1
|
Lakshmanan Y, Wong FSY, So KF, Chan HHL. Lycium barbarum glycopeptide promotes neuroprotection in ET-1 mediated retinal ganglion cell degeneration. J Transl Med 2024; 22:727. [PMID: 39103918 PMCID: PMC11302070 DOI: 10.1186/s12967-024-05526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/20/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Vascular dysregulation is one of the major risk factors of glaucoma, and endothelin-1 (ET-1) may have a role in the pathogenesis of vascular-related glaucoma. Fruit extract from Lycium Barbarum (LB) exhibits anti-ageing and multitarget mechanisms in protecting retinal ganglion cells (RGC) in various animal models. To investigate the therapeutic efficacy of LB glycoproteins (LbGP) in ET-1 induced RGC degeneration, LbGP was applied under pre- and posttreatment conditions to an ET-1 mouse model. Retina structural and functional outcomes were characterised using clinical-based techniques. METHODS Adult C57BL/6 mice were randomly allocated into four experimental groups, namely vehicle control (n = 9), LbGP-Pretreatment (n = 8), LbGP-Posttreatment (day 1) (n = 8) and LbGP-Posttreatment (day 5) (n = 7). Oral administration of LbGP 1 mg/Kg or PBS for vehicle control was given once daily. Pre- and posttreatment (day 1 or 5) were commenced at 1 week before and 1 or 5 days after intravitreal injections, respectively, and were continued until postinjection day 28. Effects of treatment on retinal structure and functions were evaluated using optical coherence tomography (OCT), doppler OCT and electroretinogram measurements at baseline, post-injection days 10 and 28. RGC survival was evaluated by using RBPMS immunostaining on retinal wholemounts. RESULTS ET-1 injection in vehicle control induced transient reductions in arterial flow and retinal functions, leading to significant RNFL thinning and RGC loss at day 28. Although ET-1 induced a transient loss in blood flow or retinal functions in all LbGP groups, LbGP treatments facilitated better restoration of retinal flow and retinal functions as compared with the vehicle control. Also, all three LbGP treatment groups (i.e. pre- and posttreatments from days 1 or 5) significantly preserved thRNFL thickness and RGC densities. No significant difference in protective effects was observed among the three LbGP treatment groups. CONCLUSION LbGP demonstrated neuroprotective effects in a mouse model of ET-1 induced RGC degeneration, with treatment applied either as a pretreatment, immediate or delayed posttreatment. LbGP treatment promoted a better restoration of retinal blood flow, and protected the RNFL, RGC density and retinal functions. This study showed the translational potential of LB as complementary treatment for glaucoma management.
Collapse
Affiliation(s)
- Yamunadevi Lakshmanan
- Laboratory of Experimental Optometry (Neuroscience), School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Francisca Siu Yin Wong
- Laboratory of Experimental Optometry (Neuroscience), School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau (GHM) Institute of CNS Regeneration, Jinan University, Guangzhou, China
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Henry Ho-Lung Chan
- Laboratory of Experimental Optometry (Neuroscience), School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China.
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China.
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China.
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
2
|
Feng S, Xu X, Li X, Deng G, Xia C, Zhou L, Chen T, Gao T, Yuan M, Cao X, Ding C. Structure elucidation and antioxidant activity of a polysaccharide from Penthorum chinense Pursh. Int J Biol Macromol 2024; 264:130720. [PMID: 38460626 DOI: 10.1016/j.ijbiomac.2024.130720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Penthorum chinense Pursh is a traditional Miao medicine, mainly used in the treatment of liver diseases. In this study, an acidic heteropolysaccharide PCPP was isolated from P. chinense with an average molecular weight of 14.96 kDa. PCPP contained arabinogalactan and homogalacturonan segments, which is formed by 4-Galp-(1 → 5)-Araf-1 and 3,6-Galp-(1 → 6)-Galp-1,3 glycosidic linkage. A variety of side chains, including t-Glcp-(1 → 4)-Glcp-(1 → 4)-GlcpA-1, t-Xylp-(1→, and 2-Manp-(1 → 4)-GalpA-1,3 linked to the O-3 and O-6 of 3,6-Galp. The antioxidant activity measurement in three models demonstrated that PCPP exhibited ROS scavenging capacity, antioxidant ability in the cellular model, enhancement of oxidative stress resistance, and healthspan-promoting effect in the worm model. These results provided the theoretical fundament of PCPP as a potential natural antioxidant.
Collapse
Affiliation(s)
- Shiling Feng
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Xiaoyan Xu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Xiao Li
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Guanfeng Deng
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Chen Xia
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan Province, China.
| | - Lijun Zhou
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Tao Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Tao Gao
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Xiaohan Cao
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Chunbang Ding
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China.
| |
Collapse
|
3
|
Shen H, Gong M, Hu J, Yan Q, Zhang M, Zheng R, Wu J, Cao Y. Lycium barbarum polysaccharide's protective effects against PM 2.5-induced cellular senescence in HUVECs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116232. [PMID: 38493701 DOI: 10.1016/j.ecoenv.2024.116232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Fine particulate matter (PM2.5) exposure is strongly associated with vascular endothelial senescence, a process implicated in cardiovascular diseases. While there is existing knowledge on the impact of Lycium barbarum polysaccharide (LBP) on vascular endothelial damage, the protective mechanism of LBP against PM2.5-induced vascular endothelial senescence remains unclear. In this study, we investigated the impact of PM2.5 exposure on vascular endothelial senescence and explored the intervention effects of LBP in human umbilical vein endothelial cells (HUVECs). We found that PM2.5 exposure dose-dependently reduced cell viability and proliferation in HUVECs while increasing the production of reactive oxygen species (ROS), malondialdehyde (MDA), and hydrogen peroxide (H2O2). Additionally, PM2.5 exposure inhibited the activity of superoxide dismutase (SOD). Notably, PM2.5 exposure induced autophagy impairments and cellular senescence. However, LBP mitigated PM2.5-induced cell damage. Further studies demonstrated that correcting autophagy impairment in HUVECs reduced the expression of the senescence markers P16 and P21 induced by PM2.5. This suggests the regulatory role of autophagy in cellular senescence and the potential of LBP in improving HUVECs senescence. These findings provide novel insights into the mechanisms underlying PM2.5-induced cardiovascular toxicity and highlight the potential of LBP as a therapeutic agent for improving vascular endothelial health.
