1
|
Katsaraki K, Kontos CK, Ardavanis-Loukeris G, Tzovaras AA, Sideris DC, Scorilas A. Exploring the time-dependent regulatory potential of microRNAs in breast cancer cells treated with proteasome inhibitors. Clin Transl Oncol 2024; 26:1256-1267. [PMID: 38038871 PMCID: PMC11026233 DOI: 10.1007/s12094-023-03349-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
PURPOSE Breast cancer (BrCa) is a predominant type of cancer with a disparate molecular nature. MicroRNAs (miRNAs) have emerged as promising key players in the regulation of pathological processes in BrCa. Proteasome inhibitors (PIs) emerged as promising anticancer agents for several human malignancies, including BrCa, inhibiting the function of the proteasome. Aiming to shed light on the miRNA regulatory effect in BrCa after treatment with PIs, we used two PIs, namely bortezomib and carfilzomib. MATERIALS AND METHODS Four BrCa cell lines of distinct molecular subtypes were treated with these PIs. Cell viability and IC50 concentrations were determined. Total RNA was extracted, polyadenylated, and reversely transcribed. Next, the levels of specific miRNAs with a significant role in BrCa were determined using relative quantification, and their regulatory effect was assessed. RESULTS High heterogeneity was discovered in the levels of miRNAs in the four cell lines, after treatment. The miRNA levels fluctuate with distinct patterns, in 24, 48, or 72 hours. Interestingly, miR-1-3p, miR-421-3p, and miR-765-3p appear as key molecules, as they were found deregulated, in almost all combinations of cell lines and PIs. In the SK-BR-3 cell line, the majority of the miRNAs were significantly downregulated in treated compared to untreated cells, with miR-21-5p being the only one upregulated. Finally, various significant biological processes, molecular functions, and pathways were predicted to be affected. CONCLUSIONS The diversity of pathways predicted to be affected by the diversity in miRNA expression after treatment with PIs paves the way for the recognition of new regulatory axes in BrCa.
Collapse
Affiliation(s)
- Katerina Katsaraki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece.
| | - Gerasimos Ardavanis-Loukeris
- First Department of Medical Oncology, "Saint Savvas" General Anticancer Hospital of Athens, 11522, Athens, Greece
| | - Alexandros A Tzovaras
- First Department of Medical Oncology, "Saint Savvas" General Anticancer Hospital of Athens, 11522, Athens, Greece
| | - Diamantis C Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| |
Collapse
|
2
|
Li W, Xie L, Wang L, Lin F. CircRIMS promotes cerebral ischemia-reperfusion injury through increasing apoptosis and targeting the miR-96-5p/JAK/STAT1 axis. Brain Inj 2023; 37:1235-1244. [PMID: 37515578 DOI: 10.1080/02699052.2023.2237890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/07/2023] [Accepted: 06/12/2023] [Indexed: 07/31/2023]
Abstract
OBJECTIVE This study aims to explore the function of circRIMS in cerebral ischemia/reperfusion (CIR) and its regulatory mechanism. METHOD The expression of the circRIMS was examined in GEO chip data and validated by qRT-PCR analysis. A middle cerebral artery occlusion/repression (MCAO/R) model was developed using C57BL/6J mice. Starbase and circinteractome were employed to identify the target miRNA and mRNA. The result was confirmed by dual-luciferase reporter assay, and biotinylated RNA-pulldown assay. The cell viability and apoptosis were confirmed through CCK-8 and flow cytometry assay. RESULTS This study revealed that circRIMS expression was upregulated in MCAO mice model and OGD/RX-simulated cell model. Knockdown circRIMS demonstrated the functional of circRIMS in increasing cell viability, reducing apoptosis, LDH activity and inflammatory factors secretion in OGD/RX-simulated CIR injury in vitro. Additionally, miR-96-5p was identified as a target of circRIMS, while the STAT1 gene is a downstream gene of miR-96-5p, and JAK was also considered to be a downstream gene of the JAK-STAT pathway. Furthermore, inhibition of miR-96-5p or overexpression of STAT1 promoted the progression of CIR injury by elevating apoptosis, reducing cell viability, and increasing the secretion of inflammatory cytokines. CONCLUSION CircRIMS contributes to the progression of CIR injury via regulating miR-96-5p/JAK/STAT1 axis.
Collapse
Affiliation(s)
- Wei Li
- Department of Rehabilitation Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Lin Xie
- Department of Rehabilitation Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Lisha Wang
- Department of Neurology Intensive Care Unit, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Faliang Lin
- Department of Rehabilitation Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
3
|
Navarro-Betancourt JR, Cybulsky AV. The IRE1α pathway in glomerular diseases: The unfolded protein response and beyond. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:971247. [PMID: 39086958 PMCID: PMC11285563 DOI: 10.3389/fmmed.2022.971247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/07/2022] [Indexed: 08/02/2024]
Abstract
Endoplasmic reticulum (ER) function is vital for protein homeostasis ("proteostasis"). Protein misfolding in the ER of podocytes (glomerular visceral epithelial cells) is an important contributor to the pathogenesis of human glomerular diseases. ER protein misfolding causes ER stress and activates a compensatory signaling network called the unfolded protein response (UPR). Disruption of the UPR, in particular deletion of the UPR transducer, inositol-requiring enzyme 1α (IRE1α) in mouse podocytes leads to podocyte injury and albuminuria in aging, and exacerbates injury in glomerulonephritis. The UPR may interact in a coordinated manner with autophagy to relieve protein misfolding and its consequences. Recent studies have identified novel downstream targets of IRE1α, which provide new mechanistic insights into proteostatic pathways. Novel pathways of IRE1α signaling involve reticulophagy, mitochondria, metabolism, vesicular trafficking, microRNAs, and others. Mechanism-based therapies for glomerulopathies are limited, and development of non-invasive ER stress biomarkers, as well as targeting ER stress with pharmacological compounds may represent a therapeutic opportunity for preventing or attenuating progression of chronic kidney disease.
Collapse
Affiliation(s)
| | - Andrey V. Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Xu X, Xu X, Zheng Y, Xu L. Downregulation of microRNA-96-5p protects TM3 cells against zearalenone toxicity via targeting ATG9A. Exp Ther Med 2021; 22:1209. [PMID: 34584554 PMCID: PMC8422390 DOI: 10.3892/etm.2021.10643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/26/2021] [Indexed: 02/05/2023] Open
Abstract
Male infertility factor accounts for ~50% of all infertility cases, and traditional treatments for male infertility are limited. The association between the dysfunction of Leydig cells and hypospermatogenesis is essential for developing novel treatment methods for male infertility. It was previously stated that elevated expression of microRNA (miR)-96-5p was associated with the toxicological response of Leydig cells to treatment with zearalenone (ZEN). However, the exact role of miR-96-5p in Leydig cells remains to be illustrated. The mouse Leydig cell line TM3 was used in the present study to investigate the role of miR-96-5p. ZEN was used to induce cell injury in TM3 cells. Cell Counting Kit-8 assay and the Ki67 staining method were used to evaluate cell viability. Reverse transcription-quantitative PCR was used to determine the expression levels of miR-96-5p. In addition, a dual luciferase assay was used to investigate the target of miR-96-5p. Annexin V/propidium iodide staining was performed to detect cell apoptosis. Western blot analysis was used to detect the expression levels of certain proteins. Finally, monodansylcadaverine (MDC) and LC3 staining were applied for monitoring the level of autophagy. ZEN inhibited the proliferation of TM3 cells in a dose-dependent manner. In addition, the level of miR-96-5p were significantly increased in ZEN-treated TM3 cells. Meanwhile, inhibition of miR-96-5p could reverse ZEN-induced decrease in viability in TM3 cells. Moreover, ZEN notably inhibited autophagy in TM3 cells and this phenomenon was reversed by the application of the miR-96-5p inhibitor. Autophagy related 9A (ATG9A) was identified as the biological target of miR-96-5p. The results derived from MDC and LC3 staining demonstrated that downregulation of miR-96-5p expression levels protected TM3 cells against ZEN toxicity by regulating autophagy. Inhibition of miR-96-5p expression protected TM3 cells against ZEN via targeting ATG9A. Therefore, miR-96-5p may serve as a potential biomarker for male infertility.
Collapse
Affiliation(s)
- Xiaoyuan Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Xiaohua Xu
- Department of Cardiology, The First People's Hospital of Jingdezhen, Jingdezhen, Jiangxi 333000, P.R. China
| | - Yanluan Zheng
- Department of Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Lan Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| |
Collapse
|
5
|
Mafi A, Yadegar N, Salami M, Salami R, Vakili O, Aghadavod E. Circular RNAs; powerful microRNA sponges to overcome diabetic nephropathy. Pathol Res Pract 2021; 227:153618. [PMID: 34649056 DOI: 10.1016/j.prp.2021.153618] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN), also known as diabetic kidney disease (DKD), is a drastic renal complication of type 1 and type 2 diabetes mellitus (DM). Poorly controlled DM over the years, may disrupt kidneys' blood vessels, leading to the hypertension (HTN) and DN onset. During DN, kidneys' waste filtering ability becomes disturbed. Being on a healthy lifestyle and controlling both DM and HTN are now the best proceedings to prevent or at least delay DN occurrence. Unfortunately, about one-fourth of diabetic individuals eventually experience the corresponding renal failure, and thus it is critical to discover effective diagnostic biomarkers and therapeutic strategies to combat DN. In the past few years, circular RNAs (circRNAs), as covalently closed endogenous non-coding RNAs (ncRNAs), are believed to affect DN pathogenesis in a positive manner. CircRNAs are able to impact different cellular processes and signaling pathways by targeting biological molecules or various molecular mechanisms. Still, as a key regulatory axis, circRNAs can select miRNAs as their molecular targets, in which they are considered as miRNA sponges. In this way, circRNA-induced suppression of particular miRNAs may prevent from DN progression or promotes the DN elimination. Since the expression of circRNAs has also been reported to be increased in DN-associated cells and tissues, they can be employed as either diagnostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Negar Yadegar
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Marziyeh Salami
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Raziyeh Salami
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran; Department of Clinical Biochemistry, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Viera M, Yip GWC, Shen HM, Baeg GH, Bay BH. Targeting CD82/KAI1 for Precision Therapeutics in Surmounting Metastatic Potential in Breast Cancer. Cancers (Basel) 2021; 13:4486. [PMID: 34503296 PMCID: PMC8431267 DOI: 10.3390/cancers13174486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Metastasis is the main cause of mortality in breast cancer patients. There is an unmet need to develop therapies that can impede metastatic spread. Precision oncology has shown great promise for the treatment of cancers, as the therapeutic approach is tailored to a specific group of patients who are likely to benefit from the treatment, rather than the traditional approach of "one size fits all". CD82, also known as KAI1, a glycoprotein belonging to the tetraspanin family and an established metastasis suppressor, could potentially be exploited to hinder metastases in breast cancer. This review explores the prospect of targeting CD82 as an innovative therapeutic approach in precision medicine for breast cancer patients, with the goal of preventing cancer progression and metastasis. Such an approach would entail the selection of a subset of breast cancer patients with low levels of CD82, and instituting an appropriate treatment scheme tailored towards restoring the levels of CD82 in this group of patients. Proposed precision treatment regimens include current modalities of treating breast cancer, in combination with either clinically approved drugs that could restore the levels of CD82, CD82 peptide mimics or non-coding RNA-based therapeutics.
