1
|
Yuce K. The Application of Mesenchymal Stem Cells in Different Cardiovascular Disorders: Ways of Administration, and the Effectors. Stem Cell Rev Rep 2024; 20:1671-1691. [PMID: 39023739 DOI: 10.1007/s12015-024-10765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
The heart is an organ with a low ability to renew and repair itself. MSCs have cell surface markers such as CD45-, CD34-, CD31-, CD4+, CD11a+, CD11b+, CD15+, CD18+, CD25+, CD49d+, CD50+, CD105+, CD73+, CD90+, CD9+, CD10+, CD106+, CD109+, CD127+, CD120a+, CD120b+, CD124+, CD126+, CD140a+, CD140b+, adherent properties and the ability to differentiate into cells such as adipocytes, osteoblasts and chondrocytes. Autogenic, allogeneic, normal, pretreated and genetically modified MSCs and secretomes are used in preclinical and clinical studies. MSCs and their secretomes (the total released molecules) generally have cardioprotective effects. Studies on cardiovascular diseases using MSCs and their secretomes include myocardial infraction/ischemia, fibrosis, hypertrophy, dilated cardiomyopathy and atherosclerosis. Stem cells or their secretomes used for this purpose are administered to the heart via intracoronary (Antegrade intracoronary and retrograde coronary venous injection), intramyocardial (Transendocardial and epicardial injection) and intravenous routes. The protective effects of MSCs and their secretomes on the heart are generally attributed to their differentiation into cardiomyocytes and endothelial cells, their immunomodulatory properties, paracrine effects, increasing blood vessel density, cardiac remodeling, and ejection fraction and decreasing apoptosis, the size of the wound, end-diastolic volume, end-systolic volume, ventricular myo-mass, fibrosis, matrix metalloproteins, and oxidative stress. The present review aims to assist researchers and physicians in selecting the appropriate cell type, secretomes, and technique to increase the chance of success in designing therapeutic strategies against cardiovascular diseases.
Collapse
Affiliation(s)
- Kemal Yuce
- Physiology, Department of Basic Medical Sciences, Medicine Faculty, Selcuk University, Konya, Türkiye.
| |
Collapse
|
2
|
Aglan HA, Ahmed HH, Beherei HH, Abdel-Hady BM, Ekram B, Kishta MS. Generation of cardiomyocytes from stem cells cultured on nanofibrous scaffold: Experimental approach for attenuation of myocardial infarction. Tissue Cell 2024; 89:102461. [PMID: 38991272 DOI: 10.1016/j.tice.2024.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/04/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
The current study was constructed to fabricate polyamide based nanofibrous scaffolds (NS) and to define the most promising one for the generation of cardiomyocytes from adipose tissue derived mesenchymal stem cells (ADMSCs). This purpose was extended to assess the potentiality of the generated cardiomyocytes in relieving myocardial infarction (MI) in rats. Production and characterization of NSs were carried out. ADMSCs were cultured on NS and induced to differentiate into cardiomyocytes by specific growth factors. Molecular analysis for myocyte-specific enhancer factor 2 C (MEF2C) and alpha sarcomeric actin (α-SCA) expression was done to confirm the differentiation of ADMSCs into cardiomyocytes for further transplantation into MI induced rats. Implantation of cells in MI afflicted rats boosted heart rate, ST height and PR interval and lessened P duration, RR, QTc and QRS intervals. Also, this type of medication minified serum lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) enzymes activity as well as serum and cardiac troponin T (Tn-T) levels and upraised serum and cardiac α-SCA and cardiac connexin 43 (CX 43) levels. Microscopic feature of cardiac tissue sections of rats in the treated groups revealed great renovation in the cardiac microarchitecture. Conclusively, this attempt gains insight into a realistic strategy for recovery of MI through systemic employment of in vitro generated cardiomyocytes.
Collapse
Affiliation(s)
- Hadeer A Aglan
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt.
| | - Hanaa H Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, Giza, Egypt
| | - Bothaina M Abdel-Hady
- Polymers and Pigments Department, Chemical Industries Institute, National Research Centre, Giza, Egypt
| | - Basma Ekram
- Polymers and Pigments Department, Chemical Industries Institute, National Research Centre, Giza, Egypt
| | - Mohamed S Kishta
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| |
Collapse
|
3
|
Dunn CM, Kameishi S, Parker T, Cho YK, Song SU, Grainger DW, Okano T. Cellular Interactions in Cell Sheets Enhance Mesenchymal Stromal Cell Immunomodulatory Properties. Tissue Eng Part A 2023; 29:594-603. [PMID: 37847176 DOI: 10.1089/ten.tea.2023.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Immune-related applications of mesenchymal stromal cells (MSCs) in cell therapy seek to exploit immunomodulatory paracrine signaling pathways to reduce inflammation. A key MSC therapeutic challenge is reducing patient outcome variabilities attributed to insufficient engraftment/retention of injected heterogenous MSCs. To address this, we propose directly transplantable human single-cell-derived clonal bone marrow MSC (hcBMSC) sheets. Cell sheet technology is a scaffold-free tissue engineering strategy enabling scalable production of highly engraftable cell constructs retaining endogenous cell-cell and cell-matrix interactions, important to cell function. cBMSCs, as unique MSC subset populations, facilitate rational selection of therapeutically relevant MSC clones from donors. Here, we combine human cBMSCs with cell sheet technology, demonstrating cell sheet fabrication as a method to significantly upregulate expression of immunomodulatory molecules interleukin (IL)-10, indoleamine 2,3-dioxygenase (IDO-1), and prostaglandin E synthase 2 (PTGES2) across GMP-grade hcBMSC lines and whole human bone marrow-derived MSCs compared to respective conventional cell suspensions. When treated with carbenoxolone, a gap junction inhibitor, cell sheets downregulate IL-10 and IDO-1 expression, implicating functional roles for intercellular sheet interactions. Beyond producing directly transferable multicellular hcBMSC constructs, cell sheet technology amplifies hcBMSC expression of immunomodulatory factors important to therapeutic action. In addition, this work demonstrates the importance of cell-cell interactions as a tissue engineering design criterion to enhance consistent MSC functions.