Collapse
Affiliation(s)
- Haochong Shen
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Meidi Gong
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Juan Hu
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Qing Yan
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Minghao Zhang
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Rao Zheng
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Jing Wu
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| | - Yi Cao
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Guan L, Eisenmenger A, Crasta KC, Sandalova E, Maier AB. Therapeutic effect of dietary ingredients on cellular senescence in animals and humans: A systematic review. Ageing Res Rev 2024; 95:102238. [PMID: 38382678 DOI: 10.1016/j.arr.2024.102238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/12/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Cellular senescence has been regarded as a therapeutic target for ageing and age-related diseases. Several senotherapeutic agents have been proposed, including compounds derived from natural products which hold the translational potential to promote healthy ageing. This systematic review examined the association of dietary ingredients with cellular senescence in animals and humans, with an intent to identify dietary ingredients with senotherapeutic potential. METHODS This systematic review was registered at PROSPERO International prospective register of systematic reviews (Reg #: CRD42022338885). The databases PubMed and Embase were systematically searched for key terms related to cellular senescence, senescence markers, diets, nutrients and bioactive compounds. Intervention and observational studies on human and animals investigating the effects of dietary ingredients via oral administration on cellular senescence load were included. The SYRCLE's risk of bias tool and Cochrane risk of bias tool v2.0 were used to assess the risk of bias for animal and human studies respectively. RESULTS Out of 5707 identified articles, 83 articles consisting of 78 animal studies and 5 human studies aimed to reduce cellular senescence load using dietary ingredients. In animal studies, the most-frequently used senescence model was normative ageing (26 studies), followed by D-galactose-induced models (17 studies). Resveratrol (8 studies), vitamin E (4 studies) and soy protein isolate (3 studies) showed positive effects on reducing the level of senescence markers such as p53, p21, p16 and senescence-associated ß-galactosidase in various tissues of physiological systems. In three out of five human studies, ginsenoside Rg1 had no positive effect on reducing senescence in muscle tissues after exercise. The risk of bias for both animal and human studies was largely unclear. CONCLUSION Resveratrol, vitamin E and soy protein isolate are promising senotherapeutics studied in animal models. Studies testing dietary ingredients with senotherapeutic potential in humans are limited and translation is highly warranted.
Collapse
Affiliation(s)
- Lihuan Guan
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore
| | - Anna Eisenmenger
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore
| | - Karen C Crasta
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore; Department of Physiology, National University of Singapore, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Agency for Science, Technology & Research (A⁎STAR), Institute of Molecular and Cell Biology (IMCB), Singapore
| | - Elena Sandalova
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore
| | - Andrea B Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore; Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, the Netherlands.
| |
Collapse
|
5
|
Song L, Zhang S. Anti-Aging Activity and Modes of Action of Compounds from Natural Food Sources. Biomolecules 2023; 13:1600. [PMID: 38002283 PMCID: PMC10669485 DOI: 10.3390/biom13111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/21/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Aging is a natural and inescapable phenomenon characterized by a progressive deterioration of physiological functions, leading to increased vulnerability to chronic diseases and death. With economic and medical development, the elderly population is gradually increasing, which poses a great burden to society, the economy and the medical field. Thus, healthy aging has now become a common aspiration among people over the world. Accumulating evidence indicates that substances that can mediate the deteriorated physiological processes are highly likely to have the potential to prolong lifespan and improve aging-associated diseases. Foods from natural sources are full of bioactive compounds, such as polysaccharides, polyphenols, carotenoids, sterols, terpenoids and vitamins. These bioactive compounds and their derivatives have been shown to be able to delay aging and/or improve aging-associated diseases, thereby prolonging lifespan, via regulation of various physiological processes. Here, we summarize the current understanding of the anti-aging activities of the compounds, polysaccharides, polyphenols, carotenoids, sterols, terpenoids and vitamins from natural food sources, and their modes of action in delaying aging and improving aging-associated diseases. This will certainly provide a reference for further research on the anti-aging effects of bioactive compounds from natural food sources.
Collapse
Affiliation(s)
- Lili Song
- Key Laboratory of Biomedical Materials of Zhangjiakou, College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China;
| | - Shicui Zhang
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China
- Xinjiang Key Laboratory of Biological Resources and Ecology of Pamirs Plateau, Kashi 844000, China
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
6
|
Gao L, Liu X, Luo X, Lou X, Li P, Li X, Liu X. Antiaging effects of dietary supplements and natural products. Front Pharmacol 2023; 14:1192714. [PMID: 37441528 PMCID: PMC10333707 DOI: 10.3389/fphar.2023.1192714] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Aging is an inevitable process influenced by genetics, lifestyles, and environments. With the rapid social and economic development in recent decades, the proportion of the elderly has increased rapidly worldwide, and many aging-related diseases have shown an upward trend, including nervous system diseases, cardiovascular diseases, metabolic diseases, and cancer. The rising burden of aging-related diseases has become an urgent global health challenge and requires immediate attention and solutions. Natural products have been used for a long time to treat various human diseases. The primary cellular pathways that mediate the longevity-extending effects of natural products involve nutrient-sensing pathways. Among them, the sirtuin, AMP-activated protein kinase, mammalian target of rapamycin, p53, and insulin/insulin-like growth factor-1 signaling pathways are most widely studied. Several studies have reviewed the effects of individual natural compounds on aging and aging-related diseases along with the underlying mechanisms. Natural products from food sources, such as polyphenols, saponins, alkaloids, and polysaccharides, are classified as antiaging compounds that promote health and prolong life via various mechanisms. In this article, we have reviewed several recently identified natural products with potential antiaging properties and have highlighted their cellular and molecular mechanisms. The discovery and use of dietary supplements and natural products that can prevent and treat multiple aging-related diseases in humans will be beneficial. Thus, this review provides theoretical background for existing dietary supplements and natural products as potential antiaging agents.
Collapse
|
7
|
Deng R, Wang F, Wang L, Xiong L, Shen X, Song H. Advances in Plant Polysaccharides as Antiaging Agents: Effects and Signaling Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7175-7191. [PMID: 37155561 DOI: 10.1021/acs.jafc.3c00493] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Aging refers to the gradual physiological changes that occur in an organism after reaching adulthood, resulting in senescence and a decline in biological functions, ultimately leading to death. Epidemiological evidence shows that aging is a driving factor in the developing of various diseases, including cardiovascular diseases, neurodegenerative diseases, immune system disorders, cancer, and chronic low-grade inflammation. Natural plant polysaccharides have emerged as crucial food components in delaying the aging process. Therefore, it is essential to continuously investigate plant polysaccharides as potential sources of new pharmaceuticals for aging. Modern pharmacological research indicates that plant polysaccharides can exert antiaging effects by scavenging free radicals, increasing telomerase activity, regulating apoptosis, enhancing immunity, inhibiting glycosylation, improving mitochondrial dysfunction regulating gene expression, activating autophagy, and modulating gut microbiota. Moreover, the antiaging activity of plant polysaccharides is mediated by one or more signaling pathways, including IIS, mTOR, Nrf2, NF-κB, Sirtuin, p53, MAPK, and UPR signaling pathways. This review summarizes the antiaging properties of plant polysaccharides and signaling pathways participating in the polysaccharide-regulating aging process. Finally, we discuss the structure-activity relationships of antiaging polysaccharides.
