1
|
Hasser EK, Brody JA, Bartz TM, Thibord F, Li-Gao R, Kauko A, Wiggins KL, Teder-Laving M, Kim J, Munsch G, Haile HG, Deleuze JF, van Hylckama Vlieg A, Wolberg AS, Boland A, Morange PE, Kraft P, Lowenstein CJ, Emmerich J, Sitlani CM, Suchon P, Rosendaal FR, Niiranen T, Kabrhel C, Trégouët DA, Smith NL. Genome-wide investigation of exogenous female hormones, genetic variation, and venous thromboembolism risk. J Thromb Haemost 2024; 22:2261-2269. [PMID: 38782299 DOI: 10.1016/j.jtha.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Increased risk of venous thromboembolism (VTE) is a life-threatening side effect for users of oral contraceptives (OCs) or hormone therapy (HT). OBJECTIVES To investigate the potential for genetic predisposition to VTE in OC or HT users, we conducted a gene-by-environment case-only meta-analysis of genome-wide association studies (GWAS). METHODS Use or nonuse of OCs (7 studies) or HT (8 studies) at the time of the VTE event was determined by pharmacy records or self-report. A synergy index (SI) was modeled for each variant in each study and submultiplicative/supramultiplicative gene-by-environment interactions were estimated. The SI parameters were first meta-analyzed across OC and HT studies and subsequently meta-analyzed to obtain an overall estimate. The primary analysis was agnostic GWAS and interrogated all imputed genotypes using a P value threshold of <5.0 × 10-8; secondary analyses were candidate-based. RESULTS The VTE case-only OC meta-analysis included 2895 OC users and 6607 nonusers; the case-only HT meta-analysis included 2434 HT users and 12 793 nonusers. In primary GWAS meta-analyses, no variant reached genome-wide significance, but the smallest P value approached statistical significance: rs9386463 (P = 5.03 × 10-8). We tested associations for 138 candidate variants and identified 2 that exceeded statistical significance (0.05/138 = 3.62 × 10-4): F5 rs6025 (P = 1.87 × 10-5; SI, 1.29; previously observed) and F11 rs2036914 (P = 2.0 × 10-4; SI, 0.91; new observation). CONCLUSION The candidate variant approach to identify submultiplictive/supramultiplicative associations between genetic variation and OC and HT use identified a new association with common genetic variation in F11, while the agnostic interrogations did not yield new discoveries.
Collapse
Affiliation(s)
- Emily K Hasser
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Traci M Bartz
- Departments of Biostatistics and Medicine, University of Washington, Seattle, WA, USA
| | - Florian Thibord
- INSERM, Bordeaux Population Health Research Center, UMR 1219, University of Bordeaux, Bordeaux, France; Laboratory of Excellence on Medical Genomics (GENMED), Evry, France
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anni Kauko
- Department of Internal Medicine, University of Turku, Turku, Finland
| | - Kerri L Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Jihye Kim
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gaëlle Munsch
- INSERM, Bordeaux Population Health Research Center, UMR 1219, University of Bordeaux, Bordeaux, France
| | - Helen G Haile
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Jean-Francois Deleuze
- CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay, Evry, France; Centre D'Etude du Polymorphisme Humain, Fondation Jean Dausset, Paris, France; Laboratory of Excellence on Medical Genomics (GENMED), Evry, France
| | | | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anne Boland
- CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay, Evry, France; Laboratory of Excellence on Medical Genomics (GENMED), Evry, France
| | - Pierre-Emmanuel Morange
- Hematology Laboratory, La Timone University Hospital of Marseille, Marseille, France; Centre de recherche en CardioVasculaire et Nutrition, INSERM, INRAE, Aix-Marseille University, Marseille, France
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Joseph Emmerich
- Department of Vascular Medicine, Saint-Joseph Hospital Group, University of Paris Cité, Paris, France; UMR1153, INSERM Centre for Research in Epidemiology and Statistics (CRESS), Paris, France
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Pierre Suchon
- Hematology Laboratory, La Timone University Hospital of Marseille, Marseille, France; Centre de recherche en CardioVasculaire et Nutrition, INSERM, INRAE, Aix-Marseille University, Marseille, France
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Teemu Niiranen
- Department of Internal Medicine, University of Turku, Turku, Finland; Department of Internal Medicine, Division of Medicine, Turku University Hospital, Turku, Finland; Department of Public Health Solutions, Finish Institute of Health and Welfare, Helsinki, Finland
| | - Christopher Kabrhel
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Emergency Medicine, Harvard Medical School, Boston, MA, USA
| | - David-Alexandre Trégouët
- INSERM, Bordeaux Population Health Research Center, UMR 1219, University of Bordeaux, Bordeaux, France; Laboratory of Excellence on Medical Genomics (GENMED), Evry, France
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, WA, USA; Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA, USA; Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA, USA.
