1
|
Zhuo B, Deng S, Li B, Zhu W, Zhang M, Qin C, Meng Z. Possible Effects of Acupuncture in Poststroke Aphasia. Behav Neurol 2023; 2023:9445381. [PMID: 37091130 PMCID: PMC10115536 DOI: 10.1155/2023/9445381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/30/2022] [Accepted: 04/02/2023] [Indexed: 04/25/2023] Open
Abstract
Neural plasticity promotes the reorganization of language networks and is an essential recovery mechanism for poststroke aphasia (PSA). Neuroplasticity may be a pivotal bridge to elucidate the potential recovery mechanisms of acupuncture for aphasia. Therefore, understanding the neuroplasticity mechanism of acupuncture in PSA is crucial. However, the underlying therapeutic mechanism of neuroplasticity in PSA after acupuncture needs to be explored. Excitotoxicity after brain injury affects the activity of neurotransmitters and disrupts the transmission of normal neuron information. Thus, a helpful strategy of acupuncture might be to improve PSA by affecting the availability of these neurotransmitters and glutamate receptors at synapses. In addition, the regulation of neuroplasticity by acupuncture may also be related to the regulation of astrocytes. Considering the guiding significance of acupuncture for clinical treatment, it is necessary to carry out further study about the influence of acupuncture on the recovery of aphasia after stroke. This study summarizes the current research on the neural mechanism of acupuncture in treating PSA. It seeks to elucidate the potential effect of acupuncture on the recovery of PSA from the perspective of synaptic plasticity and integrity of gray and white matter.
Collapse
Affiliation(s)
- Bifang Zhuo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shizhe Deng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Boxuan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Weiming Zhu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Menglong Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chenyang Qin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhihong Meng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
2
|
Liu Y, Yang G, Cui W, Zhang Y, Liang X. Regulatory mechanisms of tetramethylpyrazine on central nervous system diseases: A review. Front Pharmacol 2022; 13:948600. [PMID: 36133805 PMCID: PMC9483103 DOI: 10.3389/fphar.2022.948600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Central nervous system (CNS) diseases can lead to motor, sensory, speech, cognitive dysfunction, and sometimes even death. These diseases are recognized to cause a substantial socio-economic impact on a global scale. Tetramethylpyrazine (TMP) is one of the main active ingredients extracted from the Chinese herbal medicine Ligusticum striatum DC. (Chuan Xiong). Many in vivo and in vitro studies have demonstrated that TMP has a certain role in the treatment of CNS diseases through inhibiting calcium ion overload and glutamate excitotoxicity, anti-oxidative/nitrification stress, mitigating inflammatory response, anti-apoptosis, protecting the integrity of the blood-brain barrier (BBB) and facilitating synaptic plasticity. In this review, we summarize the roles and mechanisms of action of TMP on ischemic cerebrovascular disease, spinal cord injury, Parkinson’s disease, Alzheimer’s disease, cognitive impairments, migraine, and depression. Our review will provide new insights into the clinical applications of TMP and the development of novel therapeutics.
Collapse
Affiliation(s)
- Yue Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guang Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenqiang Cui
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunling Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yunling Zhang, ; Xiao Liang,
| | - Xiao Liang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yunling Zhang, ; Xiao Liang,
| |
Collapse
|
3
|
Li Q, Feng J, Zhang X, Wang Y, Zhao S, Xing C, Song Y, Zeng X, Kong M, Zheng Y, Zhao L, Guo T. Efficacy of contralateral acupuncture in women with migraine without aura: protocol for a randomised controlled trial. BMJ Open 2022; 12:e061287. [PMID: 35750456 PMCID: PMC9234910 DOI: 10.1136/bmjopen-2022-061287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Migraine is a common neurological disorder with a higher prevalence occurring in women. Migraine without aura (MwoA) is the most common type of migraine. In recent years, the safety and effectiveness of acupuncture for migraines have been internationally recognised. Contralateral acupuncture (CAT) (Jùcì) is an ancient classic acupuncture technique from Huang Di Nei Jing that refers to the acupoints on the right side (healthy side) selected for diseases on the left (affected side) and vice versa. Some studies have shown that efficacy of CAT on the painful disorder is even better than ipsilateral acupuncture (IAT), but there remains a lack of high-quality evidence to support it. METHODS AND ANALYSIS This is a single-centre, randomised and sham-controlled clinical trial in China with three parallel groups that aim to evaluate the efficacy of CAT in women with unilateral MwoA. 243 participants will be randomly divided into the experimental group (CAT group), control group 1 (IAT group) and control group 2 (sham acupuncture group) (1:1:1 allocation ratio). Each group will be given 30-minute treatment sessions, once every other day, approximately three times per week, for a total of 24 treatments and follow-up visits two times. The primary outcome is the changes in days of migraine attacks. The secondary outcomes are frequency of migraine attacks, intensity of migraine, migraine duration, the dose of intake of acute medication, the Migraine-Specific Quality of Life Questionnaire, the Migraine Disability Assessment Score, the Headache Impact Test-6 and the Pittsburgh Sleep Quality Index. The data will be collected at the baseline time (week 0), end of treatment (week 4-8) and the follow-up time (week 12-16). Adverse events will be collected and recorded during each treatment. ETHICS AND DISSEMINATION Ethics approval was obtained from the Ethics Committee of the Sports Trauma Specialist Hospital of Yunnan Province (2021-01). All participants will provide written informed consent before randomisation. The results of this study will be published in a peer-reviewed journal and presented at conferences. TRIAL REGISTRATION NUMBER Chinese Clinical Trial Registration Center (ChiCTR2100051479).
Collapse
Affiliation(s)
- Qifu Li
- School of Second Clinical Medicine/The Second Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jialei Feng
- Institute for History of Medicine and Medical Literature, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinghe Zhang
- School of Second Clinical Medicine/The Second Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yanan Wang
- College of Acupuncture and Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Siwen Zhao
- School of Second Clinical Medicine/The Second Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Chonghui Xing
- The Sports Trauma Specialist Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yongli Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xuanxiang Zeng
- School of Second Clinical Medicine/The Second Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Meng Kong
- School of Second Clinical Medicine/The Second Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yunqiu Zheng
- School of Second Clinical Medicine/The Second Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Ling Zhao
- College of Acupuncture and Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Taipin Guo
- School of Second Clinical Medicine/The Second Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Key Laboratory for Acupuncture, Moxibustion and Tuina Prevention and Treatment of Brain Diseases in Yunnan Universities, Kunming, Yunnan, China
| |
Collapse
|
4
|
Zhao C, Xu H, A X, Kang B, Xie J, Shen J, Sun S, Zhong S, Gao C, Xu X, Zhou Y, Xiao L. Cerebral mechanism of opposing needling for managing acute pain after unilateral total knee arthroplasty: study protocol for a randomized, sham-controlled clinical trial. Trials 2022; 23:133. [PMID: 35144662 PMCID: PMC8832781 DOI: 10.1186/s13063-022-06066-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 01/29/2022] [Indexed: 11/29/2022] Open
Abstract
Background Opposing needling is a unique method used in acupuncture therapy to relieve pain, acting on the side contralateral to the pain. Although opposing needling has been used to treat pain in various diseases, it is not clear how opposing needling affects the activity of the central nervous system to relieve acute pain. We herein present the protocol for a randomized sham-controlled clinical trial aiming to explore the cerebral mechanism of opposing needling for managing acute pain after unilateral total knee arthroplasty (TKA). Methods This is a randomized sham-controlled single-blind clinical trial. Patients will be allocated randomly to two parallel groups (A: opposing electroacupuncture group; B: sham opposing electroacupuncture group). The Yinlingquan (SP9), Yanglingquan (GB34), Futu (ST32), and Zusanli (ST36) acupoints will be used as the opposing needling sites in both groups. In group A, the healthy lower limbs will receive electroacupuncture, while in group B, the healthy lower limbs will receive sham electroacupuncture. At 72 h after unilateral TKA, patients in both groups will begin treatment once per day for 3 days. Functional magnetic resonance imaging will be performed on all patients before the intervention, after unilateral TKA, and at the end of the intervention to detect changes in brain activity. Changes in pressure pain thresholds will be used as the main outcome for the improvement of knee joint pain. Secondary outcome indicators will include the visual analogue scale (including pain during rest and activity) and a 4-m walking test. Surface electromyography, additional analgesia use, the self-rating anxiety scale, and the self-rating depression scale will be used as additional outcome indices. Discussion The results will reveal the influence of opposing needling on cerebral activity in patients with acute pain after unilateral TKA and the possible relationship between cerebral activity changes and improvement of clinical variables, which may indicate the central mechanism of opposing needling in managing acute pain after unilateral TKA. Trial registration Study on the brain central mechanism of opposing needling analgesia after total kneearthroplasty based on multimodal MRI ChiCTR2100042429. Registered on January 21, 2021 Supplementary Information The online version contains supplementary material available at 10.1186/s13063-022-06066-6.
