1
|
Li J, Lu X, Wei L, Ye D, Lin J, Tang X, Cui K, Yu S, Xu Y, Liang X. PHD2 attenuates high-glucose-induced blood retinal barrier breakdown in human retinal microvascular endothelial cells by regulating the Hif-1α/VEGF pathway. Inflamm Res 2021; 71:69-79. [PMID: 34773469 DOI: 10.1007/s00011-021-01518-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE Diabetic macular edema (DME) is one of the most frequent causes of severe vision loss. The pathogenesis of DME is still not fully understood; however, it is hypothesized to result from breakdown of the blood-retinal barrier (BRB) due to retinal inflammation by vascular endothelial growth factor (VEGF) secretion under hyperglycemic conditions. In this investigation, we discovered that Prolyl-4-hydroxylase 2 (PHD2), an upstream regulator of hypoxia-inducible factor 1 (HIF-1) modulates VEGF expression and thus preserves BRB function in the mouse retina. MATERIALS AND METHODS Primary human retinal microvascular endothelial cells (hRMECs) were cultured in human endothelial serum-free growth medium and exposed to hyperglycemia. Changes in cell viability were investigated by an MTT assay. BRB function in each group was revealed by a paracellular permeability assay and trans-endothelial electrical resistance (TEER). Morphological changes in the BRB were investigated by immunofluorescence staining of occludin and zonula occludens-1 (ZO-1). The mRNA and protein levels of the tight junction proteins, PHD2, HIF-1α, and VEGF were measured by reverse transcription-quantitative PCR (RT-qPCR), western blot analysis and ELISA. RESULTS Under hyperglycemic conditions, the viability of hRMECs was decreased, and PHD2 expression was downregulated, accompanied by increased paracellular permeability and decreased trans-endothelial electrical resistance. Additionally, HIF-1α and VEGF expression levels were increased, whereas the expression levels of tight junction proteins, including occludin and ZO-1, were decreased and BRB function was compromised. The PHD2 activator R59949 (diacylglycerol kinase inhibitor II), altered these pathological changes, and the PHD2 inhibitor dimethyloxalylglycine (DMOG) resulted in the opposite effects. CONCLUSION These results demonstrated that PHD2 inhibited HIF-1 activity by inhibiting HIF-1α expression in hRMECs under hyperglycemic conditions, which led to the downregulation of the expression of the angiogenic factor VEGF, and thus helped to maintain the functions of hRMECs. Therefore, it is reasonable to propose that PHD2 could be a potential novel target for the treatment of DME or other diseases with a similar pathogenesis.
Collapse
Affiliation(s)
- Jia Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No.7 Jinsui Rd, Tianhe District, Guangzhou, Guangdong, People's Republic of China, 510030
| | - Xi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No.7 Jinsui Rd, Tianhe District, Guangzhou, Guangdong, People's Republic of China, 510030
| | - Liqing Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No.7 Jinsui Rd, Tianhe District, Guangzhou, Guangdong, People's Republic of China, 510030
- Eye Hospital of Wenzhou Medical University, Hangzhou Xihu Zhijiang Eye Hospital, No.7 Jinsui Rd, Hangzhou, Zhejiang, People's Republic of China, 310024
| | - Dan Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No.7 Jinsui Rd, Tianhe District, Guangzhou, Guangdong, People's Republic of China, 510030
| | - Jianqiang Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No.7 Jinsui Rd, Tianhe District, Guangzhou, Guangdong, People's Republic of China, 510030
| | - Xiaoyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No.7 Jinsui Rd, Tianhe District, Guangzhou, Guangdong, People's Republic of China, 510030
| | - Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No.7 Jinsui Rd, Tianhe District, Guangzhou, Guangdong, People's Republic of China, 510030
| | - Shanshan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No.7 Jinsui Rd, Tianhe District, Guangzhou, Guangdong, People's Republic of China, 510030
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No.7 Jinsui Rd, Tianhe District, Guangzhou, Guangdong, People's Republic of China, 510030.
