1
|
Yang L, Yi J, He W, Kong P, Xie Q, Jin Y, Xiong Z, Xia L. Death receptors 4/5 mediate tumour sensitivity to natural killer cell-mediated cytotoxicity in mismatch repair deficient colorectal cancer. Br J Cancer 2024; 131:334-346. [PMID: 38796599 PMCID: PMC11263562 DOI: 10.1038/s41416-024-02673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Identifying the target of natural killer (NK) cells in colorectal cancer (CRC) is critical for optimising the clinical use of NK cell-mediated immunotherapy. Mismatch repair deficiency (dMMR) is associated with high immune cell infiltration and MHC Class I defects. Whether dMMR CRC responses to NK cell therapy remains unclear. METHODS MLH1, DR4, and DR5 knockout cell lines were established using CRISPR-Cas9 system. NK92-MI or NK cell isolated from BABL/C mice were used as effector cells against tumour cells. Inflammatory cytokines secretion by CRC cells was assessed via cytokine analysis. NK-cell-deficient/proficient animal models were used to validate the NK cell sensitivity. RESULTS We observed that dMMR CRC cells were more sensitive to NK cell-mediated cytotoxicity than were mismatch-repair-proficient (pMMR) CRC cells. In dMMR CRC, Death receptor (DR)4/5 was upregulated and mediated sensitivity to NK cell-mediated cytotoxicity. DR4/5-mediated secretion of interleukin -12 sustained NK cell viability in dMMR CRC. NK cell depletion induced dMMR CRC tumour growth, and NK cell transfer inhibited lung metastasis of dMMR CRC with DR4/5 expression in vivo. TP53 upregulated DR4/DR5 expression in dMMR CRC. CONCLUSIONS dMMR associated with increased sensitivity to NK cell-mediated cytotoxicity in CRC. DR4/DR5 sensitise dMMR CRC to NK cell-mediated cytotoxicity.
Collapse
MESH Headings
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Animals
- Colorectal Neoplasms/pathology
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/immunology
- Mice
- Humans
- Cell Line, Tumor
- DNA Mismatch Repair
- Cytotoxicity, Immunologic
- Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics
- Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism
- MutL Protein Homolog 1/genetics
- MutL Protein Homolog 1/deficiency
- MutL Protein Homolog 1/metabolism
- Mice, Inbred BALB C
- Neoplastic Syndromes, Hereditary/genetics
- Neoplastic Syndromes, Hereditary/immunology
- Neoplastic Syndromes, Hereditary/pathology
- Brain Neoplasms
Collapse
Affiliation(s)
- Lin Yang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jiahong Yi
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wenzhuo He
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Pengfei Kong
- Department of Gastrointestinal, Fudan University Shanghai Cancer Center, Shang Hai, China
| | - Qiankun Xie
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yanan Jin
- The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-Sen University, ZhuHai, China
| | - Zhenchong Xiong
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Liangping Xia
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
2
|
Yue Y, Zi M, Feng J, Wang W, Ren Z, Wu C, Yang Z. Efficacy of nature killer cell combination chemotherapy for post-radical gastric cancer metastases: Case report. SAGE Open Med Case Rep 2024; 12:2050313X241254743. [PMID: 38803362 PMCID: PMC11129568 DOI: 10.1177/2050313x241254743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Nature killer cell therapy has shown strong efficacy in the field of oncology in recent years and has been applied to patients with metastases with the aim of improving the prognosis of advanced gastric cancer. A 59-year-old male with gastric adenocarcinoma with pancreatic metastasis (T4N0M1) who underwent radical surgery for gastric cancer with tumor metastasis was treated with oxaliplatin and tegafur combined with cellular reinfusion in stages. Computed tomograpy scan and serum tumor markers were monitored continuously after the treatment course. After five courses of combined treatment, the patient was in disease control with no significant side effects. At the last follow-up, the alpha fetoprotein had returned to its normal value with a poor display of low-density shadows in the body of the pancreas. Pancreatic cancer is insidious in origin and has a high mortality rate. The report provides clinical evidence for cell therapy of pancreatic metastatic cancer with improved quality of life.
Collapse
Affiliation(s)
- Yongting Yue
- North China University of Science and Technology, Tangshan, China
| | - Mengmeng Zi
- North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Jianing Feng
- North China University of Science and Technology, Tangshan, China
| | - Wenbang Wang
- North China University of Science and Technology, Tangshan, China
| | - Zhaoqi Ren
- Department of Transfusion Medicine, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Chuntao Wu
- North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Zhaoyong Yang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Geng S, Yu X, Yu S. Efficacy and safety of natural killer cells injection combined with XELOX chemotherapy in postoperative patients with stage III colorectal cancer in China: a prospective randomised controlled clinical trial study protocol. BMJ Open 2024; 14:e080377. [PMID: 38531576 DOI: 10.1136/bmjopen-2023-080377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second most frequently diagnosed cancer and the fifth leading cause of cancer-related death in China. However, resistance to multiple chemotherapeutics after surgery leads to failure of the main therapy to CRC. Natural killer (NK) cells are innate cytotoxic lymphocytes that exhibit strong cytotoxic activity against tumour cells. NK cell-based therapy, either alone or in combination with chemotherapy, has achieved favourable results and holds promise for addressing recurrence and metastasis in CRC patients after surgery. METHODS AND ANALYSIS This is a prospective, randomised controlled clinical trial to evaluate efficacy and safety of interleukin 2 activated NK cells injection combined with XELOX (capecitabine plus oxaliplatin)-based chemotherapy for postoperative CRC patients. Participants will be randomly divided into treatment group and control group, and every group includes 40 patients. The treatment group will also receive NK cells (5×109) with+XELOX-based chemotherapy, while the control group will receive only XELOX-based chemotherapy. This treatment will be repeated for eight cycles (6 months). The follow-up period lasts about 3 years, during which CEA, CA19-9, CA125, enhancement CT and colonoscopy will be conducted. The primary endpoints of this study are progression-free survival and overall survival, while the secondary endpoint is safety (number and severity of adverse events). Additionally, we aim to identify cancer stem cells in peripheral blood and predictive biomarkers (cytokines secreted by NK cells and activated markers of NK cells) that indicate patients who achieve an effective response. ETHICS AND DISSEMINATION The study has been approved by the Clinical Research Ethics Committee of our hospital (approval number 2023LLSC006) and the Chinese Clinical Trials. It will be conducted in accordance with the Declaration of Helsinki. Written informed consent will be obtained from all participants. The study findings will be submitted to peer-reviewed journals for publication. TRIAL REGISTRATION NUMBER Chinese Clinical Trials Registry (ChiCTR2300075861).
