1
|
Gong XS, Wang HX, Yang XD, Yu ZY, Lin SJ, Zou ZT, Lv JN, Qian LY, Ruan YE, Si ZZ, Zhou Y, Liu Y. The effect of paeoniflorin on the rewarding effect of methamphetamine and the associated cognitive impairment in mice. Metab Brain Dis 2024; 40:27. [PMID: 39565442 DOI: 10.1007/s11011-024-01462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/18/2024] [Indexed: 11/21/2024]
Abstract
Chronic exposure to methamphetamine (METH) has been suggested to cause METH use disorder and severe cognitive impairment. Paeoniflorin (PF) is a monoterpenoid glycoside with various beneficial effects, including anti-inflammatory, antioxidant and antidepressant. The current study was designed to investigate the effect of PF (30 mg/kg, i.p.) on the rewarding effect of METH (2.5 mg/kg, i.p.) and the associated cognitive impairment, using the animal model of conditioned place preference, new location reorganization test, new object reorganization test and Y-maze test. METH induced conditioned place preference, accompanied by increased expression of synapse-associated proteins in the ventral target areas (VTA) and nucleus accumbens (NAc). In addition, METH induced significant cognitive impairment and decreased the expression of synapse-associated proteins in the hippocampus (Hip). Administration of PF decreased the rewarding effect of METH and the expression of synapse-associated proteins in the VTA or NAc. PF was also effective to improve METH-induced cognitive impairment by upregulating the expression of synapse-associated proteins in the Hip. Therefore, PF could be a potential agent for the treatment of METH use disorder and the associated cognitive impairment.
Collapse
Affiliation(s)
- Xin-Shuang Gong
- School of Public Health, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Hai-Xing Wang
- National Narcotics Laboratory Zhejiang Regional Center, Hangzhou, China
| | - Xiang-Dong Yang
- Department of Psychology, Collage of Teacher Education, Ningbo University, Ningbo, China
| | - Zhao-Ying Yu
- Department of Psychology, Collage of Teacher Education, Ningbo University, Ningbo, China
| | - Shu-Jun Lin
- Department of Psychology, Collage of Teacher Education, Ningbo University, Ningbo, China
| | - Zhi-Ting Zou
- Department of Psychology, Collage of Teacher Education, Ningbo University, Ningbo, China
| | - Jia-Nan Lv
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Li-Yin Qian
- School of Public Health, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yu-Er Ruan
- Department of Psychology, Collage of Teacher Education, Ningbo University, Ningbo, China
| | - Zi-Zhen Si
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yi Zhou
- National Narcotics Laboratory Zhejiang Regional Center, Hangzhou, China
| | - Yu Liu
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
2
|
Wen X, Hu J. Targeting STAT3 signaling pathway in the treatment of Alzheimer's disease with compounds from natural products. Int Immunopharmacol 2024; 141:112936. [PMID: 39163684 DOI: 10.1016/j.intimp.2024.112936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is difficult to cure and of global concern. Neuroinflammation is closely associated with the onset and progression of AD, making its treatment increasingly important. Compounds from natural products, with fewer side effects than synthetic drugs, are of high research interest. STAT3, a multifunctional transcription factor, is involved in various cellular processes including inflammation, cell growth, and apoptosis. Its activation and inhibition can have different effects under various pathological conditions. In AD, the STAT3 protein plays a crucial role in promoting neuroinflammation and contributing to disease progression. This occurs primarily through the JAK2-STAT3 signaling pathway, which impacts microglia, astrocytes, and hippocampal neurons. This paper reviews the STAT3 signaling pathway in AD and 25 compounds targeting STAT3 up to 2024. Notably, Rutin, Paeoniflorin, and Geniposide up-regulate STAT3 in hippocampal and cortex neurons, showing neuroprotective effects in various AD models. Other 23 compounds downregulate AD by suppressing neuroinflammation through inhibition of STAT3 activation in microglia and astrocytes. These findings highlight the potential of compounds from natural products in improving AD by targeting STAT3, offering insights into the prevention and management of AD.
Collapse
Affiliation(s)
- Xiyue Wen
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
| | - Jinyue Hu
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China.
| |
Collapse
|
3
|
Zhang KX, Sheng N, Ding PL, Zhang JW, Xu XQ, Wang YH. Danggui Shaoyao San Alleviates Early Cognitive Impairment in Alzheimer's Disease Mice Through IRS1/GSK3β/Wnt3a-β-Catenin Pathway. Brain Behav 2024; 14:e70056. [PMID: 39344343 PMCID: PMC11440033 DOI: 10.1002/brb3.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/10/2024] [Accepted: 08/31/2024] [Indexed: 10/01/2024] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is a neurodegenerative disease characterized by Amyloid plaques and neurofibrillary tangles. We explored the potential mechanism by which Danggui Shaoyao San (DSS) modulates central glucose metabolism via the insulin receptor substrate 1 (IRS1)/glycogen synthase kinase-3β (GSK3β)/Wnt3a-β-catenin pathway, thereby exerting protective effects on cognitive functions. METHODS In vitro, HT22 cells were induced with streptozotocin (STZ) to investigate the impact of GSK3β on pathway transduction. The active components in the DSS stock solution were validated using mass spectrometry. Subsequently, an AD model in C57BL/6J mice was established through STZ injection into both ventricles. The success of the model was validated behaviorally and pathologically. The Morris Water Maze (MWM) test, immunohistochemistry, Western blotting, quantitative reverse transcription-PCR, and 18F-fluorodeoxyglucose-positron emission tomography (FDG-PET) were employed to evaluate the influence of DSS on memory and pathological changes in AD. RESULTS The DSS stock solution, rich in active components, ameliorated the memory deficits in AD mice in the MWM. In vitro, GSK3β exhibited regulatory control over Wnt and β-catenin, with GSK3β inhibition mitigating β-amyloid and tau redundancies at protein and gene levels, facilitating signal transduction. In vivo, DSS impacted key targets in the IRS1/GSK3β/Wnt3a-β-catenin pathway, mitigated senile plaques resulting from amyloid β (Aβ) deposition and neurofiber tangles induced by tau hyperphosphorylation, and alleviated the decline in central glucose metabolism observed in FDG-PET. CONCLUSIONS Our findings suggest that DSS potentially confers cognitive protection by alleviating central hypoglycemia through the IRS1/GSK3β/Wnt3a-β-catenin pathway. This may serve as a promising therapeutic avenue for AD.
Collapse
Affiliation(s)
- Kai-Xin Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ning Sheng
- Beijing University of Chinese Medicine East Hospital, Zaozhuang Hospital, Zaozhuang, China
| | - Peng-Li Ding
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ji-Wei Zhang
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiang-Qing Xu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ya-Han Wang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Sarkar B, Rana N, Singh C, Singh A. Medicinal herbal remedies in neurodegenerative diseases: an update on antioxidant potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5483-5511. [PMID: 38472370 DOI: 10.1007/s00210-024-03027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
It has been widely documented that medicinal herbal remedies are effective, have fewer side effects than conventional medicine, and have a synergistic effect on health collaborations in the fight against complicated diseases. Traditional treatments for neurological problems in ancient times sometimes involved the use of herbal remedies and conventional methods from East Asian countries including India, Japan, China, and Korea. We collected and reviewed studies on plant-derived neuroprotective drugs and tested them in neurotoxic models. Basic research, preclinical and clinical transgene research can benefit from in silico, in vitro, and in vivo investigations. Research, summaries of the extracts, fractions, and herbal ingredients were compiled from popular scientific databases, which were then examined according to origin and bioactivity. Given the complex and varied causes of neurodegeneration, it may be beneficial to focus on multiple mechanisms of action and a neuroprotection approach. This approach aims to prevent cell death and restore function to damaged neurons, offering promising strategies for preventing and treating neurodegenerative diseases. Neurodegenerative illnesses can potentially be treated with natural compounds that have been identified as neuroprotective agents. To gain deeper insights into the neuropharmacological mechanisms underlying the neuroprotective and therapeutic properties of naturally occurring antioxidant phytochemical compounds in diverse neurodegenerative diseases, this study aims to comprehensively review such compounds, focusing on their modulation of apoptotic markers such as caspase, Bax, Bcl-2, and proinflammatory markers. In addition, we delve into a range of efficacies of antioxidant phytochemical compounds as neuroprotective agents in animal models. They reduce the oxidative stress of the brain and have been shown to have anti-apoptotic effects. Many researches have demonstrated that plant extracts or bioactive compounds can fight neurodegenerative disorders. Herbal medications may offer neurodegenerative disease patients' new treatments. This may be a cheaper and more culturally appropriate alternative to standard drugs for millions of people with age-related NDDs.
Collapse
Affiliation(s)
- Biplob Sarkar
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India
| | - Nitasha Rana
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Chauras Campus, Distt. Tehri Garhwal, Srinagar, 249161, Uttarakhand, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India.
| |
Collapse
|
5
|
Tamnanloo F, Chen X, Oliveira MM, Tremblay M, Rose CF. Excessive intragastric alcohol administration exacerbates hepatic encephalopathy and provokes neuronal cell death in male rats with chronic liver disease. J Neurosci Res 2024; 102:e25337. [PMID: 38680084 DOI: 10.1002/jnr.25337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/11/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024]
Abstract
Hepatic encephalopathy (HE) is defined as decline in neurological function during chronic liver disease (CLD). Alcohol is a major etiological factor in the pathogenesis of fibrosis/cirrhosis and has also been documented to directly impact the brain. However, the role of alcohol in the development of HE in CLD remains unclear. Here, we investigated the impact of excessive alcohol administration on neurological deterioration in rats with CLD. Starting day 7 post-BDL surgery, rats were administered alcohol twice daily (51% v/v ethanol, 3 g/kg, via gavage) for 4 weeks. Motor coordination was assessed weekly using rotarod and anxiety-like behavior was evaluated with open field and elevated plus maze at 5 weeks. Upon sacrifice, brains were collected for western blot and immunohistochemical analyses to investigate neuronal integrity and oxidative stress status. Alcohol worsened motor coordination performance and increased anxiety-like behavior in BDL rats. Impairments were associated with decreased neuronal markers of NeuN and SMI311, increased apoptotic markers of cleaved/pro-caspase-3 and Bax/Bcl2, increased necroptosis markers of pRIP3 and pMLKL, decreased total antioxidant capacity (TAC), and increased 4-hydroxynonenal (4-HNE)modified proteins in the cerebellum of BDL-alcohol rats when compared to respective controls. Immunofluorescence confirmed the colocalization of cleaved caspase-3 and pMLKL in the granular neurons of the cerebellum of BDL-alcohol rats. Excessive alcohol consumption exacerbates HE which leads to associated apoptotic and necroptotic neuronal loss in the cerebellum of BDL-alcohol rats. Additionally, higher levels of 4-HNE and decreased TAC in the cerebellum of BDL-alcohol rats suggest oxidative stress is the triggering factor of apoptotic and necroptotic neuronal loss/injury.
Collapse
Affiliation(s)
- Farzaneh Tamnanloo
- Hepato-Neuro Lab, CRCHUM, Montréal, Québec, Canada
- Medicine Department, Université de Montréal, Montréal, Québec, Canada
| | - Xiaoru Chen
- Hepato-Neuro Lab, CRCHUM, Montréal, Québec, Canada
| | | | | | - Christopher F Rose
- Hepato-Neuro Lab, CRCHUM, Montréal, Québec, Canada
- Medicine Department, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
6
|
Tamnanloo F, Ochoa-Sanchez R, Oliveira MM, Lima C, Lépine M, Dubois K, Bosoi C, Tremblay M, Sleno L, Rose CF. Multiple ammonia-induced episodes of hepatic encephalopathy provoke neuronal cell loss in bile-duct ligated rats. JHEP Rep 2023; 5:100904. [PMID: 37942225 PMCID: PMC10628859 DOI: 10.1016/j.jhepr.2023.100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/25/2023] [Accepted: 08/31/2023] [Indexed: 11/10/2023] Open
Abstract
Background & Aims Hepatic encephalopathy (HE) is defined as a reversible syndrome and therefore should resolve following liver transplantation (LT). However, neurological complications have been reported in up to 47% of LT recipients, which have been documented to be associated with a history of overt HE pre-LT. We hypothesise that multiple episodes of HE lead to permanent cell injury and exacerbate neurological dysfunction. Our goal was to evaluate the impact of cumulative HE episodes on neurological status and brain integrity in rats with chronic liver disease. Methods Episodes of overt HE (loss of righting reflex) were induced following injection of ammonium acetate in bile duct ligation (BDL) rats (BDL-Ammonia) every 4 days starting at week 3 post-BDL. Neurobehaviour was evaluated after the last episode. Upon sacrifice, plasma ammonia, systemic oxidative stress, and inflammation markers were assessed. Neuronal markers including neuron-specific nuclear antigen and SMI311 (anti-neurofilament marker) and apoptotic markers (cleaved caspase-3, Bax, and Bcl2) were measured. Total antioxidant capacity, oxidative stress marker (4-hydroxynonenal), and proinflammatory cytokines (tumour necrosis factor-alpha and interleukin-1β) were measured in brain (hippocampus, frontal cortex, and cerebellum). Proteomic analysis was conducted in the hippocampus. Results In hippocampus of BDL-Ammonia rats, cleaved caspase-3 and Bax/Bcl2 ratio were significantly increased, whereas NeuN and SMI311 were significantly decreased compared with BDL-Vehicle rats. Higher levels of oxidative stress-induced post-translational modified proteins were found in hippocampus of BDL-Ammonia group which were associated with a lower total antioxidant capacity. Conclusions Ammonia-induced episodes of overt HE caused neuronal cell injury/death in BDL rats. These results suggest that multiple bouts of HE can be detrimental on the integrity of the brain, translating to irreversibility and hence neurological complications post-LT. Impact and implications Hepatic encephalopathy (HE) is defined as a reversible neuropsychiatric syndrome resolving following liver transplantation (LT); however, ∼47% of patients demonstrate neurological impairments after LT, which are associated with a previous history of overt HE pre-LT. Our study indicates that multiple episodes of overt HE can cause permanent neuronal damage which may lead to neurological complications after LT. Nevertheless, preventing the occurrence of overt HE episodes is critical for reducing the risk of irreversible neuronal injury in patients with cirrhosis.