Collapse
Affiliation(s)
- Celia M Dunn
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Sumako Kameishi
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah, USA
| | - Tavie Parker
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | | | - Sun U Song
- SCM Lifescience Co., Ltd., Incheon, Republic of Korea
| | - David W Grainger
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Teruo Okano
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah, USA
- Institute for Advanced Biomedical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
4
|
Kiliç KC, Yazir Y, Öztürk A, Halbutoğullari ZS, Mert S, Gacar G, Duruksu G. Investigation of impacts of decellularized heart extracellular matrix and VEGF on cardiomyogenic differentiation of mesenchymal stem cell through Notch/Hedgehog signaling pathways. Tissue Cell 2023; 84:102195. [PMID: 37573608 DOI: 10.1016/j.tice.2023.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
OBJECTIVE Decellularization is the process to obtain natural scaffolds with tissue integrity and extracellular matrix components, and recellularization is used to produce tissue-like constructs with specific cell types. In this study, rat bone marrow-derived mesenchymal stem cells (rBM-MSCs) were cultured on decellularized heart extracellular matrix. These cells were then induced to differentiate into cardiomyogenic cells under the stimulatory effect of vascular endothelial growth factor (VEGF) and other chemicals. This study aimed to investigate the effect of the cardiac extracellular matrix and VEGF on cardiomyogenic differentiation in the context of the Notch and Hedgehog signaling pathways. METHODS Heart samples extracted from rats were decellularized by serial application of detergent to remove cells from the tissue, and then recellularized with rBM-MSCs. The recellularized tissue matrices were then analyzed for cardiomyogenesis. Cardiomyogenic differentiation was performed on decellularized heart extracellular matrix (ECM; three-dimensional scaffolds) and culture plates (two-dimensional cell culture system) for 28 days to understand the effects of the heart extracellular matrix. In addition, differentiation was induced with and without the stimulatory effect of VEGF to understand the effect of VEGF on cardiomyogenic differentiation of rBM-MSCs. RESULTS Immunofluorescence staining showed that decellularization of the heart was performed effectively and successfully. After decellularization process, the heart extracellular matrix was completely free of cells. It was observed that rBM-MSCs transplanted onto the heart extracellular matrix remained viable and proliferated for 21 days after recellularization. The rBM-MSCs promoted cardiomyogenic differentiation in the conventional differentiation medium but were inversely affected by both VEGF and heart extracellular matrix proteins. Lower expression of connexin43 and cardiac troponin I genes was observed in cells induced by either matrix proteins or VEGF, compared to cells differentiated by chemical agents alone. CONCLUSION In this study, we investigated the effect of decellularized heart extracellular matrix and VEGF on cardiomyogenic differentiation of rBM-MSCs. On the decellularized cardiac extracellular matrix, rBM-MSCs maintained their viability by adhering to the matrix and proliferating further. The adhesion of the cells to the matrix also produced a physical stimulus that led to the formation of histological structures resembling myocardial layers. Chemical stimulation of the decellularized heart extracellular matrix and cardiomyogenic differentiation supplements resulted in increased expression of cardiomyogenic biomarkers through modulation of the Notch and Hedgehog signaling pathways.
Collapse
Affiliation(s)
- Kamil Can Kiliç
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey
| | - Yusufhan Yazir
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey; Department of Histology and Embryology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey.
| | - Ahmet Öztürk
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey
| | - Zehra Seda Halbutoğullari
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey; Department of Medical Biology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Serap Mert
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey; Department of Chemistry and Chemical Processing Technologies, Kocaeli University, Kocaeli, Turkey; Department of Polymer Science and Technology, Kocaeli University, Kocaeli, Turkey
| | - Gülçin Gacar
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey
| | - Gökhan Duruksu
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
5
|
Seo I, Kim S, Hyun J, Kim Y, Park HS, Yoon J, Bhang SH. Enhancing viability and angiogenic efficacy of mesenchymal stem cells via HSP90 α and HSP27 regulation based on ROS stimulation for wound healing. Bioeng Transl Med 2023; 8:e10560. [PMID: 37693062 PMCID: PMC10487335 DOI: 10.1002/btm2.10560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/13/2023] [Accepted: 05/25/2023] [Indexed: 09/12/2023] Open
Abstract
Light-based therapy has been reported as a potential preconditioning strategy to induce intracellular reactive oxygen species (ROS) signaling and improve the angiogenic properties of various types of cells. However, bio-stimulation mechanisms of light therapy in terms of ROS-heat shock proteins (HSPs) mediated anti-apoptotic and angiogenic pathways in human adult stem cells have not been fully delineated yet. Commonly used light sources such as light-emitting diode (LED) and laser are accompanied by drawbacks, such as phototoxicity, thermal damage, and excessive ROS induction, so the role and clinical implications of light-induced HSPs need to be investigated using a heat-independent light source. Here, we introduced organic LED (OLED) at 610 nm wavelength as a new light source to prevent thermal effects from interfering with the expression of HSPs. Our results showed that light therapy using OLED significantly upregulated anti-apoptotic and angiogenic factors in human bone marrow mesenchymal stem cells (hMSCs) at both gene and protein levels via the activation of HSP90α and HSP27, which were stimulated by ROS. In a mouse wound-closing model, rapid recovery and improved re-epithelization were observed in the light-treated hMSCs transplant group. This study demonstrates that the upregulation of Akt (protein kinase B)-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, caused by HSP90α and HSP27 expression, is the mechanism behind the anti-apoptotic and angiogenic effects of OLED treatment on stem cells.
Collapse
Affiliation(s)
- Inwoo Seo
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Sung‐Won Kim
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Jiyu Hyun
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Yu‐Jin Kim
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Hyun Su Park
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Jeong‐Kee Yoon
- Department of Systems BiotechnologyChung‐Ang UniversityAnseongRepublic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| |
Collapse
|
6
|
Zhao X, Chen C, Luo Y, Li D, Wang Q, Fang Y, Kang P. Connexin43 overexpression promotes bone regeneration by osteogenesis and angiogenesis in rat glucocorticoid-induced osteonecrosis of the femoral head. Dev Biol 2023; 496:73-86. [PMID: 36805498 DOI: 10.1016/j.ydbio.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/30/2023] [Accepted: 02/12/2023] [Indexed: 02/21/2023]
Abstract
Glucocorticoids induced osteonecrosis of the femoral head (GIONFH) is a devastating orthopedic disease. Previous studies suggested that connexin43 is involved in the process of osteogenesis and angiogenesis. However, the role of Cx43 potentiates in the osteogenesis and angiogenesis of bone marrow-derived stromal stem cells (BMSCs) in GIONFH is still not investigated. In this study, BMSCs were isolated and transfected with green fluorescent protein or the fusion gene encoding GFP and Cx43. The osteogenic differentiation of BMSCs were detected after transfected with Cx43. In addition, the migration abilities and angiogenesis of human umbilical vein endothelial cells (HUVECs) were been detected after induced by transfected BMSCs supernatants in vitro. Finally, we established GC-ONFH rat model, then, a certain amount of transfected or controlled BMSCs were injected into the tibia of the rats. Immunohistological staining and micro-CT scanning results showed that the transplanted experiment group had significantly promoted more bone regeneration and vessel volume when compared with the effects of the negative or control groups. This study demonstrated for the first time that the Cx43 overexpression in BMSCs could promote bone regeneration as seen in the osteogenesis and angiogenesis process, suggesting that Cx43 may serve as a therapeutic gene target for GIONFH treatment.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China; Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Changjun Chen
- Department of Orthopedics, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
| | - Yue Luo
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Donghai Li
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Qiuru Wang
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Yuying Fang
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, Shandong, People's Republic of China.
| | - Pengde Kang
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
7
|
Sedovy MW, Leng X, Leaf MR, Iqbal F, Payne LB, Chappell JC, Johnstone SR. Connexin 43 across the Vasculature: Gap Junctions and Beyond. J Vasc Res 2022; 60:101-113. [PMID: 36513042 PMCID: PMC11073551 DOI: 10.1159/000527469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/26/2022] [Indexed: 12/15/2022] Open
Abstract
Connexin 43 (Cx43) is essential to the function of the vasculature. Cx43 proteins form gap junctions that allow for the exchange of ions and molecules between vascular cells to facilitate cell-to-cell signaling and coordinate vasomotor activity. Cx43 also has intracellular signaling functions that influence vascular cell proliferation and migration. Cx43 is expressed in all vascular cell types, although its expression and function vary by vessel size and location. This includes expression in vascular smooth muscle cells (vSMC), endothelial cells (EC), and pericytes. Cx43 is thought to coordinate homocellular signaling within EC and vSMC. Cx43 gap junctions also function as conduits between different cell types (heterocellular signaling), between EC and vSMC at the myoendothelial junction, and between pericyte and EC in capillaries. Alterations in Cx43 expression, localization, and post-translational modification have been identified in vascular disease states, including atherosclerosis, hypertension, and diabetes. In this review, we discuss the current understanding of Cx43 localization and function in healthy and diseased blood vessels across all vascular beds.