Collapse
Affiliation(s)
- Shan Geng
- Department of Endocrinology, The People's Hospital of Dazu Chongqing, Chongqing, China
| | - Xingrui Yu
- Department of Computer Science, Xiamen University, Xiamen, China
| | - Shaohong Yu
- Department of General Surgery, The People's Hospital of Dazu Chongqing, Chongqing, China
| |
Collapse
|
4
|
Zhang S, Yang R, Ouyang Y, Shen Y, Hu L, Xu C. Cancer stem cells: a target for overcoming therapeutic resistance and relapse. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0333. [PMID: 38164743 PMCID: PMC10845928 DOI: 10.20892/j.issn.2095-3941.2023.0333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Cancer stem cells (CSCs) are a small subset of cells in cancers that are thought to initiate tumorous transformation and promote metastasis, recurrence, and resistance to treatment. Growing evidence has revealed the existence of CSCs in various types of cancers and suggested that CSCs differentiate into diverse lineage cells that contribute to tumor progression. We may be able to overcome the limitations of cancer treatment with a comprehensive understanding of the biological features and mechanisms underlying therapeutic resistance in CSCs. This review provides an overview of the properties, biomarkers, and mechanisms of resistance shown by CSCs. Recent findings on metabolic features, especially fatty acid metabolism and ferroptosis in CSCs, are highlighted, along with promising targeting strategies. Targeting CSCs is a potential treatment plan to conquer cancer and prevent resistance and relapse in cancer treatment.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Rui Yang
- Department of Ultrasound in Medicine, Chengdu Wenjiang District People’s Hospital, Chengdu 611130, China
| | - Yujie Ouyang
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yang Shen
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- School of Pharmacy, Macau University of Science and Technology, Macau SAR 999078, China
| | - Lanlin Hu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Chuan Xu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
5
|
Guo F, Zhang Y, Bai L, Cui J. Natural killer cell therapy targeting cancer stem cells: Old wine in a new bottle. Cancer Lett 2023; 570:216328. [PMID: 37499742 DOI: 10.1016/j.canlet.2023.216328] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
A small proportion of cancer cells that have stem cell-like properties are known as cancer stem cells (CSCs). They can be used to identify malignant tumor phenotypes and patients with poor prognosis. Targeting these cells has been shown to improve the effectiveness of cancer therapies. Owing to the nature of CSCs, they are resistant to conventional treatment methods such as radio- and chemotherapy. Therefore, more effective anti-CSC therapies are required. Immunotherapy, including natural killer (NK) and T cell therapy, has demonstrated the ability to eliminate CSCs. NK cells have demonstrated superior anti-CSC capabilities compared to T cells in recognizing low levels of major histocompatibility complex (MHC) class I expression. However, CSC escape also occurs during NK cell therapy. It is important to determine CSC-specific immune evasion mechanisms and find out potential solutions to optimize NK cell function. Therefore, this review discusses promising strategies that can improve the efficiency of NK cell therapy in treating CSCs, and aims to provide a reference for future research.
Collapse
Affiliation(s)
- Feifei Guo
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Yi Zhang
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Ling Bai
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
6
|
Zhou Y, Ji X, Wang D, Guo Y, Zhao J, Yan W. Effect of silkworm pupae ( Bombyx mori) protein on colon cancer in nude mice: inhibition of tumor growth, oxidative stress and inflammatory response. Front Pharmacol 2023; 14:1138742. [PMID: 37538184 PMCID: PMC10394231 DOI: 10.3389/fphar.2023.1138742] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023] Open
Abstract
Silkworm pupa (bombyx mori) protein (SPP) is a potential therapeutic bioactive substance that has anti-tumor activity against breast, liver, and gastric cancers. The aim of this study was to investigate the antitumor effect of SPP on colon cancer nude mice. Using a subcutaneous tumor formation method, we validated the therapeutic effect of SPP on colon cancer nude mice in vivo. Results showed that SPP was cytotoxic to tumor cells. SPP could protect the liver of the nude mice by lowering hepatic oxidative stress and regulating serum inflammation levels by decreasing TNF-α and IL-2 levels while in-creasing INF-γ levels. In addition, diminished Ki-67 protein, enhanced cleaved caspase-3 protein, di-minished Vimentin, enhanced E-cadherin. These findings suggested that SPP's antitumor activity may be achieved by reducing inflammation, inhibiting tumor proliferation and metastasis, and inducing apoptosis in cancer cells. In the future, SPP could be used as an anticancer drug, potentially providing a new source of drugs for the treatment of colon cancer.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Xiaojiao Ji
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Yu Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Jian Zhao
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
| |
Collapse
|
7
|
Marayati R, Julson JR, Bownes LV, Quinn CH, Hutchins SC, Williams AP, Markert HR, Beierle AM, Stewart JE, Hjelmeland AB, Mroczek-Musulman E, Beierle EA. Metastatic human hepatoblastoma cells exhibit enhanced tumorigenicity, invasiveness and a stem cell-like phenotype. J Pediatr Surg 2022; 57:1018-1025. [PMID: 35300860 PMCID: PMC9119922 DOI: 10.1016/j.jpedsurg.2022.01.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND/PURPOSE Metastatic hepatoblastoma continues to pose a significant treatment challenge, primarily because the precise mechanisms involved in metastasis are not fully understood, making cell lines and preclinical models that depict the progression of disease and metastasis-related biology paramount. We aimed to generate and characterize a metastatic hepatoblastoma cell line to create a model for investigation of the molecular mechanisms associated with metastasis. MATERIALS/METHODS Using a murine model of serial tail vein injections of the human hepatoblastoma HuH6 cell line, non-invasive bioluminescence imaging, and dissociation of metastatic pulmonary lesions, we successfully established and characterized the metastatic human hepatoblastoma cell line, HLM_3. RESULTS The HLM_3 cells exhibited enhanced tumorigenicity and invasiveness, both in vitro and in vivo compared to the parent HuH6 cell line. Moreover, HLM_3 metastatic hepatoblastoma cells exhibited a stem cell-like phenotype and were more resistant to the standard chemotherapeutic cisplatin. CONCLUSION This newly described metastatic hepatoblastoma cell line offers a novel tool to study mechanisms of tumor metastasis and evaluate new therapeutic strategies for metastatic hepatoblastoma.
