR4/MyD88, thereby attenuating the inflammatory response associated with POCD. Additionally, esketamine suppressed the p38 MAPK pathway by inhibiting the TLR4/MyD88 signaling cascade. Esketamine demonstrated its efficacy in improving postoperative inflammation and cognitive impairment in aged mice by inhibiting the TLR4/MyD88 pathway. The activation of p38 MAPK signaling diminished the beneficial effects of esketamine in aged POCD mice. Collectively, the underlying mechanism of esketamine in mitigating POCD in aged mice involves the suppression of the TLR4/MyD88/p38 MAPK pathway.
Collapse
Affiliation(s)
- Hu-Jun Xu
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xian-Peng Li
- Department of Anesthesiology, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, Shandong, China
| | - Li-Ye Han
- Department of Anesthesiology, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, Shandong, China
| |
Collapse
|
4
|
Brandt A, Kromm F, Hernández-Arriaga A, Martínez Sánchez I, Bozkir HÖ, Staltner R, Baumann A, Camarinha-Silva A, Heijtz RD, Bergheim I. Cognitive Alterations in Old Mice Are Associated with Intestinal Barrier Dysfunction and Induced Toll-like Receptor 2 and 4 Signaling in Different Brain Regions. Cells 2023; 12:2153. [PMID: 37681885 PMCID: PMC10486476 DOI: 10.3390/cells12172153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Emerging evidence implicate the 'microbiota-gut-brain axis' in cognitive aging and neuroinflammation; however, underlying mechanisms still remain to be elucidated. Here, we assessed if potential alterations in intestinal barrier function and microbiota composition as well as levels of two key pattern-recognition receptors namely Toll-like receptor (TLR) 2 and TLR4, in blood and different brain regions, and depending signaling cascades are paralleling aging associated alterations of cognition in healthy aging mice. Cognitive function was assessed in the Y-maze and intestinal and brain tissue and blood were collected in young (4 months old) and old (24 months old) male C57BL/6 mice to determine intestinal microbiota composition by Illumina amplicon sequencing, the concentration of TLR2 and TLR4 ligands in plasma and brain tissue as well as to determine markers of intestinal barrier function, senescence and TLR2 and TLR4 signaling. Cognitive function was significantly impaired in old mice. Also, in old mice, intestinal microbiota composition was significantly altered, while the relative abundance of Gram-negative or Gram-positive bacteria in the small and large intestines at different ages was not altered. Moreover, intestinal barrier function was impaired in small intestine of old mice, and the levels of TLR2 and TLR4 ligands were also significantly higher in both portal and peripheral blood. Furthermore, levels of TLR2 and TLR4 ligands, and downstream markers of TLR signaling were higher in the hippocampal and prefrontal cortex of old mice compared to young animals. Taken together, our results suggest that even in 'healthy' aging, cognitive function is impaired in mice going along with an increased intestinal translocation of TLR ligands and alterations of TLR signaling in several brain regions.
Collapse
Affiliation(s)
- Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| | - Franziska Kromm
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| | - Angélica Hernández-Arriaga
- Animal Nutrition Department, Institute of Animal Science, University of Hohenheim, 70593 Stuttgart, Germany
| | - Inés Martínez Sánchez
- Department of Neuroscience, Karolinska Institute, Biomedicum, 17177 Stockholm, Sweden
| | - Haktan Övül Bozkir
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| | - Raphaela Staltner
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| | - Amélia Camarinha-Silva
- Animal Nutrition Department, Institute of Animal Science, University of Hohenheim, 70593 Stuttgart, Germany
| | - Rochellys Diaz Heijtz
- Department of Neuroscience, Karolinska Institute, Biomedicum, 17177 Stockholm, Sweden
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
5
|
Wang L, Peng G, Chen L, Guo M, Wang B, Zhang Y, Zhou J, Zhong M, Ye J. Icariin reduces cognitive dysfunction induced by surgical trauma in aged rats by inhibiting hippocampal neuroinflammation. Front Behav Neurosci 2023; 17:1162009. [PMID: 37351155 PMCID: PMC10282654 DOI: 10.3389/fnbeh.2023.1162009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common postsurgical complication in elderly individuals, significantly impacting the quality of life of patients; however, there is currently no effective clinical treatment for POCD. Recent studies have shown that Icariin (ICA) has antiaging effects and improves cognitive function, but its effect in POCD has not been studied. In this study, we investigated the influence of ICA on cognitive function and the TLR4/NF-κB signaling pathway in a POCD rat model. We found that ICA reduced surgery-induced memory impairment, decreased hippocampal inflammatory responses, ameliorated neuronal injury in the hippocampus and inhibited microglial activation. In addition, we also observed that ICA inhibited activation of the TLR4/NF-κB signaling pathway. In summary, our research suggest that ICA can ameliorate surgery-induced memory impairment and that the improvements resulting from administration of ICA may be associated with inhibition of hippocampal neuroinflammation. Our research findings also provide insight into potential therapeutic targets and methods for POCD.
Collapse
|
6
|
Zhang Z, Guo L, Yang F, Peng S, Wang D, Lai X, Su B, Xie H. Adiponectin Attenuates Splenectomy-Induced Cognitive Deficits by Neuroinflammation and Oxidative Stress via TLR4/MyD88/NF-κb Signaling Pathway in Aged Rats. ACS Chem Neurosci 2023; 14:1799-1809. [PMID: 37141577 DOI: 10.1021/acschemneuro.2c00744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
Perioperative neurocognitive disorder (PND) is a common adverse event after surgical trauma in elderly patients. The pathogenesis of PND is still unclear. Adiponectin (APN) is a plasma protein secreted by adipose tissue. We have reported that a decreased APN expression is associated with PND patients. APN may be a promising therapeutic agent for PND. However, the neuroprotective mechanism of APN in PND is still unclear. In this study, 18 month old male Sprague-Dawley rats were assigned to six groups: the sham, sham + APN (intragastric (i.g.) administration of 10 μg/kg/day for 20 days before splenectomy), PND (splenectomy), PND + APN, PND + TAK-242 (intraperitoneal (i.p.) administration of 3 mg/kg TAK-242), and PND + APN + lipopolysaccharide (LPS) (i.p. administration of 2 mg/kg LPS). We first found that APN gastric infusion significantly improved learning and cognitive function in the Morris water maze (MWM) test after surgical trauma. Further experiments indicated that APN could inhibit the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor kappa B (NF-κb) p65 pathway to decrease the degree of oxidative damage (malondialdehyde (MDA) and superoxide dismutase (SOD)), microglia-mediated neuroinflammation (ionized calcium binding adapter molecule 1 (IBA1), caspase-1, tumor necrosis factor (TNF)-α, interleukin-1β (IL-1β), and interleukin-6 (IL-6)), and apoptosis (p53, Bcl2, Bax, and caspase 3) in hippocampus. By using LPS-specific agonist and TAK-242-specific inhibitor, the involvement of TLR4 engagement was confirmed. APN intragastric administration exerts a neuroprotective effect against cognitive deficits induced by peripheral trauma, and the possible mechanisms include the inhibition of neuroinflammation, oxidative stress, and apoptosis, mediated by the suppression of the TLR4/MyD88/NF-κb signaling pathway. We propose that oral APN may be a promising candidate for PND treatment.
Collapse
Affiliation(s)
- Zhijing Zhang
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
| | - Lideng Guo
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
- Guangdong Medical University, No. 2 East Wenming Road, Xiashan District, 524000 Zhanjiang, China
| | - Fei Yang
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
- Southern Medical University, No. 1023, South Sha Tai Road, Jingxi Street, Baiyun District, 510000 Guangzhou, China
| | - Shanpan Peng
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
- Guangdong Medical University, No. 2 East Wenming Road, Xiashan District, 524000 Zhanjiang, China
| | - Di Wang
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
- Guangdong Medical University, No. 2 East Wenming Road, Xiashan District, 524000 Zhanjiang, China
| | - Xiawei Lai
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
- Southern Medical University, No. 1023, South Sha Tai Road, Jingxi Street, Baiyun District, 510000 Guangzhou, China
| | - Baiqin Su
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
| | - Haihui Xie
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
| |
Collapse
|
7
|
Vasunilashorn SM, Lunardi N, Newman JC, Crosby G, Acker L, Abel T, Bhatnagar S, Cunningham C, de Cabo R, Dugan L, Hippensteel JA, Ishizawa Y, Lahiri S, Marcantonio ER, Xie Z, Inouye SK, Terrando N, Eckenhoff RG. Preclinical and translational models for delirium: Recommendations for future research from the NIDUS delirium network. Alzheimers Dement 2023; 19:2150-2174. [PMID: 36799408 PMCID: PMC10576242 DOI: 10.1002/alz.12941] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 02/18/2023]
Abstract
Delirium is a common, morbid, and costly syndrome that is closely linked to Alzheimer's disease (AD) and AD-related dementias (ADRD) as a risk factor and outcome. Human studies of delirium have advanced our knowledge of delirium incidence and prevalence, risk factors, biomarkers, outcomes, prevention, and management. However, understanding of delirium neurobiology remains limited. Preclinical and translational models for delirium, while challenging to develop, could advance our knowledge of delirium neurobiology and inform the development of new prevention and treatment approaches. We discuss the use of preclinical and translational animal models in delirium, focusing on (1) a review of current animal models, (2) challenges and strategies for replicating elements of human delirium in animals, and (3) the utility of biofluid, neurophysiology, and neuroimaging translational markers in animals. We conclude with recommendations for the development and validation of preclinical and translational models for delirium, with the goal of advancing awareness in this important field.