Collapse
Affiliation(s)
- Maximillian Viera
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (M.V.); (G.W.C.Y.)
| | - George Wai Cheong Yip
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (M.V.); (G.W.C.Y.)
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Faculty of Health Sciences, University of Macau, Taipa, China
| | - Gyeong Hun Baeg
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (M.V.); (G.W.C.Y.)
- Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (M.V.); (G.W.C.Y.)
| |
Collapse
|
7
|
Oshiba RT, Touson E, Elsherbini YM, Abdraboh ME. Melatonin: A regulator of the interplay between FoxO1, miR96, and miR215 signaling to diminish the growth, survival, and metastasis of murine adenocarcinoma. Biofactors 2021; 47:740-753. [PMID: 34058789 DOI: 10.1002/biof.1758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/12/2021] [Indexed: 01/20/2023]
Abstract
Melatonin (Mel.), also known as the magic hormone, is a nocturnally secreted hormone orchestrates the clearance of free radicals that have been built up and cumulated during day. This study aims to detect the impact of pineal gland removal on the incidence of tumor development and to assess the signaling pathways via which exogenous melatonin counteract cancer growth. This goal has been achieved by novel approach for pineal destruction using dental micromotor which validated by melatonin downregulation in blood plasma. Mice were injected sub-cutenously with Ehrlich cells to develop solid tumor as a murine model of breast cancer. The increase at tumor markers carcino embryonic antigen, TNFα, and nuclear factor kappa-light-chain-enhancer of activated B cells was over countered by exogenous melatonin supplementation (20 mg/kg) daily for 1 month. The anticancer effects of melatonin were significantly mediated by scavenging H2 O2 and NO and diminishing of lipid peroxidation marker malondialdehyde. The real-time polymerase chain Rx analyses indicated a significant effect of Melatonin in upregulating the expression of miR215, fork head box protein O1 (foxO1), and downregulation of miR96. Flowcytometric analyses indicated a significant effect of melatonin on induction of cell cycle arrest at G1 phase which was further confirmed by Ki67 downregulation. Immunohistochemical analyses indicated the role of melatonin in upregulating P53-dependent apoptosis and downregulating CD44 signaling for survivin, matrix metallo-protein kinase 2, and vascular endothelial growth factor to inhibit cell survival and metastasis. In conclusion, this study sheds the light on M./P53/miR215/CD44 with an emphasis on M./miR96//foxO1 signaling cascades, as a novel pathway of melatonin signaling in adenocarcinoma to diminish cancer cell growth, survival and metastasis.
Collapse
Affiliation(s)
- Rehab T Oshiba
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ehab Touson
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Yasser M Elsherbini
- School of Allied Health, Faculty of Health, Education, Medicine and Social care, Anglia Ruskin University, Chelmsford, UK
| | - Mohamed E Abdraboh
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
8
|
Inhibiting miR-129-5p alleviates inflammation and modulates autophagy by targeting ATG14 in fungal keratitis. Exp Eye Res 2021; 211:108731. [PMID: 34411602 DOI: 10.1016/j.exer.2021.108731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 07/16/2021] [Accepted: 08/13/2021] [Indexed: 01/04/2023]
Abstract
To investigate the role of miR-129-5p in inflammation and autophagy in fungal keratitis, we established a keratitis mouse model infected with Fusarium solani (F. solani) and conducted experiments on corneal stromal cells infected with F. solani. The expression of miR-129-5p was detected via quantitative real-time polymerase chain reaction (PCR). The miR-129-5p antagomir was used to transfect cells and mice to study the regulatory role of miR-129-5p in autophagy and inflammation after fungal infection. The expression of Beclin1 and LC3B and colocalization of LC3B with lysosomes were detected via Western blotting and immunofluorescence. CCK-8 was used to determine the viability of corneal stromal cells. The expression of IL-1β were detected by ELISA. Bioinformatics software was used to predict the potential targets of miR-129-5p, which were verified by a luciferase reporter gene assay. RT-PCR showed that miR-129-5p expression in mouse corneas was significantly increased after infection with F. solani. Subconjunctival injection of the miR-129-5p antagomir significantly enhanced the proteins Beclin-1 and LC3B. At the same time, inhibiting miR-129-5p expression could reduce the inflammatory response in FK and significantly increase the viability of corneal stromal cells infected with F. solan. Moreover, the dual luciferase reporter assay indicated that Atg14 was a direct target of miR-129-5p. Our study shows that miR-129-5p is a novel small molecule that regulates autophagy by targeting Atg14, indicating that it may be a proinflammatory and therapeutic target for fungal keratitis.
Collapse
|
9
|
Bayramoglu Tepe N, Bozgeyik E, Bozdag Z, Balat O, Ozcan HC, Ugur MG. Identification of autophagy-associated miRNA signature for the cervical squamous cell cancer and high-grade cervical intraepithelial lesions. Reprod Biol 2021; 21:100536. [PMID: 34298410 DOI: 10.1016/j.repbio.2021.100536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/11/2021] [Accepted: 07/01/2021] [Indexed: 02/08/2023]
Abstract
Cervical cancer markedly threatens women's health worldwide and currently ranks fourth leading cause of cancer mortality in women according to recent global cancer statistics. Recent advances have proven that not only tumor suppressor and oncogenes but also non-coding RNAs including micro RNAs (miRNAs) have significant impact in the development and progression of cervical cancers. Previous studies have identified many cancer-specific miRNAs for the early detection of cervical cancers. However, the diagnostic and prognostic use of autophagy-associated miRNAs for the cervical squamous cell cancer (SCC) cases and high-grade squamous intraepithelial lesion (HSIL) have not been uncovered. In the present study, we revealed that miRNAs are differentially expressed in both cervical SCC and HSIL. A total of 35 HSIL, 35 cervical SCC and 30 healthy controls were enrolled for the present study. Total RNA including miRNAs were isolated from the FFPE tissue samples and miRNA expression levels were quantified by quantitative PCR. Predicted miRNA targets of autophagy related genes were determined using miRNA-target prediction algorithms. MiR-143, miR-372, miR-375 and miR-30c were markedly downregulated in HSIL and cervical SCC. MiR-130a was significantly upregulated in the cervical SCC group compared to HSIL and control groups. MiR-30a, miR-520e, miR-548c and miR-372 were significantly associated with the overall survival of cervical SCC patients and these miRNAs were determined to be significant diagnostic markers as revealed by ROC analysis. Together, these results indicate that autophagy-associated miRNAs are potentially valuable for the differential diagnosis and targeted therapy to cervical cancer.
Collapse
Affiliation(s)
| | - Esra Bozgeyik
- Department of Medical Services and Techniques, Vocational School of Health Services, Adiyaman University, Adiyaman, Turkey.
| | - Zehra Bozdag
- Department of Pathology, University of Gaziantep, Gaziantep, Turkey
| | - Ozcan Balat
- Department of Obstetrics and Gynecology, University of Gaziantep, Gaziantep, Turkey
| | | | - Mete Gurol Ugur
- Department of Obstetrics and Gynecology, University of Gaziantep, Gaziantep, Turkey
| |
Collapse
|
10
|
Zhang M, Yang JK, Ma J. Regulation of the long noncoding RNA XIST on the inflammatory polarization of microglia in cerebral infarction. Exp Ther Med 2021; 22:924. [PMID: 34306193 PMCID: PMC8281447 DOI: 10.3892/etm.2021.10356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 03/22/2021] [Indexed: 01/09/2023] Open
Abstract
Proinflammatory polarization of microglia aggravates brain injury in cerebral infarction. The present study focused on the role of long non-coding (lnc)RNA X-inactive specific transcript (XIST) in the phenotype modulation of microglia. It was revealed that lncRNA XIST was significantly upregulated in both a mouse cerebral infarction model induced by middle cerebral artery occlusion (MCAO) and an activated microglial model induced by oxygen/glucose deprivation (OGD). The overexpression of XIST enhanced the expression and release of pro-inflammatory mediators [such as tumor necrosis factor (TNF)-α, IL-6, and iNOS] in microglia. Culture supernatant from lncRNA XIST-overexpressed microglial cells induced the apoptosis of primary neurons, while TNF-α antibody counteracted this neurotoxic effect. LncRNA XIST served as a sponge for miR-96-5p, counteracting its inhibitory effect on IKKβ/NF-κB signaling and TNF-α production. Notably, TNF-α was positively regulated by XIST and in turn enhanced XIST expression in microglia. The lncRNA XIST-TNF-α feedback promoted the proinflammatory polarization of microglia, thereby exacerbating cerebral neuron apoptosis.
Collapse
Affiliation(s)
- Min Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Xingtai Medical College, Xingtai, Hebei 054000, P.R. China
| | - Jian-Kai Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jing Ma
- Meteorological Service and Applied Meteorology, Ren County Meteorological Bureau of Hebei Province, Xingtai, Hebei 055150, P.R. China
| |
Collapse
|
11
|
El-Derany MO, AbdelHamid SG. Upregulation of miR-96-5p by bone marrow mesenchymal stem cells and their exosomes alleviate non-alcoholic steatohepatitis: Emphasis on caspase-2 signaling inhibition. Biochem Pharmacol 2021; 190:114624. [PMID: 34052187 DOI: 10.1016/j.bcp.2021.114624] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/29/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) has evolved as the most common and devastating chronic liver disease. This study aimed to explore the underlined mechanism for the therapeutic potentials of bone marrow mesenchymal stem cells (BM-MSCs) and their derived exosomes (BM-MSCs-Exo) in an experimental model of high fat diet (HFD) induced NASH. Rats were fed with HFD for 12 weeks. At the seventh week, BM-MSCs were given at a dose of 1x106 cell i.v., per rat. A total of three doses of BM-MSCs were given per each rat in six weeks. BM-MSCs-Exo were given at a dose of 15, 30 and 120 µg/kg i.v., twice per week for six weeks. Perfect homing to the liver was detected. Beneficial effects were reported to BM-MSCs or BM-MSCs-Exo cotreatment; where the highest anti-steatotic effects were attributed to BM-MSCs-Exo (120 µg/kg) showing significant downregulation of fatty acid synthesis (SREB1, 2, ACC), downregulation in lipid uptake (CD36); accompanied by significant upregulation in fatty acid oxidation (PPARα, CPT1). These events were associated with abrogation of hepatic steatosis and ballooning in HFD-induced NASH. BM-MSCs or BM-MSCs-Exo cotreatment exerted significant anti-apoptotic effects mediated by significant decrease in Bax/Bcl2 ratio. Besides, significant increase in mitochondrial mitophagy genes (Parkin, PINK1, ULK1, BNIP3L, ATG5, ATG7, ATG12) were detected in BM-MSCs or BM-MSCs-Exo cotreated groups. These findings are thought to be modulated through upregulation of miRNA-96-5p which leads to downregulation of its downstream target caspase-2. Being a critical player in NASH development, caspase-2 targeting by miRNA-96-5p could be a promising therapeutic modality to treat NASH.