Collapse
Affiliation(s)
- Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Janet R Julson
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Laura V Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Sara C Hutchins
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Adele P Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Hooper R Markert
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Andee M Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Elizabeth Mroczek-Musulman
- Department of Pathology, The Children's Hospital of Alabama, Birmingham, AL 35233, United States of America
| | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America.
| |
Collapse
|
8
|
Fang F, Xie S, Chen M, Li Y, Yue J, Ma J, Shu X, He Y, Xiao W, Tian Z. Advances in NK cell production. Cell Mol Immunol 2022; 19:460-481. [PMID: 34983953 PMCID: PMC8975878 DOI: 10.1038/s41423-021-00808-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy based on natural killer (NK) cells is a promising approach for treating a variety of cancers. Unlike T cells, NK cells recognize target cells via a major histocompatibility complex (MHC)-independent mechanism and, without being sensitized, kill the cells directly. Several strategies for obtaining large quantities of NK cells with high purity and high cytotoxicity have been developed. These strategies include the use of cytokine-antibody fusions, feeder cells or membrane particles to stimulate the proliferation of NK cells and enhance their cytotoxicity. Various materials, including peripheral blood mononuclear cells (PBMCs), umbilical cord blood (UCB), induced pluripotent stem cells (iPSCs) and NK cell lines, have been used as sources to generate NK cells for immunotherapy. Moreover, genetic modification technologies to improve the proliferation of NK cells have also been developed to enhance the functions of NK cells. Here, we summarize the recent advances in expansion strategies with or without genetic manipulation of NK cells derived from various cellular sources. We also discuss the closed, automated and GMP-controlled large-scale expansion systems used for NK cells and possible future NK cell-based immunotherapy products.
Collapse
Affiliation(s)
- Fang Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Siqi Xie
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Minhua Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Yutong Li
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Jingjing Yue
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Jie Ma
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Xun Shu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Yongge He
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Weihua Xiao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China.
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| | - Zhigang Tian
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China.
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
9
|
Seki T, Shimizu Y, Ishii K, Takahama Y, Kato K, Yano T. NK Cells Can Preferentially Target Prostate Cancer Stem-like Cells via the TRAIL/DR5 Signaling Pathway. Biomolecules 2021; 11:1702. [PMID: 34827699 PMCID: PMC8615937 DOI: 10.3390/biom11111702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The occurrence of androgen-dependent prostate cancer mainly depends on prostate cancer stem cells. To reduce the risk of androgen-dependent prostate cancer, the direct elimination of prostate cancer stem cells is important, but an elimination strategy has not yet been established. A previous study showed that natural killer (NK) cells can preferentially target cancer stem cells in several solid tumors except prostate cancer. In this context, this study was undertaken to investigate if NK cells can selectively attack androgen-dependent prostate cancer stem cells. METHODS Prostate cancer stem-like cells were separated from an androgen-dependent prostate cancer cell line (LNCaP) using a three-dimensional culture system. LNCaP stem-like cells or LNCaP cells were co-cultured with human NK cells (KHYG-1) for 24-72 h, and cell viability was determined using the WST-8 method. The expression of each protein in the cell membrane was evaluated through FACS analysis, and mRNA levels were determined using real-time PCR. RESULTS KHYG-1 cells had more potent cytotoxicity against LNCaP stem-like cells than LNCaP cells, and the potency of the cytotoxicity was strongly related to the TRAIL/DR5 cell death pathway. CONCLUSION NK cells can preferentially target prostate cancer stem-like cells via the TRAIL/DR5 pathway.
Collapse
Affiliation(s)
- Taiga Seki
- Graduate School of Food and Nutritional Sciences, Toyo University, Gunma 347-0193, Japan; (T.S.); (K.I.); (Y.T.)
| | - Yui Shimizu
- Graduate School of Science and Engineering, Toyo University, Saitama 350-8555, Japan; (Y.S.); (K.K.)
| | - Kyota Ishii
- Graduate School of Food and Nutritional Sciences, Toyo University, Gunma 347-0193, Japan; (T.S.); (K.I.); (Y.T.)
| | - Yuzuki Takahama
- Graduate School of Food and Nutritional Sciences, Toyo University, Gunma 347-0193, Japan; (T.S.); (K.I.); (Y.T.)
| | - Kazunori Kato
- Graduate School of Science and Engineering, Toyo University, Saitama 350-8555, Japan; (Y.S.); (K.K.)
| | - Tomohiro Yano
- Research Institute of Life Innovation, Toyo University, Gunma 347-0193, Japan
| |
Collapse
|
10
|
Leivas A, Risueño RM, Guzmán A, Sánchez-Vega L, Pérez M, Megías D, Fernández L, Alonso R, Pérez-Martínez A, Rapado I, Martínez-López J. Natural killer cells efficiently target multiple myeloma clonogenic tumor cells. Cancer Immunol Immunother 2021; 70:2911-2924. [PMID: 33693963 PMCID: PMC8423695 DOI: 10.1007/s00262-021-02901-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
The multiple myeloma (MM) landscape has changed in the last few years, but most patients eventually relapse because current treatment modalities do not target clonogenic stem cells, which are drug-resistant and can self-renew. We hypothesized that side population (SP) cells represent myeloma clonogenic stem cells and, searching for new treatment strategies, analyzed the anti-myeloma activity of natural killer (NK) cells against clonogenic cells. Activated and expanded NK cells (NKAE) products were obtained by co-culturing NK cells from MM patients with K562-mb15-41BBL cell line and characterized by flow cytometry. Functional experiments against MM cells were performed by Eu-TDA release assays and methylcellulose clonogenic assays. Side population was detected by Dye Cycle Violet labeling and then characterized by flow cytometry and RNA-Seq. Self-renewal capacity was tested by clonogenic assays. Sorting of both kind of cells was performed for time-lapse microscopy experiments. SP cells exhibited self-renewal potential and overexpressed genes involved in stem cell metabolism. NK cells from MM patients exhibited dysregulation and had lower anti-tumor potential against clonogenic cells than healthy donors’ NK cells. Patients’ NK cells were activated and expanded. These cells recovered cytotoxic activity and could specifically destroy clonogenic myeloma cells. They also had a highly cytotoxic phenotype expressing NKG2D receptor. Blocking NKG2D receptor decreased NK cell activity against clonogenic myeloma cells, and activated NK cells were able to destroy SP cells, which expressed NKG2D ligands. SP cells could represent the stem cell compartment in MM. This is the first report describing NK cell activity against myeloma clonogenic cells.