Collapse
Affiliation(s)
- Rou Deng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Fang Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Luanfeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Ling Xiong
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Haizhao Song
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
8
|
Sun Y, Meng X, Hu X, Liu R, Zhao Z, Wang S, Zhang R, Guo K, Luo L. Dietary supplementation with Lycium barbarum polysaccharides conducive to maintaining the health of Luciobarbus capito via the enhancement of enzyme activities and the modulation of gut microbiota. Int J Biol Macromol 2023; 232:123500. [PMID: 36736520 DOI: 10.1016/j.ijbiomac.2023.123500] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/08/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
Lycium barbarum polysaccharide (LBP) is the main active component of Lycium barbarum (L. barbarum), which has important medicinal and nutritional value. However, the effect of LBP treatment on Luciobarbus capito (L. capito) still remains unknown. Given this, the current work aims to probe the underlying effect of different levels of LBP treatment (i.e. 0.10, 0.50 and 1.00 g/L) on L. capito in the context of enzymatic activity analysis, histological observations and gut microbiota analysis. Compared with control group, the activities of hepatic antioxidant enzymes, intestinal digestive enzymes and hepatic immune enzyme were found to be significantly increased after 0.10 g/L LBP and 0.50 g/L LBP treatment (P < 0.05). This result indicated that moderate levels of LBP treatment could dramatically enhance the immunity and antioxidant capacity of L. capito. Furthermore, the compositional structures of the gut microbiota in L. capito were found to be greatly shaped after LBP treatment, whereas the diversity and abundance of the gut microbiota were only found to be slightly changed (P > 0.05). No significant changes were screened in the morphologic structures of gut constructions. This work would provide theoretical and experimental basis for future application of LBP as supplement in the culture process of the farmed fish.
Collapse
Affiliation(s)
- Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China.
| | - Xianwei Meng
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China; Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Xiaowei Hu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China; Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Rui Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China
| | - Zhigang Zhao
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Shihui Wang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Rui Zhang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Kun Guo
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Liang Luo
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| |
Collapse
|
9
|
Niu Y, Zhang G, Sun X, He S, Dou G. Distinct Role of Lycium barbarum L. Polysaccharides in Oxidative Stress-Related Ocular Diseases. Pharmaceuticals (Basel) 2023; 16:215. [PMID: 37259363 PMCID: PMC9966716 DOI: 10.3390/ph16020215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress is an imbalance between the increased production of reactive species and reduced antioxidant activity, which can cause a variety of disturbances including ocular diseases. Lycium barbarum polysaccharides (LBPs) are complex polysaccharides isolated from the fruit of L. barbarum, showing distinct roles in antioxidants. Moreover, it is relatively safe and non-toxic. In recent years, the antioxidant activities of LBPs have attracted remarkable attention. In order to illustrate its significance and underlying therapeutic value for vision, we comprehensively review the recent progress on the antioxidant mechanisms of LBP and its potential applications in ocular diseases, including diabetic retinopathy, hypertensive neuroretinopathy, age-related macular degeneration, retinitis pigmentosa, retinal ischemia/reperfusion injury, glaucoma, dry eye syndrome, and diabetic cataract.
Collapse
Affiliation(s)
- Yali Niu
- College of Life Sciences, Northwestern University, Xi’an 710069, China
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Guoheng Zhang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xiaojia Sun
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Shikun He
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Guorui Dou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
10
|
Feng Y, Song Y, Zhou J, Duan Y, Kong T, Ma H, Zhang H. Recent progress of Lycium barbarum polysaccharides on intestinal microbiota, microbial metabolites and health: a review. Crit Rev Food Sci Nutr 2022; 64:2917-2940. [PMID: 36168931 DOI: 10.1080/10408398.2022.2128037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Intestinal microbiota is symbiotically associated with host health, learning about the characteristics of microbiota and the factors that modulate it could assist in developing strategies to promote human health and prevent diseases. Polysaccharides from Lycium barbarum (LBPs) are found beneficial for enhancing the activity of gut microbiota, as a potential prebiotic, which not only participates in improving body immunity, obesity, hyperlipidemia and systemic inflammation induced by oxidative stress, but also plays a magnificent role in regulating intestinal microenvironment and improving host health and target intestinal effects via its biological activities, as well as gut microbiota and metabolites. To highlight the internal relationship between intestinal microbiota and LBPs, this review focuses on the latest advances in LBPs on the intestinal microbiota, metabolites, immune regulation, intestinal barrier protection, microbiota-gut-brain axis and host health. Moreover, the preparation, structure, bioactivity and modification of LBPs were also discussed. This review may offer new perspective on LBPs improving health of gut and host via intestinal microbiota, and provide useful guidelines for the application of LBPs in the food industry.
Collapse
Affiliation(s)
- Yuqin Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yating Song
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jie Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Tianyu Kong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
11
|
Antiaging Effects of Dietary Polysaccharides: Advance and Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4362479. [PMID: 35864870 PMCID: PMC9296321 DOI: 10.1155/2022/4362479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/12/2022] [Accepted: 06/25/2022] [Indexed: 11/18/2022]
Abstract
Aging is a process in which the various physiological functions of the body gradually deteriorate and eventually lead to death. During this process, the body’s resistance to external stresses gradually decreases and the aging-related diseases gradually are increased. Polysaccharides are a group of active substances extracted from living organisms and are widely found in plants, animals, and microorganisms. In the last decade, a variety of natural polysaccharides from functional and medicinal foods have attracted considerable interest for their beneficial effects in the prevention of chronic diseases such as cancers, diabetes, and neurodegenerative diseases. Interestingly, these polysaccharides have also been found to delay aging by reducing oxidative damage, inhibiting telomere shortening, and being anti-inflammatory in different animal models of aging. These reviews summarized the progresses in effects of polysaccharides on antiaging and the potential mechanisms and especially focused on the signaling pathways involved in the antiaging functions. Finally, the applications and prospects of the antiaging effects of polysaccharides are discussed.