Collapse
Affiliation(s)
- Chi Zhao
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hui Xu
- School of Acupuncture-Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, 450003, China
| | - Xinyu A
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bingxin Kang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450099, China
| | - Jun Xie
- Department of Joint Orthopaedics, Guanghua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200050, China.,Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200050, China
| | - Jun Shen
- Department of Joint Orthopaedics, Guanghua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200050, China.,Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200050, China
| | - Songtao Sun
- Department of Joint Orthopaedics, Guanghua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200050, China.,Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200050, China
| | - Sheng Zhong
- Department of Joint Orthopaedics, Guanghua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200050, China.,Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200050, China
| | - Chenxin Gao
- Department of Joint Orthopaedics, Guanghua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200050, China.,Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200050, China
| | - Xirui Xu
- Department of Joint Orthopaedics, Guanghua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200050, China.,Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200050, China
| | - Youlong Zhou
- School of Acupuncture-Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, 450003, China.
| | - Lianbo Xiao
- Department of Joint Orthopaedics, Guanghua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200050, China. .,Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200050, China. .,Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 200050, China.
| |
Collapse
|
5
|
Tong H, Wang K, Wang X, Lu T. Molecular Mechanism of Tetramethylpyrazine Ameliorating Neuroexcitotoxicity through Activating the PKA/CREB Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2812839. [PMID: 35097116 PMCID: PMC8794663 DOI: 10.1155/2022/2812839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Excitotoxicity plays a key role in nervous system disease and can trigger a critical cascade of reaction which affects cell viability and promotes neuronal death. Tetramethylpyrazine (TMP) reveals its effect in the treatment of neurovascular diseases by antiapoptosis. Recently, there were several studies that demonstrated that the PKA/CREB signaling pathway played a role in neural disease because of excitotoxicity, such as stroke, AD, and Parkinson's disease. In this study, we wanted to focus on the protective effect of tetramethylpyrazine against excitotoxicity through the PKA/CREB signaling pathway. METHODS In order to verify whether tetramethylpyrazine can attenuate excitotoxicity through the PKA/CREB signaling pathway, we first used molecular docking technology to predict the combinational strength and mode of tetramethylpyrazine with the proteins in the PKA/CREB signaling pathway. Then, we determined the optimal concentration and time according to the model effect of glutamate (Glu) with different concentration gradients and action times in PC12 cells. After the determination of concentration and time of glutamate in the previous step as the model way, tetramethylpyrazine was added to determine its influence on the cell viability under different doses and times. The TUNEL assay and flow cytometry were used to detect apoptosis. RT-PCR was used to detect the expression of Bcl-2, Bax, PKA, and 5CREB genes, and Western blot was used to detect the expression of these factors. RESULT Tetramethylpyrazine had a good docking score (-5.312) with PKA and had a moderately docking score (-3.838) with CREB. The CCK-8 cell activity assay showed that the activity of PC12 cells decreased gradually with the increase in glutamate concentration and time, and PC12 cells were treated with 10 mM/L glutamate (the half of the inhibitory concentration (IC50)) for 12 hours. Then, the cell viability increased gradually following the increased concentration of tetramethylpyrazine. When PC12 cells were treated with 0.1 mM/L tetramethylpyrazine, the cell viability was increased significantly compared with the control group (P < 0.05). The TUNEL assay and flow cytometry also showed that tetramethylpyrazine could decrease the apoptosis induced by glutamate. In the result of RT-PCR, the transcriptional levels of Bcl-2, PKA, and CREB were increased and Bax was decreased. Meanwhile, Western blot showed that expression levels of Bcl-2, PKA, CREB, and p-CREB were increased and Bax was decreased. CONCLUSIONS This study provided evidence that tetramethylpyrazine can protect against apoptosis caused by neuroexcitotoxicity and the protective mechanism is closely related to the activation of the PKA/CREB signaling pathway.
Collapse
Affiliation(s)
- Hongxuan Tong
- Institute of Basic Theory of Chinese Medicine, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Kaili Wang
- School of Life Sciences, Beijing University of Chinese Medicine, China
| | - Xiting Wang
- School of Life Sciences, Beijing University of Chinese Medicine, China
| | - Tao Lu
- School of Life Sciences, Beijing University of Chinese Medicine, China
| |
Collapse
|
6
|
Wu G, Zhang X, Li S, Zhou D, Bai J, Wang H, Shu Q. Overexpression of ORX or MCH Protects Neurological Function Against Ischemic Stroke. Neurotox Res 2022; 40:44-55. [PMID: 35013906 DOI: 10.1007/s12640-021-00457-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/29/2022]
Abstract
In recent years, orexin (ORX) and melanin-concentrating hormone (MCH) have been demonstrated to exert neuroprotective roles in cerebral ischemia. Hence, this study investigated the regulatory function of ORX and MCH in neurological function following ischemic stroke and explored the molecular mechanism underlying these functions. A rat model of ischemic stroke was developed by middle cerebral artery occlusion (MCAO), and Longa scoring was employed to evaluate the degree of neurological function deficit. The expression patterns of ORX and MCH were examined by real-time polymerase chain reaction in the brain tissues of rats with ischemic stroke induced by middle cerebral artery occlusion (MCAO). Moreover, electroencephalography (EEG) analysis and high-performance liquid chromatography (HPLC) were respectively performed to detect rapid-eye movement (REM) sleep, the glutamate (Glu) uptake, and the expression of γ-aminobutyric acid B receptor (GABAB). Immunoblotting was performed to test the levels of autophagic markers LC3, BECLIN-1, and p62. Immunohistochemistry (IHC) staining and TUNEL assays were respectively used to assess the autophagy and neuronal apoptosis. Results demonstrated that ORX and MCH were lowly expressed in brain of rats with ischemic stroke. ORX or MCH overexpression decreased neuronal apoptosis and autophagy, and improved the sleep architecture of post-stroke rats, while rescuing Glu uptake and GABA expression. ORX or MCH upregulation exerted protective effects on neurological function. Taken together, ORX and/or MCH protect against ischemic stroke in a rat model, highlighting their value as targets for the clinical treatment of ischemic stroke.