Collapse
Affiliation(s)
- Farzaneh Tamnanloo
- Hepato-Neuro Lab, CRCHUM, Montréal, Canada
- Medicine Department, Université de Montréal, Montréal, Canada
| | | | | | - Carina Lima
- Chemistry Department/CERMO-FC, Université du Québec à Montréal, Montréal, Canada
| | - Maggy Lépine
- Chemistry Department/CERMO-FC, Université du Québec à Montréal, Montréal, Canada
| | | | | | | | - Lekha Sleno
- Chemistry Department/CERMO-FC, Université du Québec à Montréal, Montréal, Canada
| | - Christopher F. Rose
- Hepato-Neuro Lab, CRCHUM, Montréal, Canada
- Medicine Department, Université de Montréal, Montréal, Canada
| |
Collapse
|
7
|
Gravandi MM, Abdian S, Tahvilian M, Iranpanah A, Moradi SZ, Fakhri S, Echeverría J. Therapeutic targeting of Ras/Raf/MAPK pathway by natural products: A systematic and mechanistic approach for neurodegeneration. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154821. [PMID: 37119761 DOI: 10.1016/j.phymed.2023.154821] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Multiple dysregulated pathways are behind the pathogenesis of neurodegenerative diseases (NDDs); however, the crucial targets are still unknown. Oxidative stress, apoptosis, autophagy, and inflammation are the most dominant pathways that strongly influence neurodegeneration. In this way, targeting the Ras/Raf/mitogen-activated protein kinases (MAPKs) pathway appears to be a developing strategy for combating NDDs like Parkinson's disease, Alzheimer's disease, stroke, aging, and other NDDs. Accordingly, plant secondary metabolites have shown promising potentials for the simultaneous modulation of the Ras/Raf/MAPKs pathway and play an essential role in NDDs. MAPKs include p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK 1/2), and c-Jun N-terminal kinase (JNK), which are important molecular players in neurodegeneration. Ras/Raf, which is located the upstream of MAPK pathway influences the initiation and progression of neurodegeneration and is regulated by natural products. PURPOSE Thus, the present study aimed to investigate the neuroprotective roles of plant- and marine-derived secondary metabolites against several NDDs through the modulation of the Ras/Raf/MAPK signaling pathway. STUDY DESIGN AND METHODS A systematic and comprehensive review was performed to highlight the modulatory roles of natural products on the Ras/Raf/MAPK signaling pathway in NDDs, according to the PRISMA guideline, using scholarly electronic databases, including PubMed, Scopus, and Web of Sciences. Associated reference lists were also searched for the literature review. RESULTS From a total of 1495 results, finally 107 articles were included in the present study. The results show that several natural compounds such as alkaloid, phenolic, terpenoids, and nanoformulation were shown to have modulatory effects on the Ras/Raf/MAPKs pathway. CONCLUSION Natural products are promising multi-targeted agents with on NDDs through Ras/Raf/MAPKs pathway. Nevertheless, additional and complementary studies are necessary to check its efficacy and potential side effects.
Collapse
Affiliation(s)
| | - Sadaf Abdian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maedeh Tahvilian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile.
| |
Collapse
|
8
|
Zhang MY, Ma LJ, Jiang L, Gao L, Wang X, Huang YB, Qi XM, Wu YG, Liu XQ. Paeoniflorin protects against cisplatin-induced acute kidney injury through targeting Hsp90AA1-Akt protein-protein interaction. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116422. [PMID: 36972781 DOI: 10.1016/j.jep.2023.116422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeonia lactiflora Pall has been used in Chinese Medicine for thousands of years, especially having anti-inflammatory, sedative, analgesic and other ethnic pharmacological effects. Moreover, Paeoniflorin is the main active ingredient of the Paeonia lactiflora Pall, and most are used in the treatment of inflammation-related autoimmune diseases. In recent years, studies have found that Paeoniflorin has a therapeutic effect on a variety of kidney diseases. AIM OF THE STUDY Cisplatin (CIS) is limited in clinical use due to its serious side effects, such as renal toxicity, and there is no effective method for prevention. Paeoniflorin (Pae) is a natural polyphenol which has a protective effect against many kidney diseases. Therefore, our study is to explore the effect of Pae on CIS-induced AKI and the specific mechanism. MATERIALS AND METHODS Firstly, CIS induced acute renal injury model was constructed in vivo and in vitro, and Pae was continuously injected intraperitoneally three days in advance, and then Cr, BUN and renal tissue PAS staining were detected to comprehensively evaluate the protective effect of Pae on CIS-induced AKI. We then combined Network Pharmacology with RNA-seq to investigate potential targets and signaling pathways. Finally, affinity between Pae and core targets was detected by molecular docking, CESTA and SPR, and related indicators were detected in vitro and in vivo. RESULTS In this study, we first found that Pae significantly alleviated CIS-AKI in vivo and in vitro. Through network pharmacological analysis, molecular docking, CESTA and SPR experiments, we found that the target of Pae was Heat Shock Protein 90 Alpha Family Class A Member 1 (Hsp90AA1) which performs a crucial function in the stability of many client proteins including Akt. RNA-seq found that the KEGG enriched pathway was PI3K-Akt pathway with the most associated with the protective effect of Pae which is consistent with Network Pharmacology. GO analysis showed that the main biological processes of Pae against CIS-AKI include cellular regulation of inflammation and apoptosis. Immunoprecipitation further showed that pretreatment with Pae promoted the Hsp90AA1-Akt protein-protein Interactions (PPIs). Thereby, Pae accelerates the Hsp90AA1-Akt complex formation and leads to a significant activate in Akt, which in turn reduces apoptosis and inflammation. In addition, when Hsp90AA1 was knocked down, the protective effect of Pae did not continue. CONCLUSION In summary, our study suggests that Pae attenuates cell apoptosis and inflammation in CIS-AKI by promoting Hsp90AA1-Akt PPIs. These data provide a scientific basis for the clinical search for drugs to prevent CIS-AKI.
Collapse
Affiliation(s)
- Meng-Ya Zhang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li-Juan Ma
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ling Jiang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Gao
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xian Wang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue-Bo Huang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiang-Ming Qi
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong-Gui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China; The Center for Scientific Research of Anhui Medical University, Hefei, China.
| | - Xue-Qi Liu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
9
|
Meng HW, Kim JH, Kim HY, Lee AY, Cho EJ. Paeoniflorin Attenuates Lipopolysaccharide-Induced Cognitive Dysfunction by Inhibition of Amyloidogenesis in Mice. Int J Mol Sci 2023; 24:ijms24054838. [PMID: 36902268 PMCID: PMC10003666 DOI: 10.3390/ijms24054838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, associated with progressive cognitive impairment and memory loss. In the present study, we examined the protective effects of paeoniflorin against memory loss and cognitive decline in lipopolysaccharide (LPS)-induced mice. Treatment with paeoniflorin alleviated LPS-induced neurobehavioral dysfunction, as confirmed by behavioral tests, including the T-maze test, novel-object recognition test, and Morris water maze test. LPS stimulated the amyloidogenic pathway-related proteins (amyloid precursor protein, APP; β-site APP cleavage enzyme, BACE; presenilin1, PS1; presenilin2, PS2) expression in the brain. However, paeoniflorin decreased APP, BACE, PS1, and PS2 protein levels. Therefore, paeoniflorin reverses LPS-induced cognitive impairment via inhibition of the amyloidogenic pathway in mice, which suggests that paeoniflorin may be useful in the prevention of neuroinflammation related to AD.
Collapse
Affiliation(s)
- Hui Wen Meng
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
| | - Ji-Hyun Kim
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
| | - Hyun Young Kim
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Ah Young Lee
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea
- Correspondence: (A.Y.L.); (E.J.C.)
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: (A.Y.L.); (E.J.C.)
| |
Collapse
|
10
|
Khezri MR, Ghasemnejad-Berenji M. The Role of Caspases in Alzheimer's Disease: Pathophysiology Implications and Pharmacologic Modulation. J Alzheimers Dis 2023; 91:71-90. [PMID: 36442198 DOI: 10.3233/jad-220873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide. Although the main cause of the onset and development of AD is not known yet, neuronal death due to pathologic changes such as amyloid-β (Aβ) deposition, tau aggregation, neuroinflammation, oxidative stress, and calcium dyshomeostasis are considered to be the main cause. At the present, there is no cure for this insidious disorder. However, accurate identification of molecular changes in AD can help provide new therapeutic goals. Caspases are a group of proteases which are known because of their role in cellular apoptosis. In addition, different caspases are involved in other cellular responses to the environment, such as induction of inflammation. Emerging evidence suggest that these proteases play a central role in AD pathophysiology due to their role in the processing of amyloid-β protein precursor, tau cleavage, and neuroinflammation. Therefore, it seems that targeting caspases may be a suitable therapeutic option to slow the progression of AD. This review focuses on the role of caspases in AD pathophysiology and introduce results from studies targeted caspases in different models of AD.
Collapse
Affiliation(s)
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.,Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
11
|
Mani R, Sha Sulthana A, Muthusamy G, Elangovan N. Progress in the development of naturally derived active metabolites-based drugs: Potential therapeutics for Alzheimer's disease. Biotechnol Appl Biochem 2022; 69:2713-2732. [PMID: 35067971 DOI: 10.1002/bab.2317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/03/2022] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is an extensive age-associated neurodegenerative disorder. In spite of wide-ranging progress in understanding the AD pathology for the past 50 years, clinical trials based on the hypothesis of amyloid-beta (Aβ) have reserved worsening particularly at late-stage human trials. Consequently, very few old drugs are presently used for AD with inadequate clinical consequences and various side effects. We focus on widespread pharmacological and beneficial principles for existing as well as future drugs. Multitargeting approaches by means of general antioxidant and anti-inflammatory mechanisms allied with particular receptor and/or enzyme-mediated actions in neuroprotection and neurodegeneration. The plant kingdom comprises a vast range of species with an incredible diversity of bioactive metabolites with diverse chemical scaffolds. In recent times, an increasing body of facts recommended the use of phytochemicals to decelerate AD's onset and progression. The definitive goal of AD investigation is to avert the onset of neurodegeneration, thereby allowing successful aging devoid of cognitive decline. At this point, we discussed the neurological protective role of natural products and naturally derived therapeutic agents for AD from various natural polyphenolic compounds and medicinal plants. In conclusion, medicinal plants act as a chief source of different bioactive constituents.
Collapse
Affiliation(s)
- Renuka Mani
- Department of Biotechnology, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| | - Ahmed Sha Sulthana
- Department of Biotechnology, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| | - Ganesan Muthusamy
- Department of Biochemistry, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| | - Namasivayam Elangovan
- Department of Biotechnology, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| |
Collapse
|
12
|
The Effect of Ghrelin on Apoptosis, Necroptosis and Autophagy Programmed Cell Death Pathways in the Hippocampal Neurons of Amyloid-β 1–42-Induced Rat Model of Alzheimer’s Disease. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10457-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Wu Q, Li X, Jiang XW, Yao D, Zhou LJ, Xu ZH, Wang N, Zhao QC, Zhang Z. Yuan-Zhi decoction in the treatment of Alzheimer’s disease: An integrated approach based on chemical profiling, network pharmacology, molecular docking and experimental evaluation. Front Pharmacol 2022; 13:893244. [PMID: 36091836 PMCID: PMC9451491 DOI: 10.3389/fphar.2022.893244] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
Yuan-Zhi Decoction (YZD) is a traditional Chinese medical formulation with demonstrated clinical benefits in Alzheimer’s disease (AD). We used liquid chromatography coupled with mass spectrometry to identify 27 unique chemical components of YZD. Analyzing these using network pharmacology and molecular docking models identified 34 potential interacting molecular targets involved in 26 biochemical pathways. When tested in an animal model of AD, the APP/PS1 transgenic mice showed measurable improvements in spatial orientation and memory after the administration of YZD. These improvements coincided with significantly reduced deposition of Aβ plaques and tau protein in the hippocampi in the treated animals. In addition, a decreased BACE1 and beta-amyloid levels, a downregulation of the p-GSK-3β/GSK-3β, and an upregulation of the PI3K and p-AKT/AKT pathway was seen in YZD treated animals. These in vivo changes validated the involvement of molecular targets and pathways predicted in silico analysis of the chemical components of YZD. This study provides scientific support for the clinical use of YZD and justifies further investigations into its effects in AD. Furthermore, it demonstrates the utility of network pharmacology in elucidating the biochemical mechanisms underlying the beneficial effects of traditional Chinese medicines (TCM).