Collapse
Affiliation(s)
- Meghan W. Sedovy
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
- Translational Biology, Medicine, And Health Graduate Program, Virginia Tech, Blacksburg, VA, USA
| | - Xinyan Leng
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
| | - Melissa R. Leaf
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Farwah Iqbal
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Laura Beth Payne
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
| | - John C. Chappell
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
| | - Scott R. Johnstone
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
8
|
Mabotuwana NS, Rech L, Lim J, Hardy SA, Murtha LA, Rainer PP, Boyle AJ. Paracrine Factors Released by Stem Cells of Mesenchymal Origin and their Effects in Cardiovascular Disease: A Systematic Review of Pre-clinical Studies. Stem Cell Rev Rep 2022; 18:2606-2628. [PMID: 35896860 PMCID: PMC9622561 DOI: 10.1007/s12015-022-10429-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
Mesenchymal stem cell (MSC) therapy has gained significant traction in the context of cardiovascular repair, and have been proposed to exert their regenerative effects via the secretion of paracrine factors. In this systematic review, we examined the literature and consolidated available evidence for the "paracrine hypothesis". Two Ovid SP databases were searched using a strategy encompassing paracrine mediated MSC therapy in the context of ischemic heart disease. This yielded 86 articles which met the selection criteria for inclusion in this study. We found that the MSCs utilized in these articles were primarily derived from bone marrow, cardiac tissue, and adipose tissue. We identified 234 individual protective factors across these studies, including VEGF, HGF, and FGF2; which are proposed to exert their effects in a paracrine manner. The data collated in this systematic review identifies secreted paracrine factors that could decrease apoptosis, and increase angiogenesis, cell proliferation, and cell viability. These included studies have also demonstrated that the administration of MSCs and indirectly, their secreted factors can reduce infarct size, and improve left ventricular ejection fraction, contractility, compliance, and vessel density. Furthering our understanding of the way these factors mediate repair could lead to the identification of therapeutic targets for cardiac regeneration.
Collapse
Affiliation(s)
- Nishani S Mabotuwana
- College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, Newcastle, NSW, 2305, Australia
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Lavinia Rech
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
- Department of Cardiac Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joyce Lim
- College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, Newcastle, NSW, 2305, Australia
- Department of Cardiovascular Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Sean A Hardy
- College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, Newcastle, NSW, 2305, Australia
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Lucy A Murtha
- College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, Newcastle, NSW, 2305, Australia
| | - Peter P Rainer
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Andrew J Boyle
- College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia.
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, Newcastle, NSW, 2305, Australia.
- Department of Cardiovascular Medicine, John Hunter Hospital, Newcastle, NSW, Australia.
| |
Collapse
|
9
|
Mesenchymal Stem Cell Sheet Centrifuge-Assisted Layering Augments Pro-Regenerative Cytokine Production. Cells 2022; 11:cells11182840. [PMID: 36139414 PMCID: PMC9497223 DOI: 10.3390/cells11182840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022] Open
Abstract
A focal advantage of cell sheet technology has been as a scaffold-free three-dimensional (3D) cell delivery platform capable of sustained cell engraftment, survival, and reparative function. Recent evidence demonstrates that the intrinsic cell sheet 3D tissue-like microenvironment stimulates mesenchymal stem cell (MSC) paracrine factor production. In this capacity, cell sheets not only function as 3D cell delivery platforms, but also prime MSC therapeutic paracrine capacity. This study introduces a “cell sheet multilayering by centrifugation” strategy to non-invasively augment MSC paracrine factor production. Cell sheets fabricated by temperature-mediated harvest were first centrifuged as single layers using optimized conditions of rotational speed and time. Centrifugation enhanced cell physical and biochemical interactions related to intercellular communication and matrix interactions within the single cell sheet, upregulating MSC gene expression of connexin 43, integrin β1, and laminin α5. Single cell sheet centrifugation triggered MSC functional enhancement, secreting higher concentrations of pro-regenerative cytokines vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and interleukin-10 (IL-10). Subsequent cell sheet stacking, and centrifugation generated cohesive, bilayer MSC sheets within 2 h, which could not be accomplished within 24 h by conventional layering methods. Conventional layering led to H1F-1α upregulation and increased cell death, indicating a hypoxic thickness limitation to this approach. Comparing centrifuged single and bilayer cell sheets revealed that layering increased VEGF production 10-fold, attributed to intercellular interactions at the layered sheet interface. The “MSC sheet multilayering by centrifugation” strategy described herein generates a 3D MSC-delivery platform with boosted therapeutic factor production capacity.
Collapse
|
10
|
Zhou Z, Chai W, Liu Y, Zhou M, Zhang X. Connexins and angiogenesis: Functional aspects, pathogenesis, and emerging therapies (Review). Int J Mol Med 2022; 50:110. [PMID: 35762312 PMCID: PMC9256078 DOI: 10.3892/ijmm.2022.5166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022] Open
Abstract
Connexins (Cxs) play key roles in cellular communication. By facilitating metabolite exchange or interfering with distinct signaling pathways, Cxs affect cell homeostasis, proliferation, and differentiation. Variations in the activity and expression of Cxs have been linked to numerous clinical conditions including carcinomas, cardiac disorders, and wound healing. Recent discoveries on the association between Cxs and angiogenesis have sparked interest in Cx-mediated angiogenesis due to its essential functions in tissue formation, wound repair, tumor growth, and metastasis. It is now widely recognized that understanding the association between Cxs and angiogenesis may aid in the development of new targeted therapies for angiogenic diseases. The aim of the present review was to provide a comprehensive overview of Cxs and Cx-mediated angiogenesis, with a focus on therapeutic implications.
Collapse
Affiliation(s)
- Zizi Zhou
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Wenxiang Chai
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Yi Liu
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Meng Zhou
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Xiaoming Zhang
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
11
|
The Role of Connexin in Ophthalmic Neovascularization and the Interaction between Connexin and Proangiogenic Factors. J Ophthalmol 2022; 2022:8105229. [PMID: 35783340 PMCID: PMC9242797 DOI: 10.1155/2022/8105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/11/2022] [Indexed: 12/02/2022] Open
Abstract
The formation of new blood vessels is an important physiological process that occurs during development. When the body is injured, new blood vessel formation helps the body recuperate by supplying more oxygen and nutrients. However, this mechanism can have a negative effect. In ophthalmologic diseases, such as corneal new blood vessels, neonatal vascular glaucoma, and diabetes retinopathy, the formation of new blood vessels has become a critical component in patient survival. Connexin is a protein that regulates the cellular and molecular material carried by cells. It has been demonstrated that it is widely expressed in vascular endothelial cells, where it forms a slit connection between adjacent cells to promote cell-cell communication via hemichannels, as well as substance exchange into intracellular environments. Numerous studies have demonstrated that connexin in vascular endothelial cells plays an important role in angiogenesis and vascular leakage. The purpose of this study was to investigate the effect between the angiogenesis-associated factor and the connexin. It also reveals the effect of connexin on ophthalmic neovascularization.