| |
Collapse
|
2
|
Zhou Y, Ling T, Shi W. Current state of signaling pathways associated with the pathogenesis of idiopathic pulmonary fibrosis. Respir Res 2024; 25:245. [PMID: 38886743 PMCID: PMC11184855 DOI: 10.1186/s12931-024-02878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) represents a chronic and progressive pulmonary disorder distinguished by a notable mortality rate. Despite the elusive nature of the pathogenic mechanisms, several signaling pathways have been elucidated for their pivotal roles in the progression of this ailment. This manuscript aims to comprehensively review the existing literature on the signaling pathways linked to the pathogenesis of IPF, both within national and international contexts. The objective is to enhance the comprehension of the pathogenic mechanisms underlying IPF and offer a scholarly foundation for the advancement of more efficacious therapeutic strategies, thereby fostering research and clinical practices within this domain.
Collapse
Affiliation(s)
- Yang Zhou
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, China
| | - Tingting Ling
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, China
| | - Weihong Shi
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, China.
| |
Collapse
|
3
|
Ma Q, Yang Y, Chen S, Cheng H, Gong P, Hao J. Ribosomal protein S6 kinase 2 (RPS6KB2) is a potential immunotherapeutic target for cancer that upregulates proinflammatory cytokines. Mol Biol Rep 2024; 51:229. [PMID: 38281249 DOI: 10.1007/s11033-023-09134-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/08/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Cancer is still a leading cause of mortality. Over the years, cancer therapy has undergone significant advances driven by advancements in science and technology. A promising area of drug discovery in this field involves the development of therapeutic targets for cancer treatment. The urgent need to identify new pharmacological targets arises from the impact of tumor resistance on the effectiveness of current medications. Specifically, the RPS6KB2 gene on chromosome 11 has been implicated in cell cycle regulation and exhibits higher expression levels in tumor tissue. Given this association, there is a potential for this gene to serve as a target for cancer treatment. METHODS We conducted an analysis using the GTEx, TCGA, and CCLE databases to explore the relationship between RPS6KB2 and immune infiltration, the tumor microenvironment (TME), microsatellite instability (MSI), and more. Cell proliferation was assessed using EDU detection, while cell invasion and migration were evaluated via wound healing and Transwell assays. Additionally, western blot analysis was employed to measure expression of Bax, Bcl-2, MMP2, MMP9, PCNA, and proinflammatory factors. RESULTS Through data analysis and molecular biology methods, our study carefully examined the potential role of RPS6KB2 in cancer therapy. The data revealed that RPS6KB2 is aberrantly expressed in most cancers and is associated with poor prognosis. Further analysis indicated its involvement in cancer cell apoptosis and migration, as well as its role in cancer immune processes. We validated the significance of RPS6KB2 in hepatocellular carcinoma (HCC), highlighting its capacity to upregulate proinflammatory cytokines. CONCLUSION Our research indicates that RPS6KB2 is a prognostic biomarker associated with immune infiltration in cancer that can affect antitumor immunity by increasing secretion of proinflammatory factors, providing a potential drug target for cancer treatment.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yipin Yang
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Shuwen Chen
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Hao Cheng
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Peng Gong
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Jiqing Hao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Casanova NG, Camp SM, Gonzalez-Garay ML, Batai K, Garman L, Montgomery CG, Ellis N, Kittles R, Bime C, Hsu AP, Holland S, Lussier YA, Karnes J, Sweiss N, Maier LA, Koth L, Moller DR, Kaminski N, Garcia JGN. Examination of eQTL Polymorphisms Associated with Increased Risk of Progressive Complicated Sarcoidosis in European and African Descent Subjects. EUROPEAN JOURNAL OF RESPIRATORY MEDICINE 2023; 5:359-371. [PMID: 38390497 PMCID: PMC10883688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Background A limited pool of SNPs are linked to the development and severity of sarcoidosis, a systemic granulomatous inflammatory disease. By integrating genome-wide association studies (GWAS) data and expression quantitative trait loci (eQTL) single nuclear polymorphisms (SNPs), we aimed to identify novel sarcoidosis SNPs potentially influencing the development of complicated sarcoidosis. Methods A GWAS (Affymetrix 6.0) involving 209 African-American (AA) and 193 European-American (EA, 75 and 51 complicated cases respectively) and publicly-available GWAS controls (GAIN) was utilized. Annotation of multi-tissue eQTL SNPs present on the GWAS created a pool of ~46,000 eQTL SNPs examined for association with sarcoidosis risk and severity (Logistic Model, Plink). The most significant EA/AA eQTL SNPs were genotyped in a sarcoidosis validation cohort (n=1034) and cross-validated in two independent GWAS cohorts. Results No single GWAS SNP achieved significance (p<1x10-8), however, analysis of the eQTL/GWAS SNP pool yielded 621 eQTL SNPs (p<10-4) associated with 730 genes that highlighted innate immunity, MHC Class II, and allograft rejection pathways with multiple SNPs validated in an independent sarcoidosis cohort (105 SNPs analyzed) (NOTCH4, IL27RA, BTNL2, ANXA11, HLA-DRB1). These studies confirm significant association of eQTL/GWAS SNPs in EAs and AAs with sarcoidosis risk and severity (complicated sarcoidosis) involving HLA region and innate immunity. Conclusion Despite the challenge of deciphering the genetic basis for sarcoidosis risk/severity, these results suggest that integrated eQTL/GWAS approaches may identify novel variants/genes and support the contribution of dysregulated innate immune responses to sarcoidosis severity.
Collapse
Affiliation(s)
- Nancy G Casanova
- Department of Molecular Medicine, Univeristy of Florida, Scripps, Jupiter FL, USA
| | - Sara M Camp
- Center for Inflammation Science and Systems Medicine, University of Florida, Wertheim Scripps Research Institute, Jupiter FL, USA
| | - Manuel L Gonzalez-Garay
- Division of Health Equities, Department of Population Sciences, City of Hope, Duarte, California, USA
| | - Ken Batai
- Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Lori Garman
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | - Nathan Ellis
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Rick Kittles
- Division of Health Equities, Department of Population Sciences, City of Hope, Duarte, California, USA
| | - Christian Bime
- Department of Medicine University of Arizona, Tucson, AZ, USA
| | - Amy P Hsu
- National Institute of Allergy and Infectious Diseases. National Institutes of Health, USA
| | - Steven Holland
- National Institute of Allergy and Infectious Diseases. National Institutes of Health, USA
| | - Yves A Lussier
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA
| | - Jason Karnes
- Department of Pharmacology, University of Arizona, College of Pharmacy, Tucson, AZ, USA
| | - Nadera Sweiss
- Department of Medicine University of Illinois, Chicago, IL, USA
| | - Lisa A Maier
- Department of Medicine National Jewish Health, University of Colorado, Denver, CO, USA
| | - Laura Koth
- Department of Medicine University of California San Francisco, San Francisco, CA, US, USA
| | - David R Moller
- Department of Medicine Johns Hopkins University School of Medicine, Baltimore Maryland, USA
| | - Naftali Kaminski
- Department of Medicine Yale University School of Medicine, New Haven, CT, USA
| | - Joe G N Garcia
- Center for Inflammation Science and Systems Medicine, University of Florida, Wertheim Scripps Research Institute, Jupiter FL, USA
| |
Collapse
|
5
|
Non-coding RNA in idiopathic interstitial pneumonia and Covid-19 pulmonary fibrosis. Mol Biol Rep 2022; 49:11535-11546. [PMID: 36097114 PMCID: PMC9467421 DOI: 10.1007/s11033-022-07820-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 12/02/2022]
Abstract
Pulmonary fibrosis is the key feature of majority of idiopathic interstitial pneumonias (IIPs) as well as many patients with post-COVID-19. The pathogenesis of pulmonary fibrosis is a complex molecular process that involves myriad of cells, proteins, genes, and regulatory elements. The non-coding RNA mainly miRNA, circRNA, and lncRNA are among the key regulators of many protein coding genes and pathways that are involved in pulmonary fibrosis. Identification and molecular mechanisms, by which these non-coding RNA molecules work, are crucial to understand the molecular basis of the disease. Additionally, elucidation of molecular mechanism could also help in deciphering a potential diagnostic/prognostic marker as well as therapeutic targets for IIPs and post-COVID-19 pulmonary fibrosis. In this review, we have provided the latest findings and discussed the role of these regulatory elements in the pathogenesis of pulmonary fibrosis associated with Idiopathic Interstitial Pneumonia and Covid-19.