Collapse
Affiliation(s)
- Qiong Wu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiang Li
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiao-Wen Jiang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Dong Yao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Li-Jun Zhou
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Zi-Hua Xu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Nan Wang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Qing-Chun Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
- *Correspondence: Zhou Zhang, ; Qing-Chun Zhao,
| | - Zhou Zhang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
- *Correspondence: Zhou Zhang, ; Qing-Chun Zhao,
| |
Collapse
|
14
|
Hong H, Lu X, Wu C, Chen J, Chen C, Zhang J, Huang C, Cui Z. A review for the pharmacological effects of paeoniflorin in the nervous system. Front Pharmacol 2022; 13:898955. [PMID: 36046834 PMCID: PMC9420976 DOI: 10.3389/fphar.2022.898955] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Paeoniflorin, a terpenoid glycoside compound extracted from Paeonia lactiflora Pall, shows preventive and therapeutic effects in various types of nervous system disorders. However, to date, no comprehensive knowledge on the pharmacological effects of paeoniflorin on the nervous system is available online. Clarification of this issue may be useful for the development of paeoniflorin as a new drug for the treatment of nervous system disorders. To this end, the authors summarize the pharmacological aspects of paeoniflorin and its possible mechanisms, such as restoration of mitochondrial function; inhibition of neuroinflammation, oxidative stress, and cellular apoptosis; activation of adenosine A1 receptor, cAMP response element-binding protein (CREB) and extracellular signal-regulated kinase 1/2 (ERK1/2); or enhancement of brain-derived neurotrophic factor and serotonin function, in the prevention of disorders such as cerebral ischemia, subarachnoid hemorrhage, vascular dementia, Alzheimer's disease, Parkinson's disease, depression, post-traumatic syndrome disorder, and epilepsy, by reviewing the previously published literature.
Collapse
Affiliation(s)
- Hongxiang Hong
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Chunshuai Wu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jiajia Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Chu Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jinlong Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
15
|
Multiple Roles of Paeoniflorin in Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2464163. [PMID: 35449815 PMCID: PMC9017479 DOI: 10.1155/2022/2464163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a geriatric disease with the morbidity and mortality continuing to grow, partly due to the aging of the world population. As one of the most common types of primary neurodegenerative dementia, it is mainly due to environmental, epigenetic, immunological, and genetic factors. Paeoniflorin (PF), the main component of paeony extract, plays a more and more important role in the prevention and treatment of AD, including regulating protein, anti-inflammation, antioxidation, and antiapoptosis, protecting glial cells, regulating neurotransmitters and related enzymes and receptors, and inhibiting or activating related signal pathways. This article summarizes the latest researches on the multiple effects and the mechanisms of PF in the treatment to cure AD, providing new insights and research basis for further clinical application of traditional Chinese medicine (TCM) in the treatment of AD.
Collapse
|
16
|
Jiao YN, Zhang JS, Qiao WJ, Tian SY, Wang YB, Wang CY, Zhang YH, Zhang Q, Li W, Min DY, Wang ZY. Kai-Xin-San Inhibits Tau Pathology and Neuronal Apoptosis in Aged SAMP8 Mice. Mol Neurobiol 2022; 59:3294-3309. [PMID: 35303280 PMCID: PMC9016055 DOI: 10.1007/s12035-021-02626-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022]
Abstract
Alzheimer’s disease (AD) is an age-related neurological disorder. Currently, there is no effective cure for AD due to its complexity in pathogenesis. In light of the complex pathogenesis of AD, the traditional Chinese medicine (TCM) formula Kai-Xin-San (KXS), which was used for amnesia treatment, has been proved to improve cognitive function in AD animal models. However, the active ingredients and the mechanism of KXS have not yet been clearly elucidated. In this study, network pharmacology analysis predicts that KXS yields 168 candidate compounds acting on 863 potential targets, 30 of which are associated with AD. Enrichment analysis revealed that the therapeutic mechanisms of KXS for AD are associated with the inhibition of Tau protein hyperphosphorylation, inflammation, and apoptosis. Therefore, we chose 7-month-old senescence-accelerated mouse prone 8 (SAMP8) mice as AD mouse model, which harbors the behavioral and pathological hallmarks of AD. Subsequently, the potential underlying action mechanisms of KXS on AD predicted by the network pharmacology analyses were experimentally validated in SAMP8 mice after intragastric administration of KXS for 3 months. We observed that KXS upregulated AKT phosphorylation, suppressed GSK3β and CDK5 activation, and inhibited the TLR4/MyD88/NF-κB signaling pathway to attenuate Tau hyperphosphorylation and neuroinflammation, thus suppressing neuronal apoptosis and improving the cognitive impairment of aged SAMP8 mice. Taken together, our findings reveal a multi-component and multi-target therapeutic mechanism of KXS for attenuating the progression of AD, contributing to the future development of TCM modernization, including KXS, and broader clinical application.
Collapse
Affiliation(s)
- Ya-Nan Jiao
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Jing-Sheng Zhang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Wen-Jun Qiao
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Shu-Yu Tian
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Yi-Bin Wang
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Chun-Yan Wang
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Yan-Hui Zhang
- School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Qi Zhang
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Wen Li
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Dong-Yu Min
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China.
| | - Zhan-You Wang
- Health Sciences Institute, China Medical University, Shenyang, China.
| |
Collapse
|
17
|
Acacia catechu Willd. Extract Protects Neuronal Cells from Oxidative Stress-Induced Damage. Antioxidants (Basel) 2021; 11:antiox11010081. [PMID: 35052585 PMCID: PMC8773357 DOI: 10.3390/antiox11010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/06/2021] [Accepted: 12/25/2021] [Indexed: 12/03/2022] Open
Abstract
Oxidative stress (OS) and the resulting reactive oxygen species (ROS) generation and inflammation play a pivotal role in the neuronal loss occurring during the onset of neurodegenerative diseases. Therefore, promising future drugs that would prevent or slow down the progression of neurodegeneration should possess potent radical-scavenging activity. Acacia catechu Willd. heartwood extract (AC), already characterized for its high catechin content, is endowed with antioxidant properties. The aim of the present study was to assess AC neuroprotection in both human neuroblastoma SH-SY5Y cells and rat brain slices treated with hydrogen peroxide. In SH-SY5Y cells, AC prevented a decrease in viability, as well as an increase in sub-diploid-, DAPI positive cells, reduced ROS formation, and recovered the mitochondrial potential and caspase-3 activation. AC related neuroprotective effects also occurred in rat brain slices as a reversal prevention in the expression of the main proteins involved in apoptosis and signalling pathways related to calcium homeostasis following OS-mediated injury. Additionally, unbiased quantitative mass spectrometry allowed for assessing that AC partially prevented the hydrogen peroxide-induced altered proteome, including proteins belonging to the synaptic vesicle fusion apparatus. In conclusion, the present results suggest the possibility of AC as a nutraceutical useful in preventing neurodegenerative diseases.
Collapse
|
18
|
Peng W, Chen Y, Tumilty S, Liu L, Luo L, Yin H, Xie Y. Paeoniflorin is a promising natural monomer for neurodegenerative diseases via modulation of Ca 2+ and ROS homeostasis. Curr Opin Pharmacol 2021; 62:97-102. [PMID: 34959127 DOI: 10.1016/j.coph.2021.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023]
Abstract
Neurodegenerative diseases (NDDs) are a range of neurological disorders featured by neuronal degeneration and apoptosis. Cellular Calcium (Ca2+) and reactive oxygen species (ROS) dyshomeostasis are the earliest and important events in the development of NDDs and may yield promising therapeutic targets for NDDs. Paeoniflorin, a water-soluble monoterpene glucoside, is the major bioactive monomer extracted from the root of Paeonia lactiflora pall. Increasing evidence has suggested that this natural compound might be used to treat various NDDs, and its potential molecular mechanisms are related to the modulation of Ca2+/ROS homeostasis in cells. In addition, paeoniflorin accounts for more than 40% of the total glucosides of herbaceous peonies with abundant herbaceous sources. Furthermore, it has also been validated as a safe extraction in clinical pharmacological research with a wide therapeutic window. Hence, it is rational to anticipate paeoniflorin being a promising candidate for the treatment of NDDs via regulating Ca2+/ROS dyshomeostasis.
Collapse
Affiliation(s)
- Wei Peng
- School of Pharmacy/Basic Medicine/Acupuncture & Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China; China-New Zealand Collaboration Centre for Integrative Medicine (CHINZIM), Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| | - Yunhui Chen
- School of Pharmacy/Basic Medicine/Acupuncture & Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China; China-New Zealand Collaboration Centre for Integrative Medicine (CHINZIM), Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, South Renmin Road, Wu Hou District, Chengdu, Sichuan, 610044, China.
| | - Steve Tumilty
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, Otago, 9054, New Zealand; China-New Zealand Collaboration Centre for Integrative Medicine (CHINZIM), University of Otago, Dunedin, Otago, 9054, New Zealand
| | - Lizhou Liu
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, Otago, 9054, New Zealand; China-New Zealand Collaboration Centre for Integrative Medicine (CHINZIM), University of Otago, Dunedin, Otago, 9054, New Zealand; Ageing Well National Science Challenge, University of Otago, Dunedin, 9054, New Zealand
| | - Ling Luo
- School of Pharmacy/Basic Medicine/Acupuncture & Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China; China-New Zealand Collaboration Centre for Integrative Medicine (CHINZIM), Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| | - Haiyan Yin
- School of Pharmacy/Basic Medicine/Acupuncture & Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China; China-New Zealand Collaboration Centre for Integrative Medicine (CHINZIM), Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, South Renmin Road, Wu Hou District, Chengdu, Sichuan, 610044, China
| |
Collapse
|
19
|
Rezaee N, Fernando WB, Hone E, Sohrabi HR, Johnson SK, Gunzburg S, Martins RN. Potential of Sorghum Polyphenols to Prevent and Treat Alzheimer's Disease: A Review Article. Front Aging Neurosci 2021; 13:729949. [PMID: 34690742 PMCID: PMC8527926 DOI: 10.3389/fnagi.2021.729949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/24/2021] [Indexed: 12/06/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the excessive deposition of extracellular amyloid-beta peptide (Aβ) and the build-up of intracellular neurofibrillary tangles containing hyperphosphorylated tau proteins. This leads to neuronal damage, cell death and consequently results in memory and learning impairments leading to dementia. Although the exact cause of AD is not yet clear, numerous studies indicate that oxidative stress, inflammation, and mitochondrial dysfunction significantly contribute to its onset and progression. There is no effective therapeutic approach to stop the progression of AD and its associated symptoms. Thus, early intervention, preferably, pre-clinically when the brain is not significantly affected, is a better option for effective treatment. Natural polyphenols (PP) target multiple AD-related pathways such as protecting the brain from Aβ and tau neurotoxicity, ameliorating oxidative damage and mitochondrial dysfunction. Among natural products, the cereal crop sorghum has some unique features. It is one of the major global grain crops but in the developed world, it is primarily used as feed for farm animals. A broad range of PP, including phenolic acids, flavonoids, and condensed tannins are present in sorghum grain including some classes such as proanthocyanidins that are rarely found in others plants. Pigmented varieties of sorghum have the highest polyphenolic content and antioxidant activity which potentially makes their consumption beneficial for human health through different pathways such as oxidative stress reduction and thus the prevention and treatment of neurodegenerative diseases. This review summarizes the potential of sorghum PP to beneficially affect the neuropathology of AD.
Collapse
Affiliation(s)
- Nasim Rezaee
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - W.M.A.D. Binosha Fernando
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Eugene Hone
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Hamid R. Sohrabi
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- Centre for Healthy Ageing, Health Future Institute, Murdoch University, Murdoch, WA, Australia
| | - Stuart K. Johnson
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia
- Ingredients by Design Pty Ltd., Lesmurdie, WA, Australia
| | | | - Ralph N. Martins
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
20
|
Zheng M, Liu Z, Mana L, Qin G, Huang S, Gong Z, Tian M, He Y, Wang P. Shenzhiling oral liquid protects the myelin sheath against Alzheimer's disease through the PI3K/Akt-mTOR pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114264. [PMID: 34082015 DOI: 10.1016/j.jep.2021.114264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shenzhiling oral liquid (SZL), a traditional Chinese medicine (TCM) compound, is firstly approved by the Chinese Food and Drug Administration (CFDA) for the treatment of mild to moderate Alzheimer's disease (AD). SZL is composed of ten Chinese herbs, and the precise therapy mechanism of its action to AD is far from fully understood. AIM OF THE STUDY The purpose of this study was to observe whether SZL is an effective therapy for amyloid-beta (Aβ)-induced myelin sheath and oligodendrocytes impairments. Notably, the primary aim was to elucidate whether and through what underlying mechanism SZL protects the myelin sheath through the PI3K/Akt-mTOR signaling pathway in Aβ42-induced OLN-93 oligodendrocytes in vitro. MATERIALS AND METHODS APP/PS1 mice were treated with SZL or donepezil continuously for three months, and Aβ42-induced oligodendrocyte OLN-93 cells mimicking AD pathogenesis of myelin sheath impairments were incubated with SZL-containing serum or with donepezil. LC-MS/MS was used to analysis the active components of SZL and SZL-containing serum. The Y maze test was administered after 3 months of treatment, and the hippocampal tissues of the APP/PS1 mice were then harvested for observation of myelin sheath and oligodendrocyte morphology. Cell viability and toxicity were assessed using CCK-8 and lactate dehydrogenase (LDH) release assays, and flow cytometry was used to measure cell apoptosis. The expression of the myelin proteins MBP, PLP, and MAG and that of Aβ42 and Aβ40 in the hippocampi of APP/PS1 mice were examined after SZL treatment. Simultaneously, the expression of p-PI3K, PI3K, p-Akt, Akt, p-mTOR, and mTOR were also examined. The expression of proteins, including CNPase, Olig2, NKX2.2, MBP, PLP, MAG, MOG, p-PI3K, PI3K, p-Akt, Akt, p-mTOR, and mTOR, was determined by immunofluorescence and Western blot, and the corresponding gene expression was evaluated by qPCR in Aβ42-induced OLN-93 oligodendrocytes. RESULTS LC-MS/MS detected a total of 126 active compounds in SZL-containing serum, including terpenoids, flavones, phenols, phenylpropanoids and phenolic acids. SZL treatment significantly improved memory and cognition in APP/PS1 mice and decreased the G-ratio of myelin sheath, alleviated myelin sheath and oligodendrocyte impairments by decreasing Aβ42 and Aβ40 accumulation and increasing the expression of myelin proteins MBP, PLP, MAG, and PI3K/Akt-mTOR signaling pathway associated protein in the hippocampi of APP/PS1 mice. SZL-containing serum also significantly reversed the OLN-93 cell injury induced by Aβ42 by increasing cell viability and enhanced the expression of MBP, PLP, MAG, and MOG. Meanwhile, SZL-containing serum facilitated the maturation and differentiation of oligodendrocytes in Aβ42-induced OLN-93 cells by heightening the expression of CNPase, Olig2 and NKX2.2. SZL-containing serum treatment also fostered the expression of p-PI3K, PI3K, p-Akt, Akt, p-mTOR, and mTOR, indicating an activating PI3K/Akt-mTOR signaling pathway in OLN-93 cells. Furthermore, the effects of SZL on myelin proteins, p-Akt, and p-mTOR were clearly inhibited by LY294002 and/or rapamycin, antagonists of PI3K and m-TOR, respectively. CONCLUSIONS Our findings indicate that SZL exhibits a neuroprotective effect on the myelin sheath by promoting the expression of myelin proteins during AD, and its mechanism of action is closely related to the activation of the PI3K/Akt-mTOR signaling pathway.