Collapse
|
12
|
Shi W, Meng Z, Luo J. Connexin 43 (Cx43) regulates high-glucose-induced retinal endothelial cell angiogenesis and retinal neovascularization. Front Endocrinol (Lausanne) 2022; 13:909207. [PMID: 36120455 PMCID: PMC9478119 DOI: 10.3389/fendo.2022.909207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic retinopathy (DR) is an important microvascular complication of type 1 and type 2 diabetes mellitus (DM) and a major cause of blindness. Retinal neovascularization plays a critical role in the proliferative DR. In this study, high glucose-induced connexin 43 (Cx43) expression in human retinal endothelial cells (hRECs) in a dose-dependent manner. Compared with hRECs under normal culture conditions, high-glucose (HG)-stimulated hRECs showed promoted tubule formation, increased ROS release, and elevated levels of tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), vascular endothelial growth factor A (VEGFA), and intercellular adhesion molecule 1 (ICAM-1) in the culture medium. HG-induced alterations were further magnified after Cx43 overexpression, whereas partially eliminated after Cx43 knockdown. Finally, in the DR mouse model, impaired retinal structure, increased CD31 expression, and elevated mRNA levels of TNF-α, IL-1β, VEGFA, and ICAM-1 were observed; in-vivo Cx43 knockdown partially reversed these phenomena. Conclusively, Cx43 knockdown could inhibit hREC angiogenesis, therefore improving DR in the mouse model.
Collapse
Affiliation(s)
- Wen Shi
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Zhishang Meng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jing Luo
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
- *Correspondence: Jing Luo,
| |
Collapse
|
13
|
Liu W, Zhou Y, Zhang YX, Yang KL, Liu YL, Wu FH, Gao YR. Connexin 43 mediated the angiogenesis of buyang huanwu decoction via vascular endothelial growth factor and angiopoietin-1 after ischemic stroke. CHINESE J PHYSIOL 2022; 65:72-79. [DOI: 10.4103/cjp.cjp_94_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Cx43 Promotes Endothelial Cell Migration and Angiogenesis via the Tyrosine Phosphatase SHP-2. Int J Mol Sci 2021; 23:ijms23010294. [PMID: 35008716 PMCID: PMC8745637 DOI: 10.3390/ijms23010294] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/16/2022] Open
Abstract
The gap junction protein connexin 43 (Cx43) is associated with increased cell migration and to related changes of the actin cytoskeleton, which is mediated via its C-terminal cytoplasmic tail and is independent of its channel function. Cx43 has been shown to possess an angiogenic potential, however, the role of Cx43 in endothelial cell migration has not yet been investigated. Here, we found that the knock-down of Cx43 by siRNA in human microvascular endothelial cells (HMEC) reduces migration, as assessed by a wound assay in vitro and impaired aortic vessel sprouting ex vivo. Immunoprecipitation of Cx43 revealed an interaction with the tyrosine phosphatase SHP-2, which enhanced its phosphatase activity, as observed in Cx43 expressing HeLa cells compared to cells treated with an empty vector. Interestingly, the expression of a dominant negative substrate trapping mutant SHP-2 (CS) in HMEC, via lentiviral transduction, also impaired endothelial migration to a similar extent as Cx43 siRNA compared to SHP-2 WT. Moreover, the reduction in endothelial migration upon Cx43 siRNA could not be rescued by the introduction of a constitutively active SHP-2 construct (EA). Our data demonstrate that Cx43 and SHP-2 mediate endothelial cell migration, revealing a novel interaction between Cx43 and SHP-2, which is essential for this process.
Collapse
|
15
|
3D cell sheet structure augments mesenchymal stem cell cytokine production. Sci Rep 2021; 11:8170. [PMID: 33854167 PMCID: PMC8046983 DOI: 10.1038/s41598-021-87571-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) secrete paracrine factors that play crucial roles during tissue regeneration. An increasing body of evidence suggests that this paracrine function is enhanced by MSC cultivation in three-dimensional (3D) tissue-like microenvironments. Toward this end, this study explored scaffold-free cell sheet technology as a new 3D platform. MSCs cultivated on temperature-responsive culture dishes to a confluent 2D monolayer were harvested by temperature reduction from 37 to 20 °C that induces a surface wettability transition from hydrophobic to hydrophilic. Release of culture-adherent tension induced spontaneous cell sheet contraction, reducing the diameter 2.4-fold, and increasing the thickness 8.0-fold to render a 3D tissue-like construct with a 36% increase in tissue volume. This 2D-to-3D transition reorganized MSC actin cytoskeleton from aligned to multidirectional, corresponding to a cell morphological change from elongated in 2D monolayers to rounded in 3D cell sheets. 3D culture increased MSC gene expression of cell interaction proteins, β-catenin, integrin β1, and connexin 43, and of pro-tissue regenerative cytokines, vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and interleukin-10 (IL-10), and increased VEGF secretion per MSC 2.1-fold relative to 2D cultures. Together, these findings demonstrate that MSC therapeutic potency can be enhanced by 3D cell sheet tissue structure.
Collapse
|
16
|
Abstract
Of the 21 members of the connexin family, 4 (Cx37, Cx40, Cx43, and Cx45) are expressed in the endothelium and/or smooth muscle of intact blood vessels to a variable and dynamically regulated degree. Full-length connexins oligomerize and form channel structures connecting the cytosol of adjacent cells (gap junctions) or the cytosol with the extracellular space (hemichannels). The different connexins vary mainly with regard to length and sequence of their cytosolic COOH-terminal tails. These COOH-terminal parts, which in the case of Cx43 are also translated as independent short isoforms, are involved in various cellular signaling cascades and regulate cell functions. This review focuses on channel-dependent and -independent effects of connexins in vascular cells. Channels play an essential role in coordinating and synchronizing endothelial and smooth muscle activity and in their interplay, in the control of vasomotor actions of blood vessels including endothelial cell reactivity to agonist stimulation, nitric oxide-dependent dilation, and endothelial-derived hyperpolarizing factor-type responses. Further channel-dependent and -independent roles of connexins in blood vessel function range from basic processes of vascular remodeling and angiogenesis to vascular permeability and interactions with leukocytes with the vessel wall. Together, these connexin functions constitute an often underestimated basis for the enormous plasticity of vascular morphology and function enabling the required dynamic adaptation of the vascular system to varying tissue demands.
Collapse
Affiliation(s)
- Ulrich Pohl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Germany; Biomedical Centre, Cardiovascular Physiology, LMU Munich, Planegg-Martinsried, Germany; German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
17
|
Glutathione-Allylsulfur Conjugates as Mesenchymal Stem Cells Stimulating Agents for Potential Applications in Tissue Repair. Int J Mol Sci 2020; 21:ijms21051638. [PMID: 32121252 PMCID: PMC7084915 DOI: 10.3390/ijms21051638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/23/2022] Open
Abstract
The endogenous gasotransmitter H2S plays an important role in the central nervous, respiratory and cardiovascular systems. Accordingly, slow-releasing H2S donors are powerful tools for basic studies and innovative pharmaco-therapeutic agents for cardiovascular and neurodegenerative diseases. Nonetheless, the effects of H2S-releasing agents on the growth of stem cells have not been fully investigated. H2S preconditioning can enhance mesenchymal stem cell survival after post-ischaemic myocardial implantation; therefore, stem cell therapy combined with H2S may be relevant in cell-based therapy for regenerative medicine. Here, we studied the effects of slow-releasing H2S agents on the cell growth and differentiation of cardiac Lin− Sca1+ human mesenchymal stem cells (cMSC) and on normal human dermal fibroblasts (NHDF). In particular, we investigated the effects of water-soluble GSH–garlic conjugates (GSGa) on cMSC compared to other H2S-releasing agents, such as Na2S and GYY4137. GSGa treatment of cMSC and NHDF increased their cell proliferation and migration in a concentration dependent manner with respect to the control. GSGa treatment promoted an upregulation of the expression of proteins involved in oxidative stress protection, cell–cell adhesion and commitment to differentiation. These results highlight the effects of H2S-natural donors as biochemical factors that promote MSC homing, increasing their safety profile and efficacy after transplantation, and the value of these donors in developing functional 3D-stem cell delivery systems for cardiac muscle tissue repair and regeneration.