Collapse
|
6
|
Ma H, Liu S, Li S, Xia Y. Targeting Growth Factor and Cytokine Pathways to Treat Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 13:918771. [PMID: 35721111 PMCID: PMC9204157 DOI: 10.3389/fphar.2022.918771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease of unknown origin that usually results in death from secondary respiratory failure within 2–5 years of diagnosis. Recent studies have identified key roles of cytokine and growth factor pathways in the pathogenesis of IPF. Although there have been numerous clinical trials of drugs investigating their efficacy in the treatment of IPF, only Pirfenidone and Nintedanib have been approved by the FDA. However, they have some major limitations, such as insufficient efficacy, undesired side effects and poor pharmacokinetic properties. To give more insights into the discovery of potential targets for the treatment of IPF, this review provides an overview of cytokines, growth factors and their signaling pathways in IPF, which have important implications for fully exploiting the therapeutic potential of targeting cytokine and growth factor pathways. Advances in the field of cytokine and growth factor pathways will help slow disease progression, prolong life, and improve the quality of life for IPF patients in the future.
Collapse
Affiliation(s)
- Hongbo Ma
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Shengming Liu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Shanrui Li
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yong Xia
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| |
Collapse
|
7
|
Mustafin RN. Molecular genetics of idiopathic pulmonary fibrosis. Vavilovskii Zhurnal Genet Selektsii 2022; 26:308-318. [PMID: 35795226 PMCID: PMC9170936 DOI: 10.18699/vjgb-22-37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/14/2021] [Accepted: 01/13/2022] [Indexed: 11/19/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe progressive interstitial lung disease with a prevalence of 2 to 29 per 100,000 of the world’s population. Aging is a significant risk factor for IPF, and the mechanisms of aging (telomere depletion, genomic instability, mitochondrial dysfunction, loss of proteostasis) are involved in the pathogenesis of IPF. The pathogenesis of IPF consists of TGF-β activation, epithelial-mesenchymal transition, and SIRT7 expression decrease. Genetic studies have shown a role of mutations and polymorphisms in mucin genes (MUC5B), in the genes responsible for the integrity of telomeres (TERC, TERC, TINF2, DKC1, RTEL1, PARN), in surfactant-related genes (SFTPC, SFTPCA, SFTPA2, ABCA3, SP-A2), immune system genes (IL1RN, TOLLIP), and haplotypes of HLA genes (DRB1*15:01, DQB1*06:02) in IPF pathogenesis. The investigation of the influence of reversible epigenetic factors on the development of the disease, which can be corrected by targeted therapy, shows promise. Among them, an association of a number of specific microRNAs and long noncoding RNAs was revealed with IPF. Therefore, dysregulation of transposons, which serve as key sources of noncoding RNA and affect mechanisms of aging, may serve as a driver for IPF development. This is due to the fact that pathological activation of transposons leads to violation of the regulation of genes, in the epigenetic control of which microRNA originating from these transposons are involved (due to the complementarity of nucleotide sequences). Analysis of the MDTE database (miRNAs derived from Transposable Elements) allowed the detection of 12 different miRNAs derived in evolution
from transposons and associated with IPF (miR-31, miR-302, miR-326, miR-335, miR-340, miR-374, miR-487, miR-493,
miR-495, miR-630, miR-708, miR-1343). We described the relationship of transposons with TGF-β, sirtuins and
telomeres, dysfunction of which is involved in the pathogenesis of IPF. New data on IPF epigenetic mechanisms can
become the basis for improving results of targeted therapy of the disease using noncoding RNAs.