Collapse
Affiliation(s)
- Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | | |
Collapse
|
12
|
miR-96-5p enhances cell proliferation and invasion via targeted regulation of ZDHHC5 in gastric cancer. Biosci Rep 2021; 40:222436. [PMID: 32202303 PMCID: PMC7160376 DOI: 10.1042/bsr20191845] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/13/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Objective: To explore the biological function and mechanism of miR-96-5p in gastric cancer. Methods: The expression of differently expressed microRNAs (DEMs) related to gastric adenocarcinoma (GAC) prognosis was identified in GAC tumor samples and adjacent normal samples by qRT-PCR. A target gene miR-96-5p was selected using TargetScan, miRTarBase, miRDB databases. The combination of miR-96-5p and ZDHHC5 was verified by luciferase receptor assay. To further study the function and mechanism of miR-96-5p, we treated MGC-803 cells with miR-96-5p inhibitor and si-ZDHHC5, then detected cell viability, apoptosis, migration and invasion ability, as well as the expression of ZDHHC5, Bcl-2, Bax, cleaved caspase-3, cleaved caspase-9, and COX-2 by Western blot. Results: Compared with adjacent normal samples, the levels of miR-96-5p, miR-222-5p, and miR-652-5p were remarkably increased, while miR-125-5p, miR-145-3p, and miR-379-3p were significantly reduced in GAC tumor samples (P<0.01), which were consistent with bioinformatics analysis. Furthermore, ZDHHC5 was defined as a direct target gene of miR-96-5p. miR-96-5p silence significantly reduced cell viability, increased cell apoptosis, and suppressed cell migration and invasion, as well as inhibited the expression of Bcl-2 and COX-2 and promoted Bax, cleaved caspase-3 and cleaved caspase-9 level in MGC-803 cells (P<0.01). Notably, ZDHHC5 silence reversed the inhibiting effects of miR-96-5p on MGC-803 cells growth and metastasis Conclusion: Our findings identified six microRNAs (miRNAs; miR-96-5p, miR-222-5p, miR-652-5p, miR-125-5p, miR-145-3p, and miR-379-3p) related to GAC prognosis, and suggested that down-regulated miR-96-5p might inhibit tumor cell growth and metastasis via increasing ZDHHC5 expression enhance MGC-803 cell apoptosis, as well as decrease MGC-803 cell metastasis.
Collapse
|
13
|
Chong ZX, Yeap SK, Ho WY. Regulation of autophagy by microRNAs in human breast cancer. J Biomed Sci 2021; 28:21. [PMID: 33761957 PMCID: PMC7992789 DOI: 10.1186/s12929-021-00715-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is the most common solid cancer that affects female population globally. MicroRNAs (miRNAs) are short non-coding RNAs that can regulate post-transcriptional modification of multiple downstream genes. Autophagy is a conserved cellular catabolic activity that aims to provide nutrients and degrade un-usable macromolecules in mammalian cells. A number of in vitro, in vivo and clinical studies have reported that some miRNAs could modulate autophagy activity in human breast cancer cells, and these would influence human breast cancer progression and treatment response. Therefore, this review was aimed to discuss the roles of autophagy-regulating miRNAs in influencing breast cancer development and treatment response. The review would first introduce autophagy types and process, followed by the discussion of the roles of different miRNAs in modulating autophagy in human breast cancer, and to explore how would this miRNA-autophagy regulatory process affect the disease progression or treatment response. Lastly, the potential applications and challenges of utilizing autophagy-regulating miRNAs as breast cancer biomarkers and novel therapeutic agents would be discussed.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900, Sepang, Selangor, Malaysia
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
14
|
Zare S, Mousavi Hosseini K, Maghsudlu M, Shahabi M. miRNA96 expression level within red blood cells is probably associated with RSL indicators during the storage of red blood cell units. Transfus Apher Sci 2021; 60:103122. [PMID: 33766457 DOI: 10.1016/j.transci.2021.103122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/12/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND OBJECTIVES Many biochemical and hematological changes occur during the storage of RBC units. Collectively, these changes are known as RSLs. Previous studies found miRNA96 as non-coding RNA that its expression level changed during RBC storage. However, its correlation with mechanical and biochemical RSL indicators is not yet determined. Therefore, this study aimed to assess possible correlations between miRNA96a and some RSLs indicators to clarify its biomarker capability for evaluating the storage quality of RBC units. MATERIALS AND METHODS Samples were collected from ten leuko-reduced RBC units on days 0, 14, 28, and 42 of storage. miRNA96 gene expression level and RSLs indicators including hemolysis, mechanical fragility index (MFI), total antioxidant capacity (TAC), lipid peroxidation (TBARs), thiol groups, and RBC indices were measured on the days mentioned above. RESULTS Significant correlations were found between the changes in miRNA96 expression level and the levels of hemolysis, TAC, TBARs, and MFI indices (p values < 0.05). The donors were classified into the high risk group and low risk group, according to four important characteristics and lifestyle habits (smoking, physical activity, age, and BMI). The high risk group had a significantly lower rate of hemolysis, free hemoglobin, MFI, TAC, and a higher rate of lipid peroxidation compared to low risk group (p values < 0.05). CONCLUSION The finding suggested that upregulation of miRNA96 could prevent hemolysis of RBCs, despite the accumulation of oxidative injuries in them. The miRNA96 expression level was probably a potential predictor for mechanical and biochemical RSL indicators.
Collapse
Affiliation(s)
- Somayeh Zare
- High Institute for Research and Education in Transfusion Medicine, Blood Transfusion Research Center, Hemmat Expressway, IBTO Building, Tehran, Iran.
| | - Kamran Mousavi Hosseini
- High Institute for Research and Education in Transfusion Medicine, Blood Transfusion Research Center, Hemmat Expressway, IBTO Building, Tehran, Iran.
| | - Mahtab Maghsudlu
- High Institute for Research and Education in Transfusion Medicine, Blood Transfusion Research Center, Hemmat Expressway, IBTO Building, Tehran, Iran.
| | - Majid Shahabi
- High Institute for Research and Education in Transfusion Medicine, Blood Transfusion Research Center, Hemmat Expressway, IBTO Building, Tehran, Iran.
| |
Collapse
|
15
|
Ding L, Fang Y, Li Y, Hu Q, Ai M, Deng K, Huang X, Xin H. AIMP3 inhibits cell growth and metastasis of lung adenocarcinoma through activating a miR-96-5p-AIMP3-p53 axis. J Cell Mol Med 2021; 25:3019-3030. [PMID: 33538115 PMCID: PMC7957209 DOI: 10.1111/jcmm.16344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/24/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Aminoacyl‐tRNA synthetase‐interacting multifunctional protein‐3 (AIMP3) is a tumour suppressor, however, the roles of AIMP3 in non‐small cell lung cancer (NSCLC) are not explored yet. Here, we reported that AIMP3 significantly inhibited the cell growth and metastasis of NSCLC (lung adenocarcinoma) in vitro and in vivo. We have firstly identified that AIMP3 was down‐regulated in human NSCLC tissues compared with adjacent normal lung tissues using immunohistochemistry and western blot assays. Overexpression of AIMP3 markedly suppressed the proliferation and migration of cancer cells in a p53‐dependent manner. Furthermore, we observed that AIMP3 significantly suppressed tumour growth and metastasis of A549 cells in xenograft nude mice. Mechanically, we identified that AIMP3 was a direct target of miR‐96‐5p, and we also observed that there was a negative correlation between AIMP3 and miR‐96‐5p expression in paired NSCLC clinic samples. Ectopic miR‐96‐5p expression promoted the proliferation and migration of cancer cells in vitro and tumour growth and metastasis in vivo which partially depended on AIMP3. Taken together, our results demonstrated that the axis of miR‐96‐5p‐AIMP3‐p53 played an important role in lung adenocarcinoma, which may provide a new strategy for the diagnosis and treatment of NSCLC.
Collapse
Affiliation(s)
- Liting Ding
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, the Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Yang Fang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, the Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Yong Li
- Department of Anesthesiology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qinghua Hu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, the Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Meiling Ai
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, the Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Keyu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, the Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, the Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Hongbo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, the Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Zhan JB, Zheng J, Zeng LY, Fu Z, Huang QJ, Wei X, Zeng M. Downregulation of miR-96-5p Inhibits mTOR/NF-κb Signaling Pathway via DEPTOR in Allergic Rhinitis. Int Arch Allergy Immunol 2021; 182:210-219. [PMID: 33477144 DOI: 10.1159/000509403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/14/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND This study aims to investigate the regulatory effect of microRNA-96-5p (miR-96-5p) in the pathophysiological process of allergic rhinitis (AR). METHODS Nasal mucosal tissue samples were collected from AR patients and healthy controls. An in vitro AR model was established by stimulating human nasal epithelial cells (HNECs) with interleukin (IL)-13. The expressions of target genes and proteins were measured by qPCR, Western blot, or ELISA. Dual-luciferase reporter assay and pull-down assay were performed to confirm the interaction between miR-96-5p and DEP domain-containing mammalian target of rapamycin-interacting protein (DEPTOR). RESULTS The level of miR-96-5p was increased while the expression of DEPTOR was decreased in AR patients. The expressions of proinflammatory cytokines were markedly increased and the mammalian target of rapamycin (mTOR)/NF-κB pathway was activated in HNECs following IL-13 stimulation. miR-96-5p downregulation alleviated the stimulated function by IL-13. DEPTOR was the target of miR-96-5p. Knockdown of DEPTOR reversed the function of miR-96-5p inhibitor on IL-13-stimulated HNECs. CONCLUSIONS The current study showed that miR-96-5p and DEPTOR were aberrantly expressed in AR nasal mucosa. miR-96-5p knockdown inhibited the production of inflammatory cytokines and the activation of mTOR/NF-κB pathway via targeting DEPTOR. These findings suggested that miR-96-5p might be used as a diagnostic marker and therapeutic target for the treatment of AR.