Collapse
|
18
|
Thirunavukkarasu M, Selvaraju V, Joshi M, Coca-Soliz V, Tapias L, Saad I, Fournier C, Husain A, Campbell J, Yee SP, Sanchez JA, Palesty JA, McFadden DW, Maulik N. Disruption of VEGF Mediated Flk-1 Signaling Leads to a Gradual Loss of Vessel Health and Cardiac Function During Myocardial Infarction: Potential Therapy With Pellino-1. J Am Heart Assoc 2019; 7:e007601. [PMID: 30371196 PMCID: PMC6222946 DOI: 10.1161/jaha.117.007601] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background The present study demonstrates that the ubiquitin E3 ligase, Pellino‐1 (Peli1), is an important angiogenic molecule under the control of vascular endothelial growth factor (VEGF) receptor 2/Flk‐1. We have previously reported increased survivability of ischemic skin flap tissue by adenovirus carrying Peli1 (Ad‐Peli1) gene therapy in Flk‐1+/− mice. Methods and Results Two separate experimental groups of mice were subjected to myocardial infarction (MI) followed by the immediate intramyocardial injection of adenovirus carrying LacZ (Ad‐LacZ) (1×109 pfu) or Ad‐Peli1 (1×109 pfu). Heart tissues were collected for analyses. Compared with wild‐type (WTMI) mice, analysis revealed decreased expressions of Peli1, phosphorylated (p‐)Flk‐1, p‐Akt, p‐eNOS, p‐MK2, p‐IκBα, and NF‐κB and decreased vessel densities in Flk‐1+/− mice subjected to MI (Flk‐1+/−MI). Mice (CD1) treated with Ad‐Peli1 after the induction of MI showed increased β‐catenin translocation to the nucleus, connexin 43 expression, and phosphorylation of Akt, eNOS, MK2, and IκBα, that was followed by increased vessel densities compared with the Ad‐LacZ–treated group. Echocardiography conducted 30 days after surgery showed decreased function in the Flk1+/−MI group compared with WTMI, which was restored by Ad‐Peli1 gene therapy. In addition, therapy with Ad‐Peli1 stimulated angiogenic and arteriogenic responses in both CD1 and Flk‐1+/− mice following MI. Ad‐Peli1 treatment attenuated cardiac fibrosis in Flk‐1+/−MI mice. Similar positive results were observed in CD1 mice subjected to MI after Ad‐Peli1 therapy. Conclusion Our results show for the first time that Peli1 plays a unique role in salvaging impaired collateral blood vessel formation, diminishes fibrosis, and improves myocardial function, thereby offering clinical potential for therapies in humans to mend a damaged heart following MI.
Collapse
Affiliation(s)
- Mahesh Thirunavukkarasu
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,2 Department of Surgery University of Connecticut Health Farmington CT
| | - Vaithinathan Selvaraju
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,2 Department of Surgery University of Connecticut Health Farmington CT
| | - Mandip Joshi
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,3 Stanley J. Dudrick Department of Surgery Saint Mary's Hospital Waterbury CT
| | - Vladimir Coca-Soliz
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,3 Stanley J. Dudrick Department of Surgery Saint Mary's Hospital Waterbury CT
| | - Leonidas Tapias
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,3 Stanley J. Dudrick Department of Surgery Saint Mary's Hospital Waterbury CT
| | - IbnalWalid Saad
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,3 Stanley J. Dudrick Department of Surgery Saint Mary's Hospital Waterbury CT
| | - Craig Fournier
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,2 Department of Surgery University of Connecticut Health Farmington CT
| | - Aaftab Husain
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,2 Department of Surgery University of Connecticut Health Farmington CT
| | - Jacob Campbell
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,2 Department of Surgery University of Connecticut Health Farmington CT
| | - Siu-Pok Yee
- 4 Center for Mouse Genome Modification University of Connecticut Health Farmington CT
| | - Juan A Sanchez
- 3 Stanley J. Dudrick Department of Surgery Saint Mary's Hospital Waterbury CT
| | - J Alexander Palesty
- 3 Stanley J. Dudrick Department of Surgery Saint Mary's Hospital Waterbury CT
| | - David W McFadden
- 2 Department of Surgery University of Connecticut Health Farmington CT
| | - Nilanjana Maulik
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,2 Department of Surgery University of Connecticut Health Farmington CT
| |
Collapse
|
19
|
Shao Q, Esseltine JL, Huang T, Novielli-Kuntz N, Ching JE, Sampson J, Laird DW. Connexin43 is Dispensable for Early Stage Human Mesenchymal Stem Cell Adipogenic Differentiation But is Protective against Cell Senescence. Biomolecules 2019; 9:E474. [PMID: 31514306 PMCID: PMC6770901 DOI: 10.3390/biom9090474] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023] Open
Abstract
In the last couple of decades, there has been a growing optimism surrounding the potential transformative use of human mesenchymal stem cells (MSCs) and human-induced pluripotent stem cells (iPSCs) for regenerative medicine and disease treatment. In order for this to occur, it is first essential to understand the mechanisms underpinning their cell-fate specification, which includes cell signaling via gap junctional intercellular communication. Here, we investigated the role of the prototypical gap junction protein, connexin43 (Cx43), in governing the differentiation of iPSCs into MSCs and MSC differentiation along the adipogenic lineage. We found that control iPSCs, as well as iPSCs derived from oculodentodigital dysplasia patient fibroblasts harboring a GJA1 (Cx43) gene mutation, successfully and efficiently differentiated into LipidTox and perilipin-positive cells, indicating cell differentiation along the adipogenic lineage. Furthermore, the complete CRISPR-Cas9 ablation of Cx43 from iPSCs did not prevent their differentiation into bona fide MSCs or pre-adipocytes, strongly suggesting that even though Cx43 expression is upregulated during adipogenesis, it is expendable. Interestingly, late passage Cx43-ablated MSCs senesced more quickly than control cells, resulting in failure to properly differentiate in vitro. We conclude that despite being upregulated during adipogenesis, Cx43 plays no detectable role in the early stages of human iPSC-derived MSC adipogenic differentiation. However, Cx43 may play a more impactful role in protecting MSCs from premature senescence.