Collapse
|
8
|
LncRNA CTD-2528L19.6 prevents the progression of IPF by alleviating fibroblast activation. Cell Death Dis 2021; 12:600. [PMID: 34112765 PMCID: PMC8192779 DOI: 10.1038/s41419-021-03884-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as critical factors for regulating multiple biological processes during organ fibrosis. However, the mechanism of lncRNAs in idiopathic pulmonary fibrosis (IPF) remains incompletely understood. In the present study, two sets of lncRNAs were defined: IPF pathogenic lncRNAs and IPF progression lncRNAs. IPF pathogenic and progression lncRNAs-mRNAs co-expression networks were constructed to identify essential lncRNAs. Network analysis revealed a key lncRNA CTD-2528L19.6, which was up-regulated in early-stage IPF compared to normal lung tissue, and subsequently down-regulated during advanced-stage IPF. CTD-2528L19.6 was indicated to regulate fibroblast activation in IPF progression by mediating the expression of fibrosis related genes LRRC8C, DDIT4, THBS1, S100A8 and TLR7 et al. Further studies showed that silencing of CTD-2528L19.6 increases the expression of Fn1 and Collagen I both at mRNA and protein levels, promoted the transition of fibroblasts into myofibroblasts and accelerated the migration and proliferation of MRC-5 cells. In contrast, CTD-2528L19.6 overexpression alleviated fibroblast activation in MRC-5 cells induced by TGF-β1. LncRNA CTD-2528L19.6 inhibited fibroblast activation through regulating the expression of LRRC8C in vitro assays. Our results suggest that CTD-2528L19.6 may prevent the progression of IPF from early-stage and alleviate fibroblast activation during the advanced-stage of IPF. Thus, exploring the regulatory effect of lncRNA CTD-2528L19.6 may provide new sights for the prevention and treatment of IPF.
Collapse
|
9
|
Zhang H, Song M, Guo J, Ma J, Qiu M, Yang Z. The function of non-coding RNAs in idiopathic pulmonary fibrosis. Open Med (Wars) 2021; 16:481-490. [PMID: 33817326 PMCID: PMC8005778 DOI: 10.1515/med-2021-0231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Non-coding ribonucleic acids (ncRNAs) are a diverse group of RNA molecules that are mostly not translated into proteins after transcription, including long non-coding RNAs (lncRNAs) with longer than 200 nucleotides non-coding transcripts and microRNAs (miRNAs) which are only 18–22 nucleotides. As families of evolutionarily conserved ncRNAs, lncRNAs activate and repress genes via a variety of mechanisms at both transcriptional and translational levels, whereas miRNAs regulate protein-coding gene expression mainly through mRNA silencing. ncRNAs are widely involved in biological functions, such as proliferation, differentiation, migration, angiogenesis, and apoptosis. Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with a poor prognosis. The etiology of IPF is still unclear. Increasing evidence shows the close correlations between the development of IPF and aberrant expressions of ncRNAs than thought previously. In this study, we provide an overview of ncRNAs participated in pathobiology of IPF, seeking the early diagnosis biomarker and aiming for potential therapeutic applications for IPF.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Cardiovascular Diseases, First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China
| | - Miao Song
- Department of Cardiovascular Diseases, First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China.,Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Jianing Guo
- Comfort Medical Center, Central hospital of Ulanqab, Ulanqab, Inner Mongolia, China
| | - Junbing Ma
- Department of Cardiovascular Diseases, First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China
| | - Min Qiu
- Department of Cardiovascular Diseases, First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China.,Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Zheng Yang
- Department of Cardiovascular Diseases, First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China
| |
Collapse
|
10
|
El-Desoky MM, Hewidy AA, Fouda AM, Hisham FA. Telomeric repeat-containing ribonucleic acid (TERRA) expression in patients with idiopathic pulmonary fibrosis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00141-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Idiopathic pulmonary fibrosis (IPF) represents a chronic disease with a progressive course. It is characterized by excessive lung scarring that ultimately contributes to irreversible lung function reduction. Interestingly, a type of long non-coding RNA termed as telomeric repeat-containing RNA (TERRA) is linked to fibrosis pathophysiology, including IPF. In this study, the expression profile of TERRA was investigated in IPF patients on radiological diagnosis [unusual interstitial pattern (UIP) in high-resolution computed tomography (HRCT)] to evaluate whether it could be employed as a reliable diagnostic biomarker.
Results
TERRA expression level was significantly higher in IPF patients over healthy controls. The expression level was significantly inversely correlated with the percentage of forced vital capacity predicted (FVC% predicted). By contrast, it was significantly directly correlated with HRCT reticular extent score.
Conclusion
TERRA expression is an essential biomarker in peripheral blood of IPF patients, providing a valuable non-invasive tool for IPF diagnosis. Moreover, TERRA expression is strongly correlated with UIP in HRCT reticular extent score.