Collapse
Affiliation(s)
- Sarinnapha M. Vasunilashorn
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Nadia Lunardi
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA
| | - John C. Newman
- Department of Medicine, University of California, San Francisco, California, USA
- Buck Institute for Research on Aging, Novato, California, USA
| | - Gregory Crosby
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Leah Acker
- Department of Anesthesiology, Duke University, Durham, Massachusetts, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Seema Bhatnagar
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Rafael de Cabo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, Baltimore, Maryland, USA
| | - Laura Dugan
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
- Division of Geriatric Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- VA Tennessee Valley Geriatric Research, Education, and Clinical Center (GRECC), Nashville, Tennessee, USA
| | - Joseph A. Hippensteel
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yumiko Ishizawa
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shouri Lahiri
- Department of Neurology, Neurosurgery, and Biomedical Sciences, Cedar-Sinai Medical Center, Los Angeles, California, USA
| | - Edward R. Marcantonio
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA
| | - Zhongcong Xie
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sharon K. Inouye
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA
| | - Niccolò Terrando
- Department of Anesthesiology, Duke University, Durham, North Carolina, USA
- Department of Cell Biology, Duke University, Durham, North Carolina, USA
- Department of Immunology, Duke University, Durham, North Carolina, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, USA
| | - Roderic G. Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
8
|
Muscat SM, Deems NP, Butler MJ, Scaria EA, Bettes MN, Cleary SP, Bockbrader RH, Maier SF, Barrientos RM. Selective TLR4 Antagonism Prevents and Reverses Morphine-Induced Persistent Postoperative Cognitive Dysfunction, Dysregulation of Synaptic Elements, and Impaired BDNF Signaling in Aged Male Rats. J Neurosci 2023; 43:155-172. [PMID: 36384680 PMCID: PMC9838714 DOI: 10.1523/jneurosci.1151-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 11/07/2022] [Accepted: 11/10/2023] [Indexed: 11/18/2022] Open
Abstract
Perioperative neurocognitive disorders (PNDs) are characterized by confusion, difficulty with executive function, and episodic memory impairment in the hours to months following a surgical procedure. Postoperative cognitive dysfunction (POCD) represents such impairments that last beyond 30 d postsurgery and is associated with increased risk of comorbidities, progression to dementia, and higher mortality. While it is clear that neuroinflammation plays a key role in PND development, what factors underlie shorter self-resolving versus persistent PNDs remains unclear. We have previously shown that postoperative morphine treatment extends POCD from 4 d (without morphine) to at least 8 weeks (with morphine) in aged male rats, and that this effect is likely dependent on the proinflammatory capabilities of morphine via activation of toll-like receptor 4 (TLR4). Here, we extend these findings to show that TLR4 blockade, using the selective TLR4 antagonist lipopolysaccharide from the bacterium Rhodobacter sphaeroides (LPS-RS Ultrapure), ameliorates morphine-induced POCD in aged male rats. Using either a single central preoperative treatment or a 1 week postoperative central treatment regimen, we demonstrate that TLR4 antagonism (1) prevents and reverses the long-term memory impairment associated with surgery and morphine treatment, (2) ameliorates morphine-induced dysregulation of the postsynaptic proteins postsynaptic density 95 and synaptopodin, (3) mitigates reductions in mature BDNF, and (4) prevents decreased activation of the BDNF receptor TrkB (tropomyosin-related kinase B), all at 4 weeks postsurgery. We also reveal that LPS-RS Ultrapure likely exerts its beneficial effects by preventing endogenous danger signal HMGB1 (high-mobility group box 1) from activating TLR4, rather than by blocking continuous activation by morphine or its metabolites. These findings suggest TLR4 as a promising therapeutic target to prevent or treat PNDs.SIGNIFICANCE STATEMENT With humans living longer than ever, it is crucial that we identify mechanisms that contribute to aging-related vulnerability to cognitive impairment. Here, we show that the innate immune receptor toll-like receptor 4 (TLR4) is a key mediator of cognitive dysfunction in aged rodents following surgery and postoperative morphine treatment. Inhibition of TLR4 both prevented and reversed surgery plus morphine-associated memory impairment, dysregulation of synaptic elements, and reduced BDNF signaling. Together, these findings implicate TLR4 in the development of postoperative cognitive dysfunction, providing mechanistic insight and novel therapeutic targets for the treatment of cognitive impairments following immune challenges such as surgery in older individuals.
Collapse
Affiliation(s)
- Stephanie M Muscat
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Nicholas P Deems
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Michael J Butler
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Emmanuel A Scaria
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Menaz N Bettes
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Sean P Cleary
- Campus Chemical Instrumentation Center, The Ohio State University, Columbus, Ohio 43210
| | - Ross H Bockbrader
- Pharmaceutical Sciences Graduate Program, Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210
| | - Steven F Maier
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, Ohio 43210
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
- Chronic Brain Injury Program, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
9
|
Wang LF, Liang WD, Wang BY, Guo ML, Zhou JS, Chen L, Zhong ML, Ye JM. Transcutaneous electrical acupoint stimulation for reducing cognitive dysfunction in lumbar spine surgery: A randomized, controlled trail. Front Aging Neurosci 2022; 14:1034998. [PMID: 36545028 PMCID: PMC9760873 DOI: 10.3389/fnagi.2022.1034998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/21/2022] [Indexed: 12/07/2022] Open
Abstract
Objective This study aimed to evaluate the effect of perioperative transcutaneous electrical acupoint stimulation (TEAS) on postoperative cognitive dysfunction (POCD) in older patients with lumbar spine surgery. Methods Older patients (aged 60-80 years old) receiving lumbar spine surgery under general anesthesia were randomly divided into group A, 3-day intervention group; group B, 7-day intervention group; control group C, sham TEAS group, selected "Baihui" (GV 20) and "Dazhui" (GV 14) point was intervened once 30 min before operation with "HANS" transcutaneous electrical stimulation device, and then once a day after operation for 30 min each time. The primary outcome was the incidence of postoperative cognitive impairment assessed by the use of the Mini Mental Rating Scale (MMSE), patients developed POCD according to the Z score method. The secondary outcome was serum interleukin-6 (IL-6), tumor Necrosis factor α (TNF-α), neuron-specific enolase (NSE), and S100β protein levels. Results Three days after surgery, the incidence of POCD in groups A((22.4%)) and B ((18.3%)) were lower than those in group C ((42.9%)) (P < 0.05). There was no significant difference between groups A and B (P > 0.05). Seven days after surgery, the incidence of POCD in group B (18.3%) was lower than that in groups A (26.5%) and B (42.9%), and the comparison between groups B and C was statistically significant (P < 0.05). On the 3rd and 7th days after surgery, the levels of IL-6, TNF-α, NSE, and S100β in the two TEAS groups were lower than those in the sham TEAS group (P < 0.01), but higher than the preoperative levels in the three groups (P < 0.01). Conclusion It seems that Perioperative TEAS intervention could reduce the level of inflammatory factors IL-6, TNF-α in the blood of older patients with lumbar spine surgery, and reduce the incidence of POCD. Clinical trial registration www.chictr.org.cn, identifier ChiCTR2200063030.
Collapse
Affiliation(s)
- Li-feng Wang
- Department of Anesthesiology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China,Department of Anesthesiology, First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi, China
| | - Wei-dong Liang
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi, China
| | - Bing-yu Wang
- Department of Anesthesiology, Gannan Medical College, Ganzhou, Jiangxi, China
| | - Ming-ling Guo
- Department of Anesthesiology, Gannan Medical College, Ganzhou, Jiangxi, China
| | - Jian-shun Zhou
- Department of Anesthesiology, Gannan Medical College, Ganzhou, Jiangxi, China
| | - Li Chen
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi, China
| | - Mao-lin Zhong
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi, China
| | - Jun-ming Ye
- Department of Anesthesiology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China,Department of Anesthesiology, Gannan Medical College, Ganzhou, Jiangxi, China,*Correspondence: Jun-ming Ye,
| |
Collapse
|
10
|
Chen D, Fang X, Zhu Z. Progress in the correlation of postoperative cognitive dysfunction and Alzheimer's disease and the potential therapeutic drug exploration. IBRAIN 2022; 9:446-462. [PMID: 38680509 PMCID: PMC11045201 DOI: 10.1002/ibra.12040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 05/01/2024]
Abstract
Postoperative cognitive dysfunction (POCD) is a decrease in mental capacity that can occur days to weeks after a medical procedure and may become permanent and rarely lasts for a longer period of time. With the continuous development of research, various viewpoints in academic circles have undergone subtle changes, and the role of anesthesia depth and anesthesia type seems to be gradually weakened; Alzheimer's disease (AD) is a latent and progressive neurodegenerative disease in the elderly. The protein hypothesis and the synaptic hypothesis are well-known reasons. These changes will also lead to the occurrence of an inflammatory cascade. The exact etiology and pathogenesis need to be studied. The reasonable biological mechanism affecting brain protein deposition, neuroinflammation, and acetylcholine-like effect has a certain relationship between AD and POCD. Whereas there is still further uncertainty about the mechanism and treatment, and it is elusive whether POCD is a link in the continuous progress of AD or a separate entity, which has doubts about the diagnosis and treatment of the disease. Therefore, this review is based on the current common clinical characteristics of AD and POCD, and pathophysiological research, to search for their common points and explore the direction and new strategies for future treatment.
Collapse
Affiliation(s)
- Dong‐Qin Chen
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- College of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Xu Fang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- College of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Zhao‐Qiong Zhu
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
11
|
Abd El-Rahman SS, Fayed HM. Improved cognition impairment by activating cannabinoid receptor type 2: Modulating CREB/BDNF expression and impeding TLR-4/NFκBp65/M1 microglia signaling pathway in D-galactose-injected ovariectomized rats. PLoS One 2022; 17:e0265961. [PMID: 35349580 PMCID: PMC8963558 DOI: 10.1371/journal.pone.0265961] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/10/2022] [Indexed: 01/11/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by an active inflammatory response induced by the brain's deposition and accumulation of amyloid-beta (Aβ). Cannabinoid receptor type 2 (CB2R) is expressed in specific brain areas, modulating functions, and pathophysiologies in CNS. Herein, we aimed to evaluate whether activation of CB2R can improve the cognitive impairment in the experimental AD-like model and determine the involved intracellular signaling pathway. Injection of D-galactose (150 mg/kg, i.p.) was performed to urge AD-like features in bilaterally ovariectomized female rats (OVC/D-gal rats) for 8-weeks. Then, AM1241, a CB2R-agonist (3 and 6 mg/kg), was injected intraperitoneally starting from the 6th week. Treatment with AM1241, significantly down-regulated; Toll-like receptor4 (TLR4), Myd88 (TLR4-adaptor protein) genes expression, and the pro-inflammatory cytokines (NFκB p65, TNF-α, IL-6, and IL-12). In contrast, it enhanced BDNF (the brain-derived neurotrophic factor) and CREB (the cyclic AMP response element-binding protein) as well as the immune-modulatory cytokines (IL-4 and IL-10) levels. Moreover, AM1241 lessened the immune-expression of GFAP, CD68, caspase-3, and NFκB p65 markers and mended the histopathological damage observed in OVC/D-gal rats by decreasing the deposition of amyloid plaques and degenerative neuronal lesions, as well as improving their recognition and learning memory in both novel object recognition and Morris water maze tests. In conclusion, activating CB2R by the selective agonist AM1241 can overrun cognitive deficits in OVC/D-gal rats through modulation of TLR4/ NFκB p65 signaling, mediated by modulating CREB/BDNF pathway, thereby can be applied as a potential therapeutic strategy in AD treatment.