Collapse
Affiliation(s)
- Alejandra Leivas
- Hematology Department, Hospital Universitario 12 de Octubre, Complutense University, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Center, Madrid, Spain
| | - Ruth M Risueño
- Leukemia Stem Cell Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Alma Guzmán
- Hematology Department, Hospital Universitario 12 de Octubre, Complutense University, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Laura Sánchez-Vega
- Hematology Department, Hospital Universitario 12 de Octubre, Complutense University, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Center, Madrid, Spain
| | - Manuel Pérez
- Confocal Microscopy Unit, Spanish National Cancer Research Center, Madrid, Spain
| | - Diego Megías
- Confocal Microscopy Unit, Spanish National Cancer Research Center, Madrid, Spain
| | - Lucía Fernández
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Center, Madrid, Spain
| | - Rafael Alonso
- Hematology Department, Hospital Universitario 12 de Octubre, Complutense University, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Inmaculada Rapado
- Hematology Department, Hospital Universitario 12 de Octubre, Complutense University, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Center, Madrid, Spain
| | - Joaquín Martínez-López
- Hematology Department, Hospital Universitario 12 de Octubre, Complutense University, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain. .,H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Center, Madrid, Spain.
| |
Collapse
|
11
|
Bartolomé RA, Pintado-Berninches L, Jaén M, de Los Ríos V, Imbaud JI, Casal JI. SOSTDC1 promotes invasion and liver metastasis in colorectal cancer via interaction with ALCAM/CD166. Oncogene 2020; 39:6085-6098. [PMID: 32801337 DOI: 10.1038/s41388-020-01419-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/24/2020] [Accepted: 08/04/2020] [Indexed: 12/23/2022]
Abstract
The mechanistic basis of liver metastasis in colorectal cancer remains poorly understood. We previously reported that the sclerostin domain containing-1 (SOSTDC1) protein is overexpressed in the secretome of metastatic colorectal cancer cells and can inhibit liver homing. Here, we investigated the mechanisms of SOSTDC1 for promoting invasiveness and progression of colorectal cancer liver metastasis. SOSTDC1 inhibition of BMP4 maintains the expression of cancer stem cell traits, including SOX2 and NANOG. Immunoprecipitation and mass spectrometry analyses reveal the association of SOSTDC1 with ALCAM/CD166, which was confirmed by confocal microscopy and competition ELISA. Interaction with ALCAM is mediated by the N-terminal region of SOSTDC1, which contains a sequence similar to the ALCAM-binding motif used by CD6. Knocking down either SOSTDC1 or ALCAM expression, or using blocking antibodies, reduces the invasive activity by inhibiting Src and PI3K/AKT signaling pathways. In addition, ALCAM interacts with the α2ß1 and α1ß1 integrins, providing a possible link to Src activation. Finally, inoculation of SOSTDC1-silenced metastatic cells increases mouse survival by inhibiting liver metastasis. In conclusion, SOSTDC1 promotes invasion and liver metastasis in colorectal cancer, by overcoming BMP4-specific antimetastatic signals and inducing ALCAM-mediated Src and PI3K/AKT activation. These experiments underscore the potential of SOSTDC1 as a therapeutic target in metastatic colorectal cancer.
Collapse
Affiliation(s)
- Rubén A Bartolomé
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039, Madrid, Spain.
| | - Laura Pintado-Berninches
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039, Madrid, Spain
| | - Marta Jaén
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039, Madrid, Spain
| | - Vivian de Los Ríos
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039, Madrid, Spain
| | | | - J Ignacio Casal
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039, Madrid, Spain.
| |
Collapse
|
12
|
Ruiu R, Tarone L, Rolih V, Barutello G, Bolli E, Riccardo F, Cavallo F, Conti L. Cancer stem cell immunology and immunotherapy: Harnessing the immune system against cancer's source. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 164:119-188. [PMID: 31383404 DOI: 10.1016/bs.pmbts.2019.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite recent advances in diagnosis and therapy having improved cancer outcome, many patients still do not respond to treatments, resulting in the progression or relapse of the disease, eventually impairing survival expectations. The limited efficacy of therapy is often attributable to its inability to affect cancer stem cells (CSCs), a small population of cells resistant to current radio- and chemo-therapies. CSCs are characterized by self-renewal and tumor-initiating capabilities, and function as a reservoir for the local and distant recurrence of the disease. Therefore, new therapeutic approaches able to effectively target and deplete CSCs are urgently needed. Immunotherapy is facing a renewed interest for its potential in cancer treatment, and the possibility of harnessing the immune system to target CSCs is being addressed by a new exciting research field. In this chapter, we discuss the cancer stem cell model and illustrate CSC biological and molecular properties, critically addressing theoretical and practical issues linked with their definition and study. We then review the existing literature regarding the immunological properties of CSCs and the complex interplay occurring between CSCs and immune cells. Finally, we present up-to-date studies on CSC immunotargeting and its potential future perspective. In conclusion, understanding the interplay between CSC biology and tumor immunology will provide a deeper understanding of the mechanisms that regulate CSC immunological properties. This will contribute to the design of new CSC-directed immunotherapeutic strategies with the potential of strongly improving cancer outcomes.
Collapse
Affiliation(s)
- Roberto Ruiu
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Valeria Rolih
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy.