Collapse
|
11
|
Zhang S, Chen H, Yue D, Blackwell TS, Lv C, Song X. Long non-coding RNAs: Promising new targets in pulmonary fibrosis. J Gene Med 2021; 23:e3318. [PMID: 33533071 PMCID: PMC7988597 DOI: 10.1002/jgm.3318] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Pulmonary fibrosis is characterized by progressive and irreversible scarring in the lungs with poor prognosis and treatment. It is caused by various factors, including environmental and occupational exposures, and some rheumatic immune diseases. Even the rapid global spread of the COVID‐19 pandemic can also cause pulmonary fibrosis with a high probability. Functions attributed to long non‐coding RNAs (lncRNAs) make them highly attractive diagnostic and therapeutic targets in fibroproliferative diseases. Therefore, an understanding of the specific mechanisms by which lncRNAs regulate pulmonary fibrotic pathogenesis is urgently needed to identify new possibilities for therapy. In this review, we focus on the molecular mechanisms and implications of lncRNAs targeted protein‐coding and non‐coding genes during pulmonary fibrogenesis, and systematically analyze the communication of lncRNAs with various types of RNAs, including microRNA, circular RNA and mRNA. Finally, we propose the potential approach of lncRNA‐based diagnosis and therapy for pulmonary fibrosis. We hope that understanding these interactions between protein‐coding and non‐coding genes will contribute to the development of lncRNA‐based clinical applications for pulmonary fibrosis.
Collapse
Affiliation(s)
- Songzi Zhang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China.,Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou Medical University, Binzhou, China
| | - Hongbin Chen
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Dayong Yue
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | | | - Changjun Lv
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China.,Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou Medical University, Binzhou, China
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China.,Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou Medical University, Binzhou, China
| |
Collapse
|
12
|
Liu Y, Lu FA, Wang L, Wang YF, Wu CF. Long non‑coding RNA NEAT1 promotes pulmonary fibrosis by regulating the microRNA‑455‑3p/SMAD3 axis. Mol Med Rep 2021; 23:218. [PMID: 33495816 PMCID: PMC7845585 DOI: 10.3892/mmr.2021.11857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/17/2020] [Indexed: 12/29/2022] Open
Abstract
Pulmonary fibrosis is an excessive repair response to tissue damage, triggering hyperplasia of fibrotic connective tissues; however, there is no effective treatment in a clinical setting. The purpose of the present study was to investigate the roles of long non-coding RNA nuclear enriched abundant transcript 1 (NEAT1) and microRNA-455-3p (miR-455-3p) were investigated in pulmonary fibrosis. In this study, the mRNA expression levels of NEAT1, miR-455-3p and SMAD3 in the HPAEpiC alveolar and BEAS-2B bronchial epithelial cell lines were determined using reverse transcription-quantitative PCR, while the markers of epithelial-mesenchymal transformation (EMT) and collagen production were determined using western blot analysis. A wound healing assay was performed to evaluate the migratory ability of the HPAEpiC and BEAS-2B cell lines. The interactions between NEAT1 and miR-455-3p or SMAD3 and miR-455-3p were validated using a luciferase reporter gene assay. The results showed that the mRNA expression levels of NEAT1 and SMAD3 were upregulated in the TGF-β1-treated HPAEpiC and BEAS-2B cell lines, while the mRNA expression level of miR-455-3p was significantly decreased. In addition, silencing NEAT1 effectively alleviated the migratory ability, EMT and collagen generation of the epithelial cells. Following these experiments, NEAT1 was identified as a sponge for miR-455-3p, and SMAD3 was a target gene of miR-455-3p. NEAT1 downregulation or miR-455-3p mimic inhibited the migratory ability, EMT and collagen production of the epithelial cells; however, the effects were reversed by the overexpression of SMAD3. Furthermore, NEAT1 knockdown reduced the expression level of SMAD3 by increasing the expression level of miR-455-3p to further inhibit the migratory ability, EMT and collagen production of epithelial cells.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Rheumatology, Liuzhou People's Hospital, Liuzhou, Guangxi Autonomous Region 545006, P.R. China
| | - Fu-Ai Lu
- Department of Rheumatology, First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, P.R. China
| | - Le Wang