Collapse
Affiliation(s)
- Gang Wu
- East Section of South Second Ring Road, The Second Affiliated Hospital of Xi'an Jiaotong University, No.151, Xi'an 710054, Shaanxi, China
| | - Xi'an Zhang
- Ninth Hospital of Xi'an Affiliated To Xi'an Jiaotong University, Xi'an 710054, China
| | - Shijun Li
- Department of Pharmacy, Wuhan Union Hospital, Wuhan, 430022, China
| | - Dan Zhou
- Ninth Hospital of Xi'an Affiliated To Xi'an Jiaotong University, Xi'an 710054, China
| | - Jie Bai
- East Section of South Second Ring Road, The Second Affiliated Hospital of Xi'an Jiaotong University, No.151, Xi'an 710054, Shaanxi, China
| | - Hanxiang Wang
- Department of Pharmacy, Wuhan Union Hospital, Wuhan, 430022, China
| | - Qing Shu
- Ninth Hospital of Xi'an Affiliated To Xi'an Jiaotong University, Xi'an 710054, China.
| |
Collapse
|
7
|
Hleihil M, Vaas M, Bhat MA, Balakrishnan K, Benke D. Sustained Baclofen-Induced Activation of GABA B Receptors After Cerebral Ischemia Restores Receptor Expression and Function and Limits Progressing Loss of Neurons. Front Mol Neurosci 2021; 14:726133. [PMID: 34539344 PMCID: PMC8440977 DOI: 10.3389/fnmol.2021.726133] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
One important function of GABAB receptors is the control of neuronal activity to prevent overexcitation and thereby excitotoxic death, which is a hallmark of cerebral ischemia. Consequently, sustained activation of GABAB receptors with the selective agonist baclofen provides neuroprotection in in vitro and in vivo models of cerebral ischemia. However, excitotoxic conditions severely downregulate the receptors, which would compromise the neuroprotective effectiveness of baclofen. On the other hand, recent work suggests that sustained activation of GABAB receptors stabilizes receptor expression. Therefore, we addressed the question whether sustained activation of GABAB receptors reduces downregulation of the receptor under excitotoxic conditions and thereby preserves GABAB receptor-mediated inhibition. In cultured neurons subjected to oxygen and glucose deprivation (OGD), to mimic cerebral ischemia, GABAB receptors were severely downregulated. Treatment of the cultures with baclofen after OGD restored GABAB receptor expression and reduced loss of neurons. Restoration of GABAB receptors was due to enhanced fast recycling of the receptors, which reduced OGD-induced sorting of the receptors to lysosomal degradation. Utilizing the middle cerebral artery occlusion (MCAO) mouse model of cerebral ischemia, we verified the severe downregulation of GABAB receptors in the affected cortex and a partial restoration of the receptors after systemic injection of baclofen. Restored receptor expression recovered GABAB receptor-mediated currents, normalized the enhanced neuronal excitability observed after MCAO and limited progressive loss of neurons. These results suggest that baclofen-induced restoration of GABAB receptors provides the basis for the neuroprotective activity of baclofen after an ischemic insult. Since GABAB receptors regulate multiple beneficial pathways, they are promising targets for a neuroprotective strategy in acute cerebral ischemia.
Collapse
Affiliation(s)
- Mohammad Hleihil
- Institute of Pharmacology and Toxicology, University Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich, University of Zurich, Zurich, Switzerland
| | - Markus Vaas
- Institute of Pharmacology and Toxicology, University Zurich, Zurich, Switzerland
| | - Musadiq A Bhat
- Institute of Pharmacology and Toxicology, University Zurich, Zurich, Switzerland
| | - Karthik Balakrishnan
- Institute of Pharmacology and Toxicology, University Zurich, Zurich, Switzerland
| | - Dietmar Benke
- Institute of Pharmacology and Toxicology, University Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Xu M, Zi Y, Wu J, Xu N, Lu L, Liu J, Yu Y, Mo H, Wen W, Tang X, Fan W, Zhang Y, Liu C, Yi W, Wang L. Effect of opposing needling on motor cortex excitability in healthy participants and in patients with post-stroke hemiplegia: study protocol for a single-blind, randomised controlled trial. Trials 2021; 22:481. [PMID: 34294134 PMCID: PMC8296658 DOI: 10.1186/s13063-021-05443-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/09/2021] [Indexed: 11/12/2022] Open
Abstract
Background Opposing needling has an obvious curative effect in the treatment of post-stroke hemiplegia; however, the mechanism of the opposing needling in the treatment of post-stroke hemiplegia is still not clear. The purpose of this study is to investigate the effect of opposing needling on the excitability of primary motor cortex (M1) of healthy participants and patients with post-stroke hemiplegia, which may provide insight into the mechanisms of opposing needling in treating post-stroke hemiplegia. Methods This will be a single-blind, randomised, sham-controlled trial in which 80 healthy participants and 40 patients with post-stroke hemiplegia will be recruited. Healthy participants will be randomised 1:1:1:1 to the 2-Hz, 50-Hz, 100-Hz, and sham electroacupuncture groups. Patients with post-stroke hemiplegia will be randomised 1:1 to the opposing needling or conventional treatment groups. The M1 will be located in all groups by using neuroimaging-based navigation. The stimulator coil of transcranial magnetic stimulation (TMS) will be moved over the left and right M1 in order to identify the TMS hotspot, followed by a recording of resting motor thresholds (RMTs) and motor-evoked potentials (MEPs) of the thenar muscles induced by TMS before and after the intervention. The primary outcome measure will be the percent change in the RMTs of the thenar muscles at baseline and after the intervention. The secondary outcome measures will be the amplitude (μV) and latency (ms) of the MEPs of the thenar muscles at baseline and after the intervention. Discussion The aim of this trial is to explore the effect of opposing needling on the excitability of M1 of healthy participants and patients with post-stroke hemiplegia. Trial registration Chinese Clinical Trial Registry ChiCTR1900028138. Registered on 13 December 2019. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05443-x.
Collapse
Affiliation(s)
- Mindong Xu
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yinyu Zi
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Jianlu Wu
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Nenggui Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Liming Lu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Jiahui Liu
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yanling Yu
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Haofeng Mo
- Rehabilitation Department, Guangdong 999 Brain Hospital, Guangzhou, 510000, China
| | - Weifeng Wen
- Rehabilitation Department, Guangdong 999 Brain Hospital, Guangzhou, 510000, China
| | - Xiaorong Tang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Wenjuan Fan
- College of Health Medicine, Chongqing Youth Vocational and Technical College, Chongqing, 400712, China
| | - Yu Zhang
- Massage Therapy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Churong Liu
- Rehabilitation Department, Guangdong 999 Brain Hospital, Guangzhou, 510000, China.