Collapse
Affiliation(s)
- Qing Shao
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Jessica L Esseltine
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada.
| | - Tao Huang
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
- Department of Pathology, Shenyang Medical College, Shenyang 110034, China.
| | - Nicole Novielli-Kuntz
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Jamie E Ching
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Jacinda Sampson
- Department of Neurology, Stanford University Medical Center, Palo Alto, CA 94304, USA.
| | - Dale W Laird
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
20
|
Fan M, Huang Y, Chen Z, Xia Y, Chen A, Lu D, Wu Y, Zhang N, Qian J. Efficacy of mesenchymal stem cell therapy in systolic heart failure: a systematic review and meta-analysis. Stem Cell Res Ther 2019; 10:150. [PMID: 31151406 PMCID: PMC6544951 DOI: 10.1186/s13287-019-1258-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/28/2022] Open
Abstract
Background Heart failure (HF) is the end stage of most heart disease. Mesenchymal stem cells (MSCs), with their specific biological effects, have been applied in several clinical trials to evaluate the efficacy in HF therapy. We performed this meta-analysis to review the clinical evidence of their therapeutic effect on HF. Methods Three databases were searched. The outcomes of interest were death, readmission, the 6-min walk test (6MWT), New York Heart Association (NYHA) class and left ventricular ejection fraction (LVEF). The relative risk (RR) and weighted mean difference (WMD) were calculated to evaluate the effects of MSCs on HF compared to placebo. Results A total of nine studies were included, involving 612 patients who underwent MSCs or placebo treatment. The overall rate of death showed a trend of reduction of 36% (RR [CI] = 0.64 [0.35, 1.16], p = 0.143) in the MSC treatment group. The incidence of readmission was reduced by 34% (RR [CI] = 0.66 [0.51, 0.85], p = 0.001). The patients in the MSC treatment group realised an average of 40.44 m (WMD [95% CI] = 40.44 m [19.07, 61.82], p < 0.0001) improvement in 6MWT. The NYHA class was reduced obviously in the MSC group (WMD [95% CI] = − 0.42 [− 0.64, − 0.20], p < 0.0001). The changes of LVEF from baseline were significantly more than 5.25% (WMD [95% CI] = 5.25 [3.58, 6.92], p < 0.0001) in the MSCs group, unlike in the placebo group. Conclusions Our results suggested that MSC treatment is an effective therapy for HF by improving the prognosis and exercise capacity. SCs derived from allosomes have superior therapeutic effects, and intracoronary injection is the optimum MSC delivery approach. Short-term cryopreservation is feasible in MSCs storage or transport.
Collapse
Affiliation(s)
- Mengkang Fan
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yin Huang
- Department of Geriatric Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zhangwei Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yan Xia
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Ao Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Danbo Lu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yuan Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Ning Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Juying Qian
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
21
|
Pogoda K, Kameritsch P, Mannell H, Pohl U. Connexins in the control of vasomotor function. Acta Physiol (Oxf) 2019; 225:e13108. [PMID: 29858558 DOI: 10.1111/apha.13108] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 12/13/2022]
Abstract
Vascular endothelial cells, as well as smooth muscle cells, show heterogeneity with regard to their receptor expression and reactivity. For the vascular wall to act as a functional unit, the various cells' responses require integration. Such an integration is not only required for a homogeneous response of the vascular wall, but also for the vasomotor behaviour of consecutive segments of the microvascular arteriolar tree. As flow resistances of individual sections are connected in series, sections require synchronization and coordination to allow effective changes of conductivity and blood flow. A prerequisite for the local coordination of individual vascular cells and different sections of an arteriolar tree is intercellular communication. Connexins are involved in a dual manner in this coordination. (i) By forming gap junctions between cells, they allow an intercellular exchange of signalling molecules and electrical currents. In particular, the spread of electrical currents allows for coordination of cell responses over longer distances. (ii) Connexins are able to interact with other proteins to form signalling complexes. In this way, they can modulate and integrate individual cells' responses also in a channel-independent manner. This review outlines mechanisms allowing the vascular connexins to exert their coordinating function and to regulate the vasomotor reactions of blood vessels both locally, and in vascular networks. Wherever possible, we focus on the vasomotor behaviour of small vessels and arterioles which are the main vessels determining vascular resistance, blood pressure and local blood flow.
Collapse
Affiliation(s)
- K. Pogoda
- Walter-Brendel-Centre of Experimental Medicine; University Hospital; LMU Munich; Munich Germany
- Biomedical Center; Cardiovascular Physiology; LMU Munich; Munich Germany
- DZHK (German Center for Cardiovascular Research); Partner Site Munich Heart Alliance; Munich Germany
| | - P. Kameritsch
- Walter-Brendel-Centre of Experimental Medicine; University Hospital; LMU Munich; Munich Germany
- Biomedical Center; Cardiovascular Physiology; LMU Munich; Munich Germany
- DZHK (German Center for Cardiovascular Research); Partner Site Munich Heart Alliance; Munich Germany
| | - H. Mannell
- Walter-Brendel-Centre of Experimental Medicine; University Hospital; LMU Munich; Munich Germany
- Biomedical Center; Cardiovascular Physiology; LMU Munich; Munich Germany
| | - U. Pohl
- Walter-Brendel-Centre of Experimental Medicine; University Hospital; LMU Munich; Munich Germany
- Biomedical Center; Cardiovascular Physiology; LMU Munich; Munich Germany
- DZHK (German Center for Cardiovascular Research); Partner Site Munich Heart Alliance; Munich Germany
- Munich Cluster for Systems Neurology (SyNergy); Munich Germany
| |
Collapse
|
22
|
Ciocci M, Iorio E, Carotenuto F, Khashoggi HA, Nanni F, Melino S. H2S-releasing nanoemulsions: a new formulation to inhibit tumor cells proliferation and improve tissue repair. Oncotarget 2018; 7:84338-84358. [PMID: 27741519 PMCID: PMC5356665 DOI: 10.18632/oncotarget.12609] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/07/2016] [Indexed: 12/16/2022] Open
Abstract
The improvement of solubility and/or dissolution rate of poorly soluble natural compounds is an ideal strategy to make them optimal candidates as new potential drugs. Accordingly, the allyl sulfur compounds and omega-3 fatty acids are natural hydrophobic compounds that exhibit two important combined properties: cardiovascular protection and antitumor activity. Here, we have synthesized and characterized a novel formulation of diallyl disulfide (DADS) and α-linolenic acid (ALA) as protein-nanoemulsions (BAD-NEs), using ultrasounds. BAD-NEs are stable over time at room temperature and show antioxidant and radical scavenging property. These NEs are also optimal H2S slow-release donors and show a significant anti-proliferative effect on different human cancer cell lines: MCF-7 breast cancer and HuT 78 T-cell lymphoma cells. BAD-NEs are able to regulate the ERK1/2 pathway, inducing apoptosis and cell cycle arrest at the G0/G1 phase. We have also investigated their effect on cell proliferation of human adult stem/progenitor cells. Interestingly, BAD-NEs are able to improve the Lin- Sca1+ human cardiac progenitor cells (hCPC) proliferation. This stem cell growth stimulation is combined with the expression and activation of proteins involved in tissue-repair, such as P-AKT, α-sma and connexin 43. Altogether, our results suggest that these antioxidant nanoemulsions might have potential application in selective cancer therapy and for promoting the muscle tissue repair.