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| |
Collapse
|
13
|
Voutsadakis IA. Expression and function of immune ligand-receptor pairs in NK cells and cancer stem cells: therapeutic implications. Cell Oncol (Dordr) 2018; 41:107-121. [PMID: 29470831 DOI: 10.1007/s13402-018-0373-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The interplay between the immune system and cancer cells has come to the forefront of cancer therapeutics, with novel immune blockade inhibitors being approved for the treatment of an increasing list of cancers. However, the majority of cancer patients still display or develop resistance to these promising drugs. It is possible that cancer stem cells (CSCs) are contributing to this therapeutic resistance. Although CSCs usually represent a small percentage of the total number of cancer cells, they are endowed with the ability of self-renewal and to produce differentiated progeny. Additionally, they have shown the capacity to establish tumors after transplantation to animals, even in small numbers. CSCs have also been found to be resistant to various anti-cancer therapies, including chemotherapy, radiation therapy and, more recently, immunotherapy. This is true despite the sensitivity of CSCs to lysis in vitro by natural killer (NK) cells, the main effector cells of the innate immune system. In this paper the expression of ligands specific for NK cells on CSCs, the intracellular network responsible for the expression of the NK cytotoxicity receptors, and the status of activation of NK cells in the tumor micro-environment are reviewed. The aim of this review is to highlight potential strategies for overcoming CSC immune resistance, thereby enhancing the efficacy of current and future anti-cancer therapies. THERAPEUTIC IMPLICATIONS NK cell activation in the tumor micro-environment through drugs neutralizing inhibitory immune receptors, and combined with other drugs harnessing the potential of the adaptive immune system, could be the most effective approach for attacking both stem cell and non-stem cell cancer populations.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste. Marie, ON, Canada. .,Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON, Canada. .,Division of Medical Oncology, Sault Area Hospital, 750 Great Northern Road, Sault Ste Marie, ON, P6B 0A8, Canada.
| |
Collapse
|
14
|
Espinoza JL, Minami M. Sensing Bacterial-Induced DNA Damaging Effects via Natural Killer Group 2 Member D Immune Receptor: From Dysbiosis to Autoimmunity and Carcinogenesis. Front Immunol 2018; 9:52. [PMID: 29422899 PMCID: PMC5788971 DOI: 10.3389/fimmu.2018.00052] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/09/2018] [Indexed: 12/23/2022] Open
Abstract
The human genome is constantly exposed to exogenous and endogenous DNA damaging factors that frequently cause DNA damages. Unless repaired, damaged DNA can result in deleterious mutations capable of causing malignant transformation. Accordingly, cells have developed an advanced and effective surveillance system, the DNA damage response (DDR) pathway, which maintains genetic integrity. In addition to well-defined outcomes, such as cell cycle arrest, apoptosis, and senescence, another consequence of DDR activation is the induction of natural killer group 2 member D ligands (NKG2D-Ls) on the surface of stressed cells. Consequently, NKG2D-Ls-expressing cells are recognized and eliminated by NKG2D receptor-expressing immune cells, including NK cells, and various subsets of T-cells. Recent pieces of evidence indicate that commensal microbial imbalance (known as dysbiosis) can trigger DDR activation in host cells, which may result in sustained inflammatory responses. Therefore, dysbiosis can be seen as an important source of DNA damage agents that may be partially responsible for the overexpression of NKG2D-Ls on intestinal epithelial cells that is frequently observed in patients with inflammatory bowel disease and other disorders associated with altered human microbiota, including the development of colorectal cancer. In this article, we discuss recent evidence that appears to link an altered human microbiota with autoimmunity and carcinogenesis via the activation of DDR signals and the induction of NKG2D-Ls in stressed cells.
Collapse
Affiliation(s)
- J Luis Espinoza
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Mika Minami
- Faculty of Medicine, Kindai University, Higashi-osaka, Japan
| |
Collapse
|
15
|
Li L, Li W, Wang C, Yan X, Wang Y, Niu C, Zhang X, Li M, Tian H, Yao C, Jin H, Han F, Xu D, Han W, Li D, Cui J. Adoptive transfer of natural killer cells in combination with chemotherapy improves outcomes of patients with locally advanced colon carcinoma. Cytotherapy 2017; 20:134-148. [PMID: 29056549 DOI: 10.1016/j.jcyt.2017.09.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND Despite the availability of multiple treatment strategies, patients with advanced colon carcinoma (CC) have poor prognoses. The aim of this study was to evaluate the efficacy and safety of natural killer (NK) cell therapy in combination with chemotherapy in patients with locally advanced CC. METHODS We assessed the cytotoxicity of NK cells to CC cells (CCs) and CC stem cells (CSCs) pre-treated with 5-fluorouracil or oxaliplatin in vitro. Then, an open-label cohort study was conducted with locally advanced CC patients who had received radical resection. Patients received either NK cell therapy combined with chemotherapy (NK cell group, 27 patients) or pure chemotherapy (control group, 33 patients). Progression-free survival (PFS), overall survival (OS) and adverse effects were investigated. RESULTS Chemotherapy sensitized CCs and CSCs to NK cell cytotoxicity through regulation of NK cell-activating/inhibitory receptor ligands. Poorly differentiated CCs were more susceptible to NK cells than well-differentiated ones. In the cohort study, the 5-year PFS and OS rates in the NK cell group were significantly higher than those in the control group (51.1% versus 35%, P= 0.044; 72.5% versus 51.6%, P= 0.037, respectively). Among patients with poorly differentiated carcinomas and low expression of human leukocyte antigen (HLA)-1, the median PFS in the NK cell group versus the control group was 23.5 versus 12.1 months (P= 0.0475) and 33.1 versus 18.5 months (P= 0.045), respectively. No significant adverse reactions were reported. CONCLUSION NK cell therapy in combination with chemotherapy in locally advanced CC prevented recurrence and prolonged survival with acceptable adverse effects, especially for poorly differentiated carcinomas.