Collapse
Affiliation(s)
- Mingcui Zheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, 100700, China; Key Laboratory of Pharmacology Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, 100700, China.
| | - Zhenhong Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, 100700, China; Key Laboratory of Pharmacology Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine (BUCM), Beijing, 100029, China.
| | - Lulu Mana
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, 100700, China; Key Laboratory of Pharmacology Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, 100700, China; Xinjiang Medical University, Urumqi, 830011, China.
| | - Gaofeng Qin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, 100700, China; Key Laboratory of Pharmacology Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, 100700, China.
| | - Shuaiyang Huang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, 100700, China; Key Laboratory of Pharmacology Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, 100700, China.
| | - Zhuoyan Gong
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, 100700, China; Key Laboratory of Pharmacology Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, 100700, China.
| | - Meijing Tian
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, 100700, China; Key Laboratory of Pharmacology Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, 100700, China.
| | - Yannan He
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, 100700, China; Key Laboratory of Pharmacology Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, 100700, China.
| | - Pengwen Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, 100700, China; Key Laboratory of Pharmacology Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
21
|
Liu YJ, Cui ZY, Yang AL, Jallow AW, Huang HL, Shan CL, Lee SD. Anti-apoptotic and pro-survival effect of exercise training on early aged hypertensive rat cerebral cortex. Aging (Albany NY) 2021; 13:20495-20510. [PMID: 34432648 PMCID: PMC8436911 DOI: 10.18632/aging.203431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 07/23/2021] [Indexed: 01/09/2023]
Abstract
The anti-apoptotic and pro-survival effects of exercise training were evaluated on the early aged hypertensive rat cerebral cortex. The brain tissues were analysed from ten sedentary male Wistar Kyoto normotensive rats (WKY), ten sedentary spontaneously 12 month early aged hypertensive rats (SHR), and ten hypertensive rats undergoing treadmill exercise training (60 min/day, 5 days/week) for 12 weeks (SHR-EX). TUNEL-positive apoptotic cells, the expression levels of endonuclease G (EndoG) and apoptosis-inducing factor (AIF) (caspase-independent apoptotic pathway), Fas ligand, Fas death receptor, tumor necrosis factor (TNF)-α, TNF receptor 1, Fas-associated death domain, active caspase-8 and active caspase-3 (Fas-mediated apoptotic pathways) as well as t-Bid, Bax, Bak, Bad, cytochrome c, active caspase 9 and active caspase-3 (mitochondria-mediated apoptotic pathways) were reduced in SHR-EX compared with SHR. Pro-survival Bcl2, Bcl-xL, p-Bad, 14-3-3, insulin-like growth factor (IGF)-1, pPI3K/PI3K, and pAKT/AKT were significantly increased in SHR-EX compared to those in SHR. Exercise training suppressed neural EndoG/AIF-related caspase-independent, Fas/FasL-mediated caspase-dependent, mitochondria-mediated caspase-dependent apoptotic pathways as well as enhanced Bcl-2 family-related and IGF-1-related pro-survival pathways in the early aged hypertensive cerebral cortex. These findings indicated new therapeutic effects of exercise training on preventing early aged hypertension-induced neural apoptosis in cerebral cortex.
Collapse
Affiliation(s)
- Yi-Jie Liu
- School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Yang Cui
- School of Rehabilitation Medicine, Weifang Medical University, Shandong, China
| | - Ai-Lun Yang
- Institute of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Amadou W Jallow
- Department of Medical Laboratory and Biotechnology, Asia University, Taichung, Taiwan
| | - Hai-Liang Huang
- College of Rehabilitation, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Chun-Lei Shan
- School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shin-Da Lee
- School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Medicine, Weifang Medical University, Shandong, China.,Department of Medical Laboratory and Biotechnology, Asia University, Taichung, Taiwan.,Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan.,Department of Physical Therapy, Asia University, Taichung, Taiwan
| |
Collapse
|
22
|
El Sayed NS, Kandil EA, Ghoneum MH. Probiotics Fermentation Technology, a Novel Kefir Product, Ameliorates Cognitive Impairment in Streptozotocin-Induced Sporadic Alzheimer's Disease in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5525306. [PMID: 34306309 PMCID: PMC8282381 DOI: 10.1155/2021/5525306] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/28/2021] [Accepted: 06/04/2021] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment. Gut microbiota dysfunction (dysbiosis) is implicated in the pathology of AD and is associated with several detrimental consequences, including neurotransmitter depletion, oxidative stress, inflammation, apoptosis, and insulin resistance, which all contribute to the onset of AD. The objective of this study was to assess the effectiveness of Probiotics Fermentation Technology (PFT), a kefir product, in alleviating AD symptoms via regulation of the gut microbiota using a streptozotocin- (STZ-) induced AD mouse model and to compare its activity with simvastatin, which has been proven to effectively treat AD. Mice received one intracerebroventricular injection of STZ (3 mg/kg). PFT (100, 300, 600 mg/kg) and simvastatin (20 mg/kg) were administered orally for 3 weeks. PFT supplementation mitigated STZ-induced neuronal degeneration in the cortex and hippocampus, restored hippocampal acetylcholine levels, and improved cognition in a dose-dependent manner. These effects were accompanied by reductions in oxidative damage, proinflammatory cytokine expression, apoptosis, and tau hyperphosphorylation. Moreover, PFT hindered amyloid plaque accumulation via the enhancement of insulin-degrading enzyme. These beneficial effects were comparable to those produced by simvastatin. The results suggest that PFT can alleviate AD symptoms by regulating the gut microbiota and by inhibiting AD-related pathological events.
Collapse
Affiliation(s)
- Nesrine S. El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Esraa A. Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mamdooh H. Ghoneum
- Department of Surgery, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA
| |
Collapse
|
23
|
Chiu YJ, Lin CH, Lee MC, Hsieh-Li HM, Chen CM, Wu YR, Chang KH, Lee-Chen GJ. Formulated Chinese medicine Shaoyao Gancao Tang reduces NLRP1 and NLRP3 in Alzheimer's disease cell and mouse models for neuroprotection and cognitive improvement. Aging (Albany NY) 2021; 13:15620-15637. [PMID: 34106880 PMCID: PMC8221334 DOI: 10.18632/aging.203125] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/23/2021] [Indexed: 12/18/2022]
Abstract
Amyloid β (Aβ) plays a major role in the neurodegeneration of Alzheimer’s disease (AD). The accumulation of misfolded Aβ causes oxidative stress and inflammatory damage leading to apoptotic cell death. Traditional Chinese herbal medicine (CHM) has been widely used in treating neurodegenerative diseases by reducing oxidative stress and neuroinflammation. We examined the neuroprotective effect of formulated CHM Shaoyao Gancao Tang (SG-Tang, made of Paeonia lactiflora and Glycyrrhiza uralensis at 1:1 ratio) in AD cell and mouse models. In Aβ-GFP SH-SY5Y cells, SG-Tang reduced Aβ aggregation and reactive oxygen species (ROS) production, as well as improved neurite outgrowth. When the Aβ-GFP-expressing cells were stimulated with conditioned medium from interferon (IFN)-γ-activated HMC3 microglia, SG-Tang suppressed expressions of inducible nitric oxide synthase (iNOS), NLR family pyrin domain containing 1 (NLRP1) and 3 (NLRP3), tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, attenuated caspase-1 activity and ROS production, and promoted neurite outgrowth. In streptozocin-induced hyperglycemic APP/PS1/Tau triple transgenic (3×Tg-AD) mice, SG-Tang also reduced expressions of NLRP1, NLRP3, Aβ and Tau in hippocampus and cortex, as well as improved working and spatial memories in Y maze and Morris water maze. Collectively, our results demonstrate the potential of SG-Tang in treating AD by moderating neuroinflammation.
Collapse
Affiliation(s)
- Ya-Jen Chiu
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chih-Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Ming-Chung Lee
- Sun Ten Pharmaceutical Co. Ltd., New Taipei City 23143, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
24
|
Jiao F, Varghese K, Wang S, Liu Y, Yu H, Booz GW, Roman RJ, Liu R, Fan F. Recent Insights Into the Protective Mechanisms of Paeoniflorin in Neurological, Cardiovascular, and Renal Diseases. J Cardiovasc Pharmacol 2021; 77:728-734. [PMID: 34001724 PMCID: PMC8169546 DOI: 10.1097/fjc.0000000000001021] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
ABSTRACT The monoterpene glycoside paeoniflorin (PF) is the principal active constituent of the traditional Chinese herbal medicines, Radix Paeoniae Alba and Radix Paeoniae Rubra, which have been used for millennia to treat cardiovascular diseases (eg, hypertension, bleeding, and atherosclerosis) and neurological ailments (eg, headaches, vertigo, dementia, and pain). Recent evidence has revealed that PF exerts inhibitory effects on inflammation, fibrosis, and apoptosis by targeting several intracellular signaling cascades. In this review, we address the current knowledge about the pharmacokinetic properties of PF and its molecular mechanisms of action. We also present results from recent preclinical studies supporting the utility of PF for the treatment of pain, cerebral ischemic injury, and neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Moreover, new evidence suggests a general protective role of PF in heart attack, diabetic kidney, and atherosclerosis. Mechanistically, PF exerts multiple anti-inflammatory actions by targeting toll-like receptor-mediated signaling in both parenchymal and immune cells (in particular, macrophages and dendritic cells). A better understanding of the molecular actions of PF may lead to the expansion of its therapeutic uses.
Collapse
Affiliation(s)
- Feng Jiao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of Neurosurgery, Peking University People’s Hospital, Beijing, 100044, China
| | - Kevin Varghese
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - George W. Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Ruen Liu
- Department of Neurosurgery, Peking University People’s Hospital, Beijing, 100044, China
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
25
|
Bai H, Chen S, Yuan T, Xu D, Cui S, Li X. Paeoniflorin ameliorates neuropathic pain-induced depression-like behaviors in mice by inhibiting hippocampal neuroinflammation activated via TLR4/NF-κB pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:217-225. [PMID: 33859062 PMCID: PMC8050604 DOI: 10.4196/kjpp.2021.25.3.217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/07/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022]
Abstract
Neuropathic pain (NP) that contributes to the comorbidity between pain and depression is a clinical dilemma. Neuroinflammatory responses are known to have potentially important roles in the initiation of NP and depressive mood. In this study, we aimed to investigate the effects of paeoniflorin (PF) on NP-induced depression-like behaviors by targeting the hippocampal neuroinflammation through the toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling pathway. We used a murine model of NP caused by unilateral sciatic nerve cuffing (Cuff). PF was injected intraperitoneally once a day for a total of 14 days. Pain and depression-like behavior changes were evaluated via behavioral tests. Pathological changes in the hippocampus of mice were observed by H&E staining. The levels of proinflammatory cytokines in the hippocampus were detected using ELISA. Activated microglia were measured by immunohistochemical staining. The TLR4/NF-κB signaling pathway-associated protein expression in the hippocampus was detected by western blotting. We found that the PF could significantly alleviate Cuff-induced hyperalgesia and depressive behaviors, lessen the pathological damage to the hippocampal cell, reduce proinflammatory cytokines levels, and inhibit microglial over-activation. Furthermore, PF downregulated the expression levels of TLR4/NF-κB signaling pathway-related proteins in the hippocampus. These results indicate that PF is an effective drug for improving the comorbidity between NP and depression.