Collapse
Affiliation(s)
| | - Hany M. Fayed
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
12
|
Yang J, Dong HQ, Liu YH, Ji MH, Zhang X, Dai HY, Sun ZC, Liu L, Zhou J, Sha HH, Qian YN, Li QG, Yao H, Li NN. Laparotomy-Induced Peripheral Inflammation Activates NR2B Receptors on the Brain Mast Cells and Results in Neuroinflammation in a Vagus Nerve-Dependent Manner. Front Cell Neurosci 2022; 16:771156. [PMID: 35221919 PMCID: PMC8866729 DOI: 10.3389/fncel.2022.771156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The pathophysiological mechanisms underlying postoperative cognitive dysfunction (POCD) remain unclear over the years. Neuroinflammation caused by surgery has been recognized as an important element in the development of POCD. Many studies also suggest that the vagus nerve plays an important role in transmitting peripheral injury signals to the central nervous system (CNS) and the resultant neuroinflammation. Previously, we have demonstrated that brain mast cells (BMCs), as the “first responders”, play a vital role in neuroinflammation and POCD. However, how the vagus nerve communicates with BMCs in POCD has not yet been clarified. Methods: In the current study, we highlighted the role of the vagus nerve as a conduction highway in surgery-induced neuroinflammation for the first time. In our model, we tested if mice underwent unilateral cervical vagotomy (VGX) had less neuroinflammation compared to the shams after laparotomy (LP) at an early stage. To further investigate the roles of mast cells and glutamate in the process, we employed KitW-sh mice and primary bone marrow-derived MCs to verify the glutamate-NR2B axis on MCs once again. Results: Our results demonstrated that there were higher levels of glutamate and BMCs activation as early as 4 h after LP. Meanwhile, vagotomy could partially block the increases and reduce neuroinflammation caused by peripheral inflammation during the acute phase. Excitingly, inhibition of NR2B receptor and knockout of mast cells can attenuateneuroinflammation induced by glutamate. Conclusion: Taken together, our findings indicate that the vagus is a high-speed pathway in the transmission of peripheral inflammation to the CNS. Activation of BMCs triggered a neuroinflammatory cascade. Inhibition of NR2B receptor on BMCs can reduce glutamate-induced BMCs activation, neuroinflammation, and memory impairment, suggesting a novel treatment strategy for POCD.
Collapse
Affiliation(s)
- Jing Yang
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-Quan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan-Hu Liu
- Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mu-Huo Ji
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xun Zhang
- Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-Yu Dai
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhao-Chu Sun
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Liu
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Zhou
- Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huan-Huan Sha
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan-Ning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qing-Guo Li
- Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Yao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Na-Na Li
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Wei W, Sun Z, He S, Zhang W, Chen S. Protective role of dexmedetomidine against sevoflurane-induced postoperative cognitive dysfunction via the microRNA-129/TLR4 axis. J Clin Neurosci 2021; 92:89-97. [PMID: 34509269 DOI: 10.1016/j.jocn.2021.07.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/28/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022]
Abstract
The involvement of Dexmedetomidine (Dex) has been indicated in postoperative cognitive dysfunction (POCD), while the mechanism is not well characterized. This study estimated the mechanism of Dex in POCD. Rats were anesthetized with sevoflurane (SEV) to evoke POCD and then subjected to Morris water maze test to detect the cognitive and behavioral function. Then, the damage of hippocampus and cortex, and apoptosis and activity of neurons were examined. Microarray analysis was performed to screen out the differentially expressed microRNAs (miRs) in rats after Dex treatment. The cognitive and behavioral functions and neuronal activity of rats were detected after miR-129 antagomir injection. The target of miR-129 was predicted. The levels of TLR4 and NF-κB p65 in hippocampus and cortex were measured. Dex treatment alleviated SEV-induced behavior and cognitive impairments in rats, promoted neuronal activity and hindered neuronal apoptosis. After treatment with Dex, miR-129 expression was elevated in brain tissues, and the neuroprotection of Dex on POCD rats was partially annulled after injection of miR-129 antagomir. Furthermore, miR-129 targeted TLR4 and prevented the phosphorylation of NF-κB p65. In summary, Dex ameliorated SEV-induced POCD by elevating miR-129 and inhibiting TLR4 and NF-κB p65 phosphorylation. This study may shed new lights on POCD treatment.
Collapse
Affiliation(s)
- Wei Wei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Zhentao Sun
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China.
| | - Shifeng He
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Wanyue Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Sai Chen
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| |
Collapse
|
14
|
Lin F, Shan W, Zheng Y, Pan L, Zuo Z. Toll-like receptor 2 activation and up-regulation by high mobility group box-1 contribute to post-operative neuroinflammation and cognitive dysfunction in mice. J Neurochem 2021; 158:328-341. [PMID: 33871050 DOI: 10.1111/jnc.15368] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022]
Abstract
Post-operative cognitive dysfunction (POCD) is common and is associated with poor clinical outcome. Toll-like receptor (TLR) 3 and 4 have been implied in the development of POCD. The role of TLR2, a major brain TLR, in POCD is not clear. High mobility group box-1 (HMGB1) is a delayed inflammatory mediator and may play a role in POCD. The interaction between HMGB1 and TLRs in the perioperative period is not known. We hypothesize that TLR2 contributes to the development of POCD and that HMGB1 regulates TLR2 for this effect. To test these hypotheses, 6- to 8-week old male mice were subjected to right carotid artery exposure under isoflurane anesthesia. CU-CPT22, a TLR1/TLR2 inhibitor, at 3 mg/kg was injected intraperitoneally 30 min before surgery and 1 day after surgery. Glycyrrhizin, a HMGB1 antagonist, at 200 mg/kg was injected intraperitoneally 30 min before surgery. Mice were subjected to Barnes maze and fear conditioning tests from 1 week after surgery. Hippocampus and cerebral cortex were harvested 6 hr or 12 hr after the surgery for Western blotting, ELISA, immunofluorescent staining, and chromatin immunoprecipitation. There were neuroinflammation and impairment of learning and memory in mice with surgery. Surgery increased the expression of TLR2 and TLR4 but not TLR9 in the brain of CD-1 male mice. CU-CPT22 attenuated surgery-induced neuroinflammation and cognitive impairment. Similarly, surgery induced neuroinflammation and cognitive dysfunction in C57BL/6J mice but not in TLR2-/- mice. TLR2 staining appeared in neurons and microglia. Surgery increased HMGB1 in the cell nuclei of the cerebral cortex and hippocampus. Glycyrrhizin ameliorated this increase and the increase of TLR2 in the hippocampus after surgery. Surgery also increased the amount of tlr2 DNA precipitated by an anti-HMGB1 antibody in the hippocampus. Our results suggest that TLR2 contributes to surgery-induced neuroinflammation and cognitive impairment. HMGB1 up-regulates TLR2 expression in the hippocampus after surgery to facilitate this contribution. Thus, TLR2 and HMGB1 are potential targets for reducing POCD.
Collapse
Affiliation(s)
- Fei Lin
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA.,Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Weiran Shan
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA
| | - Yuxin Zheng
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA.,Department of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Linghui Pan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
15
|
Zhao YF, Yang HW, Yang TS, Xie W, Hu ZH. TNF-α - mediated peripheral and central inflammation are associated with increased incidence of PND in acute postoperative pain. BMC Anesthesiol 2021; 21:79. [PMID: 33730999 PMCID: PMC7968228 DOI: 10.1186/s12871-021-01302-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/09/2021] [Indexed: 11/10/2022] Open
Abstract
Background Acute postoperative pain plays an important role in the perioperative neurocognitive disorders (PND). The pathogenesis of PND is still unknown, but it is generally believed that peripheral and central nervous system inflammation play an important role, and acute postoperative pain is also thought to aggravate postoperative inflammatory response. The aim of the present study is to explore the effect of acute postoperative pain on peripheral and central nervous system inflammation and related cognitive impairment behaviour in elderly rats after surgery. Methods Rats were assigned into four groups: control, surgery for internal fixation for tibial fracture, surgery with analgesia using intraperitoneal morphine, and morphine without surgery. Pain was assessed by the Subjective Pain Scale. The spatial memory of rats was assessed by the Morris water maze (delayed matching task) from the second day to the seventh day after surgery (POD2-POD7). In part of the rats, the pro-inflammatory cytokines TNF-α in plasma, the medial prefrontal cortex (mPFC), and the hippocampus were determined by ELISA on the POD2. The activation of microglia and the expression of c-Fos in the hippocampal CA1 regions and mPFC were detected by the immunohistochemical method on the POD2. Results Acute postoperative pain and spatial memory impairment occurred after operation, and postoperative analgesia could significantly improve the both parameters. Additionally, on the POD2, the levels of TNF-α in plasma, hippocampus and mPFC were significantly increased, while the activation of microglia cells and the expression c-Fos in the hippocampal CA1 regions and mPFC were significantly increased. And postoperative analgesia with morphine significantly inhibited the above reactions. Conclusion Our data suggest that acute postoperative pain increases the incidence of perioperative neurocognitive disorders. Peripheral and central nervous system inflammation may be involved in this cognitive impairment. And reducing the intensity of acute postoperative pain may be one of the main preventive strategies for PND.