Collapse
Affiliation(s)
- Matteo Ciocci
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Egidio Iorio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Felicia Carotenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Haneen A Khashoggi
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Nanni
- Department of Industrial Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Sonia Melino
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
23
|
Li Z, Zhang S, Cao L, Li W, Ye YC, Shi ZX, Wang ZR, Sun LX, Wang JW, Jia LT, Wang W. Tanshinone IIA and Astragaloside IV promote the angiogenesis of mesenchymal stem cell-derived endothelial cell-like cells via upregulation of Cx37, Cx40 and Cx43. Exp Ther Med 2017; 15:1847-1854. [PMID: 29434774 PMCID: PMC5776521 DOI: 10.3892/etm.2017.5636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/29/2017] [Indexed: 12/17/2022] Open
Abstract
Tanshinone IIA (Tan IIA) and Astragaloside IV (AGS-IV) were used as therapeutic treatments for coronary heart diseases (CHDs) in ancient China. However, the underlying mechanisms mediating the effects of Tan IIA and AGS-IV in angiogenesis remain unknown. In the present study, mesenchymal stem cells (MSCs) were induced to differentiate into endothelial cell (EC)-like cells in vitro and the effects of Tan IIA and/or AGS-IV on the functions of these cells, including cell proliferation and tube formation, were assessed. Compared with the single-agent groups (Tan IIA or AGS-IV only), combined-agent (Tan IIA and AGS-IV) treatment significantly enhanced the proliferation and tube formation capacity of EC-like cells. In addition, the expression of connexin 37 (Cx37), Cx40 and Cx43 in the combined-agent group was significantly increased compared with the single-agent groups. Furthermore, enhanced gap junctional intercellular communication (GJIC) was identified in the combined-agent group, as evidenced by increased dye transfer in scrape-loading dye transfer assays. In conclusion, Tan IIA and AGS-IV may promote the angiogenesis of EC-like cells by upregulating the expression of Cx37, Cx40 and Cx43 and enhancing GJIC function. The results of the present study may provide experimental evidence for the clinical application of Tan IIA and AGS-IV as a treatment for CHDs.
Collapse
Affiliation(s)
- Zhe Li
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China.,Second Clinical Medical College, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi 710026, P.R. China
| | - Sha Zhang
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Liang Cao
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Li
- Department of Histology and Embryology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yu-Chen Ye
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zi-Xuan Shi
- Department of Acupuncture, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710003, P.R. China
| | - Zong-Ren Wang
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lian-Xu Sun
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jia-Wei Wang
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lin-Tao Jia
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wen Wang
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
24
|
Mast Cells Interact with Endothelial Cells to Accelerate In Vitro Angiogenesis. Int J Mol Sci 2017; 18:ijms18122674. [PMID: 29236033 PMCID: PMC5751276 DOI: 10.3390/ijms18122674] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is a complex process that involves interactions between endothelial cells and various other cell types as well as the tissue microenvironment. Several previous studies have demonstrated that mast cells accumulate at angiogenic sites. In spite of the evidence suggesting a relationship between mast cells and angiogenesis, the association of mast cells and endothelial cells remains poorly understood. The present study aims to investigate the relationship between mast cells and endothelial cells during in vitro angiogenesis. When endothelial cells were co-cultured with mast cells, angiogenesis was stimulated. Furthermore, there was direct intercellular communication via gap junctions between the two cell types. In addition, the presence of mast cells stimulated endothelial cells to release angiogenic factors. Moreover, conditioned medium from the co-cultures also stimulated in vitro angiogenesis. The results from this investigation demonstrate that mast cells have both direct and indirect proangiogenic effects and provide new insights into the role of mast cells in angiogenesis.
Collapse
|
25
|
Platelet-Rich Plasma as an Autologous and Proangiogenic Cell Delivery System. Mediators Inflamm 2017; 2017:1075975. [PMID: 28845088 PMCID: PMC5563430 DOI: 10.1155/2017/1075975] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis is a key factor in early stages of wound healing and is crucial for the repair of vascularized tissues such as the bone. However, supporting timely revascularization of the defect site still presents a clinical challenge. Tissue engineering approaches delivering endothelial cells or prevascularized constructs may overcome this problem. In the current study, we investigated platelet-rich plasma (PRP) gels as autologous, injectable cell delivery systems for prevascularized constructs. PRP was produced from human thrombocyte concentrates. GFP-expressing human umbilical vein endothelial cells (HUVECs) and human bone marrow-derived mesenchymal stem cells (MSCs) were encapsulated in PRP gels in different proportions. The formation of cellular networks was assessed over 14 days by time-lapse microscopy, gene expression analysis, and immunohistology. PRP gels presented a favorable environment for the formation of a three-dimensional (3D) cellular network. The formation of these networks was apparent as early as 3 days after seeding. Networks increased in complexity and branching over time but were only stable in HUVEC-MSC cocultures. The high cell viability together with the 3D capillary-like networks observed at early time points suggests that PRP can be used as an autologous and proangiogenic cell delivery system for the repair of vascularized tissues such as the bone.
Collapse
|
26
|
Donghai G, Qiangli W, Xiaojing H, Zhirong L, Lisheng Z. Clinical Study on Computerized Molecular Imaging Tracing Stem Cell Transplantation for Patients with Myocardial Infarction. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.proeng.2017.01.293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
27
|
Peroxisome Proliferator-Activated Receptor Gamma Promotes Mesenchymal Stem Cells to Express Connexin43 via the Inhibition of TGF-β1/Smads Signaling in a Rat Model of Myocardial Infarction. Stem Cell Rev Rep 2016; 11:885-99. [PMID: 26275398 DOI: 10.1007/s12015-015-9615-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND In this study, we hypothesized that activation of PPAR-γ enhanced MSCs survival and their therapeutic efficacy via upregulating the expression of Cx43. METHODS MI was induced in 50 male Sprague-Dawley rats. The rats were randomized into five groups: MI group and four intervention groups, including the MSCs group, combined therapy group (MSCs+ pioglitazone), pioglitazone group and PBS group. Two weeks later, 5 × 10(6) MSCs labeled with PKH26 in PBS were injected into the infarct anterior ventricular free wall in the MSCs and combined therapy groups, and PBS alone was injected into the infarct anterior ventricular free wall in the PBS group. Pioglitazone (3 mg/kg/day) was given to the combined therapy and pioglitazone groups by oral gavage at the same time for another 2 weeks. Myocardial function and relevant signaling molecules involved were all examined thereafter. RESULTS Heart function was enhanced after MSCs treatment for 2 weeks post MI. A significant improvement of heart function was observed in the combined therapy group in contrast to the other three intervention groups. Compared with the MSCs group, there was a higher level of PPAR-γ in the combined therapy group; Cx43 was remarkably increased in different regions of the left ventricle; TGF-β1 was decreased in the infarct zone and border zone. To the downstream signaling molecules, mothers against Smad proteins including Smad2 and Smad3 presented a synchronized alteration with TGF-β1; no differences of the expressions of ERK1/2 and p38 could be discovered in the left ventricular cardiac tissue. CONCLUSIONS MSCs transplantation combined with pioglitazone administration improved cardiac function more effectively after MI. Activation of PPAR-γ could promote MSCs to express Cx43. Inhibition of TGF-β1/Smads signaling pathway might be involved in the process.
Collapse
|
28
|
Chen Y, Xu J, Liao H, Ma Z, Zhang Y, Chen H, Huang Z, Hu J. Prostaglandin E2 and Connexin 43 crosstalk in the osteogenesis induced by extracorporeal shockwave. Med Hypotheses 2016; 94:123-5. [PMID: 27515217 DOI: 10.1016/j.mehy.2016.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 07/12/2016] [Accepted: 07/18/2016] [Indexed: 02/05/2023]
Abstract
As a type of mechanical stimulation, extracorporeal shockwave (ESW) has been widely used in the clinic to treat bone fracture delayed union and non-unions. A large number of studies have shown beneficial effects of ESW in promoting fracture healing by inducing bone regeneration; however, the underlying mechanisms remain unclear. ESW has been shown to induce the production of prostaglandin E2 (PGE2), which is essential for gap junction intercellular communication in response to mechanical stress. Among the 19 known gap junction subunits, connexin43 (Cx43) is the most prevalent for mediating the response of mechanical stress. However, to our knowledge, the effect of ESW on Cx43 expression has not been reported before. Herein, we propose that a crosstalk between PGE2 and Cx43 is involved in the enhancement of osteogenesis induced by ESW. We review the currently available data to propose an unrevealed, but important mechanism via which ESW treatment affects osteogenic differentiation of bone marrow stromal cells.