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No.7 Jinsui Rd, Tianhe District, Guangzhou, Guangdong, People's Republic of China, 510030.
| |
Collapse
|
2
|
Shi X, Dong N, Qiu Q, Li S, Zhang J. Salidroside Prevents Hypoxia-Induced Human Retinal Microvascular Endothelial Cell Damage Via miR-138/ROBO4 Axis. Invest Ophthalmol Vis Sci 2021; 62:25. [PMID: 34269814 PMCID: PMC8297420 DOI: 10.1167/iovs.62.9.25] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Retinopathies are associated with the injury of retinal microvascular endothelial cells. Salidroside (SAL) is a medicinal supplement that has antioxidative and cytoprotective properties. We hypothesized that SAL might have a protective function in retinopathies. This research aims to explore the function and mechanism of SAL in hypoxia-induced retinal microvascular endothelial cell injury. Methods Human retinal microvascular endothelial cells (HRMECs) injury was induced by culturing under hypoxic condition. The function of SAL on HRMECs injury was investigated using cell counting kit-8, 5-ethynyl-2′-deoxyuridine (EdU) staining, flow cytometry, Western blotting, and enzyme linked immunosorbent assay. MicroRNA (miR)-138, roundabout 4 (ROBO4), and proteins in the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathways were examined using quantitative reverse transcription polymerase chain reaction or Western blotting. The target correlation was determined by dual-luciferase reporter analysis and RNA immunoprecipitation. Results Hypoxia resulted in proliferation inhibition, cycle arrest, apoptosis, inflammatory reaction, and oxidative stress in HRMECs. SAL attenuated hypoxia-induced HRMECs injury via increasing cell proliferation, and mitigating cycle arrest, apoptosis, inflammatory reaction, and oxidative stress. MiR-138 expression was enhanced by hypoxia, and decreased via SAL stimulation. MiR-138 upregulation reversed the influence of SAL on hypoxia-induced HRMECs injury. ROBO4 was targeted via miR-138. ROBO4 overexpression weakened the role of miR-138 in HRMECs injury. The PI3K/AKT/mTOR pathway was inactivated under hypoxic condition, and SAL increased the activation of PI3K/AKT/mTOR pathways by decreasing miR-138. Conclusions SAL protected against hypoxia-induced HRMECs injury through regulating miR-138/ROBO4 axis, indicating the protective potential of SAL in retinopathies.
Collapse
Affiliation(s)
- Xiaoling Shi
- Institute of Brain Diseases and Cognition, Medical College of Xiamen University, Xiamen, Fujian, China.,Affiliated Xiamen Eye Center, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Nuo Dong
- Affiliated Xiamen Eye Center, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Qi Qiu
- Institute of Brain Diseases and Cognition, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Shanhua Li
- Institute of Brain Diseases and Cognition, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Jiaxing Zhang
- Institute of Brain Diseases and Cognition, Medical College of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
3
|
Inada M, Xu H, Takeuchi M, Ito M, Chen M. Microglia increase tight-junction permeability in coordination with Müller cells under hypoxic condition in an in vitro model of inner blood-retinal barrier. Exp Eye Res 2021; 205:108490. [PMID: 33607076 DOI: 10.1016/j.exer.2021.108490] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/24/2021] [Accepted: 02/05/2021] [Indexed: 01/20/2023]
Abstract
Microglia and Müller cells (MCs) are believed to be critically involved in hypoxia-induced blood-retinal barrier (BRB) disruption, which is a major pathogenic factor of various retinopathies. However, the underlying mechanism remains poorly defined. The inner BRB (iBRB) is primarily formed of microvascular endothelial cells (ECs) with tight junction (TJ), which are surrounded and supported by retinal glial cells. We developed a novel in vitro iBRB model sheet by sandwiching Transwell membrane with layered mouse brain microvascular ECs (bEnd.3) and mouse retinal MCs (QMMuC-1) on each side of the membrane. Using this model, we tested the hypothesis that under hypoxic condition, activated microglia produce inflammatory cytokines such as interleukin (IL)-1β, which may promote vascular endothelial growth factor (VEGF) production from MCs, leading to TJ disruption. The iBRB model cell sheets were exposed to 1% oxygen for 6 h with or without mouse brain microglia (BV2) or IL-1β. TJ structure and function were examined by zonula occludens (ZO)-1 immunostaining and fluorescein isothiocyanate permeability assay, respectively. Relative gene expression of IL-1β in BV2 under normoxic and hypoxic conditions was examined by real-time reverse transcription-polymerase chain reaction. VEGF protein concentration in QMMuC-1 supernatants was measured by enzyme-linked immunosorbent assay. The bEnd.3 cell sheet incubated with BV2 in hypoxic condition or with IL-1β in normoxic condition showed abnormal localization of ZO-1 and aberrated barrier function. Under normoxic condition, EC-MC iBRB model cell sheet showed lower permeability than bEnd.3 cell sheet. Under hypoxic conditions, the barrier function of EC-MC iBRB model cell sheet was more deteriorated compared to bEnd.3 cell sheet. Under hypoxic condition, incubation of EC-MC iBRB model cell sheet with BV2 cells or IL-1β significantly increased barrier permeability, and hypoxia-treated BV2 cells expressed significantly higher levels of IL-1β mRNA. Incubation of QMMuC-1 with IL-1β increased VEGF production. These results suggest that under hypoxic condition, microglia are activated to release proinflammatory cytokines such as IL-1β that promote VEGF production from MCs, leading to disruption of iBRB function. Modulating microglia and MCs function may be a novel approach to treat hypoxia-induced retinal BRB dysfunction.