Collapse
Affiliation(s)
- Yu-Fan Zhao
- Department of Anaesthesiology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, People's Republic of China
| | - Hui-Wen Yang
- Department of Anaesthesiology, Hunan Cancer Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Ting-Shun Yang
- Department of Anaesthesiology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, People's Republic of China
| | - Wenxiu Xie
- Department of Anaesthesiology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, People's Republic of China
| | - Zhong-Hua Hu
- Department of Anaesthesiology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, People's Republic of China.
| |
Collapse
|
16
|
Shi J, Zou X, Jiang K, Wang F. SIRT1 mediates improvement of cardiac surgery-induced postoperative cognitive dysfunction via the TLR4/NF-κB pathway. World J Biol Psychiatry 2020; 21:757-765. [PMID: 31418620 DOI: 10.1080/15622975.2019.1656820] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Clinically, there is no effective therapy for postoperative cognitive dysfunction (POCD). Inflammation after surgery is closely associated with POCD. METHODS In this study, we explored the role of sirtuin 1 (SIRT1) in POCD. POCD in mice was induced by cardiac surgery. The mRNA and protein levels of related genes were determined by real-time polymerase chain reaction and western blot, respectively. Plasma concentrations of inflammatory factors were measured using an ELISA kit. Novel object and novel location recognition tests were carried out to measure recognition ability. The Morris water maze (MWM) test was performed to measure learning and memory ability. RESULTS There was a clear decrease in SIRT1 expression after POCD. The SIRT1 activator SRT1720 promoted recognition, learning, and memory ability of mice with POCD. Moreover, SRT1720 treatment greatly inhibited plasma inflammatory cytokine levels and TLR4 and P65 protein expression in the hippocampus of POCD mice. The effect of SRT1720 on POCD was in a TLR4-dependent manner. CONCLUSIONS SIRT1 mediates the improvement of cardiac surgery-induced postoperative cognitive dysfunction via the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Jing Shi
- The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaohua Zou
- The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ke Jiang
- The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Feng Wang
- The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
17
|
Zhao S, Chen F, Wang D, Han W, Zhang Y, Yin Q. NLRP3 inflammasomes are involved in the progression of postoperative cognitive dysfunction: from mechanism to treatment. Neurosurg Rev 2020; 44:1815-1831. [PMID: 32918635 DOI: 10.1007/s10143-020-01387-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022]
Abstract
Postoperative cognitive dysfunction (POCD) involves patient memory and learning decline after surgery. POCD not only presents challenges for postoperative nursing and recovery but may also cause permanent brain damage for patients, including children and the aged, with vulnerable central nervous systems. Its occurrence is mainly influenced by surgical trauma, anesthetics, and the health condition of the patient. There is a lack of imaging and experimental diagnosis; therefore, patients can only be diagnosed by clinical observation, which may underestimate the morbidity, resulting in decreased treatment efficacy. Except for symptomatic support therapy, there is a relative lack of effective drugs specific for the treatment of POCD, because the precise mechanism of POCD remains to be determined. One current hypothesis is that postoperative inflammation promotes the progression of POCD. Accumulating research has indicated that overactivation of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasomes contribute to the POCD progression, suggesting that targeting NLRP3 inflammasomes may be an effective therapy to treat POCD. In this review, we summarize recent studies and systematically describe the pathogenesis, treatment progression, and potential treatment options of targeting NLRP3 inflammasomes in POCD patients.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Anesthesiology, First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, China
| | - Fan Chen
- Department of Neurosurgery, University of Medicine Greifswald, Greifswald, Germany
| | - Dunwei Wang
- Department of Anesthesiology, First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, China
| | - Wei Han
- Department of Anesthesiology, First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, China
| | - Yuan Zhang
- Department of Anesthesiology, First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, China.
| | - Qiliang Yin
- Department of Oncology, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
18
|
Sevoflurane-induced cognitive decline in aged mice: Involvement of toll-like receptors 4. Brain Res Bull 2020; 165:23-29. [PMID: 32910992 DOI: 10.1016/j.brainresbull.2020.08.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/13/2020] [Accepted: 08/28/2020] [Indexed: 02/08/2023]
Abstract
Toll-like receptors 4 (TLR4) contributes to the pathogenesis of some neurodegenerative diseases. However, little is known about whether TLR4 is associated with sevoflurane-induced cognitive decline. This investigation aims to address the effect of global TLR4 gene knockout on cognitive decline following sevoflurane exposure to mice. Wild-type and TLR4-/- mice were exposed to 3% sevoflurane. Novel object recognition test and Y-maze test were used to analyze cognitive function. Tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in plasma and hippocampus were measured by ELISA. Peripheral administration of recombinant TNF-α to TLR4-/- mice was used to observed the role of TNF-α in cognitive function following sevoflurane. Our results showed that, in contrast to wild-type mice, TLR4 deficiency protected against the cognitive function impairment following sevoflurane exposure, and abrogated IL-1β, IL-6 and TNF-α response to sevoflurane in the system and the hippocampus. Subcutaneous administration of recombinant TNF-α elevated these cytokine levels in the hippocampus, and resulted in cognitive decline in TLR4-/- mice exposed to sevoflurane. Taken together, our results identify the crucial role of TLR4 in sevoflurane-induced cognitive decline, and showed that TLR4 mediated pro-inflammatory cytokine response to sevoflurane, and consequent cognitive decline in aged mice exposed to sevoflurane, and imply a novel target for improvement and therapy of sevoflurane-associated cognitive decline.
Collapse
|
19
|
Rubin LH, Xu Y, Norris PJ, Wang X, Dastgheyb R, Fitzgerald KC, Keating SM, Kaplan RC, Maki PM, Anastos K, Springer G, Benning L, Kassaye S, Gustafson DR, Valcour VG, Williams DW. Early Inflammatory Signatures Predict Subsequent Cognition in Long-Term Virally Suppressed Women With HIV. Front Integr Neurosci 2020; 14:20. [PMID: 32390808 PMCID: PMC7193823 DOI: 10.3389/fnint.2020.00020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/23/2020] [Indexed: 12/16/2022] Open
Abstract
Immunologic function is an important determinant of cognition. Here we examined the contribution of early immune signatures to cognitive performance among HIV-infected, virally suppressed women (HIV+VS) and in HIV-uninfected (HIV-) women. Specifically, we measured serum inflammatory markers, developed combinatory immune signatures, and evaluated their associations with cognition. Forty-nine HIV+VS women in the Women’s Interagency HIV Study (WIHS) who achieved viral suppression shortly after effective antiretroviral therapy (ART) initiation, and 56 matched HIV− women were selected. Forty-two serum inflammatory markers were measured within 2 years of effective ART initiation for HIV+VS women, and at an initial timepoint for HIV− women. The same inflammatory markers were also measured approximately 1, 7, and 12 years later for all women. Of the 105 women with complete immune data, 83 (34 HIV+VS, 49 HIV−) also had cognitive data available 12 years later at ≥1 time points (median = 3.1). We searched for combinatory immune signatures by adapting a dynamic matrix factorization analytic method that builds upon Tucker decomposition followed by Ingenuity® Pathway Analysis to facilitate data interpretation. Seven combinatory immune signatures emerged based on the Frobenius residual. Three signatures were common between HIV+VS and HIV− women, while four signatures were unique. These inflammatory signatures predicted subsequent cognitive performance in both groups using mixed-effects modeling, but more domain-specific associations were significant in HIV+VS than HIV− women. Leukocyte influx into brain was a major contributor to cognitive function in HIV+VS women, while T cell exhaustion, inflammatory response indicative of depressive/psychiatric disorders, microglial activity, and cytokine signaling predicted both global and domain-specific performance for HIV− women. Our findings suggest that immune signatures may be useful diagnostic, prognostic, and immunotherapeutic targets predictive of subsequent cognitive performance. Importantly, they also provide insight into common and distinct inflammatory mechanisms underlying cognition in HIV− and HIV+VS women.
Collapse
Affiliation(s)
- Leah H Rubin
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States.,Department of Psychiatry, Johns Hopkins University, Baltimore, MD, United States.,Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Yanxun Xu
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, United States.,Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| | - Philip J Norris
- Department of Laboratory Medicine, Vitalant Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Xuzhi Wang
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, United States
| | - Raha Dastgheyb
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | | | - Sheila M Keating
- Department of Laboratory Medicine, Vitalant Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Pauline M Maki
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States.,Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States
| | - Kathryn Anastos
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of General Internal Medicine, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Gayle Springer
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Lorie Benning
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Seble Kassaye
- Department of Medicine, Georgetown University, Washington, DC, United States
| | - Deborah R Gustafson
- Department of Neurology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
| | - Victor G Valcour
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Dionna W Williams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, United States.,Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
20
|
The Emerging Role of Curcumin in the Modulation of TLR-4 Signaling Pathway: Focus on Neuroprotective and Anti-Rheumatic Properties. Int J Mol Sci 2020; 21:ijms21072299. [PMID: 32225104 PMCID: PMC7177421 DOI: 10.3390/ijms21072299] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022] Open
Abstract
Natural products have been used in medicine for thousands of years. Given their potential health benefits, they have gained significant popularity in recent times. The administration of phytochemicals existed shown to regulate differential gene expression and modulate various cellular pathways implicated in cell protection. Curcumin is a natural dietary polyphenol extracted from Curcuma Longa Linn with different biological and pharmacological effects. One of the important targets of curcumin is Toll-like receptor-4 (TLR-4), the receptor which plays a key role in the modulation of the immune responses and the stimulation of inflammatory chemokines and cytokines production. Different studies have demonstrated that curcumin attenuates inflammatory response via TLR-4 acting directly on receptor, or by its downstream pathway. Curcumin bioavailability is low, so the use of exosomes, as nano drug delivery, could improve the efficacy of curcumin in inflammatory diseases. The focus of this review is to explore the therapeutic effect of curcumin interacting with TLR-4 receptor and how this modulation could improve the prognosis of neuroinflammatory and rheumatic diseases.
Collapse
|
21
|
Algae Oil Treatment Protects Retinal Ganglion Cells (RGCs) via ERK Signaling Pathway in Experimental Optic Nerve Ischemia. Mar Drugs 2020; 18:md18020083. [PMID: 32012745 PMCID: PMC7074556 DOI: 10.3390/md18020083] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/17/2022] Open
Abstract
Background: We investigated the therapeutic effects and related mechanisms of algae oil (ALG) to protect retinal ganglion cells (RGCs) in a rat model of anterior ischemic optic neuropathy (rAION). Methods: Rats were daily gavaged with ALG after rAION induction for seven days. The therapeutic effects of ALG on rAION were evaluated using flash visual evoked potentials (FVEPs), retrograde labeling of RGCs, TUNEL assay of the retina, and ED1 staining of optic nerves (ONs). The levels of inducible nitric oxide synthase (iNOS), IL-1β, TNF-α, Cl-caspase-3, ciliary neurotrophic factor (CNTF), and p-ERK were analyzed by using western blots. Results: Protection of visual function in FVEPs amplitude was noted, with a better preservation of the P1–N2 amplitude in the ALG-treated group (p = 0.032) than in the rAION group. The density of RGCs was 2.4-fold higher in the ALG-treated group compared to that in the rAION group (p < 0.0001). The number of ED1-positive cells in ONs was significantly reduced 4.1-fold in the ALG-treated group compared to those in the rAION group (p = 0.029). The number of apoptotic RGCs was 3.2-fold lower in number in the ALG-treated group (p = 0.001) than that in the rAION group. The ALG treatment inhibited ERK activation to reduce the levels of iNOS, IL-1β, TNF-α, and Cl-caspase-3 and to increase the level of CNTF in the rAION model. Conclusion: The treatment with ALG after rAION induction inhibits ERK activation to provide both anti-inflammatory and antiapoptotic effects in rAION.