- Department of Rheumatology, Liuzhou People's Hospital, Liuzhou, Guangxi Autonomous Region 545006, P.R. China
| | - Yong-Fu Wang
- Department of Rheumatology, First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, P.R. China
| | - Chun-Feng Wu
- Department of Rheumatology, Liuzhou People's Hospital, Liuzhou, Guangxi Autonomous Region 545006, P.R. China
| |
Collapse
|
13
|
Wang Y, Xiao H, Zhao F, Li H, Gao R, Yan B, Ren J, Yang J. Decrypting the crosstalk of noncoding RNAs in the progression of IPF. Mol Biol Rep 2020; 47:3169-3179. [PMID: 32180083 DOI: 10.1007/s11033-020-05368-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/29/2020] [Indexed: 12/16/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an agnogenic, rare, and lethal disease, with high mortality and poor prognosis and a median survival time as short as 3 to 5 years after diagnosis. No effective therapeutic drugs are still not available not only in clinical practice, but also in preclinical phases. To better and deeper understand pulmonary fibrosis will provide more effective strategies for therapy. Mounting evidence suggests that noncoding RNAs (ncRNAs) and their interactions may contribute to lung fibrosis; however, the mechanisms underlying their roles are largely unknown. In this review, we systematically summarized the recent advances regarding the crucial roles of long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) and crosstalk among them in the development of IPF. The perspective for related genes was well highlighted. In summary, ncRNA and their interactions play a key regulatory part in the progression of IPF and are bound to provide us with new diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Yujuan Wang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Han Xiao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Fenglian Zhao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Han Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Rong Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Bingdi Yan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Jin Ren
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
14
|
Idiopathic Pulmonary Fibrosis: Pathogenesis and the Emerging Role of Long Non-Coding RNAs. Int J Mol Sci 2020; 21:ijms21020524. [PMID: 31947693 PMCID: PMC7013390 DOI: 10.3390/ijms21020524] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive chronic disease characterized by excessing scarring of the lungs leading to irreversible decline in lung function. The aetiology and pathogenesis of the disease are still unclear, although lung fibroblast and epithelial cell activation, as well as the secretion of fibrotic and inflammatory mediators, have been strongly associated with the development and progression of IPF. Significantly, long non-coding RNAs (lncRNAs) are emerging as modulators of multiple biological processes, although their function and mechanism of action in IPF is poorly understood. LncRNAs have been shown to be important regulators of several diseases and their aberrant expression has been linked to the pathophysiology of fibrosis including IPF. This review will provide an overview of this emerging role of lncRNAs in the development of IPF.
Collapse
|
15
|
Yang Z, Jiang S, Shang J, Jiang Y, Dai Y, Xu B, Yu Y, Liang Z, Yang Y. LncRNA: Shedding light on mechanisms and opportunities in fibrosis and aging. Ageing Res Rev 2019; 52:17-31. [PMID: 30954650 DOI: 10.1016/j.arr.2019.04.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/24/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
Fibrosis is universally observed in multiple aging-related diseases and progressions and is characterized by excess accumulation of the extracellular matrix. Fibrosis occurs in various human organs and eventually results in organ failure. Noncoding RNAs (ncRNAs) have emerged as essential regulators of cellular signaling and relevant human diseases. In particular, the enigmatic class of long noncoding RNAs (lncRNAs) is a kind of noncoding RNA that is longer than 200 nucleotides and does not possess protein coding ability. LncRNAs have been identified to exert both promotive and inhibitory effects on the multifaceted processes of fibrosis. A growing body of studies has revealed that lncRNAs are involved in fibrosis in various organs, including the liver, heart, lung, and kidney. As lncRNAs have been increasingly identified, they have become promising targets for anti-fibrosis therapies. This review systematically highlights the recent advances regarding the roles of lncRNAs in fibrosis and sheds light on the use of lncRNAs as a potential treatment for fibrosis.