Collapse
Affiliation(s)
- Hualei Bai
- Center of Morphological Experiment, Medical College of Yanbian University, Yanji, Jilin 133000, China
| | - Shize Chen
- Center of Morphological Experiment, Medical College of Yanbian University, Yanji, Jilin 133000, China
| | - Tiezheng Yuan
- Center of Morphological Experiment, Medical College of Yanbian University, Yanji, Jilin 133000, China
| | - Dongyuan Xu
- Center of Morphological Experiment, Medical College of Yanbian University, Yanji, Jilin 133000, China
| | - Songbiao Cui
- Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, Jilin 133000, China
| | - Xiangdan Li
- Center of Morphological Experiment, Medical College of Yanbian University, Yanji, Jilin 133000, China
| |
Collapse
|
26
|
Tian DD, Wang M, Liu A, Gao MR, Qiu C, Yu W, Wang WJ, Zhang K, Yang L, Jia YY, Yang CB, Wu YM. Antidepressant Effect of Paeoniflorin Is Through Inhibiting Pyroptosis CASP-11/GSDMD Pathway. Mol Neurobiol 2021; 58:761-776. [PMID: 33025508 DOI: 10.1007/s12035-020-02144-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/22/2020] [Indexed: 12/28/2022]
Abstract
Nod-like receptor protein 3 (NLRP3)-associated neuroinflammation mediated by activated microglia is involved in the pathogenesis of depression. The role of the pore-forming protein gasdermin D (GSDMD), a newly identified pyroptosis executioner downstream of NLRP3 inflammasome mediating inflammatory programmed cell death, in depression has not been well defined. Here, we provide evidence that paeoniflorin (PF), a monoterpene glycoside compound derived from Paeonia lactiflora, ameliorated reserpine-induced mouse depression-like behaviors, characterized as increased mobility time in tail suspension test and forced swimming test, as well as the abnormal alteration of synaptic plasticity in the depressive hippocampus. The molecular docking simulation predicted that PF would interact with C-terminus of GSDMD. We further demonstrated that PF administration inhibited the enhanced expression of GSDMD which mainly distributed in microglia, along with the proteins involved in pyroptosis signaling transduction including caspase (CASP)-11, CASP-1, NLRP3, and interleukin (IL)-1β in the hippocampus of mice treated with reserpine. And also, PF prevented lipopolysaccharide (LPS) and adenosine triphosphate (ATP)-induced pyroptosis in murine N9 microglia in vitro, evidenced by inhibiting the expression of CASP-11, NLRP3, CASP-1 cleavage, as well as IL-1β. Furthermore, VX-765, an effective and selective inhibitor for CASP-1 activation, reduced the expression of inflammasome and pyroptosis-associated proteins in over-activated N9 and also facilitated PF-mediated inhibition of pyroptosis synergistically. Collectively, the data indicated that PF exerted antidepressant effects, alleviating neuroinflammation through inhibiting CASP-11-dependent pyroptosis signaling transduction induced by over-activated microglia in the hippocampus of mice treated with reserpine. Thus, GSDMD-mediated pyroptosis in activated microglia is a previously unrecognized inflammatory mechanism of depression and represents a unique therapeutic opportunity for mitigating depression given PF administration.
Collapse
Affiliation(s)
- Dan-Dan Tian
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
- Department of Acupuncture-Moxibustion-Massage, Shaanxi University of Chinese Medicine, Xi'an, 712000, Shaanxi Province, People's Republic of China
| | - Min Wang
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - An Liu
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, People's Republic of China
| | - Mei-Rong Gao
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
- Department of Acupuncture-Moxibustion-Massage, Shaanxi University of Chinese Medicine, Xi'an, 712000, Shaanxi Province, People's Republic of China
| | - Chen Qiu
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Wen Yu
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Wen-Ju Wang
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Le Yang
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, People's Republic of China
| | - Yan-Yan Jia
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Chang-Bin Yang
- Military Medical Innovation Center, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China.
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China.
| |
Collapse
|
27
|
Qin C, Hu S, Zhang S, Zhao D, Wang Y, Li H, Peng Y, Shi L, Xu X, Wang C, Liu J, Cheng Y, Long J. Hydroxytyrosol Acetate Improves the Cognitive Function of APP/PS1 Transgenic Mice in ERβ-dependent Manner. Mol Nutr Food Res 2021; 65:e2000797. [PMID: 33296142 DOI: 10.1002/mnfr.202000797] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/10/2020] [Indexed: 12/17/2022]
Abstract
SCOPE Alzheimer's disease (AD) is the most prevalent form of dementia in the aging population; however, no effective therapy has been established. It has been previously demonstrated that daily intake of hydroxytyrosol (HT), a polyphenol in olive oil, at a daily dietary level mildly improves cognition in AD mice. In the present study, HT acetate (HT-ac), which is a natural derivative of HT in olive oil that exhibits better bioactivity than HT improves cognition. METHODS AND RESULTS HT-ac to APP/PS1 is orally administered to transgenic mice and used Aβ-treated neuronal cultures to explore the neuroprotective effects of HT-ac in preventing AD progression. It is found that HT-ac remarkably improved the escape latency, escape distance, and the number of platform crossings of AD mice in the water maze test by ameliorating neuronal apoptosis and decreasing inflammatory cytokine levels. It is further demonstrated that HT-ac stimulated the transcription of ERβ and enhanced neuronal viability and electrophysiological activity in primary neurons but that these beneficial effects of HT-ac are abolished upon ERβ deficiency. CONCLUSIONS This study suggests that as the bioactive component of olive oil, HT-ac is a promising neuroprotective nutrient that may be used to alleviate AD-related cognitive dysfunction.
Collapse
Affiliation(s)
- Chuan Qin
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shaoqin Hu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuangxi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Daina Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yongyao Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hua Li
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yunhua Peng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Le Shi
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaohong Xu
- Pharmacy School, Chengdu Medical College, Chengdu, 610500, China
| | - Changhe Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ying Cheng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
28
|
Shen Y, Zhang B, Pang X, Yang R, Chen M, Zhao J, Wang J, Wang Z, Yu Z, Wang Y, Li L, Liu A, Du G. Network Pharmacology-Based Analysis of Xiao-Xu-Ming Decoction on the Treatment of Alzheimer's Disease. Front Pharmacol 2021; 11:595254. [PMID: 33390981 PMCID: PMC7774966 DOI: 10.3389/fphar.2020.595254] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/21/2020] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) has become a worldwide disease that is harmful to human health and brings a heavy economic burden to healthcare system. Xiao-Xu-Ming Decoction (XXMD) has been widely used to treat stroke and other neurological diseases for more than 1000 years in China. However, the synergistic mechanism of the constituents in XXMD for the potential treatment of AD is still unclear. Therefore, the present study aimed to predict the potential targets and uncover the material basis of XXMD for the potential treatment of AD. A network pharmacology-based method, which combined data collection, drug-likeness filtering and absorption, distribution, metabolism, excretion and toxicity (ADME/T) properties filtering, target prediction and network analysis, was used to decipher the effect and potential targets of XXMD for the treatment of AD. Then, the acetylcholinesterase (AChE) inhibitory assay was used to screen the potential active constituents in XXMD for the treatment of AD, and the molecular docking was furtherly used to identify the binding ability of active constituents with AD-related target of AChE. Finally, three in vitro cell models were applied to evaluate the neuroprotective effects of potential lead compounds in XXMD. Through the China Natural Products Database, Traditional Chinese Medicine Systems Pharmacology (TCMSP) Database, Traditional Chinese Medicine (TCM)-Database @Taiwan and literature, a total of 1481 compounds in XXMD were finally collected. After ADME/T properties filtering, 908 compounds were used for the further study. Based on the prediction data, the constituents in XXMD formula could interact with 41 AD-related targets. Among them, cyclooxygenase-2 (COX-2), estrogen receptor α (ERα) and AChE were the major targets. The constituents in XXMD were found to have the potential to treat AD through multiple AD-related targets. 62 constituents in it were found to interact with more than or equal to 10 AD-related targets. The prediction results were further validated by in vitro biology experiment, resulting in several potential anti-AD multitarget-directed ligands (MTDLs), including two AChE inhibitors with the IC50 values ranging from 4.83 to 10.22 μM. Moreover, fanchinoline was furtherly found to prevent SH-SY5Y cells from the cytotoxicities induced by sodium nitroprusside, sodium dithionate and potassium chloride. In conclusion, XXMD was found to have the potential to treat AD by targeting multiple AD-related targets and canonical pathways. Fangchinoline and dauricine might be the potential lead compounds in XXMD for the treatment of AD.
Collapse
Affiliation(s)
- Yanjia Shen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baoyue Zhang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaocong Pang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ran Yang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miao Chen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaying Zhao
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziru Yu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehua Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Li
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ailin Liu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Voss TD, Gerget M, Linkus B, von Einem B, Landwehrmeyer GB, Lewerenz J. Ubiquitination and the proteasome rather than caspase-3-mediated C-terminal cleavage are involved in the EAAT2 degradation by staurosporine-induced cellular stress. J Neurochem 2020; 157:1284-1299. [PMID: 33180957 DOI: 10.1111/jnc.15237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 03/09/2020] [Accepted: 11/03/2020] [Indexed: 01/01/2023]
Abstract
Diminished glutamate (Glu) uptake via the excitatory amino acid transporter EAAT2, which normally accounts for ~90% of total forebrain EAAT activity, may contribute to neurodegeneration via Glu-mediated excitotoxicity. C-terminal cleavage by caspase-3 (C3) was reported to mediate EAAT2 inactivation and down-regulation in the context of neurodegeneration. For a detailed analysis of C3-dependent EAAT2 degradation, we employed A172 glioblastoma as well as hippocampal HT22 cells and murine astrocytes over-expressing VSV-G-tagged EAAT2 constructs. C3 activation was induced by staurosporine (STR). In HT22 cells, STR-induced C3 activation-induced rapid EAAT2 protein degradation. The mutation of asparagine 504 to aspartate (D504N), which should inactivate the putative C3 cleavage site, increased EAAT2 activity in A172 cells. In contrast, the D504N mutation did not protect EAAT2 protein against STR-induced degradation in HT22 cells, whereas inhibition of caspases, ubiquitination and the proteasome did. Similar results were obtained in astrocytes. Phylogenetic analysis showed that C-terminal ubiquitin acceptor sites-but not the putative C3 cleavage site-exhibit a high degree of conservation. Moreover, C-terminal truncation mimicking C3 cleavage increased rather than decreased EAAT2 activity and stability as well as protected EAAT2 against STR-induced ubiquitination-dependent degradation. We conclude that cellular stress associated with endogenous C3 activation degrades EAAT2 via a pathway involving ubiquitination and the proteasome but not direct C3-mediated cleavage. In addition, C3 cleavage of EAAT2, described to occur in other models, is unlikely to inactivate EAAT2. However, mutation of the highly conserved D504 within the putative C3 cleavage site increases EAAT2 activity via an unknown mechanism.
Collapse
Affiliation(s)
| | - Maria Gerget
- Department of Neurology, Ulm University, Ulm, Germany
| | - Birgit Linkus
- Department of Neurology, Ulm University, Ulm, Germany
| | | | | | - Jan Lewerenz
- Department of Neurology, Ulm University, Ulm, Germany
| |
Collapse
|
30
|
The Herbal Combination CPA4-1 Inhibits Changes in Retinal Capillaries and Reduction of Retinal Occludin in db/db Mice. Antioxidants (Basel) 2020; 9:antiox9070627. [PMID: 32708791 PMCID: PMC7402168 DOI: 10.3390/antiox9070627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Increased formation of advanced glycation end products (AGEs) plays an important role in the development of diabetic retinopathy (DR) via blood-retinal barrier (BRB) dysfunction, and reduction of AGEs has been suggested as a therapeutic target for DR. In this study, we examined whether CPA4-1, a herbal combination of Cinnamomi Ramulus and Paeoniae Radix, inhibits AGE formation. CPA4-1 and fenofibrate were tested to ameliorate changes in retinal capillaries and retinal occludin expression in db/db mice, a mouse model of obesity-induced type 2 diabetes. CPA4-1 (100 mg/kg) or fenofibrate (100 mg/kg) were orally administered once a day for 12 weeks. CPA4-1 (the half maximal inhibitory concentration, IC50 = 6.84 ± 0.08 μg/mL) showed approximately 11.44-fold higher inhibitory effect on AGE formation than that of aminoguanidine (AG, the inhibitor of AGEs, IC50 = 78.28 ± 4.24 μg/mL), as well as breaking effect on AGE-bovine serum albumin crosslinking with collagen (IC50 = 1.30 ± 0.37 μg/mL). CPA4-1 treatment ameliorated BRB leakage and tended to increase retinal occludin expression in db/db mice. CPA4-1 or fenofibrate treatment significantly reduced retinal acellular capillary formation in db/db mice. These findings suggested the potential of CPA4-1 as a therapeutic supplement for protection against retinal vascular permeability diseases.
Collapse
|
31
|
Huang X, Ren L, Hou L, Fan H, Wang C, Wang C, Li Y. Paeoniflorin ameliorates antipsychotic-induced hyperprolactinemia in rats by attenuating impairment of the dopamine D2 receptor and TGF-β1 signaling pathways in the hypothalamus and pituitary. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112862. [PMID: 32294507 DOI: 10.1016/j.jep.2020.112862] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/07/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeoniflorin, a prominent component in some Chinese formulas for hyperprolactinemia-associated disorders, has been found to inhibit prolactin secretion in prolactinoma cells. AIM To examine the efficacy of paeoniflorin on hyperprolactinemia and the underlying mechanisms of action. MATERIALS AND METHODS Hyperprolactinemia in female rats was generated by administration of olanzapine (5 mg/kg, by a gavage method, once daily, × 13 weeks). The rats were co-treated with paeoniflorin (10 and 50 mg/kg). Prolactin and TGF-β1 concentrations were detected by ELISA. Protein expression was determined by Western blot. The effect in MMQ cells was also examined. RESULTS Paeoniflorin inhibited olanzapine-induced increases in plasma prolactin concentration and prolactin protein overexpression in the pituitary and hypothalamus of rats. Further, paeoniflorin restored olanzapine-induced downregulation of pituitary and hypothalamic dopamine D2 receptor (D2R) protein expression. More importantly, paeoniflorin attenuated olanzapine-suppressed protein expression of transforming growth factor (TGF)-β1 and its downstream genes, type II TGF-β receptor, type I TGF-β receptor and phosphorylated SMAD3 in the tissues. However, paeoniflorin did not affect plasma TGF-β1 concentration and hepatic TGF-β1 protein expression. In accord, olanzapine-induced increase in prolactin concentration, upregulation of prolactin protein expression, and downregulation of protein expression of the D2R and TGF-β1 signals in MMQ cells were attenuated. CONCLUSIONS This study demonstrates that paeoniflorin ameliorates olanzapine-induced hyperprolactinemia in rats by attenuating impairment of the D2R and TGF-β1 signaling pathways in the hypothalamus and pituitary. Our findings may provide evidence to support the use of paeoniflorin-contained Chinese herbs and formulas for hyperprolactinemia and its associated disorders.