Collapse
Affiliation(s)
- Makoto Inada
- Department of Ophthalmology, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama, 359-0042, Japan; Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, United Kingdom
| | - Heping Xu
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, United Kingdom
| | - Masaru Takeuchi
- Department of Ophthalmology, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama, 359-0042, Japan
| | - Masataka Ito
- Department of Developmental Anatomy, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama, 359-0042, Japan.
| | - Mei Chen
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, United Kingdom.
| |
Collapse
|
4
|
Radioprotective Effects of Dermatan Sulfate in a Preclinical Model of Oral Mucositis-Targeting Inflammation, Hypoxia and Junction Proteins without Stimulating Proliferation. Int J Mol Sci 2018; 19:ijms19061684. [PMID: 29882770 PMCID: PMC6032103 DOI: 10.3390/ijms19061684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 12/25/2022] Open
Abstract
Oral mucositis is the most frequently occurring early side effect of head-and-neck cancer radiotherapy. Systemic dermatan sulfate (DS) treatment revealed a significant radioprotective potential in a preclinical model of oral mucositis. This study was initiated to elucidate the mechanistic effects of DS in the same model. Irradiation comprised daily fractionated irradiation (5 × 3 Gy/week) over two weeks, either alone (IR) or in combination with daily dermatan sulfate treatment of 4 mg/kg (IR + DS). Groups of mice (n = 5) were sacrificed every second day over the course of 14 days in both experimental arms, their tongues excised and evaluated. The response to irradiation with and without DS was analyzed on a morphological (cell numbers, epithelial thickness) as well as on a functional (proliferation and expression of inflammation, hypoxia and epithelial junction markers) level. The mucoprotective activity of DS can be attributed to a combination of various effects, comprising increased expression of epithelial junctions, reduced inflammation and reduced hypoxia. No DS-mediated effect on proliferation was observed. DS demonstrated a significant mucositis-ameliorating activity and could provide a promising strategy for mucositis treatment, based on targeting specific, radiation-induced, mucositis-associated signaling without stimulating proliferation.
Collapse
|
5
|
RETRACTED: Anti-angiogenic effect of Interleukin-26 in oxygen-induced retinopathy mice via inhibiting NFATc1-VEGF pathway. Biochem Biophys Res Commun 2018; 499:849-855. [PMID: 29621550 DOI: 10.1016/j.bbrc.2018.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/01/2018] [Indexed: 11/23/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy).
This article has been retracted at the request of authors.
The Journal received an expression of concern from a reader, which noted that:
“The problem is that there is no IL-26 gene in the mouse. They claim they bought the KO mouse and the mouse IL-26 protein but given that there is no mouse IL-26 gene, a purchase is not possible and in fact no such reagents are available. Furthermore they do reference and anti-IL-26 antibody but the spec sheet clearly states that it is only reactive with the human protein…., the Enzo Life Sciences online catalog does not have a listing for recombinant IL-26 of any kind.”
The authors apologize for their mistakes and have asked to retract the article.
Collapse
|