Collapse
Affiliation(s)
- Youbin Chen
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiankun Xu
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China; Department of Orthopedics and Traumatology, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Haojie Liao
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zebin Ma
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yuantao Zhang
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hongjiang Chen
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhonglian Huang
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jun Hu
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
29
|
Golpanian S, Wolf A, Hatzistergos KE, Hare JM. Rebuilding the Damaged Heart: Mesenchymal Stem Cells, Cell-Based Therapy, and Engineered Heart Tissue. Physiol Rev 2016; 96:1127-68. [PMID: 27335447 PMCID: PMC6345247 DOI: 10.1152/physrev.00019.2015] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are broadly distributed cells that retain postnatal capacity for self-renewal and multilineage differentiation. MSCs evade immune detection, secrete an array of anti-inflammatory and anti-fibrotic mediators, and very importantly activate resident precursors. These properties form the basis for the strategy of clinical application of cell-based therapeutics for inflammatory and fibrotic conditions. In cardiovascular medicine, administration of autologous or allogeneic MSCs in patients with ischemic and nonischemic cardiomyopathy holds significant promise. Numerous preclinical studies of ischemic and nonischemic cardiomyopathy employing MSC-based therapy have demonstrated that the properties of reducing fibrosis, stimulating angiogenesis, and cardiomyogenesis have led to improvements in the structure and function of remodeled ventricles. Further attempts have been made to augment MSCs' effects through genetic modification and cell preconditioning. Progression of MSC therapy to early clinical trials has supported their role in improving cardiac structure and function, functional capacity, and patient quality of life. Emerging data have supported larger clinical trials that have been either completed or are currently underway. Mechanistically, MSC therapy is thought to benefit the heart by stimulating innate anti-fibrotic and regenerative responses. The mechanisms of action involve paracrine signaling, cell-cell interactions, and fusion with resident cells. Trans-differentiation of MSCs to bona fide cardiomyocytes and coronary vessels is also thought to occur, although at a nonphysiological level. Recently, MSC-based tissue engineering for cardiovascular disease has been examined with quite encouraging results. This review discusses MSCs from their basic biological characteristics to their role as a promising therapeutic strategy for clinical cardiovascular disease.
Collapse
Affiliation(s)
- Samuel Golpanian
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Ariel Wolf
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Konstantinos E Hatzistergos
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
30
|
Mohsin S, Troupes CD, Starosta T, Sharp TE, Agra EJ, Smith S, Duran JM, Zalavadia N, Zhou Y, Kubo H, Berretta RM, Houser SR. Unique Features of Cortical Bone Stem Cells Associated With Repair of the Injured Heart. Circ Res 2015; 117:1024-33. [PMID: 26472818 DOI: 10.1161/circresaha.115.307362] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/15/2015] [Indexed: 12/26/2022]
Abstract
RATIONALE Adoptive transfer of multiple stem cell types has only had modest effects on the structure and function of failing human hearts. Despite increasing the use of stem cell therapies, consensus on the optimal stem cell type is not adequately defined. The modest cardiac repair and functional improvement in patients with cardiac disease warrants identification of a novel stem cell population that possesses properties that induce a more substantial improvement in patients with heart failure. OBJECTIVE To characterize and compare surface marker expression, proliferation, survival, migration, and differentiation capacity of cortical bone stem cells (CBSCs) relative to mesenchymal stem cells (MSCs) and cardiac-derived stem cells (CDCs), which have already been tested in early stage clinical trials. METHODS AND RESULTS CBSCs, MSCs, and CDCs were isolated from Gottingen miniswine or transgenic C57/BL6 mice expressing enhanced green fluorescent protein and were expanded in vitro. CBSCs possess a unique surface marker profile, including high expression of CD61 and integrin β4 versus CDCs and MSCs. In addition, CBSCs were morphologically distinct and showed enhanced proliferation capacity versus CDCs and MSCs. CBSCs had significantly better survival after exposure to an apoptotic stimuli when compared with MSCs. ATP and histamine induced a transient increase of intracellular Ca(2+) concentration in CBSCs versus CDCs and MSCs, which either respond to ATP or histamine only further documenting the differences between the 3 cell types. CONCLUSIONS CBSCs are unique from CDCs and MSCs and possess enhanced proliferative, survival, and lineage commitment capacity that could account for the enhanced protective effects after cardiac injury.
Collapse
Affiliation(s)
- Sadia Mohsin
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Constantine D Troupes
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Timothy Starosta
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Thomas E Sharp
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Elorm J Agra
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Shavonn Smith
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Jason M Duran
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Neil Zalavadia
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Yan Zhou
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Hajime Kubo
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Remus M Berretta
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Steven R Houser
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.).
| |
Collapse
|
31
|
Effects of antiarrhythmic peptide 10 on acute ventricular arrhythmia. ASIAN PAC J TROP MED 2015; 8:229-33. [DOI: 10.1016/s1995-7645(14)60321-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/20/2015] [Accepted: 02/15/2015] [Indexed: 11/21/2022] Open
|
32
|
Lakota J, Dubrovcakova M, Bohovic R, Goncalvesova E. Intracoronary mesenchymal stem cell transplantation in patients with ischemic cardiomyopathy. Int J Cardiol 2014; 176:547-9. [PMID: 25049010 DOI: 10.1016/j.ijcard.2014.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/05/2014] [Indexed: 11/25/2022]
Affiliation(s)
- Jan Lakota
- Cancer Research Institute SAS, Bratislava, Slovakia.
| | | | | | - Eva Goncalvesova
- National Institute of Cardiovascular Diseases, Bratislava, Slovakia
| |
Collapse
|
33
|
Morel S. Multiple roles of connexins in atherosclerosis- and restenosis-induced vascular remodelling. J Vasc Res 2014; 51:149-61. [PMID: 24853725 DOI: 10.1159/000362122] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/01/2014] [Indexed: 12/19/2022] Open
Abstract
Endothelial dysfunction is the initial step in atherosclerotic plaque development in large- and medium-sized arteries. This progressive disease, which starts during childhood, is characterized by the accumulation of lipids, macrophages, neutrophils, T lymphocytes and smooth muscle cells in the intima of the vessels. Erosion and rupture of the atherosclerotic plaque may induce myocardial infarction and cerebrovascular accidents, which are responsible for a large percentage of sudden deaths. The most common treatment for atherosclerosis is angioplasty and stent implantation, but these surgical interventions favour a vascular reaction called restenosis and the associated de-endothelialization increases the risk of thrombosis. This review provides an overview of the role of connexins, a large family of transmembrane proteins, in vascular remodelling associated with atherosclerosis and restenosis. The connexins expressed in the vascular wall are Cx37, Cx40, Cx43 and Cx45; their expressions vary with vascular territory and species. Connexins form hemichannels or gap junction channels, allowing the exchange of ions and small metabolites between the cytosol and extracellular space or between neighbouring cells, respectively. Connexins have important roles in vascular physiology; they support radial and longitudinal cell-to-cell communication in the vascular wall, and significant changes in their expression patterns have been described during atherosclerosis and restenosis.
Collapse
Affiliation(s)
- Sandrine Morel
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|