Collapse
Affiliation(s)
- Jia-Bin Zhan
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Jing Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Lian-Ya Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Zhi Fu
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Qiu-Ju Huang
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Xin Wei
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China,
| | - Min Zeng
- Medical Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| |
Collapse
|
17
|
Mao Y, Hou B, Shan L, Sun X, Wang L. Aberrantly up-regulated miR-142-3p inhibited the proliferation and invasion of trophoblast cells by regulating FOXM1. Placenta 2021; 104:253-260. [PMID: 33461070 DOI: 10.1016/j.placenta.2021.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/23/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Preeclampsia is one of the main causes of morbidity and mortality in pregnant women and mothers. Numerous studies showed that microRNAs (miRNAs) played important roles in the occurrence and development of preeclampsia. However, the regulation of microRNA-142-3p (miR-142-3p) in preeclampsia has not been clarified. METHODS The expression of miR-142-3p and FOXM1 was detected by RT-qPCR. The interaction between miR-142-3p and FOXM1 was confirmed by dual-luciferase reporter assay. The relative protein expression of FOXM1 was measured by western blot. Cell proliferation was measured using MTT assay. Cell migration was detected using transwell assay and wound healing assay. RESULTS The expression of miR-142-3p was up-regulated, while the mRNA and protein of FOXM1 expression were down-regulated in preeclampsia tissues. Additionally, we found that miR-142-3p targeted FOXM1. Moreover, FOXM1 expression was negatively regulated by miR-142-3p. Functional experiments showed that overexpression of miR-142-3p inhibited cell growth and migration in trophoblast cells. Reverse experiments determined that overexpression of FOXM1 reversed the suppressive effects of miR-142-3p on cell proliferation and migration. DISCUSSION Our results demonstrated that miR-142-3p regulated cell proliferation and migration through targeting FOXM1 in trophoblast cells, providing a novel therapeutic target and extending the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Yan Mao
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, Gansu, 730000, China
| | - Bin Hou
- Department of Radiology, Gansu Gem Flower Hospital, Lanzhou, Gansu, 730060, China
| | - Long Shan
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, Gansu, 730000, China.
| | - Xiaotong Sun
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, Gansu, 730000, China
| | - Li Wang
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, Gansu, 730000, China
| |
Collapse
|
18
|
Zhang H, Chen R, Shao J. MicroRNA-96-5p Facilitates the Viability, Migration, and Invasion and Suppresses the Apoptosis of Cervical Cancer Cells byNegatively Modulating SFRP4. Technol Cancer Res Treat 2021; 19:1533033820934132. [PMID: 32527205 PMCID: PMC7294480 DOI: 10.1177/1533033820934132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The current study was intended to research the functional role and regulatory mechanism of microRNA-96-5p in the progression of cervical cancer. METHODS MicroRNA-96-5p expression in cervical cancer tissues was assessed by quantitative real-time polymerase chain reaction. The association between microRNA-96-5p expression and clinicopathological features of patients with cervical cancer was analyzed. MTT, flow cytometry, wound healing, and transwell assay were performed to evaluate the viability, apoptosis, migration, and invasion of Hela and SiHa cells. Targetscan, dual-luciferase reporter gene assay, and RNA pull-down analysis were constructed to evaluate the target relationship between microRNA-96-5p and secreted frizzled-related protein 4. RESULTS MicroRNA-96-5p was overexpressed in cervical cancer tissues, and microRNA-96-5p expression was markedly associated with the clinical stage and lymph node metastasis of patients with cervical cancer. Overexpressed microRNA-96-5p facilitated the viability, migration, invasion, and inhibited the apoptosis of Hela and SiHa cells, whereas suppression of microRNA-96-5p exerted the opposite trend. Secreted frizzled-related protein 4 was proved to be a target of microRNA-96-5p. Silencing of secreted frizzled-related protein 4 eliminated the anti-tumor effect of microRNA-96-5p on cervical cancer cells. CONCLUSIONS MicroRNA-96-5p facilitated the viability, migration, and invasion and inhibited the apoptosis of cervical cancer cells via negatively regulating secreted frizzled-related protein 4.
Collapse
Affiliation(s)
- Huiling Zhang
- Department of Clinical Laboratory, Huai'an Maternity and Child Health Hospital, Qingjiangpu District, Huaian City, Jiangsu Province, China
| | - Ruxin Chen
- Department of Obstetrics and Gynecology, Jinan Maternal and Child Health Hospital, Jinan City, Shandong Province, China
| | - Jinyan Shao
- Department of Obstetrics and Gynecology, Laishan Branch of Yantai Yuhuangding Hospital, Laishan District, Yantai City, Shandong Province, China
| |
Collapse
|
19
|
Bo W, Feng X, Tang X. Overexpression of rhophilin 2 promotes pancreatic ductal adenocarcinoma. Oncol Lett 2020; 21:76. [PMID: 33365087 PMCID: PMC7716719 DOI: 10.3892/ol.2020.12337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer and is the seventh leading cause of global cancer deaths. In recent years, targeted therapy has been used for pancreatic cancer; however, the drugs available for use in targeted therapy for pancreatic cancer are still very limited. Hence, identification of novel targeted molecules for PDAC is required. Rhophilin 2 (RHPN2) was proven to be a driver gene in glioblastoma. However, the function of RHPN2 in PDAC remains unknown. In the present study, the function of RHPN2 was investigated. The RHPN2 levels were overexpressed by pcDNA3.1-RHPN2 and downregulated by si-RHPN2. Cell proliferation was assessed using the MTT assay and apoptosis was assessed using flow cytometry. The results revealed that high RHPN2 levels in PDAC tissue were correlated with a low overall survival rate of patients with PDAC. Inhibition of RHPN2 reduced SW1990 and PANC1 proliferation and increased the rate of apoptosis. Network analysis demonstrated that centrosomal protein 78 expression was negatively correlated with RHPN2 expression. In conclusion, the present study demonstrated that RHPN2 may promote PDAC making it a potential candidate for targeted therapy.
Collapse
Affiliation(s)
- Wentao Bo
- Department of Hepatopancreatobiliary Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Xielin Feng
- Department of Hepatopancreatobiliary Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Xiaoli Tang
- Department of Hepatopancreatobiliary Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
20
|
Li S, Yang Y, Shi MH, Wang JF, Ran XQ. miR-96-5p attenuates malathion-induced apoptosis of human kidney cells by targeting the ER stress marker DDIT3. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:1080-1086. [PMID: 32897819 DOI: 10.1080/03601234.2020.1816092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Micro RNAs (miRNAs) are major players in cellular responses to xenobiotic compounds and toxins. However, their functions in organophosphate-induced cytotoxicity remain unclear. This study investigated the involvement of miR-96-5p in the non-cholinergic toxicity of malathion in normal human kidney cells (HK-2 cells). Malathion decreased HK-2 cell viability and the expression of miR-96-5p in a dose- and time-dependent manner. In addition, transfection with miR-96-5p mimics attenuated malathion-induced HK-2 cell apoptosis, whereas transfection with a miR-96-5p inhibitor increased HK-2 cell apoptosis. Luciferase assays indicated that miR-96-5p could bind directly to the 3'-untranslated region of DDIT3, a well-known marker of endoplasmic reticulum stress. Further analyses of the expression of apoptosis-related genes and proteins indicated that miR-96-5p may function to reduce malathion-induced HK-2 cell apoptosis via regulation of the DDIT3/B-cell lymphoma (BCL)-2/caspase-3 signaling pathway. In summary, the results of the present study indicate that miR-96-5p protects HK-2 cells from malathion-induced ER stress-dependent apoptosis by targeting DDIT3.
Collapse
Affiliation(s)
- Sheng Li
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)/Guizhou Key Lab of Agro-Bioengineering, Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, China
| | - Yang Yang
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)/Guizhou Key Lab of Agro-Bioengineering, Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, China
| | - Ming Hui Shi
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)/Guizhou Key Lab of Agro-Bioengineering, Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, China
| | - Jia Fu Wang
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)/Guizhou Key Lab of Agro-Bioengineering, Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, China
| | - Xue Qin Ran
- Faculty of Animal Science and Veterinary Medicine, Guizhou University, Guiyang, China
| |
Collapse
|
21
|
Li Y, Zeng Q, Qiu J, Pang T, Ye F, Huang L, Zhang X. MiR-183-5p Promotes Proliferation, Metastasis and Angiogenesis in Breast Cancer Cells through Negatively Regulating Four and a Half LIM Protein 1. J Breast Cancer 2020; 23:355-372. [PMID: 32908787 PMCID: PMC7462817 DOI: 10.4048/jbc.2020.23.e47] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose Four and a half LIM protein 1 (FHL1) is involved in breast cancer (BC) development, but the regulatory mechanism involved remain unclear. In the present study, we examined the role of FHL1 in BC development. Methods The expression of FHL1, miR-183-5p, and miR-96-5p in BC tissues was analyzed using StarBase analysis. FHL1 expression in BC tissues, a normal human breast epithelial cell line, and BC cell lines was detected using quantitative reverse transcription polymerase chain reaction (qRT-PCR). The relationship between FHL1 and miR-183-5p/miR-96-5p was analyzed via Pearson's rank correlation, TargetScan, and a dual-luciferase reporter assay. BT549 and MDA-MB-231 cells were transfected with either FHL1 and miR-183-5p mimics, or siFHL1 and a miR-183-5p inhibitor, respectively. The viability, colony number, migration, invasion, and tube length of BT549 and MDA-MB-231 cells were examined using cell counting kit-8, colony formation, wound-healing, Transwell, and tube formation assays, respectively. The levels of FHL1, vascular endothelial growth factor (VEGF), p53, E-cadherin, N-cadherin, and vimentin were quantified using western blotting and qRT-PCR. Results FHL1 expression was downregulated in BC tissues and cells, whereas miR-183-5p and miR-96-5p were upregulated in BC tissues (negative correlation with FHL1 expression). FHL1 overexpression inhibited the viability, colony number, migration, and invasion of BC cells and the expression of VEGF, N-cadherin, and vimentin, and increased the expression of FHL1, p53, and E-cadherin in BT549 cells. Furthermore, a miR-183-5p mimic reversed these effects of FHL1 overexpression, whereas FHL1 silencing caused opposite results to those observed in MDA-MB-231 cells; however, this was reversed by a miR-183-5p inhibitor. Conclusion Our study suggests that miR-183-5p promotes cell proliferation, metastasis, and angiogenesis by negatively regulating FHL1 in BC.
Collapse
Affiliation(s)
- Yi Li
- Department of Thyroid & Breast Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing'an Zeng
- Department of Thyroid & Breast Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiliang Qiu
- Department of Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ting Pang
- Department of Anesthesiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fenglian Ye
- Department of Thyroid & Breast Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lin Huang
- Department of Thyroid & Breast Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuexia Zhang
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Anesthesiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Wong JS, Cheah YK. Potential miRNAs for miRNA-Based Therapeutics in Breast Cancer. Noncoding RNA 2020; 6:E29. [PMID: 32668603 PMCID: PMC7549352 DOI: 10.3390/ncrna6030029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that can post-transcriptionally regulate the genes involved in critical cellular processes. The aberrant expressions of oncogenic or tumor suppressor miRNAs have been associated with cancer progression and malignancies. This resulted in the dysregulation of signaling pathways involved in cell proliferation, apoptosis and survival, metastasis, cancer recurrence and chemoresistance. In this review, we will first (i) provide an overview of the miRNA biogenesis pathways, and in vitro and in vivo models for research, (ii) summarize the most recent findings on the roles of microRNAs (miRNAs) that could potentially be used for miRNA-based therapy in the treatment of breast cancer and (iii) discuss the various therapeutic applications.