Collapse
|
12
|
The anti-aging activity of Lycium barbarum polysaccharide extracted by yeast fermentation: In vivo and in vitro studies. Int J Biol Macromol 2022; 209:2032-2041. [PMID: 35500780 DOI: 10.1016/j.ijbiomac.2022.04.184] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 01/04/2023]
Abstract
Lycium barbarum polysaccharide (LBP) is an important active substance in Lycium barbarum. In this study, LBP was extracted by the hot water method and yeast fermentation method to obtain products called LBP-W and LBP-Y, respectively. Both LBPs have a strong ability to scavenge DPPH, hydroxyl, and superoxide anion free radicals and have a total antioxidant capacity. Both LBPs prolong the lifespan of C. elegans under normal conditions, oxidative stress and heat stress and do not affect fertility, LBPs could prolong the lifespan of C. elegans by upregulating the expression of daf-16, sod-3 and hsp-16.2 genes, and LBP-Y is more efficacious. The molecular weight of the LBPs was characterized by gel permeation chromatography (GPC), and the results showed that LBP-Y is smaller and more uniform than LBP-W. The skin penetration experiment showed that the absorption effect of LBP-Y is better than that of LBP-W. These lines of evidence suggest that the yeast fermentation extraction of LBP produces better antioxidant and anti-aging effects than those obtained with the traditional hot water extraction, which is more suitable for obtaining raw materials with anti-aging functions that can potentially be used in the food and cosmetic industries.
Collapse
|
13
|
Transcriptomics integrated with metabolomics reveals the effect of Lycium barbarum polysaccharide on apoptosis in Nile tilapia (Oreochromis niloticus). Genomics 2021; 114:229-240. [PMID: 34933073 DOI: 10.1016/j.ygeno.2021.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022]
Abstract
Lycium barbarum polysaccharide (LBP) is one of the main active ingredients in the fruit of L. barbarum L. It has been used as herbal medicine for thousands of years in China. In this study, Nile tilapia (Oreochromis niloticus) was taken as the research object. After feeding tilapia with 5 different doses of LBP (0 mg/kg, 500 mg/kg, 1000 mg/kg, 1500 mg/kg, 2000 mg/kg) for 55 d, it was found that LBP could promote the growth of tilapia, and this effect was the strongest at Group 1500 mg/kg. Apoptosis analysis in the liver and spleen showed that dietary supplementation with 1000 mg/kg LBP had the best protective effect on the spleen and liver in tilapia. Combined transcriptomics and metabolomics of the spleen in tilapia at Group 0 mg/kg and 1000 mg/kg showed that the differentially expressed genes (DEGs) such as NT5C2L1, pmm1, FasL and the differentially metabolites such as xanthine, dGMP, guanine and glutamate were mainly concentrated in signaling pathways such as Purine metabolism and FoxO signaling pathway. In conclusion, LBP regulates the metabolic waste levels of tilapia mainly through Purine metabolism and the FoxO signaling pathway, thereby inhibiting cell apoptosis, improving the utilization of nutrients, and promoting the growth of tilapia. This study not only provides a theoretical basis for the application of LBP in aquatic animals but also provides useful information for the healthy development of the aquaculture.
Collapse
|
14
|
Ni J, Au M, Kong H, Wang X, Wen C. Lycium barbarum polysaccharides in ageing and its potential use for prevention and treatment of osteoarthritis: a systematic review. BMC Complement Med Ther 2021; 21:212. [PMID: 34404395 PMCID: PMC8371808 DOI: 10.1186/s12906-021-03385-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lycium barbarum polysaccharide (LBP), the most abundant functional component of wolfberry, is considered a potent antioxidant and an anti-ageing substance. This review aims to outline the hallmarks of ageing in the pathogenesis of osteoarthritis (OA), followed by the current understanding of the senolytic effect of LBP and its potential use in the prevention and treatment of OA. This will be discussed through the lens of molecular biology and herbal medicine. METHODS A literature search was performed from inception to March 2020 using following keywords: "Lycium barbarum polysaccharide", "DNA damage", antioxidant, anti-apoptosis, anti-inflammation, anti-ageing, osteoarthritis, chondrocytes, fibroblasts, osteoblasts, osteoclasts, and "bone mesenchymal stem cell". The initial search yielded 2287 papers, from which 35 studies were selected for final analysis after screening for topic relevancy by the authors. RESULTS In literature different in vitro and in vivo ageing models are used to demonstrate LBP's ability to reduce oxidative stress, restore mitochondrial function, mitigate DNA damage, and prevent cellular senescence. All the evidence hints that LBP theoretically attenuates senescent cell accumulation and suppresses the senescence-associated secretory phenotype as observed by the reduction in pro-inflammatory cytokines, like interleukin-1beta, and matrix-degrading enzymes, such as MMP-1 and MMP-13. However, there remains a lack of evidence on the disease-modifying effect of LBP in OA, although its chondroprotective, osteoprotective and anti-inflammatory effects were reported. CONCLUSION Our findings strongly support further investigations into the senolytic effect of LBP in the context of age-related OA.
Collapse
Affiliation(s)
- Junguo Ni
- Department of Biomedical Engineering, Faculty of Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Manting Au
- Department of Biomedical Engineering, Faculty of Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Hangkin Kong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xinluan Wang
- Centre for Translational Medical Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shen Zhen, China
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong.
| |
Collapse
|
15
|
Yeast Synthetic Biology for the Production of Lycium barbarum Polysaccharides. Molecules 2021; 26:molecules26061641. [PMID: 33804230 PMCID: PMC8000229 DOI: 10.3390/molecules26061641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
The fruit of Lycium barbarum L. (goji berry) is used as traditional Chinese medicine, and has the functions of immune regulation, anti-tumor, neuroprotection, anti-diabetes, and anti-fatigue. One of the main bioactive components is L. barbarum polysaccharide (LBP). Nowadays, LBP is widely used in the health market, and it is extracted from the fruit of L. barbarum. The planting of L. barbarum needs large amounts of fields, and it takes one year to harvest the goji berry. The efficiency of natural LBP production is low, and the LBP quality is not the same at different places. Goji berry-derived LBP cannot satisfy the growing market demands. Engineered Saccharomyces cerevisiae has been used for the biosynthesis of some plant natural products. Recovery of LBP biosynthetic pathway in L. barbarum and expression of them in engineered S. cerevisiae might lead to the yeast LBP production. However, information on LBP biosynthetic pathways and the related key enzymes of L. barbarum is still limited. In this review, we summarized current studies about LBP biosynthetic pathway and proposed the strategies to recover key enzymes for LBP biosynthesis. Moreover, the potential application of synthetic biology strategies to produce LBP using engineered S. cerevisiae was discussed.