| | - Wei Yi
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| | - Lin Wang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
9
|
Song D, Chen Y, Chen C, Chen L, Cheng O. GABA B receptor antagonist promotes hippocampal neurogenesis and facilitates cognitive function recovery following acute cerebral ischemia in mice. Stem Cell Res Ther 2021; 12:22. [PMID: 33413637 PMCID: PMC7792056 DOI: 10.1186/s13287-020-02059-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/27/2020] [Indexed: 02/02/2023] Open
Abstract
PURPOSE AND BACKGROUND Previous studies have suggested that promoting endogenous neurogenesis has great significance for the recovery of cognitive dysfunction caused by cerebral ischemia (CI). Pharmacological inhibition of GABAB receptor can enhance neurogenesis in adult healthy and depressed mice. In the study, we intended to investigate the effects of GABAB receptor antagonists on cognitive function and hippocampal neurogenesis in mice following CI. METHODS Adult mice were subjected to bilateral common carotid artery occlusion (BCCAO) for 20 min to induce CI and treated with CGP52432 (antagonist of GABAB receptor, CGP, 10 mg/kg intraperitoneal injection) starting 24 h after CI. The Morris water maze test was performed to test spatial learning and memory at day 28. Immunofluorescence was applied to detect neurogenesis in the DG region at day 14 and 28. In in vitro experiments, cell proliferation was detected by CCK8 and immunofluorescence, and the expression of cAMP/CREB signaling pathway-related proteins was detected by ELISA assay and Western blot. RESULTS CGP significantly improved spatial learning and memory disorders caused by CI, and it enhanced the proliferation of neural stem cells (NSCs), the number of immature neurons, and the differentiation from newborn cells to neurons. In vitro experiments further confirmed that CGP dose-dependently enhanced the cell viability of NSCs, and immunofluorescence staining showed that CGP promoted the proliferation of NSCs. In addition, treatment with CGP increased the expression of cAMP, PKA, and pCREB in cultured NSCs. CONCLUSION Inhibition of GABAB receptor can effectively promote hippocampal neurogenesis and improve spatial learning and memory in adult mice following CI.
Collapse
Affiliation(s)
- Dan Song
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yaohua Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Cheng Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lili Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Oumei Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
10
|
Yuan YJ, Ye Z, Yu H, Chen Y, Wang YW, Zhao JH, Sun JF, Xu LM. Shrm4 contributes to autophagy inhibition and neuroprotection following ischemic stroke by mediating GABA B receptor activation. FASEB J 2020; 34:15837-15848. [PMID: 33079458 DOI: 10.1096/fj.202000458rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/25/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
Acute ischemic stroke is one of the leading causes of death in developed countries and the most common cause of disability in adults worldwide. Despite advances in the understanding of stroke pathophysiology, therapeutic options remain limited. In this study, we explored the interaction of Shrm4 and the metabotropic gamma-aminobutyric acid (GABA) receptors (GABAB ) in ischemic stroke. A transient middle cerebral artery occlusion (MCAO) model was induced by filament insertion in Shrm4+/+ and wild-type C57BL/6J mice, followed by reperfusion for up to 7 days. Baclofen was administered was used to activate GABAB in vivo during reperfusion. Neurological deficits, motor and memory functions, and infarct volume were determined in the various mouse groups. Furthermore, we also developed an oxygen-glucose deprivation (OGD) cell model in primary neurons to test Shrm4/GABAB interactions in vitro. Shrm4 was observed to decrease infarct volume and neuronal cell loss in penumbra, and rescue neurological deficits in MCAO mice. Notably, Shrm4 also increased pole climbing speed, reduced foot faults, and increased escape latency in the Morris water maze test, while reducing neuron autophagy through an interaction with GABAB receptors. GABAB activation using baclofen further reduced OGD-induced neuron damage in culture and stroke outcomes of MCAO, relative to Shrm4 alone. Taken together, Shrm4-mediated GABAB activation confers neuroprotection by reducing neuronal autophagy in acute ischemic stroke.
Collapse
Affiliation(s)
- Ya-Jing Yuan
- Department of Anesthesia, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
| | - Zhi Ye
- Department of Anesthesia, The Affiliated Xiangya Hospital of Center South University, Changsha, P.R. China
| | - Hao Yu
- Department of Radiotherapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
| | - Yang Chen
- Department of Radiotherapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
| | - Yu-Wen Wang
- Department of Radiotherapy, Tianjin Medical University Cancer Hospital Airport Hospital, Tianjin, P.R. China
| | - Jun-Hua Zhao
- Department of Radiotherapy, Tianjin Medical University Cancer Hospital Airport Hospital, Tianjin, P.R. China
| | - Ji-Feng Sun
- Department of Radiotherapy, Tianjin Medical University Cancer Hospital Airport Hospital, Tianjin, P.R. China
| | - Li-Ming Xu
- Department of Radiotherapy, Tianjin Medical University Cancer Hospital Airport Hospital, Tianjin, P.R. China.,Department of Radiotherapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, P.R. China
| |
Collapse
|
11
|
Zhang X, Zhou G. MiR-199a-5p inhibition protects cognitive function of ischemic stroke rats by AKT signaling pathway. Am J Transl Res 2020; 12:6549-6558. [PMID: 33194051 PMCID: PMC7653619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
To explore the effect of miR-199a-5p and AKT signal pathway on cognitive function and neuronal cells in rats with ischemic stroke. Sprague-Dawley rats were divided into 6 groups: Normal group (normal rats), Sham group (rats received sham operation), Model group (MCAO rats), miR-199a-5p inhibitor group (model rats treated with miR-199a-5p inhibitor), IGF-1 group (model rats treated with AKT signaling pathway activator), miR-199a-5p inhibitor + IGF-1 group (model rats treated by miR-199a-5p inhibitor and AKT signaling pathway activator). Rat behavior and cerebral infarction area were observed. TUNEL fluorescence staining was used to detect neuronal apoptosis in hippocampal CA1 region of rats. The dual luciferase reporter assay validated the targeting relationship between miR-199a-5p and AKT. qRT-PCR and WB were used to detect the expression level of miR-199a-5p, (p)-AKT and (p)-mTOR, apoptosis-related proteins Bax and Bcl-2. Compared with the normal group, the expression of miR-199a-5p was increased in the Model group, and the expression levels of AKT, mTOR, p-AKT, and p-mTOR were decreased (all P < 0.05); the cognitive function of the rats in the Model group was thereby significantly lower (P < 0.05). miR-199a-5p was targeted to inhibit AKT. Compared with the Model group, miR-199a-5p inhibition combined with IGF-1 showed more significant effects on improving cognitive function and protecting neuronal cells of rats. In conclusion, silencing miR-199a-5p can effectively improve cognitive function in ischemic stroke rats and decrease neuronal apoptosis in hippocampus by activating the AKT signaling pathway.
Collapse
Affiliation(s)
- Xianghui Zhang
- Department of Neurology, Tianjin Huanhu Hospital Tianjin City, China
| | - Guan'en Zhou
- Department of Neurology, Tianjin Huanhu Hospital Tianjin City, China
| |
Collapse
|
12
|
Luo HC, Yi TZ, Huang FG, Wei Y, Luo XP, Luo QS. Role of long noncoding RNA MEG3/miR-378/GRB2 axis in neuronal autophagy and neurological functional impairment in ischemic stroke. J Biol Chem 2020; 295:14125-14139. [PMID: 32605923 DOI: 10.1074/jbc.ra119.010946] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 06/23/2020] [Indexed: 01/21/2023] Open
Abstract
Autophagy has been shown to maintain neural system homeostasis during stroke. However, the molecular mechanisms underlying neuronal autophagy in ischemic stroke remain poorly understood. This study aims to investigate the regulatory mechanisms of the pathway consisting of MEG3 (maternally expressed gene 3), microRNA-378 (miR-378), and GRB2 (growth factor receptor-bound protein 2) in neuronal autophagy and neurological functional impairment in ischemic stroke. A mouse model of the middle cerebral artery occluded-induced ischemic stroke and an in vitro model of oxygen-glucose deprivation-induced neuronal injury were developed. To understand the role of the MEG3/miR-378/GRB2 axis in the neuronal regulation, the expression of proteins associated with autophagy in neurons was measured by Western blotting analysis, and neuron death was evaluated using a lactate dehydrogenase leakage rate test. First, it was found that the GRB2 gene, up-regulated in middle cerebral artery occluded-operated mice and oxygen-glucose deprivation-exposed neurons, was a target gene of miR-378. Next, miR-378 inhibited neuronal loss and neurological functional impairment in mice, as well as neuronal autophagy and neuronal death by silencing of GRB2. Confirmatory in vitro experiments showed that MEG3 could specifically bind to miR-378 and subsequently up-regulate the expression of GRB2, which in turn suppressed the activation of Akt/mTOR pathway. Taken together, these findings suggested that miR-378 might protect against neuronal autophagy and neurological functional impairment and proposed that a MEG3/miR-378/GRB2 regulatory axis contributed to better understanding of the pathophysiology of ischemic stroke.