Collapse
Affiliation(s)
- Jun Sheng Wong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| |
Collapse
|
23
|
Autophagy Is Deficient and May be Negatively Regulated by SERPINB3 in Middle Ear Cholesteatoma. Otol Neurotol 2020; 41:e881-e888. [PMID: 32569142 DOI: 10.1097/mao.0000000000002690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
HYPOTHESIS Whereas autophagy has been linked to various human diseases, whether it also plays a role in cholesteatoma is virtually unknown. This study aimed to investigate the activity and regulation of autophagy in cholesteatoma. BACKGROUND The treatment of middle ear cholesteatoma has been challenging due to an insufficient understanding of the underlying disease mechanism. METHODS Expression of microtubule-associated protein 1A/1B-light chain 3 (LC3), the autophagy protein marker, and phosphorylated Akt (p-Akt), and mammalian target of rapamycin (p-mTOR), the known autophagy regulators, in fresh retroauricular skin and cholesteatoma tissue samples was analyzed by immunoblotting. The results were further confirmed by immunohistochemistry and statistical analyses. Cell proliferation of primary retroauricular skin- and cholesteatoma-derived fibroblasts was evaluated by methyl thiazol tetrazolium (MTT) assay. Ectopic expression of serine proteinase inhibitor, clade B, member 3 (SERPINB3) in the fibroblasts was achieved by electroporation and the expression was detected by immunoblotting. RESULTS LC3 expression was significantly decreased in cholesteatoma in most of the 15 paired retroauricular skin/cholesteatoma tissue samples. However, p-Akt and p-mTOR expression in the cholesteatoma samples was not significantly different from that in the control subjects. Immunohistochemical studies further demonstrated an inverse correlation between LC3 expression and cholesteatoma. The cholesteatoma fibroblasts proliferated faster than the retroauricular skin fibroblasts, and had higher SERPINB3 but lower LC3 expression. Furthermore, overexpression of SERPINB3 in the retroauricular skin fibroblasts enhanced cell proliferation and downregulated LC3 expression. CONCLUSION Autophagy is significantly suppressed in cholesteatoma tissues, which may not involve the Akt/mTOR signaling pathway. More importantly, SERPINB3 may promote cell proliferation and negatively regulate autophagy in cholesteatoma fibroblasts. Together, these findings warrant further investigation into the pathogenic mechanism of cholesteatoma.
Collapse
|
24
|
Cai H, Jiang Z, Yang X, Lin J, Cai Q, Li X. Circular RNA HIPK3 contributes to hyperglycemia and insulin homeostasis by sponging miR-192-5p and upregulating transcription factor forkhead box O1. Endocr J 2020; 67:397-408. [PMID: 31875589 DOI: 10.1507/endocrj.ej19-0271] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
It has been shown that circular RNAs, a class of non-coding RNA molecules, play an important role in the regulation of glucose and lipid homeostasis. In the present study, we sought to investigate the function of circular RNA HIPK3 (circHIPK3) in diabetes-associated metabolic disorders, including hyperglycemia and insulin resistance. Results show that oleate stimulated circHIPK3 increase, and that circHIPK3 enhanced the stimulatory effect of oleate on adipose deposition, triglyceride (TG) content, and cellular glucose content in HepG2 cells. MiR-192-5p was the potential target of circHIPK3, since circHIPK3 significantly decreased miR-192-5p mRNA level, whereas anti-circHIPK3 significantly increased miR-192-5p mRNA level. Further study shows that transcription factor forkhead box O1 (FOXO1) was a downstream regulator of miR-192-5p, since miR-192-5p significantly decreased FOXO1 expression, whereas circHIPK3 significantly increased FOXO1 expression. Notably, the inhibitory effect of miR-192-5p was significantly reversed by circHIPK3. In vivo study shows that anti-miR-192-5p significantly increased blood glucose content, which was significantly inhibited by FOXO1 shRNA. MiR-192-5p significantly decreased adipose deposition and TG content in HepG2 cells, which was significantly reversed by the co-treatment with circHIPK3. Forskolin/dexamethasone (FSK/DEX) significantly increased cellular glucose, mRNA level of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase), and this stimulatory effect of FSK/DEX was significantly inhibited by miR-192-5p. In the presence of circHIPK3, however, the inhibitory effect of miR-192-5p was totally lost. In summary, the present study demonstrated that circHIPK3 contributes to hyperglycemia and insulin resistance by sponging miR-192-5p and up-regulating FOXO1.
Collapse
Affiliation(s)
- Huiyao Cai
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, 362000, China
| | - Zhengrong Jiang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, 362000, China
| | - Xinna Yang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, 362000, China
| | - Jiayu Lin
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, 362000, China
| | - Qingyan Cai
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, 362000, China
| | - Xisheng Li
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, 362000, China
| |
Collapse
|
25
|
Kashyap D, Kaur H. Cell-free miRNAs as non-invasive biomarkers in breast cancer: Significance in early diagnosis and metastasis prediction. Life Sci 2020; 246:117417. [PMID: 32044304 DOI: 10.1016/j.lfs.2020.117417] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer is one of the genetic diseases causing a high mortality among women around the world. Despite the availability of advanced diagnostic tools and treatment strategies, the incidence of breast cancer is increasing every year. This is due to the lack of accurate and reliable biomarkers whose deficiency creates difficulty in early breast cancer recognition, subtypes determination, and metastasis prophecy. Although biomarkers such as ER, PR, Her2, Ki-67, and other genetic platforms e.g. MammaPrint®, Oncotype DX®, Prosigna® or EndoPredict® are available for determination of breast cancer diagnosis and prognosis. However, pertaining to heterogeneous nature, lack of sensitivity, and specificity of these markers, it is still incessant to overcome breast cancer burden. Therefore, a novel biomarker is urgently needed for therapeutic diagnosis and improving prognosis. Lately, it has become more evident that cell-free miRNAs might be useful as good non-invasive biomarkers that are associated with different events in carcinogenesis. For example, some known biomarkers such as miR-21, miR-23a, miR-34a are associated with molecular subtyping and different biomolecular aspects i.e. apoptosis, angiogenesis, metastasis, and miR-1, miR-10b, miR-16 are associated with drug response. Cell-free miRNAs present in human body fluids have proven to be potential biomarkers with significant prognostic and predictive values. Numerous studies have found a distinct expression profile of circulating miRNAs in breast tumour versus non-tumour and in early and advanced-stage, thus implicating its clinical relevance. This review article will highlight the importance of different cell-free miRNAs as a biomarker for early breast cancer detection, subtype classification, and metastasis forecast.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduation Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Harmandeep Kaur
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
26
|
Desjarlais M, Wirth M, Rivera JC, Lahaie I, Dabouz R, Omri S, Ruknudin P, Borras C, Chemtob S. MicroRNA-96 Promotes Vascular Repair in Oxygen-Induced Retinopathy-A Novel Uncovered Vasoprotective Function. Front Pharmacol 2020; 11:13. [PMID: 32116694 PMCID: PMC7008172 DOI: 10.3389/fphar.2020.00013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background and Aims Vascular degeneration is a hallmark in the pathogenesis of oxygen-induced retinopathy (OIR). Dysregulation of microRNAs (miRNAs), key regulators of genes expressions, has been implicated in the regulation of ocular angiogenesis. However, miRNAs specific functions in impaired vascular development during OIR are poorly understood. Herein, we identified miR-96 as one of the most highly expressed miRNAs in the retina and choroid during vascular development and investigated the potential role of miR-96 on microvascular degeneration in a rat OIR model. Methods and Results Next generation sequencing (NGS) and qRT-PCR analysis showed that miR-96 maintain high levels of expression during ocular vascular development. Nevertheless, miR-96 was significantly downregulated in the retina and choroid of OIR rats (80% O2 from P5 to P10) during the phase of microvascular degeneration. Similarly, human retinal microvascular endothelial cells (HRMEC) subjected to hyperoxia (80% O2) showed a significant downregulation of miR-96 evaluated by qPCR. Interestingly, HRMEC supplemented with miR-96 regulated positively the expression of several key angiogenic factors including VEGF and ANG-2. To explore the angiogenic activity of miR-96 on HRMEC, we performed a gain/loss of function study. In a similar way to hyperoxia exposure, we observed a robust angiogenic impairment (tubulogenesis and migration) on HRMEC transfected with an antagomiR-96. Conversely, overexpression of miR-96 stimulated the angiogenic activity of HRMEC and protected against hyperoxia-induced endothelial dysfunction. Finally, we evaluated the potential vasoprotective function of miR-96 in OIR animals. Rat pups intravitreally supplemented with miR-96 mimic (1 mg/kg) displayed a significant preservation of retinal/choroidal microvessels at P10 compared to controls. This result was consistent with the maintenance of physiologic levels of VEGF and ANG-2 in the OIR retina. Conclusion This study demonstrates that miR-96 regulates the expression of angiogenic factors (VEGF/ANG-2) associated to the maintenance of retinal and choroidal microvasculature during physiological and pathological conditions. Intravitreal supplementation of miR-96 mimic could constitute a novel therapeutic strategy to improve vascular repair in OIR and other ischemic retinopathies.
Collapse
Affiliation(s)
- Michel Desjarlais
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Maëlle Wirth
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - José Carlos Rivera
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - Isabelle Lahaie
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Rabah Dabouz
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Samy Omri
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Pakiza Ruknudin
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Celine Borras
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Sylvain Chemtob
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| |
Collapse
|
27
|
Zhou HY, Wu CQ, Bi EX. MiR-96-5p inhibition induces cell apoptosis in gastric adenocarcinoma. World J Gastroenterol 2019; 25:6823-6834. [PMID: 31885423 PMCID: PMC6931005 DOI: 10.3748/wjg.v25.i47.6823] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/15/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric adenocarcinoma (GAC) mortality rates have remained relatively changed over the past 30 years, and it continues to be one of the leading causes of cancer-related death.
AIM To search for novel miRNAs related to GAC prognosis and further investigate the effect of miR-96-5p on MGC-803 cells.
METHODS The miRNA expression profile data of GAC based on The Cancer Genome Atlas were obtained and used to screen differently expressed miRNAs (DEMs) and DEMs related to GAC prognosis. Then, the expression of DEMs related to GAC prognosis was identified in GAC tumor samples and adjacent normal samples by qRT-PCR. The target gene, ZDHHC5, of miR-96-5p was predicted using TargetScan, miRTarBase, and miRDB databases and confirmed by luciferase reporter assay. Furthermore, MGC-803 cells were transfected with inhibitor NC, miR-96-5p inhibitor, si-ZDHHC5, or miR-96-5p inhibitor + si-ZDHHC5, and then cell apoptosis was detected by flow cytometry. The expression of ZDHHC5, Bcl-2, and COX-2 was detected using western blotting.
RESULTS A total of 299 DEMs and 35 DEMs related to GAC prognosis were screened based on The Cancer Genome Atlas. Then compared with adjacent normal samples, the levels of miR-96-5p, miR-222-5p, and miR-652-5p were remarkably increased, while miR-125-5p, miR-145-3p, and miR-379-3p levels were reduced in GAC tumor samples (P < 0.01), which were consistent with bioinformatics analysis. Furthermore, ZDHHC5 was defined as a direct target gene of miR-96-5p. miR-96-5p inhibition increased the number of apoptotic cells as well as promoted the expression of ZDHHC5, Bcl-2, and COX-2 in MGC-803 cells (P < 0.01). After ZDHHC5 inhibition, the number of apoptotic cells and the expression of ZDHHC5, Bcl-2, and COX-2 were reduced. The addition of an miR-96-5p inhibitor partly reversed these effects (P < 0.01).