Collapse
|
22
|
Chen C, Gao R, Li M, Wang Q, Chen H, Zhang S, Mao X, Behensky A, Zhang Z, Gan L, Li T, Liao R, Li Q, Yu H, Yang J, Zhu T, Liu J. Extracellular RNAs-TLR3 signaling contributes to cognitive decline in a mouse model of postoperative cognitive dysfunction. Brain Behav Immun 2019; 80:439-451. [PMID: 30980952 DOI: 10.1016/j.bbi.2019.04.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/23/2019] [Accepted: 04/09/2019] [Indexed: 01/28/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is considered a severe complication after surgery among elderly patients. Toll-like receptor 3 (TLR3) has recently been reported to play an important role in hippocampus-dependent working memory. However, the role of TLR3 in the development of POCD remains unclear. In the current study, we hypothesized that increased extracellular RNAs (exRNAs) during anesthesia and surgical operation, especially double stranded RNAs (dsRNAs), would activate TLR3 signaling pathways and mediate POCD. Using a mouse model of POCD, 20-22 months wild-type (WT) mice were undergoing unilateral nephrectomy and increased TLR3 expression levels and co-localization with neuronal and microglial cells were found in the surgery group compared with the sham group. Compared with WT mice, TLR3 knockout (KO, -/-) mice had improved hippocampus-dependent memory and attenuated production of inflammatory cytokines and apoptosis. Increased exRNAs and/or co-localization with TLR3 were found in both in vitro and in vivo models. Of note, TLR3/dsRNA complex inhibitor administration reduced hippocampal dsRNA level and TLR3 expression, attenuated hippocampal inflammatory cytokines production and apoptosis, and thus improved hippocampus-dependent memory. Our results indicate that exRNAs, especially dsRNAs, present under stressful conditions may trigger TLR3 activation and initiate the downstream inflammatory and apoptotic signaling, and play a substantial role in the development of POCD.
Collapse
Affiliation(s)
- Chan Chen
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Rui Gao
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ming Li
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qiao Wang
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hai Chen
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shu Zhang
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiaobo Mao
- Institute of Cell Engineering, Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Adam Behensky
- Institute of Cell Engineering, Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Zheng Zhang
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lu Gan
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tao Li
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ren Liao
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qian Li
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hai Yu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jing Yang
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tao Zhu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jin Liu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
23
|
Yang JJ, Wang SJ, Gao X, Wang B, Dong YT, Bai Y, Chen Y, Gong JN, Huang YQ, An DD. Toll-Like Receptor 4 (TLR-4) Pathway Promotes Pulmonary Inflammation in Chronic Intermittent Hypoxia-Induced Obstructive Sleep Apnea. Med Sci Monit 2018; 24:7152-7161. [PMID: 30293084 PMCID: PMC6190728 DOI: 10.12659/msm.910632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Studies have shown that intermittent hypoxia mimics obstructive sleep apnea in causing pulmonary inflammation, but the mechanism is not yet clear.TLR-4 is a recognized proinflammatory factor, so the purpose of this study was to assess the function of TLR-4 in pulmonary inflammation induced by chronic intermittent hypoxia simulating obstructive sleep apnea. Material/Methods Healthy male Wistar rats were divided into 3 groups (8 in each group): the normoxia control group (CG), the intermittent hypoxia group (IH), and the TLR4 antagonist TAK242 treatment group (3 mg/kg, daily), with exposure durations of 12 weeks and 16 weeks (HI). The morphological changes of lung tissue were determined with hematoxylin-eosin (HE) staining. The expressions of the TLR-4 pathway in lung tissue were tested by Western blotting and RT-PCR. The levels of IL-6 and TNF-α in serum and lung tissue were detected by enzyme-linked immunosorbent assay (ELISA). The levels of SOD and MDA in lung tissue were detected by use of SOD and MDA kits, respectively. Results After TAK242 treatment, damage to lung tissue was increased, and the expressions of TLR-4, MYD88, P65, IL-6, TNF-α, MDA, and SOD were decreased. Intermittent hypoxic exposure caused alveolar expansion, thickening of alveolar septum, and fusion of adjacent alveoli into larger cysts under intermittent hypoxia in a time-dependent manner. Compared with the CG and HI groups, the mean lining interval (MLI) become more thickened and the alveolar destruction index (DI) increased significantly in the IH group. Conclusions Chronic intermittent hypoxia causes pulmonary inflammatory response and the inflammatory pathway involved in TLR4 receptor may be one of the mechanisms that trigger lung inflammation.
Collapse
Affiliation(s)
- Jiao-Jiao Yang
- 2nd Department of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Shu-Juan Wang
- 2nd Department of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Xiaoling Gao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Bei Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Yan-Ting Dong
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Yang Bai
- Jiaozuo People's Hospital, Jiaozuo, Henan, China (mainland)
| | - Yan Chen
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Jian-Nan Gong
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Ya-Qiong Huang
- 2nd Department of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Dong-Dong An
- 2nd Department of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| |
Collapse
|
24
|
TRIF is a key inflammatory mediator of acute sickness behavior and cancer cachexia. Brain Behav Immun 2018; 73:364-374. [PMID: 29852290 PMCID: PMC6129432 DOI: 10.1016/j.bbi.2018.05.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/21/2018] [Accepted: 05/27/2018] [Indexed: 12/11/2022] Open
Abstract
Hypothalamic inflammation is a key component of acute sickness behavior and cachexia, yet mechanisms of inflammatory signaling in the central nervous system remain unclear. Previous work from our lab and others showed that while MyD88 is an important inflammatory signaling pathway for sickness behavior, MyD88 knockout (MyD88KO) mice still experience sickness behavior after inflammatory stimuli challenge. We found that after systemic lipopolysaccharide (LPS) challenge, MyD88KO mice showed elevated expression of several cytokine and chemokine genes in the hypothalamus. We therefore assessed the role of an additional inflammatory signaling pathway, TRIF, in acute inflammation (LPS challenge) and in a chronic inflammatory state (cancer cachexia). TRIFKO mice resisted anorexia and weight loss after peripheral (intraperitoneal, IP) or central (intracerebroventricular, ICV) LPS challenge and in a model of pancreatic cancer cachexia. Compared to WT mice, TRIFKO mice showed attenuated upregulation of Il6, Ccl2, Ccl5, Cxcl1, Cxcl2, and Cxcl10 in the hypothalamus after IP LPS treatment, as well as attenuated microglial activation and neutrophil infiltration into the brain after ICV LPS treatment. Lastly, we found that TRIF was required for Ccl2 upregulation in the hypothalamus and induction of the catabolic genes, Mafbx, Murf1, and Foxo1 in gastrocnemius during pancreatic cancer. In summary, our results show that TRIF is an important inflammatory signaling mediator of sickness behavior and cachexia and presents a novel therapeutic target for these conditions.
Collapse
|
25
|
Wang YB, Xie JQ, Liu W, Zhang RZ, Huang SH, Xing YH. BACE1 gene silencing alleviates isoflurane anesthesia‑induced postoperative cognitive dysfunction in immature rats by activating the PI3K/Akt signaling pathway. Mol Med Rep 2018; 18:4259-4270. [PMID: 30221701 PMCID: PMC6172366 DOI: 10.3892/mmr.2018.9453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 08/01/2018] [Indexed: 12/29/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a severe complication characterized by cognitive dysfunction following anesthesia and surgery. The aim of the present study was to investigate the effects of β-site amyloid precursor protein cleavage enzyme 1 (BACE1) gene silencing on isoflurane anesthesia-induced POCD in immature rats via the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. Rat models were established and then transfected with BACE1 small interfering RNA and wortmannin (an inhibitor of PI3K). Blood gas analysis was performed, and a series of behavioral experiments were conducted to evaluate the cognitive function, learning ability and locomotor activity of rats. Reverse transcription quantitative polymerase chain reaction and western blot analysis were employed to determine the mRNA and protein expression of the associated genes. An ELISA was used to detect the inflammatory indicators and the content of amyloid precursor protein (APP) and amyloid-β (Aβ). Apoptosis of the hippocampal CA1 region was observed by terminal deoxynucleotidyl transferase dUTP nick-end labeling staining. Initially, it was revealed that the percentage of stagnation time in rats was increased by BACE1 gene silencing; the escape latency and swimming distance were markedly reduced from the 4th to the 6th day, the time the rats spent in first passing the target area was shortened, and the times of passing the target area were increased by BACE1 gene silencing, demonstrating that BACE1 gene silencing enhanced the spatial memory ability of rats. Additionally, it was determined that silencing BACE1 improved the pathological state induced by isoflurane anesthesia in immature rats, and attenuated the inflammatory response and the levels of APP and Aβ in hippocampal tissues. Furthermore, it was suggested that silencing BACE1 may have promoted the activation of the PI3K/Akt signaling pathway, thereby inhibiting the apoptosis of the hippocampal CA1 region. Taken together, these results indicated that BACE1 gene silencing may improve isoflurane anesthesia-induced POCD in immature rats by activating the PI3K/Akt signaling pathway and inhibiting the Aβ generated by APP.