Collapse
|
16
|
Lycium Barbarum Polysaccharides and Wolfberry Juice Prevent DEHP-Induced Hepatotoxicity via PXR-Regulated Detoxification Pathway. Molecules 2021; 26:molecules26040859. [PMID: 33562043 PMCID: PMC7915231 DOI: 10.3390/molecules26040859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022] Open
Abstract
Environmental di(2-Ethylhexyl) phthalate (DEHP) is widely used in various industries as a plasticizer, and has been reported to induce reproductive and developmental toxicities in organisms. The purpose of this study was to evaluate the detoxification capacity of Lycium barbarum polysaccharides (LBP) and wolfberry juice (WJ) against DEHP-induced hepatotoxicity. Two groups of rats were purchased to study two different intervention method experiments: LBP (50, 100, 200 mg/kg·bw) intervention before DEHP (2000 mg/kg·bw) exposure, and LBP (200 mg/kg·bw) or WJ (8 mL/kg·bw) intervention after DEHP (3000 mg/kg·bw) exposure. The rats were exposed to DEHP once, while the intervention lasted for seven days. At the end of the intervention, enzyme-linked immunosorbent assay (ELISA) was used to measure the related index. The LBP intervention before DEHP exposure experiment (the first experimental method) found that LBP group rats showed a strong capacity toward DEHP detoxification, evidenced by the significant upregulation of activities and concentrations of the partner retinoid, X receptor alpha (RXRα), and downstream regulators Cytochrome P4502E1 (CYP2E1), Cytochrome P4503A1 (CYP3A1), Glutathione S-Transferase Pi (GSTpi), and UDP-glucuronosyltransferase 1 (UGT1) in a dose-dependent manner. The LBP and WJ intervention after DEHP exposure experiment (the second intervention experiment) found that WJ could downregulate pregnane X receptor (PXR), and upregulate downstream regulators, CYP2E1, CYP3A1, and Glutathione S-Transferase (GST) with the extension of intervention time, to alleviate the toxicity of DEHP. However, the intervention effect of WJ was more obvious than that of LBP. These results suggested that LBP and WJ might be effective detoxification agents against DEHP-induced toxic effects, by activating PXR and PXR-related detoxifying enzymes.
Collapse
|
17
|
Zhang X, Huang K, Zhong H, Ma Y, Guo Z, Tang Z, Liang J, Luo Y, Su Z, Wang L. Effects of Lycium barbarum polysaccharides on immunological parameters, apoptosis, and growth performance of Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2020; 97:509-514. [PMID: 31877360 DOI: 10.1016/j.fsi.2019.12.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
In this study, the effect of Lycium barbarum polysaccharides (LBP) on immunological parameters, apoptosis, and growth performance of Nile tilapia (Oreochromis niloticus) was investigated. Dietary supplementation with LBP significantly increased complement 3 (C3) activity and promoted interleukin IL-1β gene expression in spleen tissue, significantly reduced apoptosis in spleen tissue, increased the specific growth rate (SGR), relative length gain (LG), and relative weight gain (WG) of Nile tilapia. However, dietary supplementation with LBP did not have a significant effect on serum alkaline phosphatase (AKP), malondialdehyde (MDA), and superoxide dismutase (SOD), blood constituents, apoptosis, or gene expression of IL-1β in liver tissue. Overall, the results showed that dietary supplementation with LBP increased the nonspecific immunity of Nile tilapia and reduced the apoptosis rate to promote growth and development. Thus, LBP has potential for use as a new immunostimulant in aquaculture.
Collapse
Affiliation(s)
- Xu Zhang
- Guangxi Academy of Fishery Science, Nanning, 530021, China; College of Animal Science and Technology of Guangxi University, Nanning, 530005, China
| | - Kai Huang
- College of Animal Science and Technology of Guangxi University, Nanning, 530005, China
| | - Huan Zhong
- Guangxi Academy of Fishery Science, Nanning, 530021, China
| | - Yanqun Ma
- College of Animal Science and Technology of Guangxi University, Nanning, 530005, China
| | - Zhongbao Guo
- Guangxi Academy of Fishery Science, Nanning, 530021, China
| | - Zhanyang Tang
- Guangxi Academy of Fishery Science, Nanning, 530021, China; College of Animal Science and Technology of Guangxi University, Nanning, 530005, China.
| | - Junneng Liang
- Guangxi Academy of Fishery Science, Nanning, 530021, China
| | - Yongju Luo
- Guangxi Academy of Fishery Science, Nanning, 530021, China; College of Animal Science and Technology of Guangxi University, Nanning, 530005, China.
| | - Zhijian Su
- College of Animal Science and Technology of Guangxi University, Nanning, 530005, China
| | - Liqun Wang
- College of Animal Science and Technology of Guangxi University, Nanning, 530005, China
| |
Collapse
|
18
|
Lei X, Huo P, Wang Y, Xie Y, Shi Q, Tu H, Yao J, Mo Z, Zhang S. Lycium barbarum Polysaccharides Improve Testicular Spermatogenic Function in Streptozotocin-Induced Diabetic Rats. Front Endocrinol (Lausanne) 2020; 11:164. [PMID: 32362869 PMCID: PMC7181356 DOI: 10.3389/fendo.2020.00164] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
The objective of this study was to investigate the protective effects of Lycium barbarum polysaccharides (LBP) on testicular spermatogenic function in streptozotocin (STZ)-induced diabetic rats. Compared to the control group, blood glucose levels were significantly increased and the insulin resistance was markedly aggravated in STZ-induced diabetic rats. Further, the weight of testis and epididymis and the sperm number and motility were decreased in diabetic rats. Pathological changes were also observed in the spermatogenic tubules, along with a decreased number of spermatogenic cells, downregulated proliferating cell nuclear antigen (PCNA) expression, and increased cell apoptosis in the testes. Compared to the saline-treated diabetic rat group, metformin and LBP treatment significantly decreased the level of blood glucose and improved insulin resistance and testicular function. After treatment with metformin and LBP, the pathological changes in the spermatogenic tubules improved significantly, with an increase in the number of spermatogenic cells, upregulation of PCNA, and suppression of apoptosis in the testes. The expressions of sirtuin 1 (SIRT1) and hypoxia-inducible factor 1-alpha (HIF-1α) in diabetic testes were also upregulated by metformin or LBP treatment. In summary, LBP exerted protective effects by increasing cell proliferation, inhibiting cell apoptosis, and regulating SIRT1/HIF-1α expression in the testes of diabetic rats.