Collapse
Affiliation(s)
- Hong-Cheng Luo
- Department of Clinical Laboratory, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Ting-Zhuang Yi
- Department of Gastroenterology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Fu-Gao Huang
- Department of Ultrasound, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Ying Wei
- Department of Clinical Laboratory, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xiao-Peng Luo
- Department of Otolaryngology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Qi-Sheng Luo
- Department of Neurosurgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
13
|
Zhou S, Gao B, Sun C, Bai Y, Cheng D, Zhang Y, Li X, Zhao J, Xu D. Vascular Endothelial Cell-derived Exosomes Protect Neural Stem Cells Against Ischemia/reperfusion Injury. Neuroscience 2020; 441:184-196. [PMID: 32502570 DOI: 10.1016/j.neuroscience.2020.05.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 12/30/2022]
Abstract
Vascular endothelial cells were activated during acute ischemic brain injury, which could induce neural progenitor cell proliferation and migration. However, the mechanism was still unknown. In the current study, we explored whether vascular endothelial cells promoted neural progenitor cell proliferation and whether migration occurs via exosome communication. The acute middle cerebral artery occlusion (MCAO) model was prepared, and exosomes were isolated from bEnd.3 cells by ultracentrifugation. In the exosome injection (Exos) group and PBS injection (control) group, exosomes or PBS were injected intraventricularly into rats' brains 2 h after MCAO surgery, respectively. Sham group rats received the same surgical but did not cause middle cerebral artery occlusion. The infarct volume was reduced on day 21 after ischemic brain injury by MRI, and neurobehavioral outcomes were improved on day 7, 14, and 21 by exosome injection compared with the control (p < 0.05). On the 21st day after MCAO, the animals were euthanized, and the number of BrdU/nestin-positive cells was measured by immunofluorescence. BrdU/nestin-positive cells in Exos group rats were significantly increased (p < 0.05) in the peri infarct area, the ipsilateral DG zone of the hippocampus, and the ventral sub-regions of SVZ when compared with the rats in the control group. Further, in vitro study demonstrated that neural progenitor cell proliferation and migration were activated after exosomes treatment, and cell apoptosis was attenuated compared to the control (p < 0.05). Our study suggested that exosomes should be essential for the reconstruction of neuronal vascular units and brain protection in an acute ischemic injured brain.
Collapse
Affiliation(s)
- Shaoting Zhou
- Department of Neurology, Minhang Hospital Affiliated to Fudan University, Shanghai 201100, China
| | - Beiyao Gao
- Department of Rehabilitation, Huashan Hospital Affiliated to Fudan University, Shanghai 200041, China
| | - Chengcheng Sun
- Rehabilitation Center, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Yulong Bai
- Department of Rehabilitation, Huashan Hospital Affiliated to Fudan University, Shanghai 200041, China
| | - Dandan Cheng
- Department of Rehabilitation, Huashan Hospital Affiliated to Fudan University, Shanghai 200041, China
| | - Ye Zhang
- Rehabilitation Center, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Xutong Li
- Department of Neurology, Minhang Hospital Affiliated to Fudan University, Shanghai 201100, China
| | - Jing Zhao
- Department of Neurology, Minhang Hospital Affiliated to Fudan University, Shanghai 201100, China.
| | - Dongsheng Xu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
14
|
Huang H, Song X, Zhao L, Zheng L, Xiao L, Chen Y. Opposing needling for analgesia and rehabilitation after unilateral total knee arthroplasty: a randomized, sham-controlled trial protocol. Trials 2020; 21:385. [PMID: 32381110 PMCID: PMC7203890 DOI: 10.1186/s13063-020-04251-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/13/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND This randomized controlled clinical trial aims to evaluate the efficacy and safety of opposing needling in patients undergoing unilateral total knee arthroplasty (TKA). Opposing needling is one of the special needling methods used in acupuncture and moxibustion therapy. It involves needling acupoints on the contralateral side for pain management. Although, opposing needling is used for pain management in clinics, evidence to support its effectiveness as an analgesic after total knee arthroplasty is scant. We designed a randomized controlled clinical trial to evaluate efficacy and safety of opposing electroacupuncture (EA) in alleviating pain associated with unilateral total knee arthroplasty. METHODS/DESIGN This is a protocol for a randomized controlled patient- and assessor-blinded trial with three parallel arms (A, opposing EA; B, operated side EA; C, sham EA). Yinlingquan (SP9), Yanglingquan (GB34), Futu (ST32), and Zusanli (ST36) acupoints are selected for all three groups. In group A, the healthy side will be treated with EA, while the operated side will be administered sham EA. In group B, the operated side will be treated with EA while on the healthy side sham EA will be used. For group C, sham EA will be used on both sides. All patients in the three groups will receive treatment once a day for 3 days. The post-operative pain measured using a visual analogue scale score (including pain while resting and being active) and the additional dose of the patient-controlled analgesic pump after operation will be recorded as the primary outcomes. Secondary outcomes such as knee function and swelling, range of motion (including active and passive range of motion), post-operative anxiety, and acupuncture tolerance will also be assessed. DISCUSSION Opposing needling is a potential non-pharmacological treatment for relieving pain and improving functional rehabilitation after TKA, during which patients receive acupuncture on the healthy side rather than on the operated side. This sham controlled clinical trial, designed to evaluate efficacy and safety of opposing needling for patients after TKA, will provide evidence for pain management and functional rehabilitation after unilateral TKA. TRIAL REGISTRATION ChiCTR, ChiCTR1800020297 (http://www.chictr.org.cn/edit.aspx?pid=34231&htm=4). Registered 22 December 2018.