Collapse
Affiliation(s)
- Lingyu Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Chang Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Xu Yan
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yizhuo Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Chao Niu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Xiaoying Zhang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Min Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Huimin Tian
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Cheng Yao
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Haofan Jin
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Fujun Han
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Dongsheng Xu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Han
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Dan Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
16
|
Ma J, Sun X, Guo T, Su H, Chen Q, Gong Z, Qi J, Zhao X. Interleukin-1 receptor antagonist inhibits angiogenesis via blockage IL-1α/PI3K/NF-κβ pathway in human colon cancer cell. Cancer Manag Res 2017; 9:481-493. [PMID: 29062241 PMCID: PMC5640395 DOI: 10.2147/cmar.s147699] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE This article investigates the relationship between cancer cells and stromal cells in carcinoma cell living microenvironment and elucidates the mechanism that interleukin-1 receptor antagonist (IL-1RA) blocks metastatic potential in colon cancer. METHODS Western blot and RT-PCR assay were used to determine the expression of hepatocyte growth factor (HGF) and IL-1α in colon carcinoma cells and stromal cells. Effect of IL-1RA and HGF on metastatic potential of colon cancer cells were examined by proliferation, invasion, and angiogenesis assays. The interactional role of IL-1RA and HGF were detected by ELISA assay, invasion, and angiogenesis assay making up a co-culture system consisting of stromal and colon cancer cells in cells living microenvironment. RESULTS IL-1α was expressed in human umbilical vein endothelial cells (HUVECs) and HT-29 and WiDr (colon cancer cell lines with higher liver metastatic potential). HGF was expressed only in fibroblast. HGF secretion from fibroblasts was significantly inhibited by IL-1RA (P<0.01). Furthermore, IL-1RA could significantly inhibit migration, proliferation, and angiogenesis of HUVECs (P<0.01). In the double co-culture system, there is a high liver metastatic potential of colon cancer cell line (HT-29) because it can secrete autocrine IL-1α, significantly enhanced angiogenesis compared with low liver metastatic cell line (CaCo-2) (P<0.01), which does not secrete IL-1α. On the contrary, blockage of autocrine IL-1α by IL-1RA might significantly decrease metastatic potential of colon carcinoma cells through downregulation of IL-1α/PI3K/NF-κB pathway. CONCLUSION IL-1 receptor antagonist (IL-1RA) is an important inhibitor in metastatic process of colon carcinoma cell. Based on the above results, we suggest that IL-1RA may be a promising new therapeutic approach in inhibiting colon cancer with IL-1-producing patients.
Collapse
Affiliation(s)
- Jiachi Ma
- Department of General Surgery, Gansu Provincial People’s Hospital, LanZhou
| | - Xiaowen Sun
- Department of Dermatology, The First Hospital of Tianshui, Tianshui
| | - Tiankang Guo
- Department of General Surgery, Gansu Provincial People’s Hospital, LanZhou
| | - He Su
- Department of General Surgery, Gansu Provincial People’s Hospital, LanZhou
| | - Quan Chen
- Department of General Surgery, Gansu Provincial People’s Hospital, LanZhou
| | - Zhenqiang Gong
- Ningxia Medical University Graduate School of Medical Sciences, Surgical Oncology, Yinchuan, People’s Republic of China
| | - Jianbo Qi
- Ningxia Medical University Graduate School of Medical Sciences, Surgical Oncology, Yinchuan, People’s Republic of China
| | - Xiaodan Zhao
- Ningxia Medical University Graduate School of Medical Sciences, Surgical Oncology, Yinchuan, People’s Republic of China
| |
Collapse
|
17
|
Lee HR, Son CH, Koh EK, Bae JH, Kang CD, Yang K, Park YS. Expansion of cytotoxic natural killer cells using irradiated autologous peripheral blood mononuclear cells and anti-CD16 antibody. Sci Rep 2017; 7:11075. [PMID: 28894091 PMCID: PMC5593981 DOI: 10.1038/s41598-017-09259-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023] Open
Abstract
Natural killer (NK) cells are considered a promising strategy for cancer treatment. Various methods for large-scale NK cell expansion have been developed, but they should guarantee that no viable cells are mixed with the expanded NK cells because most methods involve cancer cells or genetically modified cells as feeder cells. We used an anti-CD16 monoclonal antibody (mAb) and irradiated autologous peripheral blood mononuclear cells (PBMCs) (IrAPs) to provide a suitable environment (activating receptor-ligand interactions) for the NK cell expansion. This method more potently expanded NK cells, and the final product was composed of highly purified NK cells with lesser T-cell contamination. The expanded NK cells showed greater upregulation of various activation receptors, CD107a, and secreted larger amounts of interferon gamma. IrAPs expressed NKG2D ligands and CD48, and coengagement of CD16 with NKG2D and 2B4 caused potent NK cell activation and proliferation. The expanded NK cells were cytotoxic toward various cancer cells in vitro and in vivo. Moreover, irradiation or a chemotherapeutic drug further enhanced this antitumor effect. Therefore, we developed an effective in vitro culture method for large-scale expansion of highly purified cytotoxic NK cells with potent antitumor activity using IrAPs instead of cancer cell-based feeder cells.
Collapse
Affiliation(s)
- Hong-Rae Lee
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033, South Korea.,Department of Biochemistry, Pusan National University School of Medicine, Yangsan, 50612, South Korea
| | - Cheol-Hun Son
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033, South Korea
| | - Eun-Kyoung Koh
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033, South Korea
| | - Jae-Ho Bae
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, 50612, South Korea
| | - Chi-Dug Kang
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, 50612, South Korea
| | - Kwangmo Yang
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033, South Korea.
| | - You-Soo Park
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033, South Korea.
| |
Collapse
|
18
|
Ma JC, Sun XW, Su H, Chen Q, Guo TK, Li Y, Chen XC, Guo J, Gong ZQ, Zhao XD, Qi JB. Fibroblast-derived CXCL12/SDF-1α promotes CXCL6 secretion and co-operatively enhances metastatic potential through the PI3K/Akt/mTOR pathway in colon cancer. World J Gastroenterol 2017; 23:5167-5178. [PMID: 28811711 PMCID: PMC5537183 DOI: 10.3748/wjg.v23.i28.5167] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/13/2017] [Accepted: 05/09/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the underlying mechanism by which CXCL12 and CXCL6 influences the metastatic potential of colon cancer and internal relation of colon cancer and stromal cells.
METHODS Western blotting was used to detect the expression of CXCL12 and CXCL6 in colon cancer cells and stromal cells. The co-operative effects of CXCL12 and CXCL6 on proliferation and invasion of colon cancer cells and human umbilical vein endothelial cells (HUVECs) were determined by enzyme-linked immunosorbent assay, and proliferation and invasion assays. The angiogenesis of HUVECs through interaction with cancer cells and stromal cells was examined by angiogenesis assay. We eventually investigated activation of PI3K/Akt/mTOR signaling by CXCL12 involved in the metastatic process of colon cancer.