Collapse
Affiliation(s)
- Xiaocan Lei
- Department of Histology and Embryology, Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Peng Huo
- School of Public and Health, Guilin Medical University, Guilin, China
| | - Yaohui Wang
- School of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Yuanjie Xie
- Department of Histology and Embryology, Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Qingxiang Shi
- School of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Haoyan Tu
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jun Yao
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Zhongcheng Mo
- Department of Histology and Embryology, Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, China
- *Correspondence: Zhongcheng Mo
| | - Shun Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, China
- Shun Zhang
| |
Collapse
|
19
|
Da Silva‐Álvarez S, Guerra‐Varela J, Sobrido‐Cameán D, Quelle A, Barreiro‐Iglesias A, Sánchez L, Collado M. Cell senescence contributes to tissue regeneration in zebrafish. Aging Cell 2020; 19:e13052. [PMID: 31670873 PMCID: PMC6974711 DOI: 10.1111/acel.13052] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/22/2019] [Accepted: 09/23/2019] [Indexed: 01/12/2023] Open
Abstract
Cellular senescence is a stress response that limits the proliferation of damaged cells by establishing a permanent cell cycle arrest. Different stimuli can trigger senescence but excessive production or impaired clearance of these cells can lead to their accumulation during aging with deleterious effects. Despite this potential negative side of cell senescence, its physiological role as a pro‐regenerative and morphogenetic force has emerged recently after the identification of programmed cell senescence during embryogenesis and during wound healing and limb regeneration. Here, we explored the conservation of tissue injury‐induced senescence in a model of complex regeneration, the zebrafish. Fin amputation in adult fish led to the appearance of senescent cells at the site of damage, and their removal impaired tissue regeneration. Despite many conceptual similarities, this tissue repair response is different from developmental senescence. Our results lend support to the notion that cell senescence is a positive response promoting tissue repair and homeostasis.
Collapse
Affiliation(s)
- Sabela Da Silva‐Álvarez
- Laboratorio de Células Madre en Cáncer y Envejecimiento Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS) Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS) Santiago de Compostela Spain
| | - Jorge Guerra‐Varela
- Departamento de Zoología, Genética y Antropología Física Facultad de Veterinaria Universidade de Santiago de Compostela Lugo Spain
- Geneaqua S.L Lugo Spain
| | - Daniel Sobrido‐Cameán
- Department of Functional Biology Faculty of Biology CIBUS Universidade de Santiago de Compostela Santiago de Compostela Spain
| | - Ana Quelle
- Departamento de Zoología, Genética y Antropología Física Facultad de Veterinaria Universidade de Santiago de Compostela Lugo Spain
| | - Antón Barreiro‐Iglesias
- Department of Functional Biology Faculty of Biology CIBUS Universidade de Santiago de Compostela Santiago de Compostela Spain
| | - Laura Sánchez
- Departamento de Zoología, Genética y Antropología Física Facultad de Veterinaria Universidade de Santiago de Compostela Lugo Spain
| | - Manuel Collado
- Laboratorio de Células Madre en Cáncer y Envejecimiento Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS) Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS) Santiago de Compostela Spain
| |
Collapse
|
20
|
Erjingwan Extracts Exert Antiaging Effects of Skin through Activating Nrf2 and Inhibiting NF-κB. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5976749. [PMID: 31186662 PMCID: PMC6521471 DOI: 10.1155/2019/5976749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/26/2019] [Accepted: 02/24/2019] [Indexed: 12/23/2022]
Abstract
In oriental medicine, mixtures of medical plants are always used as prescriptions for diseases. Natural products extracted from herbs have great potential antiaging effects. Previous studies and clinical trials have shown several critical functions of Erjingwan (EJW), such as nourishing Yin, kidney tonifying and aging-resistance. We assumed that EJW extracts exerted the antiaging effects through nourishing Yin. We examined the antiaging effects of EJW extracts on healthy human skin by noninvasive measurements. Then we estimated the cell proliferation and DPPH radical scavenging rate. Western blotting analysis was used to determine the expressions of matrix metalloproteinase-1 (MMP-1), type I collagen (COL1A2), p-NF-κB, NF-κB, p-IκBα, IκBα, p-Nrf2, and HO-1. EJW extracts did not affect moisture content, TEWL and skin chroma, while it significantly improved skin glossiness and skin elasticity. Moreover, EJW extracts could downregulate the MMP1 expression and upregulate the COL1A2 expression. In addition, it promoted the Nrf2 pathway while it inhibited the NF-κB pathway. With the application of cream containing EJW extracts, the skin aging state was significantly improved. Furthermore, in vitro studies showed that EJW extracts contributed to the repair of skin after injury. Taken together, the antiaging effects of EJW extracts were related to its antioxidant and anti-inflammatory abilities.
Collapse
|
21
|
Liang W, Yue Z. Lycium barbarum polysaccharides promote osteoblasts viability by regulating microRNA-17/PTEN. Life Sci 2019; 225:72-78. [DOI: 10.1016/j.lfs.2019.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/20/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
|
22
|
A Systematic Review of Potential Therapeutic Use of Lycium Barbarum Polysaccharides in Disease. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4615745. [PMID: 30891458 PMCID: PMC6390233 DOI: 10.1155/2019/4615745] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/13/2019] [Accepted: 02/03/2019] [Indexed: 12/18/2022]
Abstract
Objective To evaluate the effect of Lycium barbarum polysaccharides in the treatment and/or prevention of diseases of different etiologies and systems. Methods We performed an Entrez PubMed literature search using keywords “lycium”, “barbarum”, “polysaccharides”, “anti-fibrotic”, “anti-apoptotic”, “anti-oxidizing”, “anti-aging”, “neuroprotection”, “metabolism”, “diabetes”, “hyperlipidemia”, “neuroprotection”, and “immunomodulation” on the 14th of August 2018, resulting in 207 papers, of which 20 were chosen after filtering for ‘English language' and ‘published within 10 years' as well as curation for relevance by the authors. Results The 20 selected papers included 2 randomized control trials (1 double-blinded RCT and 1 double-blinded placebo-controlled RCT), 11 in vivo studies, 5 in vitro studies, 1 study with both in vivo and in vitro results, and 1 chemical study. There is good evidence from existing studies on the antifibrotic, antioxidizing, neuroprotective, anticancer, and anti-inflammatory effects of Lycium barbarum polysaccharides. However, there is a need for further studies in the form of large-scale clinical trials to support its use in humans. There is also significant potential for LBP as a safe and effective topical treatment in ocular surface diseases, owing to promising in vitro results and a lack of demonstrated toxic effects to corneal epithelial cells. Conclusion Results from existing studies suggest that LBP is a promising therapeutic agent, particularly in the management of liver disease, hyperlipidemia, and diabetes. One major limitation of current research is a lack of standardization and quality control for the LBP used. The availability of research-grade LBP will inevitably promote future research in this field worldwide.