Collapse
|
16
|
Xie X, Zhao J, Xie L, Wang H, Xiao Y, She Y, Ma L. Identification of differentially expressed proteins in the injured lung from zinc chloride smoke inhalation based on proteomics analysis. Respir Res 2019; 20:36. [PMID: 30770755 PMCID: PMC6377712 DOI: 10.1186/s12931-019-0995-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 02/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background Lung injury due to zinc chloride smoke inhalation is very common in military personnel and leads to a high incidence of pulmonary complications and mortality. The aim of this study was to uncover the underlying mechanisms of lung injury due to zinc chloride smoke inhalation using a rat model. Methods: Histopathology analysis of rat lungs after zinc chloride smoke inhalation was performed by using haematoxylin and eosin (H&E) and Mallory staining. A lung injury rat model of zinc chloride smoke inhalation (smoke inhalation for 1, 2, 7 and 14 days) was developed. First, isobaric tags for relative and absolute quantization (iTRAQ) and weighted gene co-expression network analysis (WGCNA) were used to identify important differentially expressed proteins. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to study the biological functions of differentially expressed proteins. Then, analysis of lung injury repair-related differentially expressed proteins in the early (day 1 and day 2) and middle-late stages (day 7 and day 14) of lung injury after smoke inhalation was performed, followed by the protein-protein interaction (PPI) analysis of these differentially expressed proteins. Finally, the injury repair-related proteins PARK7 and FABP5 were validated by immunohistochemistry and western blot analysis. Results Morphological changes were observed in the lung tissues after zinc chloride smoke inhalation. A total of 27 common differentially expressed proteins were obtained on days 1, 2, 7 and 14 after smoke inhalation. WGCNA showed that the turquoise module (which involved 909 proteins) was most associated with smoke inhalation time. Myl3, Ckm, Adrm1 and Igfbp7 were identified in the early stages of lung injury repair. Gapdh, Acly, Tnni2, Acta1, Actn3, Pygm, Eno3 and Tpi1 (hub proteins in the PPI network) were identified in the middle-late stages of lung injury repair. Eno3 and Tpi1 were both involved in the glycolysis/gluconeogenesis signalling pathway. The expression of PARK7 and FABP5 was validated and was consistent with the proteomics analysis. Conclusion The identified hub proteins and their related signalling pathways may play crucial roles in lung injury repair due to zinc chloride smoke inhalation.
Collapse
Affiliation(s)
- Xiaowei Xie
- Medical School of Chinese PLA, Medical School of Chinese PLA, Fuxing Road, Beijing, 100853, China
| | - Jingan Zhao
- Medical School of Chinese PLA, Medical School of Chinese PLA, Fuxing Road, Beijing, 100853, China
| | - Lixin Xie
- Medical School of Chinese PLA, Medical School of Chinese PLA, Fuxing Road, Beijing, 100853, China.
| | - Haiyan Wang
- Department of Respiratory, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Xiao
- Department of Respiratory, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yingjia She
- Department of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Lingyun Ma
- Department of Respiratory, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
17
|
Song X, Xu P, Meng C, Song C, Blackwell TS, Li R, Li H, Zhang J, Lv C. lncITPF Promotes Pulmonary Fibrosis by Targeting hnRNP-L Depending on Its Host Gene ITGBL1. Mol Ther 2018; 27:380-393. [PMID: 30528088 DOI: 10.1016/j.ymthe.2018.08.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/26/2018] [Accepted: 08/31/2018] [Indexed: 01/27/2023] Open
Abstract
The role of long non-coding RNA (lncRNA) in idiopathic pulmonary fibrosis (IPF) is poorly understood. We found a novel lncRNA-ITPF that was upregulated in IPF. Bioinformatics and in vitro translation verified that lncITPF is an actual lncRNA, and its conservation is in evolution. Northern blot and rapid amplification of complementary DNA ends were used to analyze the full-length sequence of lncITPF. RNA fluorescence in situ hybridization and nucleocytoplasmic separation demonstrated that lncITPF was mainly located in the nucleus. RNA sequencing, chromatin immunoprecipitation (ChIP)-qPCR, CRISPR-Cas9 technology, and promoter activity analysis showed that the fibrotic function of lncITPF depends on its host gene integrin β-like 1 (ITGBL1), but they did not share the same promoter and were not co-transcribed. Luciferase activity, pathway inhibitors, and ChIP-qPCR showed that smad2/3 binds to the lncITPF promoter, and TGF-β1-smad2/3 was the upstream inducer of the fibrotic pathway. Furthermore, RNA-protein pull-down, liquid chromatography-mass spectrometry (LC-MS), and protein-RNA immunoprecipitation showed that lncITPF regulated H3 and H4 histone acetylation in the ITGBL1 promoter by targeting heterogeneous nuclear ribonucleoprotein L. Finally, sh-lncITPF was used to evaluate the therapeutic effect of lncITPF. Clinical analysis showed that lncITPF is associated with the clinicopathological features of IPF patients. Our findings provide a therapeutic target or diagnostic biomarker for IPF.
Collapse
Affiliation(s)
- Xiaodong Song
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou 256602, China; Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Pan Xu
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou 256602, China
| | - Chao Meng
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou 256602, China
| | - Chenguang Song
- Department of Respiratory Medicine, Zouping Chinese Medicine Hospital, Binzhou 256602, China
| | | | - Rongrong Li
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou 256602, China
| | - Hongbo Li
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou 256602, China
| | - Jinjin Zhang
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou 256602, China; Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Changjun Lv
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou 256602, China; Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|