CONCLUSION Our findings identified six miRNAs related to GAC prognosis and suggested that downregulated miR-96-5p might induce cell apoptosis via upregulating ZDHHC5 expression in MGC-803 cells.
Collapse
Affiliation(s)
- He-Ying Zhou
- Department of General Surgery, Jinan Seventh People's Hospital, Jinan 251400, Shandong Province, China
| | - Chun-Qi Wu
- Department of General Surgery, Jinan Seventh People's Hospital, Jinan 251400, Shandong Province, China
| | - En-Xu Bi
- Department of General Surgery, Qingdao West Coast New Area Central Hospital, Qingdao 266555, Shandong Province, China
| |
Collapse
|
28
|
Zhao X, Li Y, Zhou Y. MicroRNA-96-3p promotes metastasis of papillary thyroid cancer through targeting SDHB. Cancer Cell Int 2019; 19:287. [PMID: 31749660 PMCID: PMC6852711 DOI: 10.1186/s12935-019-1003-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/25/2019] [Indexed: 12/27/2022] Open
Abstract
Background MicroRNA (MiRNA) is a small non-coding RNA which is implicated in a cohort of biological function in cancer, including proliferation, metastasis, apoptosis and invasion. MiR-96 has been reported to be involved in many cancers, including papillary thyroid cancer. However, the role of miR-96-3p in papillary thyroid cancer metastasis is still unclear. Methods qRT-PCR is used to detect the level of miR-96-3p and mRNA of SDHB in PTC tissues and cell lines. Western blot assays are used to verify the protein expression of SDHB. The transwell assays are performed to identify the migration ability of PTC cell lines. Moreover, dual-luciferase 3'-UTR reporter assays are chosen to illuminate the direct target of miR-96-3p. Results The relative miR-96-3p upregulate in PTC tissues and three PTC cell lines (B-CPAP, K-1 and TPC-1 cells) while the relative SDHB is opposite. Our results revealed that the miR-96-3p promotes metastasis and invasion in PTC cell lines (K-1 and TPC-1 cells) by direct targeting SDHB and influence the downstream protein AKT. Conclusions Taken together, the miR-96-3p is involved in PTC metastasis and invasion by direct targeting SDHB and the downstream molecule AKT and mTOR.
Collapse
Affiliation(s)
- Xupeng Zhao
- 1Department of Fourth General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032 China
| | - Yingjie Li
- 2Department of Sixth General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032 China
| | - Yong Zhou
- 1Department of Fourth General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032 China
| |
Collapse
|
29
|
Almurshidi B, Carver W, Scott G, Ray SK. Roles of miRNAs in spinal cord injury and potential therapeutic interventions. NEUROIMMUNOLOGY AND NEUROINFLAMMATION 2019; 6:11. [PMID: 33869675 PMCID: PMC8052101 DOI: 10.20517/2347-8659.2019.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Spinal cord injury (SCI) affects approximately 200,000 individuals per year worldwide. There are more than 27 million people worldwide living with long-term disability due to SCI. Historically, it was thought that the central nervous system (CNS) had little ability for regeneration; however, more recent studies have demonstrated potential for repair within the CNS. Because of this, there exists a renewed interest in the discovery of novel approaches to promote regeneration in the CNS including the spinal cord. It is important to know the roles of the microRNAs (miRNAs) in modulation of pathogenesis in SCI and the potentials of the miRNA-based clinical interventions for controlling post-injury symptoms and improving functional recovery. The miRNAs, which are non-coding RNAs with an average of 22 nucleotides in length, are post-transcriptional gene regulators that cause degradation of the target mRNAs and thus negatively control their translation. This review article focuses on current research related to miRNAs and their roles in modulating SCI symptoms, asserting that miRNAs contribute to critical post-SCI molecular processes including neuroplasticity, functional recovery, astrogliosis, neuropathic pain, inflammation, and apoptosis. In particular, miR-96 provides a promising therapeutic opportunity to improve the outcomes of clinical interventions, including the way SCI injuries are evaluated and treated.
Collapse
Affiliation(s)
- Badria Almurshidi
- Department of Environmental Health Sciences, Arnold School of Public Health, CENR, University of South Carolina, Columbia, SC 29209, USA
| | - Wayne Carver
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Geoff Scott
- Department of Environmental Health Sciences, Arnold School of Public Health, CENR, University of South Carolina, Columbia, SC 29209, USA
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| |
Collapse
|
30
|
Conte M, Dell'Aversana C, Sgueglia G, Carissimo A, Altucci L. HDAC2-dependent miRNA signature in acute myeloid leukemia. FEBS Lett 2019; 593:2574-2584. [PMID: 31254352 PMCID: PMC6790563 DOI: 10.1002/1873-3468.13521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/11/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022]
Abstract
Acute myeloid leukemia (AML) arises from a complex sequence of biological and finely orchestrated events that are still poorly understood. Increasingly, epigenetic studies are providing exciting findings that may be exploited in promising and personalized cutting‐edge therapies. A more appropriate and broader screening of possible players in cancer could identify a master molecular mechanism in AML. Here, we build on our previously published study by evaluating a histone deacetylase (HDAC)2‐mediated miRNA regulatory network in U937 leukemic cells. Following a comparative miRNA profiling analysis in genetically and enzymatically HDAC2‐downregulated AML cells, we identified miR‐96‐5p and miR‐92a‐3p as potential regulators in AML etiopathology by targeting defined genes. Our findings support the potentially beneficial role of alternative physiopathological interventions.
Collapse
Affiliation(s)
| | - Carmela Dell'Aversana
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Giulia Sgueglia
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Annamaria Carissimo
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
31
|
Mao Z, Guan Y, Li T, Zhang L, Liu M, Xing B, Yao M, Chen M. Up regulation of miR-96-5p is responsible for TiO 2 NPs induced invasion dysfunction of human trophoblastic cells via disturbing Ezrin mediated cytoskeletons arrangement. Biomed Pharmacother 2019; 117:109125. [PMID: 31226636 DOI: 10.1016/j.biopha.2019.109125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/02/2019] [Accepted: 06/12/2019] [Indexed: 12/28/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are used extensively in our daily lives, and their toxic effects on the placenta have been reported. Animal studies indicated that placental development is impaired after maternal exposure of TiO2 NPs, but the underlying mechanisms remain largely unknown. In the present study, we used a human trophoblast-derived cell, HTR8-SVneo, to determine how TiO2 NPs affected placental functions, and found out potential reversal targets. TEM was employed for TiO2 NPs morphology observation and uptake assessment. RT-PCR was used to detect the expression of both mRNA and miRNA, and western blotting was used for protein examination. Cell invasion ability was evaluated by Transwell assay, and cytoskeletons were observed by immunofluorescence combined with confocal microscope examination. We found that TiO2 NPs disrupted cytoskeletons and impaired cell invasion ability. Further investigations showed that TiO2 NPs increased the expression of a microRNA (miR-96-5p), which targeted and down-regulated the translation of EZR mRNA, a gene that encodes ezrin protein, and affected the cell cytoskeletons and ultimately cell invasion ability. When the expression of miR-96-5p was down-regulated, the expression level of ezrin protein was also reversed, and cell invasion ability was partially restored. Collectively, we determined how miR-96-5p mediates TiO2 NP-induced placental dysfunction, and provided a potential rescue target for future therapy.
Collapse
Affiliation(s)
- Zhilei Mao
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213003, Jiangsu, China; Changzhou Center for Disease Control and Prevention, Changzhou, 213022, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211100, China; Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211100, China.
| | - Yusheng Guan
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211100, China; Changzhou Center for Disease Control and Prevention, Changzhou, 213022, Jiangsu, China; Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211100, China
| | - Ting Li
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213003, Jiangsu, China; Changzhou Center for Disease Control and Prevention, Changzhou, 213022, Jiangsu, China
| | - Lina Zhang
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213003, Jiangsu, China; Changzhou Center for Disease Control and Prevention, Changzhou, 213022, Jiangsu, China
| | - Menglu Liu
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213003, Jiangsu, China; Changzhou Center for Disease Control and Prevention, Changzhou, 213022, Jiangsu, China
| | - Baoling Xing
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213003, Jiangsu, China; Changzhou Center for Disease Control and Prevention, Changzhou, 213022, Jiangsu, China
| | - Mengmeng Yao
- Changzhou Center for Disease Control and Prevention, Changzhou, 213022, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211100, China; Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211100, China
| | - Minjian Chen
- Changzhou Center for Disease Control and Prevention, Changzhou, 213022, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211100, China; Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211100, China.
| |
Collapse
|
32
|
Wei S, Zheng Y, Jiang Y, Li X, Geng J, Shen Y, Li Q, Wang X, Zhao C, Chen Y, Qian Z, Zhou J, Li W. The circRNA circPTPRA suppresses epithelial-mesenchymal transitioning and metastasis of NSCLC cells by sponging miR-96-5p. EBioMedicine 2019; 44:182-193. [PMID: 31160270 PMCID: PMC6604667 DOI: 10.1016/j.ebiom.2019.05.032] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Non-small cell lung carcinomas (NSCLC) are prevalent, lethal cancers with especially grim prospects due to late-stage detection and chemoresistance. Circular RNAs (circRNAs) are non-coding RNAs that participate in tumor development. However, the role of circRNAs in NSCLC is not well known. This study investigated the role of one circRNA - circPTPRA- in NSCLC and characterized its molecular mechanism of action. METHODS circPTPRA expression was analyzed in human NSCLC tumors and matched healthy lung tissue. We performed functional characterization in NSCLC cell lines and a mouse xenograft model of NSCLC to elucidate the molecular role of circPTPRA in epithelial-mesenchymal transitioning (EMT). We also assessed the regulatory action of circPTPRA on the microRNA miR-96-5p and its target the tumor suppressor Ras association domain-containing protein 8 (RASSF8). FINDINGS circPTPRA was significantly downregulated in NSCLC tumors relative to matched healthy lung tissue. Lower circPTPRA levels correlated with metastasis and inferior survival outcomes in NSCLC patients. circPTPRA suppressed EMT in NSCLC cell lines and reduced metastasis in the murine xenograft model by sequestering miR-96-5p and upregulating RASSF8. Correlation analyses in patient-derived NSCLC tumor specimens supported the involvement of the circPTPRA/miR-96-5p/RASSF8/E-cadherin axis dysregulation in NSCLC tumor progression. INTERPRETATION circPTPRA suppresses EMT and metastasis of NSCLC cell lines by sponging miR-96-5p, which upregulates the downstream tumor suppressor RASSF8. The circPTPRA/miR-96-5p/RASSF8/E-cadherin axis can be leveraged as a potential treatment avenue in NSCLC. FUND: The Key research and development projects of Anhui Province (201904a0720079), the Natural Science Foundation of Anhui Province (1908085MH240), the Graduate Innovation Program of Bengbu Medical College (Byycx1843), the National Natural Science Foundation of Tibet (XZ2017ZR-ZY033) and the Science and Technology Project of Shannan (SNKJYFJF2017-3) and Academic Subsidy Project for Top Talents in Universities of Anhui in 2019 (gxbjZD16).