RESULTS CXCL12 was expressed in DLD-1 cancer cells and fibroblasts. The secretion level of CXCL6 by colon cancer cells and HUVECs were significantly promoted by fibroblasts derived from CXCL12. CXCL6 and CXCL2 could significantly enhance HUVEC proliferation and migration (P < 0.01). CXCL6 and CXCL2 enhanced angiogenesis by HUVECs when cultured with fibroblast cells and colon cancer cells (P < 0.01). CXCL12 also enhanced the invasion of colon cancer cells. Stromal cell-derived CXCL12 promoted the secretion level of CXCL6 and co-operatively promoted metastasis of colon carcinoma through activation of the PI3K/Akt/mTOR pathway.
CONCLUSION Fibroblast-derived CXCL12 enhanced the CXCL6 secretion of colon cancer cells, and both CXCL12 and CXCL6 co-operatively regulated the metastasis via the PI3K/Akt/mTOR signaling pathway. Blocking this pathway may be a potential anti-metastatic therapeutic target for patients with colon cancer.
Collapse
|
19
|
Khan MI, Czarnecka AM, Lewicki S, Helbrecht I, Brodaczewska K, Koch I, Zdanowski R, Król M, Szczylik C. Comparative Gene Expression Profiling of Primary and Metastatic Renal Cell Carcinoma Stem Cell-Like Cancer Cells. PLoS One 2016; 11:e0165718. [PMID: 27812180 PMCID: PMC5094751 DOI: 10.1371/journal.pone.0165718] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/17/2016] [Indexed: 11/22/2022] Open
Abstract
Background Recent advancement in cancer research has shown that tumors are highly heterogeneous, and multiple phenotypically different cell populations are found in a single tumor. Cancer development and tumor growth are driven by specific types of cells—stem cell-like cancer cells (SCLCCs)—which are also responsible for metastatic spread and drug resistance. This research was designed to verify the presence of SCLCCs in renal cell cancer cell lines. Subsequently, we aimed to characterize phenotype and cell biology of CD105+ cells, defined previously as renal cell carcinoma tumor-initiating cells. The main goal of the project was to describe the gene-expression profile of stem cell-like cancer cells of primary tumor and metastatic origin. Materials and Methods Real-time PCR analysis of stemness genes (Oct-4, Nanog and Ncam) and soft agar colony formation assay were conducted to check the stemness properties of renal cell carcinoma (RCC) cell lines. FACS analysis of CD105+ and CD133+ cells was performed on RCC cells. Isolated CD105+ cells were verified for expression of mesenchymal markers—CD24, CD146, CD90, CD73, CD44, CD11b, CD19, CD34, CD45, HLA-DR and alkaline phosphatase. Hanging drop assay was used to investigate CD105+ cell-cell cohesion. Analysis of free-floating 3D spheres formed by isolated CD105+ was verified, as spheres have been hypothesized to contain undifferentiated multipotent progenitor cells. Finally, CD105+ cells were sorted from primary (Caki-2) and metastatic (ACHN) renal cell cancer cell lines. Gene-expression profiling of sorted CD105+ cells was performed with Agilent’s human GE 4x44K v2 microarrays. Differentially expressed genes were further categorized into canonical pathways. Network analysis and downstream analysis were performed with Ingenuity Pathway Analysis. Results Metastatic RCC cell lines (ACHN and Caki-1) demonstrated higher colony-forming ability in comparison to primary RCC cell lines. Metastatic RCC cell lines harbor numerous CD105+ cell subpopulations and have higher expression of stemness genes (Oct-4 and Nanog). CD105+ cells adopt 3D grape-like floating structures under handing drop conditions. Sorted CD105+ cells are positive for human mesenchymal stem cell (MSC) markers CD90, CD73, CD44, CD146, and alkaline phosphatase activity, but not for CD24 and hematopoietic lineage markers CD34, CD11b, CD19, CD45, and HLA-DR. 1411 genes are commonly differentially expressed in CD105+ cells (both from primary [Caki-2] and metastatic RCC [ACHN] cells) in comparison to a healthy kidney epithelial cell line (ASE-5063). TGF-β, Wnt/β-catenine, epithelial-mesenchymal transition (EMT), Rap1 signaling, PI3K-Akt signaling, and Hippo signaling pathway are deregulated in CD105+ cells. TGFB1, ERBB2, and TNF are the most significant transcriptional regulators activated in these cells. Conclusions All together, RCC-CD105+ cells present stemlike properties. These stem cell-like cancer cells may represent a novel target for therapy. A unique gene-expression profile of CD105+ cells could be used as initial data for subsequent functional studies and drug design.
Collapse
Affiliation(s)
- Mohammed I. Khan
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland
- * E-mail: (MIK); (AMC)
| | - Anna M. Czarnecka
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland
- * E-mail: (MIK); (AMC)
| | - Sławomir Lewicki
- Department of Regenerative Medicine, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Igor Helbrecht
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, Warsaw University, Warsaw, Poland
| | - Klaudia Brodaczewska
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland
| | - Irena Koch
- Department of Pathomorphology, Institute of Mother and Child, Warsaw, Poland
| | - Robert Zdanowski
- Department of Regenerative Medicine, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Magdalena Król
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences—WULS, Warsaw, Poland
| | - Cezary Szczylik
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland
| |
Collapse
|
20
|
Kaseb HO, Fohrer-Ting H, Lewis DW, Lagasse E, Gollin SM. Identification, expansion and characterization of cancer cells with stem cell properties from head and neck squamous cell carcinomas. Exp Cell Res 2016; 348:75-86. [PMID: 27619333 DOI: 10.1016/j.yexcr.2016.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/15/2016] [Accepted: 09/07/2016] [Indexed: 12/23/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a major public health concern. Recent data indicate the presence of cancer stem cells (CSC) in many solid tumors, including HNSCC. Here, we assessed the stem cell (SC) characteristics, including cell surface markers, radioresistance, chromosomal instability, and in vivo tumorigenic capacity of CSC isolated from HNSCC patient specimens. We show that spheroid enrichment of CSC from early and short-term HNSCC cell cultures was associated with increased expression of CD44, CD133, SOX2 and BMI1 compared with normal oral epithelial cells. On immunophenotyping, five of 12 SC/CSC markers were homogenously expressed in all tumor cultures, while one of 12 was negative, four of 12 showed variable expression, and two of the 12 were expressed heterogeneously. We showed that irradiated CSCs survived and retained their self-renewal capacity across different ionizing radiation (IR) regimens. Fluorescence in situ hybridization (FISH) analyses of parental and clonally-derived tumor cells revealed different chromosome copy numbers from cell to cell, suggesting the presence of chromosomal instability in HNSCC CSC. Further, our in vitro and in vivo mouse engraftment studies suggest that CD44+/CD66- is a promising, consistent biomarker combination for HNSCC CSC. Overall, our findings add further evidence to the proposed role of HNSCC CSCs in therapeutic resistance.