Collapse
Affiliation(s)
- Xiaoqian Huang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Liying Ren
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Lianbing Hou
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Hua Fan
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Chengliang Wang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Chunxia Wang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Yuhao Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Endocrinology and Metabolism Group, Sydney Institute of Health Sciences/Sydney Institute of Traditional Chinese Medicine, NSW, 2000 Australia.
| |
Collapse
|
32
|
Wang S, Chen H, Zheng Y, Li Z, Cui B, Zhao P, Zheng J, Lu R, Sun N. Transcriptomics- and metabolomics-based integration analyses revealed the potential pharmacological effects and functional pattern of in vivo Radix Paeoniae Alba administration. Chin Med 2020; 15:52. [PMID: 32489401 PMCID: PMC7245909 DOI: 10.1186/s13020-020-00330-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/12/2020] [Indexed: 01/10/2023] Open
Abstract
Background Radix Paeoniae Alba (RPA) and other natural medicines have remarkable curative effects and are widely used in traditional Chinese Medicine (TCM). However, due to their multi-component and multi-target characteristics, it is difficult to study the detailed pharmacological mechanisms for those natural medicines in vivo. Therefore, their real effects on organisms is still uncertain. Methods RPA was selected as research object, the present study was designed to study the complex mechanisms of RPA in vivo by integrating and interpreting the transcriptomic based RNA-seq and metabolomic based NMR spectrum after RPA administration in mice. A variety of dimension-reduction algorithms and classifier models were applied to the processing of high-throughput data. Results Among serum metabolites, the contents of PC and glucose were significantly increased, while the contents of various amino acids, lipids and their metabolites were significantly decreased in mice after RPA administration. Based on the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, differential analysis showed that the liver was the site where RPA exerted a significant effect, which confirmed the rationality of “meridian tropism” in the theory in TCM. In addition, RPA played a role in lipid metabolism by regulating genes encoding enzymes of the glycerolipid metabolism pathway, such as 1-acyl-sn-glycerol-3-phosphate acyltransferase (Agpat), phosphatidate phosphatase (Lpin), phospholipid phosphatase (Plpp) and endothelial lipase (Lipg). We also found that RPA regulates several substance addiction pathways in the brain, such as the cocaine addiction pathway, and the related targets were predicted based on the sequencing data from pathological model in the GEO database. The overall effective pattern of RPA was intuitively presented with a multidimensional radar map through a self-designed model which found that liver and brain were mainly regulated by RPA compared with the traditional meridian tropism theory. Conclusions Overall this study expanded the potential application of RPA and provided possible targets and directions for further mechanism study, meanwhile, it also established a multi-dimensional evaluation model to represent the overall effective pattern of TCM for the first time. In the future, such study based on the high-throughput data sets can be used to interpret the theory of TCM and to provide a valuable research model and clinical medication reference for the TCM researchers and doctors.
Collapse
Affiliation(s)
- Sining Wang
- Department of Pathology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 CaiLun Ave, Pudong, 201203 Shanghai China
| | - Huihua Chen
- Department of Pathology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 CaiLun Ave, Pudong, 201203 Shanghai China
| | - Yufan Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 130 DongAn Ave, Xuhui, 200032 Shanghai China
| | - Zhenyu Li
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Baiping Cui
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 130 DongAn Ave, Xuhui, 200032 Shanghai China
| | - Pei Zhao
- Public Laboratory Platform, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiali Zheng
- Department of Pathology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 CaiLun Ave, Pudong, 201203 Shanghai China
| | - Rong Lu
- Department of Pathology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 CaiLun Ave, Pudong, 201203 Shanghai China
| | - Ning Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 130 DongAn Ave, Xuhui, 200032 Shanghai China
| |
Collapse
|
33
|
Paeoniflorin exerts neuroprotective effects in a transgenic mouse model of Alzheimer's disease via activation of adenosine A 1 receptor. Neurosci Lett 2020; 730:135016. [PMID: 32371159 DOI: 10.1016/j.neulet.2020.135016] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, characterised by advanced cognitive and memory deterioration with no effective treatments available. Previous in vitro and in vivo studies suggest that paeoniflorin (PF), a major bioactive constituent of Radix Paeoniae, might possess anti-dementia properties; however, the underlying mechanism remains unclear. The aim of the current study was to determine the therapeutic effects of PF in a transgenic mouse model of AD and to identify its mechanism. Transgenic mice with five familial AD mutations (5XFAD) were used in this study. We showed that 28 days of PF (5 mg/kg, ip) treatment significantly decreased the escape latency and path length in the Morris water maze test and increased the alternation rate in the T-maze test, compared to the vehicle treatment group. In addition, PF treatment significantly alleviated amyloid β plaque burden, inhibited astrocyte activation, and decreased IL-1β and TNF-α expression in the brain of 5XFAD mice. However, the anti-cognitive deficits, anti-amyloidogenic, and anti-inflammatory effects of PF were abolished by 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 0.3 mg/kg), an adenosine A1 receptor (A1R) antagonist. In conclusion, our results suggest that PF might act as a potential therapeutic agent for AD via activation of adenosine A1R.
Collapse
|
34
|
Zhang Y, Hou B, Li C, Li H. Overexpression of circARF3 mitigates TNF-α-induced inflammatory damage by up-regulating miR-125b. Cell Cycle 2020; 19:1253-1264. [PMID: 32329660 DOI: 10.1080/15384101.2020.1731652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Encephalitis is the highest disability illness. We studied the function and mechanisms of circular RNA circARF3 (circARF3) in neurocyte cell inflammatory damage. CCK-8 assay and flow cytometry were, respectively, employed for examining the influences of tumor necrosis factor α (TNF-α), circARF3 and microRNA (miR)-125b on cell viability and apoptosis. The expression of circARF3 and miR-125b were changed by employing cell transfection and the results were determined by using qRT-PCR. Besides, the expression of Bcl-2, Bax, Cleaved-caspase-3, interleukin (IL)-1β, IL-6, IL-8 and cell pathways-related proteins were examined by using Western blot. The productions of IL-6, IL-8 and IL-1β were also tested by ELISA. The level of reactive oxygen species (ROS) was examined by ROS assay. We found that TNF-α caused inflammatory damage showing as suppressed cell viability, enhanced cell apoptosis, and increased cytokines production and ROS generation. Besides, TNF-α inducement also markedly reduced circARF3 expression. circARF3 overexpression mitigated TNF-α-induced cell inflammatory damage. Moreover, miR-125b was targeted and positively regulated by circARF3. Furthermore, miR-125b inhibition could reverse the influences of circARF3 overexpression. Besides, circARF3 restrained the JNK and NF-κB pathways by up-regulation of miR-125b. In conclusion, overexpression of circARF3 mitigated cell inflammatory damage via inactivation of JNK and NF-κB pathways and thereby up-regulation of miR-125b.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University , Qingdao, 266000, Shandong, China
| | - Binghui Hou
- Department of Neurology, The Affiliated Hospital of Qingdao University , Qingdao, 266000, Shandong, China
| | - Chunxiao Li
- Department of Neurology, The Affiliated Hospital of Qingdao University , Qingdao, 266000, Shandong, China
| | - Hong Li
- Department of Neurology, The Affiliated Hospital of Qingdao University , Qingdao, 266000, Shandong, China
| |
Collapse
|
35
|
Chen CM, Chen WL, Hung CT, Lin TH, Lee MC, Chen IC, Lin CH, Chao CY, Wu YR, Chang KH, Hsieh-Li HM, Lee-Chen GJ. Shaoyao Gancao Tang (SG-Tang), a formulated Chinese medicine, reduces aggregation and exerts neuroprotection in spinocerebellar ataxia type 17 (SCA17) cell and mouse models. Aging (Albany NY) 2020; 11:986-1007. [PMID: 30760647 PMCID: PMC6382417 DOI: 10.18632/aging.101804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 01/24/2019] [Indexed: 12/22/2022]
Abstract
Spinocerebellar ataxia (SCA) type 17 is an autosomal dominant ataxia caused by expanded polyglutamine (polyQ) tract in the TATA-box binding protein (TBP). Substantial studies have shown involvement of compromised mitochondria biogenesis regulator peroxisome proliferator-activated receptor gamma-coactivator 1 alpha (PGC-1α), nuclear factor erythroid 2-related factor 2 (NRF2), nuclear factor-Y subunit A (NFYA), and their downstream target genes in the pathogenesis of polyQ-expansion diseases. The extracts of Paeonia lactiflora (P. lactiflora) and Glycyrrhiza uralensis (G. uralensis) have long been used as a Chinese herbal medicine (CHM). Shaoyao Gancao Tang (SG-Tang) is a formulated CHM made of P. lactiflora and G. uralensis at a 1:1 ratio. In the present study, we demonstrated the aggregate-inhibitory and anti-oxidative effect of SG-Tang in 293 TBP/Q79 cells. We then showed that SG-Tang reduced the aggregates and ameliorated the neurite outgrowth deficits in TBP/Q79 SH-SY5Y cells. SG-Tang upregulated expression levels of NFYA, PGC-1α, NRF2, and their downstream target genes in TBP/Q79 SH-SY5Y cells. Knock down of NFYA, PGC-1α, and NRF2 attenuated the neurite outgrowth promoting effect of SG-Tang on TBP/Q79 SH-SY5Y cells. Furthermore, SG-Tang inhibited aggregation and rescued motor-deficits in SCA17 mouse model. The study results suggest the potential of SG-Tang in treating SCA17 and probable other polyQ diseases.
Collapse
Affiliation(s)
- Chiung-Mei Chen
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Wan-Ling Chen
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Chen-Ting Hung
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Te-Hsien Lin
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | | | - I-Cheng Chen
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Chih-Hsin Lin
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Chih-Ying Chao
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
36
|
Yuan N, Gong L, Tang K, He L, Hao W, Li X, Ma Q, Chen J. An Integrated Pharmacology-Based Analysis for Antidepressant Mechanism of Chinese Herbal Formula Xiao-Yao-San. Front Pharmacol 2020; 11:284. [PMID: 32256358 PMCID: PMC7094752 DOI: 10.3389/fphar.2020.00284] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/27/2020] [Indexed: 12/18/2022] Open
Abstract
Clinical studies and basic science experiments have widely demonstrated the antidepressant and anxiolytic effects of the herbal formula Xiao-Yao-San (XYS). However, the system mechanism of these effects has not been fully characterized. The present study conducted a comprehensive network pharmacological analysis of XYS and sorted all pharmacologically active components (149) through the TCMSP webserver. Then, all potential molecular targets (449) were predicted, of which there were 99 genes clearly related to depression. To further investigate the mechanism of antidepressant effects of XYS, a compound-depression targets (C-DTs) network was constructed, and Gene Ontology (GO) functional and KEGG pathway enrichment analyses were performed for the 99 targets. Enrichment results revealed that XYS could regulate multiple aspects of depression through these targets, related to metabolism, neuroendocrine function, and neuroimmunity. Prediction and analysis of protein–protein interactions resulted in selection of three hub genes (AKT1, TP53, and VEGFA). In addition, a total of seven ingredients from XYS could act on these hub genes and they were identified through ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS), including paeoniflorin, quercetin, luteolin, acacetin, aloe-emodin, Glyasperin C, kaempferol. Hereafter, we investigated the effects of paeoniflorin and its predicted target, the results suggest that it can reverse the neurotoxicity produced by CORT and could be a neuroprotective effect by promoting the phosphorylation of Akt. Overall, our research revealed the complicated antidepressant mechanism of XYS, and also provided a rational strategy for revealing the complex composition and function of Chinese herbal formula.
Collapse
Affiliation(s)
- Naijun Yuan
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Lian Gong
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Kairui Tang
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Liangliang He
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Wenzhi Hao
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaojuan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qingyu Ma
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jiaxu Chen
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
37
|
Zhai A, Zhang Z, Kong X. Paeoniflorin Alleviates H 2O 2-Induced Oxidative Injury Through Down-Regulation of MicroRNA-135a in HT-22 Cells. Neurochem Res 2019; 44:2821-2831. [PMID: 31728857 DOI: 10.1007/s11064-019-02904-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/27/2019] [Accepted: 10/27/2019] [Indexed: 12/25/2022]
Abstract
Paeoniflorin (PF) has been reported to possess neuroprotective influences on cognitive dysfunction illness. In current research, we attempted to probe into the protective influences of PF against H2O2-induced damage and the underlying regulating mechanisms on hippocampal HT-22 cells. HT-22 cells were pretreated with PF, and then induced by H2O2. Afterwards, the influences of PF pretreatment were examined using CCK-8 assay, apoptosis assay, western blot and ROS assay, respectively. In addition, the expression of microRNA-135a (miR-135a) was analyzed and altered by qRT-PCR and cell transfection, respectively. After overexpression of miR-135a, the effects of miR-135a mimic on cell functions were detected again. Moreover, influences of H2O2, PF and miR-135a overexpression on JAK2/STAT3 and ERK1/2 signal pathways were further investigated. Further experiments verified that PF pretreatment alleviated H2O2-induced oxidative stress through increasing cell viability, inhibiting cell apoptosis, reducing ROS generation and activating JAK2/STAT3 and ERK1/2 pathways. Besides, expression of miR-135a was declined by PF pretreatment. Whereas, miR-135a mimic abrogated the protective effects triggered by PF pretreatment. These results indicated that PF can alleviate H2O2-induced oxidative stress by down-regulation of miR-135a via activation of JAK2/STAT3 and ERK1/2 pathways.