Collapse
Affiliation(s)
- Siliang Wei
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China; Provincial Key Laboratory of Respiratory Disease in Anhui, Bengbu 233004, China
| | - Yuanyuan Zheng
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China; Provincial Key Laboratory of Respiratory Disease in Anhui, Bengbu 233004, China
| | - Yanru Jiang
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China; Provincial Key Laboratory of Respiratory Disease in Anhui, Bengbu 233004, China
| | - Xiaojun Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Jian Geng
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu 233004, China; Anhui Province Key Laboratory of Translational Cancer Research, 233004, China
| | - Yuanbing Shen
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China; Provincial Key Laboratory of Respiratory Disease in Anhui, Bengbu 233004, China
| | - Qin Li
- Department of Respiratory Disease, The Second Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Xiaojing Wang
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China; Provincial Key Laboratory of Respiratory Disease in Anhui, Bengbu 233004, China
| | - Chengling Zhao
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China; Provincial Key Laboratory of Respiratory Disease in Anhui, Bengbu 233004, China
| | - Yuqing Chen
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China; Provincial Key Laboratory of Respiratory Disease in Anhui, Bengbu 233004, China
| | - Zhongqing Qian
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233003, China
| | - Jihong Zhou
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu 233004, China; Anhui Province Key Laboratory of Translational Cancer Research, 233004, China.
| | - Wei Li
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China; Provincial Key Laboratory of Respiratory Disease in Anhui, Bengbu 233004, China; Anhui Province Key Laboratory of Translational Cancer Research, 233004, China.
| |
Collapse
|
33
|
Tang H, Liu Y, Cheng W, He Z, Zhou N. microRNA-96-5p induces the epithelial-mesenchymal transition to promote the metastasis of hepatocellular carcinoma by post-transcriptionally downregulating Talin 1. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1897-1908. [PMID: 31934013 PMCID: PMC6947103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/27/2019] [Indexed: 06/10/2023]
Abstract
Numerous microRNAs (miRNAs) have been shown to play an important regulatory role in the progression of hepatocellular carcinoma (HCC). miR-96-5p, a cancer-related microRNA, was previously reported to inhibit cell apoptosis in HCC, but the function and underlying mechanism of miR-96-5p's involvement in HCC metastasis and progression still remain unknown. In this study, we showed that a significant up-regulation of miR-96-5p in HCC tissues and cell lines, and its increased expression, are associated with microvascular invasion and with the TNM stages of HCC patients. Gain-of-function assays revealed that miR-96-5p induced the epithelial-mesenchymal transition (EMT) to promote the migration and invasion of HCC in vitro. The expression of TLN1 (Talin 1) is significantly decreased in HCC tissues and is inversely correlated to miR-96-5p levels. Notably, through a luciferase reporter assay and a Western blot analysis, TLN1 was confirmed to be a direct target gene of miR-96-5p. Furthermore, results of cell functional assays revealed that the over-expression of TLN1 partially reverses the promotive effects of miR-96-5p overexpression on the migration, invasion, and EMT of HCC. Overall, data from the present study demonstrate that miR-96-5p induces EMT to promote the migration and invasion of HCC by post-transcriptionally downregulating TLN1, indicating that the miR-96-5p/TLN1 axis might provide a potential therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Hongying Tang
- Laboratory of Hepatobiliary Molecular Oncology, Department of Hepatopancreatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University Changsha, P. R. China
| | - Yi Liu
- Laboratory of Hepatobiliary Molecular Oncology, Department of Hepatopancreatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University Changsha, P. R. China
| | - Wei Cheng
- Laboratory of Hepatobiliary Molecular Oncology, Department of Hepatopancreatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University Changsha, P. R. China
| | - Zili He
- Laboratory of Hepatobiliary Molecular Oncology, Department of Hepatopancreatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University Changsha, P. R. China
| | - Ning Zhou
- Laboratory of Hepatobiliary Molecular Oncology, Department of Hepatopancreatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University Changsha, P. R. China
| |
Collapse
|
34
|
Fu L, Fu X, Mo J, Li X, Li R, Peng S. miR-146a-5p enhances hepatitis B virus replication through autophagy to promote aggravation of chronic hepatitis B. IUBMB Life 2019; 71:1336-1346. [PMID: 31018043 DOI: 10.1002/iub.2044] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/20/2022]
Abstract
The objective of this study was to investigate the mechanism by which miR-146a-5p mediated autophagy and hepatitis B virus (HBV) replication. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine the mRNA expression levels of miR-146a-5p and X-linked inhibitor of apoptosis (XIAP) and HBV DNA and RNA. The protein expression levels of XIAP, IκB-α, murine double minute 2 oncoprotein (MDM2) and p53, the phosphorylation of p65, and the conversion of light chain 3 (LC3)-I to LC3-II were detected by Western blotting. The expression levels of XIAP, HBV-related pro-inflammatory cytokines, and serum markers were detected by enzyme-linked immunosorbent assay (ELISA). miR-146a-5p was highly expressed in patients with chronic hepatitis B (CHB) and HBV-expressing hepatocytes. HBV core protein (HBc) and HBV X protein (HBx) were responsible for its effects on miR-146a-5p expression through the nuclear factor-κB pathway. Furthermore, the miR-146a-5p inhibitor suppressed autophagic response and HBV replication as well as MDM2/p53 expression. Luciferase reporter assay confirmed that XIAP was a direct target of miR-146a-5p. We therefore demonstrated that miR-146a-5p mediated positive feedback loop by regulating autophagy-induced HBV replication via targeting the XIAP-mediated MDM2/p53 axis. © 2019 IUBMB Life, 71(9):1336-1346, 2019.
Collapse
Affiliation(s)
- Lei Fu
- Department of Infectious Diseases, Key Laboratory of Hunan Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoyu Fu
- Department of Infectious Diseases, Key Laboratory of Hunan Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Mo
- Department of Infectious Diseases, Key Laboratory of Hunan Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaomei Li
- Department of Infectious Diseases, Key Laboratory of Hunan Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ronghua Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shifang Peng
- Department of Infectious Diseases, Key Laboratory of Hunan Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
35
|
Velagapudi SP, Li Y, Disney MD. A cross-linking approach to map small molecule-RNA binding sites in cells. Bioorg Med Chem Lett 2019; 29:1532-1536. [PMID: 30987892 DOI: 10.1016/j.bmcl.2019.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 10/27/2022]
Abstract
Methods to identify RNAs bound by small molecules in cells are sparse. Herein, an advance to identify the direct RNA targets of small molecules in cells is described. The approach, dubbed Chemical Cross-Linking and Isolation by Pull-down to Map Small Molecule-RNA Binding Sites (Chem-CLIP-Map-Seq), appends a cross-linker and a purification tag onto a small molecule. In cells, the compound binds to RNA and undergoes a proximity-based reaction. The cross-linked RNA is purified and then amplified using a universal reverse transcription (RT) primer and gene-specific PCR primers. At nucleotides proximal to the binding site, RT "stops" are observed. This approach has broad utility in identifying and validating the RNA targets and binding sites of small molecules in the context of a complex cellular system.
Collapse
Affiliation(s)
| | - Yue Li
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
36
|
Liu D, Meng X, Wu D, Qiu Z, Luo H. A Natural Isoquinoline Alkaloid With Antitumor Activity: Studies of the Biological Activities of Berberine. Front Pharmacol 2019; 10:9. [PMID: 30837865 PMCID: PMC6382680 DOI: 10.3389/fphar.2019.00009] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022] Open
Abstract
Coptis, a traditional medicinal plant, has been used widely in the field of traditional Chinese medicine for many years. More recently, the chemical composition and bioactivity of Coptis have been studied worldwide. Berberine is a main component of Rhizoma Coptidis. Modern medicine has confirmed that berberine has pharmacological activities, such as anti-inflammatory, analgesic, antimicrobial, hypolipidemic, and blood pressure-lowering effects. Importantly, the active ingredient of berberine has clear inhibitory effects on various cancers, including colorectal cancer, lung cancer, ovarian cancer, prostate cancer, liver cancer, and cervical cancer. Cancer, ranked as one of the world’s five major incurable diseases by WHO, is a serious threat to the quality of human life. Here, we try to outline how berberine exerts antitumor effects through the regulation of different molecular pathways. In addition, the berberine-mediated regulation of epigenetic mechanisms that may be associated with the prevention of malignant tumors is described. Thus, this review provides a theoretical basis for the biological functions of berberine and its further use in the clinical treatment of cancer.
Collapse
Affiliation(s)
- Da Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xue Meng
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Donglu Wu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhidong Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
37
|
Romero MA, Bayraktar Ekmekcigil O, Bagca BG, Avci CB, Sabitaliyevich UY, Zhenisovna TG, Aras A, Farooqi AA. Role of Autophagy in Breast Cancer Development and Progression: Opposite Sides of the Same Coin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:65-73. [PMID: 31456180 DOI: 10.1007/978-3-030-20301-6_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The term "autophagy", which means "self (auto) - eating (phagy)", describes a catabolic process that is evolutionarially conserved among all eukaryotes. Although autophagy is mainly accepted as a cell survival mechanism, it also modulates the process known as "type II cell death". AKT/mTOR pathway is an upstream activator of autophagy and it is tightly regulated by the ATG (autophagy-related genes) signaling cascade. In addition, wide ranging cell signaling pathways and non-coding RNAs played essential roles in the control of autophagy. Autophagy is closely related to pathological processes such as neurodegenerative diseases and cancer as well as physiological conditions. After the Nobel Prize in Physiology or Medicine 2016 was awarded to Yoshinori Ohsumi "for his discoveries of mechanisms for autophagy", there was an explosion in the field of autophagy and molecular biologists started to pay considerable attention to the mechanistic insights related to autophagy in different diseases. Since autophagy behaved dualistically, both as a cell death and a cell survival mechanism, it opened new horizons for a deeper analysis of cell type and context dependent behavior of autophagy in different types of cancers. There are numerous studies showing that the induction of autophagy mechanism will promote survival of cancer cells. Since autophagy is mainly a mechanism to keep the cells alive, it may protect breast cancer cells against stress conditions such as starvation and hypoxia. For these reasons, autophagy was noted to be instrumental in metastasis and drug resistance. In this chapter we have emphasized on role of role of autophagy in breast cancer. Additionally we have partitioned this chapter into exciting role of microRNAs in modulation of autophagy in breast cancer. We have also comprehensively summarized how TRAIL-mediated signaling and autophagy operated in breast cancer cells.