Collapse
Affiliation(s)
- Ying-Bin Wang
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Jian-Qin Xie
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Wei Liu
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Rong-Zhi Zhang
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Sheng-Hui Huang
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Yan-Hong Xing
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
26
|
Paudel YN, Shaikh MF, Shah S, Kumari Y, Othman I. Role of inflammation in epilepsy and neurobehavioral comorbidities: Implication for therapy. Eur J Pharmacol 2018; 837:145-155. [PMID: 30125565 DOI: 10.1016/j.ejphar.2018.08.020] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023]
Abstract
Epilepsy is a devastating condition affecting around 70 million people worldwide. Moreover, the quality of life of people with epilepsy (PWE) is worsened by a series of comorbidities. The neurobehavioral comorbidities discussed herein share a reciprocal and complex relationship with epilepsy, which ultimately complicates the treatment process in PWE. Understanding the mechanistic pathway by which these comorbidities are associated with epilepsy might be instrumental in developing therapeutic interventions. Inflammatory cytokine signaling in the brain regulates important brain functions including neurotransmitter metabolism, neuroendocrine function, synaptic plasticity, dopaminergic transmission, the kynurenine pathway, and affects neurogenesis as well as the neural circuitry of moods. In this review, we hypothesize that the complex relationship between epilepsy and its related comorbidities (cognitive impairment, depression, anxiety, autism, and schizophrenia) can be unraveled through the inflammatory mechanism that plays a prominent role in all these individual conditions. An ample amount of evidence is available reporting the role of inflammation in epilepsy and all individual comorbid condition but their complex relationship with epilepsy has not yet been explored through the prospective of inflammatory pathway. Our review suggests that epilepsy and its neurobehavioral comorbidities are associated with elevated levels of several key inflammatory markers. This review also sheds light on the mechanistic association between epilepsy and its neurobehavioral comorbidities. Moreover, we analyzed several anti-inflammatory therapies available for epilepsy and its neurobehavioral comorbidities. We suggest, these anti-inflammatory therapies might be a possible intervention and could be a promising strategy for preventing epileptogenesis and its related neurobehavioral comorbidities.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia.
| | - Sadia Shah
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
27
|
Xing W, Huang P, Lu Y, Zeng W, Zuo Z. Amantadine attenuates sepsis-induced cognitive dysfunction possibly not through inhibiting toll-like receptor 2. J Mol Med (Berl) 2018; 96:391-402. [PMID: 29502203 PMCID: PMC5902799 DOI: 10.1007/s00109-018-1631-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/09/2018] [Accepted: 02/20/2018] [Indexed: 01/24/2023]
Abstract
Amantadine has been shown to reduce anesthesia and surgery-induced neuroinflammation and cognitive dysfunction. It is known that sepsis can impair brain function. We determined whether amantadine-attenuated sepsis-induced neuroinflammation and dysfunction of learning and memory and whether toll-like receptors (TLRs) play a role in the effects. Six- to eight-week-old mice were subjected to cecal ligation and puncture (CLP). Amantadine at 30 mg/kg/day was injected intraperitoneally for 3 days. CU-CPT22, a TLR1/TLR2 inhibitor, at 3 mg/kg/day was injected intraperitoneally for 2 days. Mice were subjected to Barnes maze and fear conditioning tests from 1 week after CLP. CLP induced neuroinflammation and cognitive dysfunction. CLP also increased the expression of toll-like receptor 2 (TLR2), TLR4, and TLR9, three major TLRs in the brain, in CD-1 male mice. Amantadine attenuated CLP-induced neuroinflammation and dysfunction of learning and memory but did not have significant effects on the expression of TLRs. CU-CPT22 also attenuated sepsis-induced neuroinflammation and cognitive dysfunction. Similarly, sepsis induced neuroinflammation and cognitive dysfunction in the C57BL/6J mice. Interestingly, sepsis also induced neuroinflammation and cognitive dysfunction in the TLR2 knockout mice. The effects of amantadine on the neuroinflammation and cognitive dysfunction were still apparent in these knockout mice. TLR2 contributes to sepsis-induced neuroinflammation and cognitive dysfunction. However, inhibiting TLR2 may not be a major mechanism for amantadine to inhibit sepsis-induced neuroinflammation and cognitive dysfunction. KEY MESSAGES Sepsis induces neuroinflammation and cognitive impairment, which were attenuated by amantadine. Toll-like receptors 2 mediates these sepsis effects but may not be the major target for amantadine to reduce these effects.
Collapse
Affiliation(s)
- Wei Xing
- Department of Anesthesiology, University of Virginia Health System, 1 Hospital Drive, PO Box 800710, Charlottesville, VA, 22908-0710, USA
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Anesthesiology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Pinjie Huang
- Department of Anesthesiology, University of Virginia Health System, 1 Hospital Drive, PO Box 800710, Charlottesville, VA, 22908-0710, USA
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Yang Lu
- Department of Anesthesiology, University of Virginia Health System, 1 Hospital Drive, PO Box 800710, Charlottesville, VA, 22908-0710, USA
- Department of Anesthesiology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Weian Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Anesthesiology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia Health System, 1 Hospital Drive, PO Box 800710, Charlottesville, VA, 22908-0710, USA.
- Department of Anesthesiology and Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
28
|
Emerging Roles of Immune Cells in Postoperative Cognitive Dysfunction. Mediators Inflamm 2018; 2018:6215350. [PMID: 29670465 PMCID: PMC5835271 DOI: 10.1155/2018/6215350] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/25/2017] [Indexed: 02/03/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD), a long-lasting cognitive decline after surgery, is currently a major clinical problem with no clear pathophysiological mechanism or effective therapy. Accumulating evidence suggests that neuroinflammation plays a critical role in POCD. After surgery, alarmins are leaked from the injury sites and proinflammatory cytokines are increased in the peripheral circulation. Neurons in the hippocampus, which is responsible for learning and memory, can be damaged by cytokines transmitted to the brain parenchyma. Microglia, bone marrow-derived macrophages, mast cells, and T cells in the central nervous system (CNS) can be activated to secrete more cytokines, further aggravating neuroinflammation after surgery. Conversely, blocking the inflammation network between these immune cells and related cytokines alleviates POCD in experimental animals. Thus, a deeper understanding of the roles of immune cells and the crosstalk between them in POCD may uncover promising therapeutic targets for POCD treatment and prevention. Here, we reviewed several major immune cells and discussed their functional roles in POCD.
Collapse
|
29
|
Kong ZH, Chen X, Hua HP, Liang L, Liu LJ. The Oral Pretreatment of Glycyrrhizin Prevents Surgery-Induced Cognitive Impairment in Aged Mice by Reducing Neuroinflammation and Alzheimer’s-Related Pathology via HMGB1 Inhibition. J Mol Neurosci 2017; 63:385-395. [DOI: 10.1007/s12031-017-0989-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/10/2017] [Indexed: 11/24/2022]
|
30
|
Schreuder L, Eggen BJ, Biber K, Schoemaker RG, Laman JD, de Rooij SE. Pathophysiological and behavioral effects of systemic inflammation in aged and diseased rodents with relevance to delirium: A systematic review. Brain Behav Immun 2017; 62:362-381. [PMID: 28088641 DOI: 10.1016/j.bbi.2017.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/26/2016] [Accepted: 01/10/2017] [Indexed: 01/20/2023] Open
Abstract
Delirium is a frequent outcome for aged and demented patients that suffer a systemic inflammatory insult. Animal models that reconstruct these etiological processes have potential to provide a better understanding of the pathophysiology of delirium. Therefore, we systematically reviewed animal studies in which systemic inflammation was superimposed on aged or diseased animal models. In total, 77 studies were identified. Aged animals were challenged with a bacterial endotoxin in 29 studies, 25 studies superimposed surgery on aged animals, and in 6 studies a bacterial infection, Escherichia coli (E. coli), was used. Diseased animals were challenged with a bacterial endotoxin in 15 studies, two studies examined effects of the cytokine IL-1β, and one study used polyinosinic:polycytidilic acid (poly I:C). This systematic review analyzed the impact of systemic inflammation on the production of inflammatory and neurotoxic mediators in peripheral blood, cerebrospinal fluid (CSF), and on the central nervous system (CNS). Moreover, concomitant behavioral and cognitive symptoms were also evaluated. Finally, outcomes of behavioral and cognitive tests from animal studies were compared to features and symptoms present in delirious patients.
Collapse
Affiliation(s)
- Leroy Schreuder
- University of Groningen, University Medical Center Groningen, University Center for Geriatric Medicine, Groningen, The Netherlands.
| | - B J Eggen
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Knut Biber
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Psychiatry and Psychotherapy, Section of Molecular Psychiatry, University of Freiburg, Freiburg, Germany.
| | - Regien G Schoemaker
- Department of Neurobiology, GELIFES, University of Groningen, Groningen, The Netherlands.
| | - Jon D Laman
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Sophia E de Rooij
- University of Groningen, University Medical Center Groningen, University Center for Geriatric Medicine, Groningen, The Netherlands.
| |
Collapse
|
31
|
Uchoa MF, Moser VA, Pike CJ. Interactions between inflammation, sex steroids, and Alzheimer's disease risk factors. Front Neuroendocrinol 2016; 43:60-82. [PMID: 27651175 PMCID: PMC5123957 DOI: 10.1016/j.yfrne.2016.09.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/10/2016] [Accepted: 09/14/2016] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder for which there are no effective strategies to prevent or slow its progression. Because AD is multifactorial, recent research has focused on understanding interactions among the numerous risk factors and mechanisms underlying the disease. One mechanism through which several risk factors may be acting is inflammation. AD is characterized by chronic inflammation that is observed before clinical onset of dementia. Several genetic and environmental risk factors for AD increase inflammation, including apolipoprotein E4, obesity, and air pollution. Additionally, sex steroid hormones appear to contribute to AD risk, with age-related losses of estrogens in women and androgens in men associated with increased risk. Importantly, sex steroid hormones have anti-inflammatory actions and can interact with several other AD risk factors. This review examines the individual and interactive roles of inflammation and sex steroid hormones in AD, as well as their relationships with the AD risk factors apolipoprotein E4, obesity, and air pollution.