Collapse
Affiliation(s)
- Ailing Zhai
- Department of Psychiatry, Jining Psychiatric Hospital, No. 1 Jidai Road, Jining, 272051, Shandong, China.
| | - Zeng Zhang
- Department of Psychiatry, Jining Psychiatric Hospital, No. 1 Jidai Road, Jining, 272051, Shandong, China
| | - Xiangjuan Kong
- Department of Psychiatry, Jining Psychiatric Hospital, No. 1 Jidai Road, Jining, 272051, Shandong, China
| |
Collapse
|
38
|
Liu B, Lin J, Bai L, Zhou Y, Lu R, Zhang P, Chen D, Li H, Song J, Liu X, Wu Y, Wu J, Liang C, Zhou J. Paeoniflorin Inhibits Mesangial Cell Proliferation and Inflammatory Response in Rats With Mesangial Proliferative Glomerulonephritis Through PI3K/AKT/GSK-3β Pathway. Front Pharmacol 2019; 10:978. [PMID: 31551783 PMCID: PMC6745507 DOI: 10.3389/fphar.2019.00978] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Mesangial proliferative glomerulonephritis (MPGN) is the most common type of chronic kidney disease in China, characterized by mesangial cell proliferation and inflammatory response. Paeoniflorin, an effective composition extracted from Radix Paeoniae Alba, has been used for various kinds of kidney diseases. However, there are no studies reporting the effects of paeoniflorin on MPGN. The present study aims to investigate whether paeoniflorin plays a role in MPGN and confirm the underlying molecular mechanisms. Our results manifested that paeoniflorin strongly restrained 24 h urinary protein and promoted renal function and dyslipidemia in a MPGN rat model. Moreover, paeoniflorin attenuated mesangial cell proliferation and inflammation both in MPGN rats and human mesangial cells (HMCs) treated with lipopolysaccharide (LPS). In detail, paeoniflorin decreased the number of mesangial cells and expressions of proliferation marker Ki67 in MPGN rats. Paeoniflorin also inhibited HMC proliferation and blocked cell cycle progression. In addition, the contents of inflammatory factors and the expressions of macrophage marker iNOS were decreased after paeoniflorin treatment. Furthermore, we found that the protective effect of paeoniflorin was accompanied by a strong inhibition of the phosphatidylinositol 3-kinase (PI3K)/AKT/glycogen synthase kinase (GSK)-3β pathway. Paeoniflorin enhanced the inhibitory effect of PI3K inhibitor LY294002 and suppressed the activated effect of PI3K agonist insulin-like growth factor 1 (IGF-1) on PI3K/AKT/GSK-3β pathway. In conclusion, these results demonstrated that paeoniflorin ameliorates MPGN by inhibiting mesangial cell proliferation and inflammatory response through the PI3K/AKT/GSK-3β pathway.
Collapse
Affiliation(s)
- Bihao Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jin Lin
- College of Chinese Materia Medica, Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Lixia Bai
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruirui Lu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peichun Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dandan Chen
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglian Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianping Song
- Science and Technology Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xusheng Liu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yidan Wu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junbiao Wu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunling Liang
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiuyao Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
39
|
Liu SC, Hu WY, Zhang WY, Yang L, Li Y, Xiao ZC, Zhang M, He ZY. Paeoniflorin attenuates impairment of spatial learning and hippocampal long-term potentiation in mice subjected to chronic unpredictable mild stress. Psychopharmacology (Berl) 2019; 236:2823-2834. [PMID: 31115613 DOI: 10.1007/s00213-019-05257-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 04/24/2019] [Indexed: 12/28/2022]
Abstract
RATIONALE AND OBJECTIVE Paeoniflorin has been reported to exhibit antidepressant-like effects in several animal model depression; and it also exerts a neuroprotective effect. In the present study, we investigated the effects of paeoniflorin administration on depression-like behaviors and cognitive abilities in mice subjected to chronic unpredictable mild stress (CUMS), an animal model associated with depressive disorders and cognitive deficits. METHODS We administered paeoniflorin (20 mg/kg), which is the main active constituent extracted from Paeonia lactiflora Pall. and exerts multiple pharmacological actions, to CUMS mice. Subsequently, animals were subjected to tests of depression-like behavior including the sucrose preference test, the forced swimming test and the tail suspension test. The Morris water maze (MWM) task was applied to evaluate learning and memory capacity. Hippocampal CA1 long-term potentiation (LTP) was recorded. Dendritic spine density and the expression levels of brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD95) in the hippocampus were also investigated. RESULTS The administration of paeoniflorin protected against CUMS-induced depression-like behavior. Paeoniflorin also improved the performance of CUMS mice in the MWM. The impairment of hippocampal CA1 LTP caused by CUMS was also reversed. Furthermore, paeoniflorin administration prevented decreases in dendritic spine density and in the expression of BDNF and PSD95 in the hippocampus of CUMS mice. CONCLUSION Our observations suggest that paeoniflorin is a potential antidepressant that protects against cognitive impairment in depression.
Collapse
Affiliation(s)
- Si-Cheng Liu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650500, China.,Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Wei-Yan Hu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650500, China.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, 3800, Australia.,School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Wei-Yuan Zhang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650500, China
| | - Lu Yang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yan Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650500, China
| | - Zhi-Cheng Xiao
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650500, China.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, 3800, Australia
| | - Ming Zhang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650500, China.
| | - Zhi-Yong He
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650500, China. .,Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, 3800, Australia.
| |
Collapse
|
40
|
Du Y, Fu M, Wang YT, Dong Z. Neuroprotective Effects of Ginsenoside Rf on Amyloid-β-Induced Neurotoxicity in vitro and in vivo. J Alzheimers Dis 2019; 64:309-322. [PMID: 29865080 DOI: 10.3233/jad-180251] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by the deposition of amyloid-β peptides (Aβ). Aβ accumulation leads to the formation of neurofibrillary tangles, inflammation, axonal injury, synapse loss, and neuronal apoptosis. Thus, reducing Aβ levels should exert a neuroprotective effect against AD. Ginsenoside Rf, an extract from Panax notoginseng, has potent anti-fatigue, anti-nociception, anti-oxidation, and anti-inflammation properties. However, it is unclear whether ginsenoside Rf is effective in the treatment of AD. Here, we reported that ginsenoside Rf could significantly attenuate Aβ-induced apoptosis in N2A cells, as reflected by a dramatic increase in mitochondrial membrane potential and decrease in Ca2 + concentration, reactive oxygen species, and active caspase-3 expression. Meanwhile, ginsenoside Rf could alleviate the Aβ-induced inflammation reaction, such as the decrease of interferon-gamma (IFN-γ) and active caspase-1 expression and the increase of interleukin-13. Furthermore, we also found that Rf is able to accelerate Aβ clearance and subsequently reduces Aβ level in N2A cells stably transfected with human Swedish mutant APP695 (N2A-APP). More importantly, daily Rf treatment (20 mg/kg, i.p.) throughout the experiment dramatically improved spatial learning and memory in Aβ42-induced mouse model of AD. Taken together, these results indicate that ginsenoside Rf may decrease Aβ-induced neurotoxicity and memory decline via anti-inflammatory response during AD development, suggesting that Rf may be a potential therapeutic agent for treating AD.
Collapse
Affiliation(s)
- Yehong Du
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital ofChongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of TranslationalMedical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of ChongqingMedical University, Chongqing, China
| | - Min Fu
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital ofChongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of TranslationalMedical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of ChongqingMedical University, Chongqing, China
| | - Yu Tian Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital ofChongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of TranslationalMedical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of ChongqingMedical University, Chongqing, China.,Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Zhifang Dong
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital ofChongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of TranslationalMedical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of ChongqingMedical University, Chongqing, China
| |
Collapse
|
41
|
Oveissi V, Ram M, Bahramsoltani R, Ebrahimi F, Rahimi R, Naseri R, Belwal T, Devkota HP, Abbasabadi Z, Farzaei MH. Medicinal plants and their isolated phytochemicals for the management of chemotherapy-induced neuropathy: therapeutic targets and clinical perspective. Daru 2019; 27:389-406. [PMID: 30852764 PMCID: PMC6593128 DOI: 10.1007/s40199-019-00255-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/26/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Chemotherapy, as one of the main approaches of cancer treatment, is accompanied with several adverse effects, including chemotherapy-induced peripheral neuropathy (CIPN). Since current methods to control the condition are not completely effective, new treatment options should be introduced. Medicinal plants can be suitable candidates to be assessed regarding their effects in CIPN. Current paper reviews the available preclinical and clinical studies on the efficacy of herbal medicines in CIPN. METHODS Electronic databases including PubMed, Scopus, and Cochrane library were searched with the keywords "neuropathy" in the title/abstract and "plant", "extract", or "herb" in the whole text. Data were collected from inception until April 2018. RESULTS Plants such as chamomile (Matricaria chamomilla L.), sage (Salvia officinalis L.), cinnamon (Cinnamomum cassia (L.) D. Don), and sweet flag (Acorus calamus L.) as well as phytochemicals like matrine, curcumin, and thioctic acid have demonstrated beneficial effects in animal models of CIPN via prevention of axonal degeneration, decrease in total calcium level, improvement of endogenous antioxidant defense mechanisms such as superoxide dismutase and reduced glutathione, and regulation of neural cell apoptosis, nuclear factor-ĸB, cyclooxygenase-2, and nitric oxide signaling. Also, five clinical trials have evaluated the effect of herbal products in patients with CIPN. CONCLUSIONS There are currently limited clinical evidence on medicinal plants for CIPN which shows the necessity of future mechanistic studies, as well as well-designed clinical trial for further confirmation of the safety and efficacy of herbal medicines in CIPN. Graphical abstract Schematic mechanisms of medicinal plants to prevent chemotherapy-induced neuropathy: NO: nitric oxide, TNF: tumor necrosis factor, PG: prostaglandin, NF-ĸB: nuclear factor kappa B, LPO: lipid peroxidation, ROS: reactive oxygen species, COX: cyclooxygenase, IL: interleukin, ERK: extracellular signal-related kinase, X: inhibition, ↓: induction.
Collapse
Affiliation(s)
- Vahideh Oveissi
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahboobe Ram
- Student Research Committee, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Ebrahimi
- Pharmacy Students' Research Committee, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rozita Naseri
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tarun Belwal
- G. B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora, Uttarakhand, 263643, India
| | - Hari Prasad Devkota
- School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo ku, Kumamoto, 862-0973, Japan
- Program for Leading Graduate Schools, Health life science: Interdisciplinary and Glocal Oriented (HIGO) Program, Kumamoto University, 5-1 Oe-honmachi, Chuo ku, Kumamoto, 862-0973, Japan
| | - Zahra Abbasabadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
42
|
Formulated Chinese Medicine Shaoyao Gancao Tang Reduces Tau Aggregation and Exerts Neuroprotection through Anti-Oxidation and Anti-Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9595741. [PMID: 30510632 PMCID: PMC6230396 DOI: 10.1155/2018/9595741] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/29/2018] [Indexed: 12/18/2022]
Abstract
Misfolded tau proteins induce accumulation of free radicals and promote neuroinflammation by activating microglia-releasing proinflammatory cytokines, leading to neuronal cell death. Traditional Chinese herbal medicines (CHMs) have been widely used in clinical practice to treat neurodegenerative diseases associated with oxidative stress and neuroinflammation. This study examined the neuroprotection effects of formulated CHMs Bai-Shao (made of Paeonia lactiflora), Gan-Cao (made of Glycyrrhiza uralensis), and Shaoyao Gancao Tang (SG-Tang, made of P. lactiflora and G. uralensis at 1 : 1 ratio) in cell model of tauopathy. Our results showed that SG-Tang displayed a greater antioxidative and antiaggregation effect than Bai-Shao and Gan-Cao and a stronger anti-inflammatory activity than Bai-Shao but similar to Gan-Cao. In inducible 293/SH-SY5Y cells expressing proaggregant human tau repeat domain (ΔK280 tauRD), SG-Tang reduced tau misfolding and reactive oxygen species (ROS) level in ΔK280 tauRD 293 cells and promoted neurite outgrowth in ΔK280 tauRD SH-SY5Y cells. Furthermore, SG-Tang displayed anti-inflammatory effects by reducing nitric oxide (NO) production in mouse BV-2 microglia and increased cell viability of ΔK280 tauRD-expressing SH-SY5Y cells inflamed by BV-2 conditioned medium. To uncover the neuroprotective mechanisms of SG-Tang, apoptosis protein array analysis of inflamed tau expressing SH-SY5Y cells was conducted and the suppression of proapoptotic proteins was confirmed. In conclusion, SG-Tang displays neuroprotection by exerting antioxidative and anti-inflammatory activities to suppress neuronal apoptosis in human tau cell models. The study results lay the base for future applications of SG-Tang on tau animal models to validate its effect of reducing tau misfolding and potential disease modification.