Collapse
Affiliation(s)
- Hai Huang
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, 540 Xinhua Rd., Shanghai, 200052 China
| | - Xiuling Song
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rd., Shanghai, 201203 China
| | - Ling Zhao
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rd., Shanghai, 201203 China
| | - Lin Zheng
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, 540 Xinhua Rd., Shanghai, 200052 China
| | - Lianbo Xiao
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, 540 Xinhua Rd., Shanghai, 200052 China
| | - Yuelai Chen
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rd., Shanghai, 201203 China
| |
Collapse
|
15
|
Li H, Shang J, Zhang C, Lu R, Chen J, Zhou X. Repetitive Transcranial Magnetic Stimulation Alleviates Neurological Deficits After Cerebral Ischemia Through Interaction Between RACK1 and BDNF exon IV by the Phosphorylation-Dependent Factor MeCP2. Neurotherapeutics 2020; 17:651-663. [PMID: 31912469 PMCID: PMC7283432 DOI: 10.1007/s13311-019-00771-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is acknowledged as a form of neurostimulation, especially for functional recovery. The foundational knowledge of molecular mechanism is limited regarding its role in cerebral ischemia, for which the present study was designed. Primary neurons were treated with oxygen-glucose deprivation (OGD) and repetitive magnetic stimulation (rMS), in which brain-derived neurotrophic factor (BDNF) and transcription of BDNF exons were examined. Then, adenovirus vectors carrying siRACK1 sequence were delivered to primary neurons, followed by detection of the transcription of BDNF exons and the extent of methyl CpG binding protein 2 (MeCP2) phosphorylation. Results showed that BDNF and the transcription of BDNF exons were upregulated by rMS and OGD treatment, but decreased by extra treatment of RACK1 siRNA. Then, the mechanism investigations demonstrated that rMS increased the extent of MeCP2 phosphorylation to promote the interaction between RACK1 and BDNF exon IV. The aforementioned findings were further confirmed in vivo in middle cerebral artery occlusion (MCAO)-induced rat models, as indicated by improved neurological functions and reduced area of cerebral infarction. The study offers potential evidence for improvement of neurological deficits, highlighting the important role of rTMS for treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Hongzhan Li
- Department of Neurology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No. 13, Shiliugang Road, Guangzhou, 510315, Guangdong Province, China
| | - Jianqing Shang
- Department of Neurology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No. 13, Shiliugang Road, Guangzhou, 510315, Guangdong Province, China
| | - Chengliang Zhang
- Department of Neurology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No. 29, Xinglong Alley, Changzhou, 213003, Jiangsu Province, China
| | - Rulan Lu
- Department of Neurology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No. 29, Xinglong Alley, Changzhou, 213003, Jiangsu Province, China
| | - Junpao Chen
- Department of Neurology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No. 13, Shiliugang Road, Guangzhou, 510315, Guangdong Province, China
| | - Xianju Zhou
- Department of Neurology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No. 13, Shiliugang Road, Guangzhou, 510315, Guangdong Province, China.
- Department of Neurology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No. 29, Xinglong Alley, Changzhou, 213003, Jiangsu Province, China.
| |
Collapse
|
16
|
Wang Z, Lin B, Liu W, Peng H, Song C, Huang J, Li Z, Chen L, Tao J. Electroacupuncture ameliorates learning and memory deficits via hippocampal 5-HT1A receptors and the PKA signaling pathway in rats with ischemic stroke. Metab Brain Dis 2020; 35:549-558. [PMID: 31515682 DOI: 10.1007/s11011-019-00489-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/28/2019] [Indexed: 12/22/2022]
Abstract
Hippocampal 5-HT1A receptors and the PKA signaling pathway have been implicated in learning and memory. This study aimed to investigate whether PKA signaling mediated by 5-HT1A receptors was involved in the electroacupuncture (EA)-mediated learning and memory in a rat model of middle cerebral artery occlusion-induced cognitive deficit (MICD). Compared to no treatment or non-acupoint EA treatment, EA at DU20 and DU24 acupoints improved the neurological deficit of scores, shortened escape latency and increased the frequency of crossing the platform in the Morris water maze test. T2-weighted imaging demonstrated that the MICD rat brain lesions were mainly located in the cortex and hippocampus, and injured volumes were reduced after EA. Furthermore, we found that these behavioral changes were concomitant with the deficit of the 5HT1A and PKA signaling pathways in the hippocampus, as the activation of the 5-HT1A receptor, the reduction of PKA kinase activity, and AMPA and NMDA receptor phosphorylation occurred in the injured hippocampus at Day 14 after MICD. Additionally, EA dramatically elevated the activation of PKA. Moreover, EA significantly increased intracellular calcium concentrations regulated by the activation of NMDA receptors. Therefore, PKA kinase and NMDA receptors mediated by 5-HT1A receptors in the hippocampus might contribute to improving learning and memory during the recovery process following ischemic stroke with an EA intervention.
Collapse
Affiliation(s)
- Zhifu Wang
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Bingbing Lin
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Weilin Liu
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hongwei Peng
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Changming Song
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jia Huang
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zuanfang Li
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lidian Chen
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing Tao
- Fujian University of Traditional Chinese Medicine, Fuzhou, China.
| |
Collapse
|
17
|
Gu J, Feng L, Song J, Cui L, Liu D, Ma L, Jia X. The effect and mechanism of combination of total paeony glycosides and total ligustici phenolic acids against focal cerebral ischemia. Sci Rep 2020; 10:3689. [PMID: 32111871 PMCID: PMC7048792 DOI: 10.1038/s41598-020-60357-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
The root of Paeonia lactiflora Pall. (Chishao, CS) and Ligusticum chuanxiong Hort. (Chuanxiong, CX) were widely used as a drug pair in Chinese Medicine, and the combination of CS and CX showed a more significant inhibition on neuronal apoptosis in our previous study. In the present study, total paeony glycosides (TPGs) from CS and total ligustici phenolic acids (TLPAs) from CX were combined to evaluate the synergistic effects against focal cerebral ischemia both in vitro and in vivo. The combination of TPGs and TLPAs at 7:3 had the best anti-oxidative stress and anti-inflammatory effect on OGD-induced HUVEC. Additionally, the infarction area proportion and neuron apoptosis of rats by TPGs:TLPAs (7:3) was significantly lower than their alone in MCAO rats. Moreover, TPGs: TLPAs of 7:3 showed a more significant effect on decreasing the expression of MMP-2 and MMP-9, and increasing the protein expression or mRNA level of TIMP-1 than other combinations. The optimal ratio of TPGs and TLPAs at 7:3 could bring more remarkable protective effects against focal cerebral ischemia in MCAO rats by alleviating oxidative stress, inflammatory and neuronal apoptosis to protect the blood-brain barrier. Overall, the present study provided benefical evidence for clinical application of CS and CX as a "drug pair".
Collapse
Affiliation(s)
- Junfei Gu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, P.R. China
| | - Liang Feng
- College of pharmacy, China pharmaceutical university, Nanjing, Jiangsu, 210023, P.R. China.
| | - Jie Song
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, P.R. China
| | - Li Cui
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, P.R. China
| | - Dan Liu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, P.R. China
| | - Liang Ma
- College of pharmacy, China pharmaceutical university, Nanjing, Jiangsu, 210023, P.R. China
| | - Xiaobin Jia
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, P.R. China.