Collapse
Affiliation(s)
- Hatem O Kaseb
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, 15261, United States of America.,Department of Clinical Pathology, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
| | - Helene Fohrer-Ting
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15261, United States of America.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA, 15219, United States of America
| | - Dale W Lewis
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, 15261, United States of America
| | - Eric Lagasse
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15261, United States of America.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA, 15219, United States of America
| | - Susanne M Gollin
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, 15261, United States of America.,University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15232, United States of America
| |
Collapse
|
21
|
Phototheranostics of CD44-positive cell populations in triple negative breast cancer. Sci Rep 2016; 6:27871. [PMID: 27302409 PMCID: PMC4908597 DOI: 10.1038/srep27871] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 05/26/2016] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most lethal subtypes of breast cancer that has limited treatment options. Its high rates of recurrence and metastasis have been associated, in part, with a subpopulation of breast cancer stem-like cells that are resistant to conventional therapies. A compendium of markers such as CD44high/CD24low, and increased expression of the ABCG2 transporter and increased aldehyde dehydrogenase (ALDH1), have been associated with these cells. We developed a CD44-targeted monoclonal antibody photosensitizer conjugate for combined fluorescent detection and photoimmunotherapy (PIT) of CD44 expressing cells in TNBC. The CD44-targeted conjugate demonstrated acute cell killing of breast cancer cells with high CD44 expression. This cell death process was dependent upon CD44-specific cell membrane binding combined with near-infrared irradiation. The conjugate selectively accumulated in CD44-positive tumors and caused dramatic tumor shrinkage and efficient elimination of CD44-positive cell populations following irradiation. This novel phototheranostic strategy provides a promising opportunity for the destruction of CD44-positive populations that include cancer stem-like cells, in locally advanced primary and metastatic TNBC.
Collapse
|
22
|
Yin T, Wang G, He S, Liu Q, Sun J, Wang Y. Human cancer cells with stem cell-like phenotype exhibit enhanced sensitivity to the cytotoxicity of IL-2 and IL-15 activated natural killer cells. Cell Immunol 2015; 300:41-5. [PMID: 26677760 DOI: 10.1016/j.cellimm.2015.11.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/29/2015] [Accepted: 11/29/2015] [Indexed: 02/05/2023]
Abstract
Tumors harbor a population of cancer stem cells (CSCs) which can drive tumor progression and therapeutical resistance. Nature killer (NK) cells are best known for their ability to directly recognize and kill malignant cells. However, the susceptibility of cancer stem cells to NK cells is not fully understood. Here we demonstrated that human CD44+CD24- breast CSCs were shown enhanced sensitivity to IL-2 and IL-15 activated NK cells. CD44+CD24- CSCs expressed higher levels of NKG2D ligands ULBP1, ULBP2 and MICA. Blockade assay showed that the sensitivity of CSCs to NK cells-mediated lysis was mainly dependent on NKG2D. Furthermore, redox oxygen species (ROS)-low tumor cells were more sensitive to NK cells. The presence of antioxidant enzymes inhibitor L-S,R-buthionine sulfoximine or H2O2 retarded the cytotoxicity of NK cells to CD44+CD24- CSCs. In addition, NK cells could readily target CD133+ colonal CSCs. Our findings provide novel targets for NK cells-based immunotherapy and are of great importance for translational medicine.
Collapse
Affiliation(s)
- Tao Yin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, PR China.
| | - Guoping Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, PR China
| | - Sisi He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, PR China
| | - Qin Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, PR China
| | - Jianhong Sun
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, PR China
| | - Yongsheng Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, PR China.
| |
Collapse
|
23
|
Li X, Zhao H, Gu J, Zheng L. Prognostic value of cancer stem cell marker CD133 expression in pancreatic ductal adenocarcinoma (PDAC): a systematic review and meta-analysis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:12084-12092. [PMID: 26722393 PMCID: PMC4680338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/23/2015] [Indexed: 06/05/2023]
Abstract
CD133 is one of the most commonly used markers of pancreatic cancer stem cells (CSCs), which are characterized by their ability for self-renewal and tumorigenicity. Although the expression of CD133 has been reported to correlate with poor prognosis of PDAC in most literatures, some controversies still exist. In this study, we aimed to investigate the correlation between CD133 expression and prognosis and clinicopathological features in PDAC. A search in the Medline, EMBASE and Chinese CNKI (China National Knowledge Infrastructure) database (up to 1 March 2015) was performed using the following keywords pancreatic cancer, CD133, AC133, prominin-1 etc. Data from eligible studies were extracted and included into meta-analysis using a random effects model. Outcomes included overall survival and various clinicopathological features. We performed a final analysis of 723 patients from 11 evaluable studies for prognostic value and 687 patients from 12 evaluable studies for clinicopathological features. Our study shows that the pooled hazard ratio (HR) of overexpression CD133 for overall survival in PDAC was 0.58 (95% confidence interval (CI): 0.49-0.67) by univariate analysis and 0.73 (95% CI: 0.52-1.03) by multivariate analysis. With respect to clinicopathological features, CD133 overexpression by immunohistochemistry (IHC) method was closely correlated with clinical TNM stage (TNM stage III+IV, OR=0.32, 95% CI: 0.19-0.54), tumor differentiation (poor differentiation, OR=0.56, 95% CI: 0.37-0.83), and lymph node metastasis (N1, 3.15, 95% CI: 1.56-6.36) in patients with PDAC. Our meta-analysis results suggest that CD133 is an efficient prognostic factor in PDAC. Overexpression of CD133 was significantly associated with clinical TNM stage, tumor differentiation and lymph node metastasis.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Oncology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong UniversityShanghai 200092, China
| | - Haojie Zhao
- Department of Oncology, Baoshan People HospitalYunan, China
| | - Jianchun Gu
- Department of Oncology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong UniversityShanghai 200092, China
| | - Leizhen Zheng
- Department of Oncology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong UniversityShanghai 200092, China
| |
Collapse
|