Collapse
Affiliation(s)
- Mariana F Uchoa
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - V Alexandra Moser
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Christian J Pike
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
32
|
MA HONGMEI, YAO LI, PANG LING, LI XINGWEI, YAO QUN. Tetrandrine ameliorates sevoflurane-induced cognitive impairment via the suppression of inflammation and apoptosis in aged rats. Mol Med Rep 2016; 13:4814-20. [DOI: 10.3892/mmr.2016.5132] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 12/01/2015] [Indexed: 11/05/2022] Open
|
33
|
Gao H, Wang J. Andrographolide inhibits multiple myeloma cells by inhibiting the TLR4/NF-κB signaling pathway. Mol Med Rep 2015; 13:1827-32. [PMID: 26707811 DOI: 10.3892/mmr.2015.4703] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 10/21/2015] [Indexed: 11/06/2022] Open
Abstract
Andrographolide is an active component from the extract of Andrographis paniculata [(Burm.f) Nees], a medicinal plant from the Acanthaceae family. Pharmacological studies have revealed that andrographolide possesses anti-bacterial, anti-inflammatory, anti-viral, immune regulatory and hepatoprotective properties, and is efficacious in the treatment of cardiovascular diseases, while exhibiting low toxicity and low cost. The present study aimed to determine the inhibitory effects of andrographolide on the growth of multiple myeloma (MM) cells and its possible impact on the Toll-like receptor (TLR)4/nuclear factor (NF)-κB signaling pathway. Cell proliferation was detected using an MTT assay, cellular apoptosis was measured using flow cytometry, and caspase-9/3 activation were assessed using colorimetric assay kits. Furthermore, TLR4 and NF-κB protein expression was determined by western blot analysis. The results revealed that andrographolide reduced the proliferation, while increasing cellular apoptosis and caspase-9/3 activation of MM cells, in addition to downregulating the expression of TLR4 and NF-κB protein. Of note, TLR4- or NF-κB-targeting small-interfering (si)RNA enhanced the andrographolide-induced inhibition of cell proliferation and induction of apoptosis of MM cells. The results of the present study therefore suggested that andrographolide inhibited multiple myeloma cells via the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hui Gao
- Department of Hematology, Dongying People's Hospital of Shandong, Dongying, Shandong 257091, P.R. China
| | - Jianrong Wang
- Department of Obstetrics, Dongying People's Hospital of Shandong, Dongying, Shandong 257091, P.R. China
| |
Collapse
|
34
|
Innate Immune Signalling Genetics of Pain, Cognitive Dysfunction and Sickness Symptoms in Cancer Pain Patients Treated with Transdermal Fentanyl. PLoS One 2015; 10:e0137179. [PMID: 26332828 PMCID: PMC4557995 DOI: 10.1371/journal.pone.0137179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/14/2015] [Indexed: 01/23/2023] Open
Abstract
Common adverse symptoms of cancer and chemotherapy are a major health burden; chief among these is pain, with opioids including transdermal fentanyl the mainstay of treatment. Innate immune activation has been implicated generally in pain, opioid analgesia, cognitive dysfunction, and sickness type symptoms reported by cancer patients. We aimed to determine if genetic polymorphisms in neuroimmune activation pathways alter the serum fentanyl concentration-response relationships for pain control, cognitive dysfunction, and other adverse symptoms, in cancer pain patients. Cancer pain patients (468) receiving transdermal fentanyl were genotyped for 31 single nucleotide polymorphisms in 19 genes: CASP1, BDNF, CRP, LY96, IL6, IL1B, TGFB1, TNF, IL10, IL2, TLR2, TLR4, MYD88, IL6R, OPRM1, ARRB2, COMT, STAT6 and ABCB1. Lasso and backward stepwise generalised linear regression were used to identify non-genetic and genetic predictors, respectively, of pain control (average Brief Pain Inventory < 4), cognitive dysfunction (Mini-Mental State Examination ≤ 23), sickness response and opioid adverse event complaint. Serum fentanyl concentrations did not predict between-patient variability in these outcomes, nor did genetic factors predict pain control, sickness response or opioid adverse event complaint. Carriers of the MYD88 rs6853 variant were half as likely to have cognitive dysfunction (11/111) than wild-type patients (69/325), with a relative risk of 0.45 (95% CI: 0.27 to 0.76) when accounting for major non-genetic predictors (age, Karnofsky functional score). This supports the involvement of innate immune signalling in cognitive dysfunction, and identifies MyD88 signalling pathways as a potential focus for predicting and reducing the burden of cognitive dysfunction in cancer pain patients.
Collapse
|
35
|
Qi Z, Xu Y, Liang Z, Li S, Wang J, Wei Y, Dong B. Naringin ameliorates cognitive deficits via oxidative stress, proinflammatory factors and the PPARγ signaling pathway in a type 2 diabetic rat model. Mol Med Rep 2015; 12:7093-101. [PMID: 26300349 DOI: 10.3892/mmr.2015.4232] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 07/17/2015] [Indexed: 11/06/2022] Open
Abstract
Naringenin is a flavonoid polyphenolic compound, which facilitates the removal of free radicals, oxidative stress and inflammation. The present study aimed to obtain a better understanding of the effects of curcumin on the regulation of diabetes‑associated cognitive decline, and its underlying mechanisms. An experimental diabetes mellitus (DM) rat model was induced by streptozoticin (50 mg/kg). Following treatment with naringin (100 and 200 mg/kg) for 16 weeks, the body weight and blood glucose levels of the DM rats were measured. A morris water maze test was used to analyze the effects of naringin on the cognitive deficit of the DM rats. The levels of oxidative stress, proinflammatory factors, caspase‑3 and caspase‑9, and the protein expression of peroxisome proliferator‑activated receptor γ (PPARγ) were quantified in the DM rats using a commercially‑available kit and western blot assay, respectively. In addition, a GW9662 PPARγ inhibitor (0.3 mg/kg) was administered to the DM rats to determine whether PPARγ affected the effects of naringin on the cognitive deficit of the DM rats. The results demonstrated that naringin increased the body weight, blood glucose levels, and cognitive deficits of the DM rats. The levels of oxidative stress and proinflammatory factors in the naringin‑treated rats were significantly lower, compared with those of the DM rats. In addition, naringin activated the protein expression of PPARγ, and administration of the PPARγ inhibitor decreased the protein expression of PPARγ, and attenuated the effects of naringin on cognitive deficit. The results also demonstrated that naringin decreased the expression levels of caspase‑3 and caspase‑9 in the DM rats. These results suggested that naringin ameliorated cognitive deficits via oxidative stress, proinflammatory factors and the PPARγ signaling pathway in the type 2 diabetic rat model. Furthermore, oxidative stress, proinflammatory factors and PPARγ signaling may be involved in mediating these effects.
Collapse
Affiliation(s)
- Zhonghua Qi
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yinghui Xu
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhanhua Liang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Sheng Li
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jie Wang
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yi Wei
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Bin Dong
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
36
|
Deng Y, Yuan X, Guo XL, Zhu D, Pan YY, Liu HG. Efficacy of atorvastatin on hippocampal neuronal damage caused by chronic intermittent hypoxia: Involving TLR4 and its downstream signaling pathway. Respir Physiol Neurobiol 2015. [PMID: 26200444 DOI: 10.1016/j.resp.2015.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hippocampal neuronal damage is critical for the initiation and progression of neurocognitive impairment accompanied obstructive sleep apnea syndrome (OSAS). Toll-like receptor 4 (TLR4) plays an important role in the development of several hippocampus-related neural disorders. Atorvastatin was reported beneficially regulates TLR4. Here, we examined the effects of atorvastatin on hippocampal injury caused by chronic intermittent hypoxia (CIH), the most characteristic pathophysiological change of OSAS. Mice were exposed to intermittent hypoxia with or without atorvastatin for 4 weeks. Cell damage, the expressions of TLR4 and its two downstream factors myeloid differentiation factor 88 (MYD88) and TIR-domain-containing adapter-inducing interferon-β (TRIF), inflammatory agents (tumor necrosis factor α and interleukin 1β), and the oxidative stress (superoxide dismutase and malondialdehyde) were determined. Atorvastatin decreased the neural injury and the elevation of TLR4, MyD88, TRIF, pro-inflammatory cytokines and oxidative stress caused by CIH. Our study suggests that atorvastatin may attenuate CIH induced hippocampal neuronal damage partially via TLR4 and its downstream signaling pathway.
Collapse
Affiliation(s)
- Yan Deng
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, No.1095 Jiefang Ave, Wuhan 430030, China
| | - Xiao Yuan
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, No.1095 Jiefang Ave, Wuhan 430030, China
| | - Xue-ling Guo
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, No.1095 Jiefang Ave, Wuhan 430030, China
| | - Die Zhu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, No.1095 Jiefang Ave, Wuhan 430030, China
| | - Yue-ying Pan
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, No.1095 Jiefang Ave, Wuhan 430030, China
| | - Hui-guo Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, No.1095 Jiefang Ave, Wuhan 430030, China.