- College of pharmacy, China pharmaceutical university, Nanjing, Jiangsu, 210023, P.R. China.
| |
Collapse
|
18
|
Sha R, Han X, Zheng C, Peng J, Wang L, Chen L, Huang X. The Effects of Electroacupuncture in a Rat Model of Cerebral Ischemia-Reperfusion Injury Following Middle Cerebral Artery Occlusion Involves MicroRNA-223 and the PTEN Signaling Pathway. Med Sci Monit 2019; 25:10077-10088. [PMID: 31883264 PMCID: PMC6946047 DOI: 10.12659/msm.919611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background In China, electroacupuncture (EA) is used to treat the symptoms of ischemic stroke. However, the mechanisms involved in the effects of EA in cerebral ischemia remain to be investigated. This study aimed to investigate the molecular mechanism underlying the effects of EA in a rat model of cerebral ischemia-reperfusion injury (CIRI) induced by middle cerebral artery occlusion (MCAO). Material/Methods Seventy-five male Sprague-Dawley rats were divided into five groups: the sham group (with sham surgery), the model group (the MCAO model), the EA group (treated with EA), the EA control group, and the EA+antagomir-223-3p group. Rats in the model of CIRI underwent MCAO for 90 minutes. EA was performed on the second postoperative day and was performed at the Waiguan (TE5) and Zusanli (ST36) acupoints. The rat brains were evaluated for structural and molecular markers. Results EA treatment significantly upregulated the expression of microRNA-223 (miR-223), NESTIN, and NOTCH1, and downregulated the expression of PTEN in the subventricular zone (SVZ) and hippocampus. The luciferase reporter assay supported that PTEN was a direct target of miR-223, and antagomiR-223-3p reversed the effects of EA and reduced the increase in NESTIN and inhibition of PTEN expression associated with EA treatment. There was a negative correlation between PTEN expression and the number of neural stem cells (NSCs). Conclusions In a rat model of CIRI following MCAO, EA activated the NOTCH pathway, promoted the expression of miR-223, increased the number of NSCs, and reduced the expression of PTEN.
Collapse
Affiliation(s)
- Rong Sha
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Xiaohua Han
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Caixia Zheng
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Jiaojiao Peng
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Li Wang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Luting Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Xiaolin Huang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
19
|
Li J, Lv H, Che YQ. Upregulated microRNA-31 inhibits oxidative stress-induced neuronal injury through the JAK/STAT3 pathway by binding to PKD1 in mice with ischemic stroke. J Cell Physiol 2019; 235:2414-2428. [PMID: 31517390 DOI: 10.1002/jcp.29146] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/26/2019] [Indexed: 12/21/2022]
Abstract
Ischemic stroke (IS), which is characterized by high morbidity, disability, and mortality, is recognized as a major cerebrovascular disease. MicroRNA-31 (miR-31) was reported to participate in the progression of brain disease. The present study was conducted in order to investigate the effect of miR-31 on oxidative stress-induced neuronal injury in IS mice with the involvement of protein kinase D1 (PKD1) and the JAK/STAT3 pathway. C57BL/6J mice were used to establish the middle cerebral artery occlusion (MCAO) model. Astrocytes were transfected with miR-31 mimic, miR-31 inhibitor, si-PKD1, or JAK-STAT3 pathway inhibitor. Following the establishment of an oxygen-glucose deprivation (OGD) model, the astrocytes were cocultured with neuronal OGD. Lower miR-31, higher PKD1 expressions, and activated JAK/STAT3 pathway were found in both the MCAO and OGD models. miR-31 could negatively target PKD1. In an MCAO model, overexpressing miR-31 and silencing PKD1 reduced neuronal injury, cerebral infarct volume, neuron loss, and oxidative stress injury, inhibited the activation of JAK/STAT3 pathway and the expressions of PKD1, interleukin (IL)-1β, IL-6, tumor necrosis factor-α, malondialdehyde, 4-HNE, 8-HOdG, caspase-3, and Bax, but increased the superoxide dismutase content. In the OGD model, overexpression of miR-31 and silencing of PKD1 attenuated oxidative stress-induced neuronal injury, and diminished the lactate dehydrogenase leakage and reactive oxygen species level, accompanied by elevated neuronal viability. These results indicate that miR-31 alleviates inflammatory response as well as an oxidative stress-induced neuronal injury in IS mice by downregulating PKD1 and JAK/STAT3 pathway.
Collapse
Affiliation(s)
- Jie Li
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Hui Lv
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yu-Qin Che
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Cao LM, Dong ZQ, Li Q, Chen X. Treadmill training improves neurological deficits and suppresses neuronal apoptosis in cerebral ischemic stroke rats. Neural Regen Res 2019; 14:1387-1393. [PMID: 30964064 PMCID: PMC6524516 DOI: 10.4103/1673-5374.253523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Rehabilitation training is believed to be beneficial to patients with stroke, but its molecular mechanism is still unclear. Rat models of cerebral ischemic stroke were established by middle cerebral artery occlusion/reperfusion, and then received treadmill training of different intensities, twice a day for 30 minutes for 1 week. Low-intensity training was conducted at 5 m/min, with a 10-minute running, 10-minute rest, and 10-minute running cycle. In the moderate-intensity training, the intensity gradually increased from 5 m/min to 10 m/min in 5 minutes, with the same rest cycle as above. In high-intensity training, the intensity gradually increased from 5 m/min to 25 m/min in 5 minutes, with the same rest cycle as above. The Bederson scale was used to evaluate the improvement of motor function. Infarct volume was detected using 2,3,5-triphenyltetrazolium chloride staining. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining was applied to detect the apoptosis of nerve cells in brain tissue. Western blot assay was employed to analyze the activation of cyclic adenosine monophosphate (cAMP)/protein kinase A and Akt/glycogen synthase kinase-3β signaling pathways in rat brain tissue. All training intensities reduced the neurological deficit score, infarct volume, and apoptosis in nerve cells in brain tissue of stroke rats. Training intensities activated the cAMP/protein kinase A and Akt/glycogen synthase kinase-3 beta signaling pathways. This activation was more obvious with higher training intensities. These changes were reversed by intracerebroventricular injection of protein kinase A inhibitor Rp-cAMP. Our findings indicate that the neuroprotective effect of rehabilitation training is achieved via activation of the cAMP/protein kinase A and Akt/glycogen synthase kinase-3 beta signaling pathways. This study was approved by the Ethics Committee of Animal Experimentation in Shanghai No. 8 People’s Hospital, China.
Collapse
Affiliation(s)
- Li-Mei Cao
- Department of Neurology, Shanghai No. 8 People's Hospital, Shanghai, China
| | - Zhi-Qiang Dong
- Department of Neurology, Shanghai No. 8 People's Hospital, Shanghai, China
| | - Qiang Li
- Department of Neurology, Shanghai No. 8 People's Hospital, Shanghai, China
| | - Xu Chen
- Department of Neurology, Shanghai No. 8 People's Hospital, Shanghai, China
| |
Collapse
|
21
|
Xiao LY, Wang XR, Yang Y, Yang JW, Cao Y, Ma SM, Li TR, Liu CZ. Applications of Acupuncture Therapy in Modulating Plasticity of Central Nervous System. Neuromodulation 2017; 21:762-776. [PMID: 29111577 DOI: 10.1111/ner.12724] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Acupuncture is widely applied for treatment of various neurological disorders. This manuscript will review the preclinical evidence of acupuncture in mediating neural plasticity, the mechanisms involved. MATERIALS AND METHODS We searched acupuncture, plasticity, and other potential related words at the following sites: PubMed, EMBASE, Cochrane Library, Chinese National Knowledge Infrastructure (CNKI), and VIP information data base. The following keywords were used: acupuncture, electroacupuncture, plasticity, neural plasticity, neuroplasticity, neurogenesis, neuroblast, stem cell, progenitor cell, BrdU, synapse, synapse structure, synaptogenesis, axon, axon regeneration, synaptic plasticity, LTP, LTD, neurotrophin, neurotrophic factor, BDNF, GDNF, VEGF, bFGF, EGF, NT-3, NT-4, NT-5, p75NTR, neurotransmitter, acetylcholine, norepinephrine, noradrenaline, dopamine, monamine. We assessed the effects of acupuncture on plasticity under pathological conditions in this review. RESULTS Relevant references were reviewed and presented to reflect the effects of acupuncture on neural plasticity. The acquired literatures mainly focused on neurogenesis, alterations of synapses, neurotrophins (NTs), and neurotranimitters. Acupuncture methods mentioned in this article include manual acupuncture and electroacupuncture. CONCLUSIONS The cumulative evidences demonstrated that acupuncture could induce neural plasticity in rodents exposed to cerebral ischemia. Neural plasticity mediated by acupuncture in other neural disorders, such as Alzheimer's disease, Parkinson's disease, and depression, were also investigated and there is evidence of positive role of acupuncture induced plasticity in these disorders as well. Mediation of neural plasticity by acupuncture is likely associated with its modulation on NTs and neurotransmitters. The exact mechanisms underlying acupuncture's effects on neural plasticity remain to be elucidated. Neural plasticity may be the potential bridge between acupuncture and the treatment of various neurological diseases.