Collapse
|
23
|
|
24
|
Yang J, Wei YQ, Ding JB, Li YL, Ma JL, Liu JL. Research and application of Lycii Fructus in medicinal field. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2018.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
25
|
Gao Y, Wei Y, Wang Y, Gao F, Chen Z. Lycium Barbarum: A Traditional Chinese Herb and A Promising Anti-Aging Agent. Aging Dis 2017; 8:778-791. [PMID: 29344416 PMCID: PMC5758351 DOI: 10.14336/ad.2017.0725] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 07/25/2017] [Indexed: 12/16/2022] Open
Abstract
Lycium barbarum has been used in China for more than 2,000 years as a traditional medicinal herb and food supplement. Lycium barbarum contains abundant Lycium barbarum polysaccharides (LBPs), betaine, phenolics, carotenoids (zeaxanthin and β-carotene), cerebroside, 2-O-β-d-glucopyranosyl-l-ascorbic acid (AA-2βG), β-sitosterol, flavonoids and vitamins (in particular, riboflavin, thiamine, and ascorbic acid). LBPs are the primary active components of Lycium barbarum. In this review, we discuss the pharmacological activities of LBPs and other major components. They have been reported to mediate significant anti-aging effects, through antioxidant, immunoregulative, anti-apoptotic activities and reducing DNA damage. Thus, the basic scientific evidence for anti-aging effects of LBPs is already available. However, additional studies are needed to understand mechanisms by which LBPs mediate anti-aging properties. Novel findings from such studies would likely pave the way for the clinical application of traditional chinese medicine Lycium barbarum in modern evidence-based medicine.
Collapse
Affiliation(s)
- Yanjie Gao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing. China. 100078
| | - Yifo Wei
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing. China. 100078
| | - Yuqing Wang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing. China. 100078
| | - Fang Gao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing. China. 100078
| | - Zhigang Chen
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing. China. 100078
| |
Collapse
|
26
|
Villiard É, Denis JF, Hashemi FS, Igelmann S, Ferbeyre G, Roy S. Senescence gives insights into the morphogenetic evolution of anamniotes. Biol Open 2017; 6:891-896. [PMID: 28500032 PMCID: PMC5483031 DOI: 10.1242/bio.025809] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Senescence represents a mechanism to avoid undesired cell proliferation that plays a role in tumor suppression, wound healing and embryonic development. In order to gain insight on the evolution of senescence, we looked at its presence in developing axolotls (urodele amphibians) and in zebrafish (teleost fish), which are both anamniotes. Our data indicate that cellular senescence is present in various developing structures in axolotls (pronephros, olfactory epithelium of nerve fascicles, lateral organs, gums) and in zebrafish (epithelium of the yolk sac and in the lower part of the gut). Senescence was particularly associated with transient structures (pronephros in axolotls and yolk sac in zebrafish) suggesting that it may play a role in the elimination of these tissues. Our data supports the notion that cellular senescence evolved early in vertebrate evolution to influence embryonic development. Summary: We report the presence of senescent cells in several transient structures in developing amphibian and teleost fish, suggesting novel mechanisms of morphogenesis that appeared early in vertebrate evolution.
Collapse
Affiliation(s)
- Éric Villiard
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Jean-François Denis
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Faranak Sadat Hashemi
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Sebastian Igelmann
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Gerardo Ferbeyre
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Stéphane Roy
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec H3T 1J4, Canada .,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
27
|
In Vitro Protective Effects of Lycium barbarum Berries Cultivated in Umbria (Italy) on Human Hepatocellular Carcinoma Cells. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7529521. [PMID: 27965980 PMCID: PMC5124644 DOI: 10.1155/2016/7529521] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/12/2016] [Accepted: 10/16/2016] [Indexed: 11/18/2022]
Abstract
Lycium barbarum is a famous plant in the traditional Chinese medicine. The plant is known to have health-promoting bioactive components. The properties of Lycium barbarum berries cultivated in Umbria (Italy) and their effect on human hepatocellular carcinoma cells (HepG2) have been investigated in this work. The obtained results demonstrated that the Lycium barbarum berries from Umbria region display high antioxidant properties evaluated by total phenolic content and ORAC method, on hydrophilic and lipophilic fractions. Moreover, on HepG2 cell line Lycium barbarum berries extract did not change cell viability analyzed by MTT and Trypan blue exclusion assay and did not induce genotoxic effect analyzed by comet assay. Furthermore, it was demonstrated, for the first time, that the berries extract showed a protective effect on DNA damage, expressed as antigenotoxic activity in vitro. Finally, Lycium barbarum berries extract was able to modulate the expression of genes involved in oxidative stress, proliferation, apoptosis, and cancer. In particular, downexpression of genes involved in tumor migration and invasion (CCL5), in increased risk of metastasis and antiapoptotic signal (DUSP1), and in carcinogenesis (GPx-3 and PTGS1), together with overexpression of tumor suppressor gene (MT3), suggested that Umbrian Lycium barbarum berries could play a protective role against hepatocellular carcinoma.
Collapse
|
28
|
Xie JH, Tang W, Jin ML, Li JE, Xie MY. Recent advances in bioactive polysaccharides from Lycium barbarum L., Zizyphus jujuba Mill, Plantago spp., and Morus spp.: Structures and functionalities. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.03.030] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Fang F, Peng T, Yang S, Wang W, Zhang Y, Li H. Lycium barbarum
polysaccharide attenuates the cytotoxicity of mutant huntingtin and increases the activity of AKT. Int J Dev Neurosci 2016; 52:66-74. [DOI: 10.1016/j.ijdevneu.2016.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 01/13/2023] Open
Affiliation(s)
- Fang Fang
- Division of Histology and EmbryologyDepartment of AnatomyTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030People's Republic of China
| | - Ting Peng
- Division of Histology and EmbryologyDepartment of AnatomyTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030People's Republic of China
- Institute for Brain SciencesTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030People's Republic of China
- Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhan430030People's Republic of China
| | - Shiming Yang
- Division of Histology and EmbryologyDepartment of AnatomyTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030People's Republic of China
| | - Weixi Wang
- Division of Histology and EmbryologyDepartment of AnatomyTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030People's Republic of China
| | - Yinong Zhang
- Division of Histology and EmbryologyDepartment of AnatomyTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030People's Republic of China
| | - He Li
- Division of Histology and EmbryologyDepartment of AnatomyTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030People's Republic of China
- Institute for Brain SciencesTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030People's Republic of China
- Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhan430030People's Republic of China
| |
Collapse
|
30
|
Lam P, Cheung F, Tan HY, Wang N, Yuen MF, Feng Y. Hepatoprotective Effects of Chinese Medicinal Herbs: A Focus on Anti-Inflammatory and Anti-Oxidative Activities. Int J Mol Sci 2016; 17:465. [PMID: 27043533 PMCID: PMC4848921 DOI: 10.3390/ijms17040465] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 12/12/2022] Open
Abstract
The liver is intimately connected to inflammation, which is the innate defense system of the body for removing harmful stimuli and participates in the hepatic wound-healing response. Sustained inflammation and the corresponding regenerative wound-healing response can induce the development of fibrosis, cirrhosis and eventually hepatocellular carcinoma. Oxidative stress is associated with the activation of inflammatory pathways, while chronic inflammation is found associated with some human cancers. Inflammation and cancer may be connected by the effect of the inflammation-fibrosis-cancer (IFC) axis. Chinese medicinal herbs display abilities in protecting the liver compared to conventional therapies, as many herbal medicines have been shown as effective anti-inflammatory and anti-oxidative agents. We review the relationship between oxidative stress and inflammation, the development of hepatic diseases, and the hepatoprotective effects of Chinese medicinal herbs via anti-inflammatory and anti-oxidative mechanisms. Moreover, several Chinese medicinal herbs and composite formulae, which have been commonly used for preventing and treating hepatic diseases, including Andrographis Herba, Glycyrrhizae Radix et Rhizoma, Ginseng Radix et Rhizoma, Lycii Fructus, Coptidis Rhizoma, curcumin, xiao-cha-hu-tang and shi-quan-da-bu-tang, were selected for reviewing their hepatoprotective effects with focus on their anti-oxidative and ant-inflammatory activities. This review aims to provide new insight into how Chinese medicinal herbs work in therapeutic strategies for liver diseases.