| |
Collapse
|
37
|
Androsova G, Krause R, Winterer G, Schneider R. Biomarkers of postoperative delirium and cognitive dysfunction. Front Aging Neurosci 2015; 7:112. [PMID: 26106326 PMCID: PMC4460425 DOI: 10.3389/fnagi.2015.00112] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/28/2015] [Indexed: 01/19/2023] Open
Abstract
Elderly surgical patients frequently experience postoperative delirium (POD) and the subsequent development of postoperative cognitive dysfunction (POCD). Clinical features include deterioration in cognition, disturbance in attention and reduced awareness of the environment and result in higher morbidity, mortality and greater utilization of social financial assistance. The aging Western societies can expect an increase in the incidence of POD and POCD. The underlying pathophysiological mechanisms have been studied on the molecular level albeit with unsatisfying small research efforts given their societal burden. Here, we review the known physiological and immunological changes and genetic risk factors, identify candidates for further studies and integrate the information into a draft network for exploration on a systems level. The pathogenesis of these postoperative cognitive impairments is multifactorial; application of integrated systems biology has the potential to reconstruct the underlying network of molecular mechanisms and help in the identification of prognostic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Ganna Androsova
- Bioinformatics core, Luxembourg Centre for Systems Biomedicine (LCSB), University of LuxembourgBelvaux, Luxembourg
| | - Roland Krause
- Bioinformatics core, Luxembourg Centre for Systems Biomedicine (LCSB), University of LuxembourgBelvaux, Luxembourg
| | - Georg Winterer
- Experimental and Clinical Research Center (ECRC), Department of Anesthesiology and Operative Intensive Care Medicine, Charité University Medicine BerlinBerlin, Germany
| | - Reinhard Schneider
- Bioinformatics core, Luxembourg Centre for Systems Biomedicine (LCSB), University of LuxembourgBelvaux, Luxembourg
| |
Collapse
|
38
|
Prophylactic lithium alleviates splenectomy-induced cognitive dysfunction possibly by inhibiting hippocampal TLR4 activation in aged rats. Brain Res Bull 2015; 114:31-41. [DOI: 10.1016/j.brainresbull.2015.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 01/05/2023]
|
39
|
Li Y, Wang S, Ran K, Hu Z, Liu Z, Duan K. Differential hippocampal protein expression between normal aged rats and aged rats with postoperative cognitive dysfunction: A proteomic analysis. Mol Med Rep 2015; 12:2953-60. [PMID: 25936412 DOI: 10.3892/mmr.2015.3697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 01/15/2015] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the differences in the expression of hippocampal proteins between normal control aged rats and aged rats with postoperative cognitive dysfunction (POCD). A total of 24 aged rats were randomly divided into a surgery group (n=12) and a control group (n=12). The rats in the surgery group were treated with 2 h isoflurane anesthesia and splenectomy, while the rats in the control group received 40% oxygen for 2 h without surgery. The cognitive functions of the two groups were examined using a Y-maze test. The protein expression profiles of the hippocampus of six aged rats (three rats with POCD and three from the normal control group) were assessed using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry. A total of three differential proteins were further confirmed between the POCD rats and normal rats using reverse transcription quantitative polymerase chain reaction (RT-qPCR). The expression levels of 21 proteins in the rats with POCD were significantly different compared with the normal control rats. These proteins were functionally clustered to synaptic plasticity (three proteins), oxidative stress (four proteins), energy production (six proteins), neuroinflammation (three proteins) and glutamate metabolism (two proteins). In addition, three proteins (fatty acid binding protein 7, brain, glutamate dehydrogenase 1 and glutamine synthetase), associated with astrocytic function, were significantly different in the rats with POCD compared with those in the normal control (P<0.05). Similar changes in the mRNA expression levels of the three proteins in the hippocampi of POCD rats were also detected using RT-qPCR. Neuroinflammation, glutamate toxicity and oxidative stress were possibly involved in the pathological mechanism underlying POCD in aged rats. In addition, astrocytes may also be important in POCD in aged rats.
Collapse
Affiliation(s)
- Yang Li
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Saiying Wang
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Ke Ran
- Department of Anesthesiology, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhonghua Hu
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhaoqian Liu
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan 410008, P.R. China
| | - Kaiming Duan
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
40
|
Lu SM, Yu CJ, Liu YH, Dong HQ, Zhang X, Zhang SS, Hu LQ, Zhang F, Qian YN, Gui B. S100A8 contributes to postoperative cognitive dysfunction in mice undergoing tibial fracture surgery by activating the TLR4/MyD88 pathway. Brain Behav Immun 2015; 44:221-34. [PMID: 25449673 DOI: 10.1016/j.bbi.2014.10.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/17/2014] [Accepted: 10/19/2014] [Indexed: 12/12/2022] Open
Abstract
Neuro-inflammation plays a key role in the occurrence and development of postoperative cognitive dysfunction (POCD). Although S100A8 and Toll-like receptor 4 (TLR4) have been increasingly recognized to contribute to neuro-inflammation, little is known about the interaction between S100A8 and TLR4/MyD88 signaling in the process of systemic inflammation that leads to neuro-inflammation. Firstly, we demonstrated that C57BL/6 wide-type mice exhibit cognitive deficit 24h after the tibial fracture surgery. Subsequently, increased S100A8 and S100A9 expression was found in the peripheral blood mononuclear cells (PBMCs), spleen, and hippocampus of C57BL/6 wide-type mice within 48h after the surgery. Pre-operative administration of S100A8 antibody significantly inhibited hippocampal microgliosis and improved cognitive function 24h after the surgery. Secondly, we also observed TLR4/MyD88 activation in the PBMCs, spleen, and hippocampus after the surgery. Compared with those in their corresponding wide-type mice, TLR4(-/-) and MyD88(-/-) mice showed lower immunoreactive area of microglia in the hippocampal CA3 region after operation. TLR4 deficiency also led to reduction of CD45(hi)CD11b(+) cells in the brain and better performance in both Y maze and open field test after surgery, suggesting a new regulatory mechanism of TLR4-dependent POCD. At last, the co-location of S100A8 and TLR4 expression in spleen after operation suggested a close relationship between them. On the one hand, S100A8 could induce TLR4 activation of CD11b(+) cells in the blood and hippocampus via intraperitoneal or intracerebroventricular injection. On the other hand, TLR4 deficiency conversely alleviated S100A8 protein-induced hippocampal microgliosis. Furthermore, the increased expression of S100A8 protein in the hippocampus induced by surgery sharply decreased in both TLR4 and MyD88 genetically deficient mice. Taken together, these data suggest that S100A8 exerts pro-inflammatory effect on the occurrence and development of neuro-inflammation and POCD by activating TLR4/MyD88 signaling in the early pathological process of the postoperative stage.
Collapse
Affiliation(s)
- Shun-Mei Lu
- Department of Anesthesiology, 1st Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Chan-Juan Yu
- Department of Anesthesiology, Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi 830011, China
| | - Ya-Hua Liu
- Department of Anesthesiology, Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi 830011, China
| | - Hong-Quan Dong
- Department of Anesthesiology, 1st Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Xiang Zhang
- Department of Anesthesiology, 1st Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Su-Su Zhang
- Department of Anesthesiology, 1st Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Liu-Qing Hu
- Department of Anesthesiology, 1st Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Feng Zhang
- Department of Intensive Care Unit, Wuxi First People's Hospital, Nanjing Medical University, Wuxi 214023, China
| | - Yan-Ning Qian
- Department of Anesthesiology, 1st Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Bo Gui
- Department of Anesthesiology, 1st Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
41
|
Aging differentially affects the loss of neuronal dendritic spine, neuroinflammation and memory impairment at rats after surgery. PLoS One 2014; 9:e106837. [PMID: 25198176 PMCID: PMC4157839 DOI: 10.1371/journal.pone.0106837] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/01/2014] [Indexed: 01/08/2023] Open
Abstract
It is known that age is an important factor for postoperative cognitive dysfunction (POCD) and the patients with POCD suffer from the impairment of multiple brain regions and multiple brain functions. However currently animal studies of POCD mainly focus on hippocampus region, therefore in this study we performed partial hepatectomy in young adult and aged rats to test the questions (1) whether POCD in animals involves other brain areas besides hippocampus; (2) how age influences POCD of young adult and aged animals. We found that (1) in young adult rats, the memory was not significantly affected (P>0.05) 1d, 3d and 7d after partial hepatectomy, but was significantly impaired (p<0.001) in aged rats 1d and 3d post-surgery; (2) in young adult rats, the surgery did not significantly affect the densities of dendritic spines of neurons at CA1, dentate gyrus (DG) and cingulate cortex (P>0.05, respectively) 1d and 3d post-surgery, but the spine densities at CA1 and DG of aged rats were significant reduced 1d and 3d post-surgery (p<0.001, respectively), however this didn't happen at cingulate cortex (P>0.05); (3) In young adult rats, surgery didn't affect the activation of microglia and levels of TNF-α and IL-1β at hippocampus (P>0.05), but significantly activated microglia and increased levels of TNF-α and IL-1β at hippocampus of aged rats (P<0.05). Our data suggest that (1) partial hepatectomy-induced POCD mainly involves hippocampus impairments, and (2) differential loss of neuronal dendritic spines and neuroinflammation at hippocampus are most likely the mechanism for the formation of POCD in aged rats.
Collapse
|
42
|
Hua F, Yang C, Zhu B. Leptin: new hope for the treatment of post-operative cognitive dysfunction? Med Sci Monit 2014; 20:866-8. [PMID: 24857939 PMCID: PMC4043563 DOI: 10.12659/msm.890878] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Leptin plays a critical role in neuronal development and also promotes structural and functional activities in the central nervous system. Recent studies have demonstrated that leptin could produce therapeutic effects for cognitive impairments of patients with Alzheimer’s disease (AD). Post-operative cognitive dysfunction (POCD), defined as a significant dysfunction in cognitive performance for several weeks after surgery, probably has a pathogenesis similar to that of AD. Specifically, they are both characterized by cognitive impairment. In this regard, we hypothesized that leptin probably has a therapeutic benefit of alleviating symptoms of patients with POCD, and the leptin signaling pathway may be involved in the pathogenesis of POCD.
Collapse
Affiliation(s)
- Fei Hua
- Department of Endocrinology, Third Affiliated Hospital of Soochow University, Changzhou, China (mainland)
| | - Chun Yang
- Department of Anesthesiology, Third Affiliated Hospital of Soochow University, Changzhou, China (mainland)
| | - Bin Zhu
- Department of Critical Care Medicine, Third Affiliated Hospital of Soochow University, Changzhou, China (mainland)
| |
Collapse
|
43
|
ZHANG ZHUO, CHEN NI, LIU JINBO, WU JIANBO, ZHANG JING, ZHANG YING, JIANG XIAN. Protective effect of resveratrol against acute lung injury induced by lipopolysaccharide via inhibiting the myd88-dependent Toll-like receptor 4 signaling pathway. Mol Med Rep 2014; 10:101-6. [DOI: 10.3892/mmr.2014.2226] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 02/25/2014] [Indexed: 11/05/2022] Open
|
44
|
De Kock M, Loix S, Lavand'homme P. Ketamine and peripheral inflammation. CNS Neurosci Ther 2013; 19:403-10. [PMID: 23574634 DOI: 10.1111/cns.12104] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/01/2013] [Accepted: 03/01/2013] [Indexed: 12/11/2022] Open
Abstract
The old anesthetic ketamine has demonstrated interactions with the inflammatory response. This review intends to qualify the nature and the mechanism underlying this interaction. For this purpose, preclinical data will be presented starting with the initial works, and then, the probable mechanisms will be discussed. A summary of the most relevant clinical data will be presented. In conclusion, ketamine appears as a unique "homeostatic regulator" of the acute inflammatory reaction and the stress-induced immune disturbances. This is of some interest at a moment when the short- and long-term deleterious consequences of inadequate inflammatory reactions are increasingly reported. Large-scale studies showing improved patient's outcome are, however, required before to definitively assert the clinical reality of this positive effect.
Collapse
Affiliation(s)
- Marc De Kock
- Department of Anesthesia, Perioperative Medicine, Institute of Neurosciences, Catholic University of Louvain, Brussels, Belgium.
| | | | | |
Collapse
|