Collapse
|
43
|
Lee JY, Joo B, Nam JH, Nam HY, Lee W, Nam Y, Seo Y, Kang HJ, Cho HJ, Jang YP, Kim J, We YM, Koo JW, Hoe HS. An Aqueous Extract of Herbal Medicine ALWPs Enhances Cognitive Performance and Inhibits LPS-Induced Neuroinflammation via FAK/NF-κB Signaling Pathways. Front Aging Neurosci 2018; 10:269. [PMID: 30319390 PMCID: PMC6168635 DOI: 10.3389/fnagi.2018.00269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022] Open
Abstract
Recent studies have shown that Liuwei Dihuang pills (LWPs) can positively affect learning, memory and neurogenesis. However, the underlying molecular mechanisms are not understood. In the present study, we developed ALWPs, a mixture of Antler and LWPs, and investigated whether ALWPs can affect neuroinflammatory responses. We found that ALWPs (500 mg/ml) inhibited lipopolysaccharide (LPS)-induced proinflammatory cytokine IL-1β mRNA levels in BV2 microglial cells but not primary astrocytes. ALWPs significantly reduced LPS-induced cell-surface levels of TLR4 to alter neuroinflammation. An examination of the molecular mechanisms by which ALWPs regulate the LPS-induced proinflammatory response revealed that ALWPs significantly downregulated LPS-induced levels of FAK phosphorylation, suggesting that ALWPs modulate FAK signaling to alter LPS-induced IL-1β levels. In addition, treatment with ALWPs followed by LPS resulted in decreased levels of the transcription factor NF-κB in the nucleus compared with LPS alone. Moreover, ALWPs significantly suppressed LPS-induced BV2 microglial cell migration. To examine whether ALWPs modulate learning and memory in vivo, wild-type C57BL/6J mice were orally administered ALWPs (200 mg/kg) or PBS daily for 3 days, intraperitoneally injected (i.p.) with LPS (250 μg/kg) or PBS, and assessed in Y maze and NOR tests. We observed that oral administration of ALWPs to LPS-injected wild-type C57BL/6J mice significantly rescued short- and long-term memory. More importantly, oral administration of ALWPs to LPS-injected wild-type C57BL/6J mice significantly reduced microglial activation in the hippocampus and cortex. Taken together, our results suggest that ALWPs can suppress neuroinflammation-associated cognitive deficits and that ALWPs have potential as a drug for neuroinflammation/neurodegeneration-related diseases, including Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Ju-Young Lee
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Bitna Joo
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, South Korea
| | - Jin Han Nam
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Hye Yeon Nam
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Wonil Lee
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Youngpyo Nam
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Yongtaek Seo
- Division of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Hye-Jin Kang
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Hyun-Ji Cho
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Young Pyo Jang
- Division of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Jeongyeon Kim
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Young-Man We
- College of Korean Medicine, Wonkwang University, Iksan, South Korea
- Oriental Medical Clinic Center, Hyoo Medical Clinic, Seoul, South Korea
| | - Ja Wook Koo
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, South Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| |
Collapse
|
44
|
Hu PF, Sun FF, Jiang LF, Bao JP, Wu LD. Paeoniflorin inhibits IL-1β-induced MMP secretion via the NF-κB pathway in chondrocytes. Exp Ther Med 2018; 16:1513-1519. [PMID: 30116400 PMCID: PMC6090372 DOI: 10.3892/etm.2018.6325] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 01/26/2018] [Indexed: 01/25/2023] Open
Abstract
Paeoniflorin serves important cellular roles, exerting anti-cancer, anti-inflammatory and anti-pulmonary fibrosis effects and possesses immune-modulatory properties. However, the exact role of paeoniflorin in the pathogenesis of osteoarthritis (OA) remains unclear. The aim of the present study was to investigate the effects of paeoniflorin on articular surfaces in vitro. Rat chondrocytes were cultured in vitro and an MTT assay was performed to assess chondrocyte survival. Following treatment with interleukin (IL)-1β and paeoniflorin, the production of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases-1 (TIMP-1) was examined using reverse transcription-quantitative polymerase chain reaction and western blotting. The interleukin (IL)-1β-induced nuclear factor (NF)-κB pathway activation was also investigated. The results demonstrated that paeoniflorin was able to downregulate the expression of MMP and increase the expression of TIMP-1ntmRNA and protein in IL-1β-induced rat chondrocytes. Furthermore, treating chondrocytes with paeoniflorin blocked the activation of NF-κB. These results suggest that paeoniflorin may serve am anti-catabolic role in the progression of OA and may be an effective preventative treatment for OA.
Collapse
Affiliation(s)
- Peng-Fei Hu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Fang-Fang Sun
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Cancer Institute, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Li-Feng Jiang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jia-Peng Bao
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Li-Dong Wu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
45
|
Wei Y, Zhou X, Ren L, Wang C, Li Y. The prolactin‐release inhibitor paeoniflorin suppresses proliferation and induces apoptosis in prolactinoma cells via the mitochondria‐dependent pathway. J Cell Biochem 2018; 119:5704-5714. [DOI: 10.1002/jcb.26752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/25/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Yuanyi Wei
- Department of PharmacyNanfang HospitalSouthern Medical UniversityGuangzhouP.R. China
| | - Xia Zhou
- Department of PharmacyNanfang HospitalSouthern Medical UniversityGuangzhouP.R. China
| | - Liying Ren
- Department of PharmacyNanfang HospitalSouthern Medical UniversityGuangzhouP.R. China
| | - Chunxia Wang
- Department of PharmacyNanfang HospitalSouthern Medical UniversityGuangzhouP.R. China
- Guangdong Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouP.R. China
| | - Yuhao Li
- Endocrinology and Metabolism GroupSydney Institute of Health Sciences/Sydney Institute of Traditional Chinese MedicineNew South WalesAustralia
| |
Collapse
|
46
|
Hu PF, Chen WP, Bao JP, Wu LD. Paeoniflorin inhibits IL-1β-induced chondrocyte apoptosis by regulating the Bax/Bcl-2/caspase-3 signaling pathway. Mol Med Rep 2018; 17:6194-6200. [PMID: 29484390 DOI: 10.3892/mmr.2018.8631] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/06/2018] [Indexed: 11/05/2022] Open
Abstract
Apoptosis serves a pivotal role in the pathogenesis of osteoarthritis (OA). Increasing evidence has demonstrated that paeoniflorin exerts key properties (including anticancer, anti-inflammation and neuroprotective) for clinical applications. However, the precise role of paeoniflorin in articular cartilage apoptosis remains unknown. The present study explored the effects and potential molecular mechanism of paeoniflorin on rat chondrocyte apoptosis. Rat articular chondrocytes were cultured in monolayers. The lactate dehydrogenase (LDH) release rate of cells was determined by an LDH release assay. Annexin V-fluorescein isothiocyanate and propidium iodide staining were performed to detect early and advanced apoptotic cells by flow cytometry. The activity of caspase-3 in chondrocytes was determined using a caspase-3 activity assay. The expression of B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein (Bax) was examined by reverse transcription‑quantitative polymerase chain and western blotting. The present study also examined the protein kinase B (Akt) signaling pathway by western blotting. Treatment with 25 or 50 µM paeoniflorin markedly decreased the release of LDH and the ratio of apoptotic cells in interleukin (IL)-1β-induced rat chondrocytes. Paeoniflorin treatment decreased the mRNA and protein levels of Bax, and increased the level of Bcl-2. Paeoniflorin also reduced the activity of caspase-3 in chondrocytes. Furthermore, paeoniflorin was determined to regulate the Akt signaling pathway by increasing Akt phosphorylation. Therefore, paeoniflorin may exert its protective effect by inhibiting apoptosis in IL-1β-induced rat chondrocytes and thus, may be an effective agent in the prevention and treatment of OA.
Collapse
Affiliation(s)
- Peng-Fei Hu
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Wei-Ping Chen
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jia-Peng Bao
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Li-Dong Wu
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
47
|
Habtemariam S. Iridoids and Other Monoterpenes in the Alzheimer's Brain: Recent Development and Future Prospects. Molecules 2018; 23:molecules23010117. [PMID: 29316661 PMCID: PMC6017424 DOI: 10.3390/molecules23010117] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/14/2022] Open
Abstract
Iridoids are a class of monoterpenoid compounds constructed from 10-carbon skeleton of isoprene building units. These compounds in their aglycones and glycosylated forms exist in nature to contribute to mechanisms related to plant defenses and diverse plant-animal interactions. Recent studies have also shown that iridoids and other structurally related monoterpenes display a vast array of pharmacological effects that make them potential modulators of the Alzheimer’s disease (AD). This review critically evaluates the therapeutic potential of these natural products by assessing key in vitro and in vivo data published in the scientific literature. Mechanistic approach of scrutiny addressing their effects in the Alzheimer’s brain including the τ-protein phosphorylation signaling, amyloid beta (Aβ) formation, aggregation, toxicity and clearance along with various effects from antioxidant to antiinflammatory mechanisms are discussed. The drug likeness of these compounds and future prospects to consider in their development as potential leads are addressed.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK.
| |
Collapse
|
48
|
Zhang J, Yu K, Han X, Zhen L, Liu M, Zhang X, Ren Y, Shi J. Paeoniflorin influences breast cancer cell proliferation and invasion via inhibition of the Notch‑1 signaling pathway. Mol Med Rep 2017; 17:1321-1325. [PMID: 29115554 DOI: 10.3892/mmr.2017.8002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 05/23/2017] [Indexed: 11/06/2022] Open
Abstract
Breast cancer is one of the most frequently occurring malignant tumors affecting women's health. At least one million new cases are diagnosed each year. Therefore, research that aims to identify strategies that inhibit the growth of breast cancer cells has become a primary worldwide focus. Traditional Chinese medicine (TCM) is regarded as a valuable resource in China, and numerous monomer compositions extracted from TCMs have been demonstrated to exhibit antitumor effects. The present study aimed to determine the impact of paeoniflorin (PF) on breast cancer cell proliferation and invasion, and to explore the mechanisms underlying its effects. Different concentrations of PF were applied to MCF‑7 cells at various time points and the Cell Counting kit‑8 assay was used to determine cell proliferation, a transwell invasion assay was employed to determine cell invasion, reverse transcription‑polymerase chain reaction was used to determine notch homolog‑1 (NOTCH‑1) and Hes family basic helix‑loop helix transcription factor (HES)‑1 mRNA expression levels, and western blotting was used to determine NOTCH‑1 and HES‑1 protein expression levels. The results demonstrated that PF inhibited the proliferation of MCF‑7 cells in a dose‑ and time‑dependent manner. Following treatment with different concentrations of PF, the total number of cells present in the PF‑treated groups was significantly lower when compared with the untreated control group (P<0.05). With increasing doses of PF, the rate of cell invasion significantly decreased, indicating a dose‑dependent association. NOTCH‑1 and HES‑1 mRNA expression levels were reduced when compared with the untreated control group, which reached a statistical significance following treatment with 15 and 30 µM PF (P<0.05). NOTCH‑1 and HES‑1 protein levels demonstrated a similar trend to the mRNA levels, whereby an increase in the concentration of PF was associated with a decrease in NOTCH‑1 and HES‑1 protein expression levels. The results of the present study therefore suggest that PF may inhibit the proliferation and invasiveness of breast cancer cells via inhibition of the NOTCH‑1 signaling pathway.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Breast Surgery, Xuzhou Tumor Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Kun Yu
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xuedong Han
- Department of Breast and Thyroid Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Linlin Zhen
- Department of Breast and Thyroid Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Minmin Liu
- Department of Breast and Thyroid Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xiwen Zhang
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Yi Ren
- Department of Breast and Thyroid Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Jianhua Shi
- Department of Breast and Thyroid Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
49
|
Li Y, Gong L, Qi R, Sun Q, Xia X, He H, Ren J, Zhu O, Zhuo D. Paeoniflorin suppresses pancreatic cancer cell growth by upregulating HTRA3 expression. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2481-2491. [PMID: 28860718 PMCID: PMC5574596 DOI: 10.2147/dddt.s134518] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Paeoniflorin (PF) is an active monoterpene glycoside extracted from Paeonia lactiflora Pall. PF has exhibited antitumor effects in various cancer types. However, the effects of PF in pancreatic cancer are largely unexplored. Here, we showed that PF suppressed growth of pancreatic cancer cell lines Capan-1 and MIAPaCa-2 and profoundly sensitized these cells to X-ray irradiation. Through microarray analysis, we identified HTRA3, a tumor-suppressor candidate gene, as the most increased gene upon PF treatment in Capan-1 cells. Ectopic expression of HTRA3 led to reduced cell proliferation and increased expression of apoptotic protein Bax, suggesting a tumor suppressive role of HTRA3 in pancreatic cancer cells. Together, our results provide a set group of genetic proofs and biological proofs that PF inhibited pancreatic cancer growth by upregulating HTRA3.
Collapse
Affiliation(s)
- Yuejun Li
- The Third Department of Oncology, The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou, Hunan
| | - Lili Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong
| | - Ruili Qi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong
| | - Qian Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong
| | - Xinxin Xia
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xian Jiaotong University, Xian, Shanxi, People's Republic of China
| | - Haihui He
- The Third Department of Oncology, The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou, Hunan
| | - Jianshu Ren
- The Third Department of Oncology, The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou, Hunan
| | - Ouning Zhu
- The Third Department of Oncology, The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou, Hunan
| | - Debin Zhuo
- The Third Department of Oncology, The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou, Hunan
| |
Collapse
|
50
|
Sun B, Dai G, Bai Y, Zhang W, Zhu L, Chu J, Pan R, Ju W. Determination of Paeoniflorin in Rat Plasma by Ultra-high Performance Liquid Chromatography-Tandem Mass Spectrometry and its Application to a Pharmacokinetic Study. J Chromatogr Sci 2017; 55:1006-1012. [PMID: 28977364 DOI: 10.1093/chromsci/bmx066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 07/22/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Bingting Sun
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155, Hanzhong Road, Nanjing,China
| | - Guoliang Dai
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155, Hanzhong Road, Nanjing,China
| | - Yongtao Bai
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155, Hanzhong Road, Nanjing,China
| | - Weidong Zhang
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155, Hanzhong Road, Nanjing,China
| | - Lijing Zhu
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155, Hanzhong Road, Nanjing,China
| | - Jihong Chu
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155, Hanzhong Road, Nanjing,China
| | - Ronghua Pan
- Department of Nephrology, Liyang Hospital of Traditional Chinese Medicine, No. 121, Xihou Street, Liyang,
China
| | - Wenzheng Ju
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155, Hanzhong Road, Nanjing,China
| |
Collapse
|