Collapse
Affiliation(s)
- Ling-Yong Xiao
- Beijing University of Chinese Medicine, Beijing, China.,Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, China
| | - Xue-Rui Wang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, China
| | - Ye Yang
- Beijing University of Chinese Medicine, Beijing, China
| | - Jing-Wen Yang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, China
| | - Yan Cao
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, China
| | - Si-Ming Ma
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, China
| | - Tian-Ran Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Cun-Zhi Liu
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
22
|
Wu J, Lin B, Liu W, Huang J, Shang G, Lin Y, Wang L, Chen L, Tao J. Roles of electro-acupuncture in glucose metabolism as assessed by 18F-FDG/PET imaging and AMPKα phosphorylation in rats with ischemic stroke. Int J Mol Med 2017; 40:875-882. [PMID: 28713979 DOI: 10.3892/ijmm.2017.3057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 06/27/2017] [Indexed: 11/06/2022] Open
Abstract
Targeted energy metabolism balance contributes to neural survival during ischemic stroke. Herein, we tested the hypothesis that electro‑acupuncture (EA) can enhance cerebral glucose metabolism assessed by 18F‑fluorodeoxyglucose/positron emission tomography (18F‑FDG/PET) imaging to prevent propagation of tissue damage and improve neurological outcome in rats subjected to ischemia and reperfusion injury. Rats underwent middle cerebral artery occlusion (MCAO) and received EA treatment at the LI11 and ST36 acupoints or non‑acupoint treatment once a day for 7 days. After EA treatment, a significant reduction in the infarct volume was determined by T2‑weighted imaging, accompanied by the functional recovery in CatWalk and Rota-rod performance. Moreover, EA promoted higher glucose metabolism in the caudate putamen (CPu), motor cortex (MCTX), somatosensory cortex (SCTX) regions as assessed by animal 18F‑FDG/PET imaging, suggesting that three‑brain regional neural activity was enhanced by EA. In addition, the AMP‑activated protein kinase α (AMPKα) in the CPu, MCTX and SCTX regions was phosphorylated at threonine 172 (Thr172) after ischemic injury; however, phosphorylation of AMPK was further increased by EA. These results indicate that EA could promote AMPKα phosphorylation of the CPu, MCTX and SCTX regions to enhance neural activity and motor functional recovery after ischemic stroke.
Collapse
Affiliation(s)
- Jingsong Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Bingbing Lin
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian 350001, P.R. China
| | - Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jia Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Guanhao Shang
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian 350001, P.R. China
| | - Yunjiao Lin
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian 350001, P.R. China
| | - Lulu Wang
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian 350001, P.R. China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
23
|
Mechanisms of Acupuncture Therapy for Cerebral Ischemia: an Evidence-Based Review of Clinical and Animal Studies on Cerebral Ischemia. J Neuroimmune Pharmacol 2017; 12:575-592. [DOI: 10.1007/s11481-017-9747-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 04/13/2017] [Indexed: 12/20/2022]
|
24
|
Xia WG, Zheng CJ, Zhang X, Wang J. Effects of "nourishing liver and kidney" acupuncture therapy on expression of brain derived neurotrophic factor and synaptophysin after cerebral ischemia reperfusion in rats. ACTA ACUST UNITED AC 2017; 37:271-278. [PMID: 28397041 DOI: 10.1007/s11596-017-1727-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/06/2017] [Indexed: 12/14/2022]
Abstract
The aim of the present study was to investigate the effect of "nourishing liver and kidney" acupuncture therapy on motor and cognitive deficits, and the underlying mechanism following cerebral ischemia-reperfusion (I/R) via increasing the expression of brain derived neurotrophic factor (BDNF) and synaptophysin (SYN) in the hippocampus. Healthy adult male SD rats were randomly divided into sham operation group (n=51), model group (n=51), acupuncture group (n=51) and acupuncture control group (n=51). The middle cerebral I/R model was established. Acupunctures were performed in the acupuncture group and acupuncture control group at acupoints of Taixi (K103), Taichong (ST09) of both sides, for 30 min once daily every morning. The animals in the sham operation group and model group were conventionally fed in the cage, without any intervention therapy. The rats of each group were assessed with modified neurological severity scores (mNSS). The expression of BDNF and SYN in the hippocampus was detected by immunohistochemical SP method and the synaptic structure in hippocampus area was assessed morphologically and quantitatively at the 3rd, 7th and 14th day. The Morris water Maze (MWM) test was used to evaluate the rats' learning and memory abilities on the 15th day after acupuncture. The animals in the acupuncture control group and sham operation group presented no neurological deficit. In the acupuncture group, the nerve functional recovery was significantly better than that in the model group at the 7th and 14th day after modeling. The average MWM escape latency in the acupuncture group was shorter than that in the model group at the 3rd, 4th and 5th day. The number of crossings of the platform quadrant in the acupuncture group was significantly more than that in the model group. At the each time point, the expression levels of BDNF and SYN in the hippocampal regions increased significantly in the model group as compared with the sham operation group and the acupuncture control group. In the acupuncture group, the expression levels of BDNF at the 7th and 14th day increased more significantly than those in the model group. In the acupuncture group, the expression levels of SYN at the each time point increased more significantly than those in the model group. The post-synaptic density (PSD) was significantly increased and the synapse cleft width was narrowed in the acupuncture group as compared with other groups. The synaptic curvatures were improved obviously in the acupuncture group in contrast to the model group. It was concluded that the "nourishing liver and kidney" acupuncture therapy has positive effects on behavioral recovery, as well as learning and memory abilities, probably by promoting the expression of BDNF and SYN, and synaptic structure reconstruction in the ipsilateral hippocampus after I/R in rats. The "nourishing liver and kidney" acupuncture therapy can promote the functional recovery in rats after cerebral ischemia injury.
Collapse
Affiliation(s)
- Wen-Guang Xia
- Department of Rehabilitation Medicine, Hubei Provincial Hospital of the Integrated Chinese and Western Medicine, Wuhan, 430015, China.
| | - Chan-Juan Zheng
- Department of Rehabilitation Medicine, Hubei Provincial Hospital of the Integrated Chinese and Western Medicine, Wuhan, 430015, China
| | - Xuan Zhang
- Department of Rehabilitation Medicine, Hubei Provincial Hospital of the Integrated Chinese and Western Medicine, Wuhan, 430015, China
| | - Juan Wang
- Department of Rehabilitation Medicine, Hubei Provincial Hospital of the Integrated Chinese and Western Medicine, Wuhan, 430015, China
| |
Collapse
|