Collapse
Affiliation(s)
- Puiyan Lam
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Fan Cheung
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Hor Yue Tan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Man Fung Yuen
- Division of Gastroenterology and Hepatology, Queen Mary Hospital and Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
31
|
Choi MJ, Choi BT, Shin HK, Shin BC, Han YK, Baek JU. Establishment of a comprehensive list of candidate antiaging medicinal herb used in korean medicine by text mining of the classical korean medical literature, "dongeuibogam," and preliminary evaluation of the antiaging effects of these herbs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:873185. [PMID: 25861371 PMCID: PMC4377522 DOI: 10.1155/2015/873185] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/03/2015] [Accepted: 01/08/2015] [Indexed: 12/28/2022]
Abstract
The major objectives of this study were to provide a list of candidate antiaging medicinal herbs that have been widely utilized in Korean medicine and to organize preliminary data for the benefit of experimental and clinical researchers to develop new drug therapies by analyzing previous studies. "Dongeuibogam," a representative source of the Korean medicine literature, was selected to investigate candidate antiaging medicinal herbs and to identify appropriate terms that describe the specific antiaging effects that these herbs are predicted to elicit. In addition, we aimed to review previous studies that referenced the selected candidate antiaging medicinal herbs. From our chosen source, "Dongeuibogam," we were able to screen 102 terms describing antiaging effects, which were further classified into 11 subtypes. Ninety-seven candidate antiaging medicinal herbs were selected using the criterion that their antiaging effects were described using the same terms as those employed in "Dongeuibogam." These candidates were classified into 11 subtypes. Of the 97 candidate antiaging medicinal herbs selected, 47 are widely used by Korean medical doctors in Korea and were selected for further analysis of their antiaging effects. Overall, we found an average of 7.7 previous studies per candidate herb that described their antiaging effects.
Collapse
Affiliation(s)
- Moo Jin Choi
- Division of Humanities and Social Medicine, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Byung Tae Choi
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Hwa Kyoung Shin
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Byung Cheul Shin
- Department of Korean Rehabilitation Medicine, Pusan National University Korean Medicine Hospital, Yangsan 626-789, Republic of Korea
| | - Yoo Kyoung Han
- Division of Humanities and Social Medicine, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Jin Ung Baek
- Division of Humanities and Social Medicine, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| |
Collapse
|
32
|
Cheng J, Zhou ZW, Sheng HP, He LJ, Fan XW, He ZX, Sun T, Zhang X, Zhao RJ, Gu L, Cao C, Zhou SF. An evidence-based update on the pharmacological activities and possible molecular targets of Lycium barbarum polysaccharides. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 9:33-78. [PMID: 25552899 PMCID: PMC4277126 DOI: 10.2147/dddt.s72892] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lycium barbarum berries, also named wolfberry, Fructus lycii, and Goji berries, have been used in the People’s Republic of China and other Asian countries for more than 2,000 years as a traditional medicinal herb and food supplement. L. barbarum polysaccharides (LBPs) are the primary active components of L. barbarum berries and have been reported to possess a wide array of pharmacological activities. Herein, we update our knowledge on the main pharmacological activities and possible molecular targets of LBPs. Several clinical studies in healthy subjects show that consumption of wolfberry juice improves general wellbeing and immune functions. LBPs are reported to have antioxidative and antiaging properties in different models. LBPs show antitumor activities against various types of cancer cells and inhibit tumor growth in nude mice through induction of apoptosis and cell cycle arrest. LBPs may potentiate the efficacy of lymphokine activated killer/interleukin-2 combination therapy in cancer patients. LBPs exhibit significant hypoglycemic effects and insulin-sensitizing activity by increasing glucose metabolism and insulin secretion and promoting pancreatic β-cell proliferation. They protect retinal ganglion cells in experimental models of glaucoma. LBPs protect the liver from injuries due to exposure to toxic chemicals or other insults. They also show potent immunoenhancing activities in vitro and in vivo. Furthermore, LBPs protect against neuronal injury and loss induced by β-amyloid peptide, glutamate excitotoxicity, ischemic/reperfusion, and other neurotoxic insults. LBPs ameliorate the symptoms of mice with Alzheimer’s disease and enhance neurogenesis in the hippocampus and subventricular zone, improving learning and memory abilities. They reduce irradiation- or chemotherapy-induced organ toxicities. LBPs are beneficial to male reproduction by increasing the quality, quantity, and motility of sperm, improving sexual performance, and protecting the testis against toxic insults. Moreover, LBPs exhibit hypolipidemic, cardioprotective, antiviral, and antiinflammatory activities. There is increasing evidence from preclinical and clinical studies supporting the therapeutic and health-promoting effects of LBPs, but further mechanistic and clinical studies are warranted to establish the dose–response relationships and safety profiles of LBPs.
Collapse
Affiliation(s)
- Jiang Cheng
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China ; Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Hui-Ping Sheng
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Lan-Jie He
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Xue-Wen Fan
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| | - Tao Sun
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Ruan Jin Zhao
- Center for Traditional Chinese Medicine, Sarasota, FL, USA
| | - Ling Gu
- School of Biology and Chemistry, University of Pu'er, Pu'er, Yunnan, People's Republic of China
| | - Chuanhai Cao
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Shu-Feng Zhou
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| |
Collapse
|