Collapse
Affiliation(s)
- Mirna Azalea Romero
- Facultad de Medicina, Universidad Autónoma de Guerrero, Laboratorio de Investigación Clínica, Av. Solidaridad S/N, Colonia Hornos Insurgentes, Acapulco, Guerrero, Mexico
| | | | - Bakiye Goker Bagca
- Medical Faculty, Department of Medical Biology, Ege University, Izmir, Turkey
| | - Cigir Biray Avci
- Medical Faculty, Department of Medical Biology, Ege University, Izmir, Turkey
| | | | | | - Aliye Aras
- Department of Botany, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan.
| |
Collapse
|
38
|
Ren Z, Yang T, Zhang P, Liu K, Liu W, Wang P. SKA2 mediates invasion and metastasis in human breast cancer via EMT. Mol Med Rep 2018; 19:515-523. [PMID: 30387823 DOI: 10.3892/mmr.2018.9623] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/02/2018] [Indexed: 11/06/2022] Open
Abstract
Spindle and kinetochore‑associated protein 2 (SKA2) is essential for regulating the progression of mitosis. In recent years, SKA2 upregulation has been detected in various human malignancies and the role of SKA2 in tumorigenesis has received increasing attention. However, the expression and functional significance of SKA2 in breast cancer are not completely understood. To study the effects of SKA2 on breast cancer, the expression levels of SKA2 in breast cancer tissues and cell lines were evaluated by western blotting, reverse transcription‑quantitative polymerase chain reaction and immunohistochemical staining. The results demonstrated that SKA2 expression was increased in breast cancer tissues and cells, and SKA2 overexpression was associated with clinical stage and lymph node metastasis. Functional investigations revealed that SKA2 knockdown in breast cancer cells significantly reduced migration and invasion, and resulted in the decreased expression levels of matrix metalloproteinase (MMP)2 and MMP9. Furthermore, the typical microtubule arrangement was altered in SKA2 small interfering RNA (siSKA2)‑transfected cells. Reduced levels of SKA2 also downregulated the expression of epithelial‑mesenchymal transition proteins, including fibronectin, N‑cadherin and vimentin, whereas there were no alterations in the protein expression levels of E‑cadherin. Conversely, upregulation of SKA2 decreased the expression levels of E‑cadherin, and increased N‑cadherin, fibronectin and vimentin levels. Notably, it was demonstrated that E‑cadherin was translocated from the cytoplasm to the nucleus in siSKA2‑transfected cells. These results demonstrated that SKA2 may be associated with breast cancer metastasis, and siSKA2 inhibited the invasion and metastasis of breast cancer via translocation of E‑cadherin from the cytoplasm to the nucleus.
Collapse
Affiliation(s)
- Zhouhui Ren
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China
| | - Tong Yang
- Department of Oncology Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Pingping Zhang
- Department of Gynaecology, Ningbo Women and Children's Hospital, Ningbo, Zhejiang 315012, P.R. China
| | - Kaitai Liu
- Department of Oncology, Ningbo Medical Center, Li Huili Hospital, Ningbo, Zhejiang 315041, P.R. China
| | - Weihong Liu
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China
| | - Ping Wang
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
39
|
Wu H, Wang Y, Chen T, Li Y, Wang H, Zhang L, Chen S, Wang W, Yang Q, Chen C. The N-terminal polypeptide derived from vMIP-II exerts its anti-tumor activity in human breast cancer by regulating lncRNA SPRY4-IT1. Biosci Rep 2018; 38:BSR20180411. [PMID: 30104400 PMCID: PMC6200706 DOI: 10.1042/bsr20180411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/19/2018] [Accepted: 08/07/2018] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidence demonstrates that long non-coding RNA (lncRNA) sprouty4-intron transcript 1 (lncRNA SPRY4-IT1) plays a vital role in the development of breast cancer. However, the underlying mechanism has not been eventually illuminated. We aimed to explore the biological activity of lncRNA SPRY4-IT1 in breast cancer cells and whether N-terminal polypeptide derived from viral macrophage inflammatory protein II (NT21MP) could exert its anti-tumor effect by regulating lncRNA SPRY4-IT1 and its target gene SKA2 Real-time RT-PCR, Western blotting, wound healing, and invasion assays were used to achieve this goal. We found that lncRNA SPRY4-IT1 was highly expressed in breast cancer cells. Moreover, NT21MP markedly inhibited biological effects of breast cancer cells by regulating lncRNA SPRY4-IT1, which was partially achieved through SKA2. Our findings suggested that lncRNA SPRY4-IT1 could serve as a novel biomarker by NT21MP for breast cancer.
Collapse
Affiliation(s)
- Haihua Wu
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, 233030, China
- Xuzhou Central Hospital, Xuzhou, Jiangsu, 221000, China
| | - Yueyue Wang
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Tiantian Chen
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Yu Li
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Haifeng Wang
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Lingyu Zhang
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Sulian Chen
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Wenrui Wang
- Department of Biotechnology, Bengbu Medical College, Anhui 233030, China
| | - Qingling Yang
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui 233030, China
| | - Changjie Chen
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui 233030, China
| |
Collapse
|
40
|
Piotto C, Biscontin A, Millino C, Mognato M. Functional validation of miRNAs targeting genes of DNA double-strand break repair to radiosensitize non-small lung cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:1102-1118. [PMID: 30389599 DOI: 10.1016/j.bbagrm.2018.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 01/10/2023]
Abstract
DNA-Double strand breaks (DSBs) generated by radiation therapy represent the most efficient lesions to kill tumor cells, however, the inherent DSB repair efficiency of tumor cells can cause cellular radioresistance and impact on therapeutic outcome. Genes of DSB repair represent a target for cancer therapy since their down-regulation can impair the repair process making the cells more sensitive to radiation. In this study, we analyzed the combination of ionizing radiation (IR) along with microRNA-mediated targeting of genes involved in DSB repair to sensitize human non-small cell lung cancer (NSCLC) cells. MicroRNAs are natural occurring modulators of gene expression and therefore represent an attractive strategy to affect the expression of DSB repair genes. As possible IR-sensitizing targets genes we selected genes of homologous recombination (HR) and non-homologous end joining (NHEJ) pathway (i.e. RAD51, BRCA2, PRKDC, XRCC5, LIG1). We examined these genes to determine whether they may be real targets of selected miRNAs by functional and biological validation. The in vivo effectiveness of miRNA treatments has been examined in cells over-expressing miRNAs and treated with IR. Taken together, our results show that hsa-miR-96-5p and hsa-miR-874-3p can directly regulate the expression of target genes. When these miRNAs are combined with IR can decrease the survival of NSCLC cells to a higher extent than that exerted by radiation alone, and similarly to radiation combined with specific chemical inhibitors of HR and NHEJ repair pathway.
Collapse
Affiliation(s)
- Celeste Piotto
- Department of Biology, School of Sciences, University of Padova, via U. Bassi 58 B, 35131 Padova, Italy
| | - Alberto Biscontin
- Department of Biology, School of Sciences, University of Padova, via U. Bassi 58 B, 35131 Padova, Italy
| | - Caterina Millino
- CRIBI Biotechnology Centre, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy
| | - Maddalena Mognato
- Department of Biology, School of Sciences, University of Padova, via U. Bassi 58 B, 35131 Padova, Italy.
| |
Collapse
|
41
|
Molecular pathways involved in microRNA-mediated regulation of multidrug resistance. Mol Biol Rep 2018; 45:2913-2923. [DOI: 10.1007/s11033-018-4358-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 09/03/2018] [Indexed: 12/23/2022]
|
42
|
Chen X, Xie X, Xing Y, Yang X, Yuan Z, Wei Y. MicroRNA Dysregulation Associated with Red Blood Cell Storage. Transfus Med Hemother 2018; 45:397-402. [PMID: 30574057 DOI: 10.1159/000489321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/16/2018] [Indexed: 01/11/2023] Open
Abstract
Introduction Stored red blood cells (RBCs) undergo storage lesions involving morphological, physiological and biochemical changes. MicroRNAs (miRNAs) have important functions in cell apoptosis and life processes. Therefore, the aim of this study was to explore potential roles of miRNAs in the damage of stored RBCs. Methods Blood samples were collected from 13 healthy male O-type donors, and leuko-reduced RBCs were divided into fresh RBC group and 20-day storage RBC group. Results Eight predicted miRNAs with modified expressions with an intersection ≥ 3 were found dysregulated in the 20-day storage RBC group and involved in apoptosis and senescence signaling pathway: miR-31-5p, miR-196a-5p, miR-203a, miR-654-3p and miR-769-3p were increased, while miR-96-5P, miR-150-5P and miR-197-3p were decreased. Evidence associating miR-31-5p, miR-203a, miR-654 and miR-769 to RBCs or blood in general are not available. Conclusions Dysregulated miRNAs might represent potential biomarkers to identify storage lesions, and their detection might help to evaluate the quality of stored RBCs.
Collapse
Affiliation(s)
- Xiaojie Chen
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xuhong Xie
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yanfen Xing
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiuhua Yang
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhaohu Yuan
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yaming Wei
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangdong Technology Engineering Center of Precision Blood Transfusion, Guangzhou, Guangdong, China
| |
Collapse
|
43
|
Gao Z, Wang H, Li H, Li M, Wang J, Zhang W, Liang X, Su D, Tang J. Long non-coding RNA CASC2 inhibits breast cancer cell growth and metastasis through the regulation of the miR-96-5p/SYVN1 pathway. Int J Oncol 2018; 53:2081-2090. [PMID: 30106139 DOI: 10.3892/ijo.2018.4522] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/06/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- Zejun Gao
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hai Wang
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Min Li
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Jia Wang
- Department of General Surgery, The Second Affiliated Hospital with Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Wenwen Zhang
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Xiubin Liang
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Dongming Su
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
44
|
Donzelli S, Milano E, Pruszko M, Sacconi A, Masciarelli S, Iosue I, Melucci E, Gallo E, Terrenato I, Mottolese M, Zylicz M, Zylicz A, Fazi F, Blandino G, Fontemaggi G. Expression of ID4 protein in breast cancer cells induces reprogramming of tumour-associated macrophages. Breast Cancer Res 2018; 20:59. [PMID: 29921315 PMCID: PMC6009061 DOI: 10.1186/s13058-018-0990-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/18/2018] [Indexed: 12/18/2022] Open
Abstract
Background As crucial regulators of the immune response against pathogens, macrophages have been extensively shown also to be important players in several diseases, including cancer. Specifically, breast cancer macrophages tightly control the angiogenic switch and progression to malignancy. ID4, a member of the ID (inhibitors of differentiation) family of proteins, is associated with a stem-like phenotype and poor prognosis in basal-like breast cancer. Moreover, ID4 favours angiogenesis by enhancing the expression of pro-angiogenic cytokines interleukin-8, CXCL1 and vascular endothelial growth factor. In the present study, we investigated whether ID4 protein exerts its pro-angiogenic function while also modulating the activity of tumour-associated macrophages in breast cancer. Methods We performed IHC analysis of ID4 protein and macrophage marker CD68 in a triple-negative breast cancer series. Next, we used cell migration assays to evaluate the effect of ID4 expression modulation in breast cancer cells on the motility of co-cultured macrophages. The analysis of breast cancer gene expression data repositories allowed us to evaluate the ability of ID4 to predict survival in subsets of tumours showing high or low macrophage infiltration. By culturing macrophages in conditioned media obtained from breast cancer cells in which ID4 expression was modulated by overexpression or depletion, we identified changes in the expression of ID4-dependent angiogenesis-related transcripts and microRNAs (miRNAs, miRs) in macrophages by RT-qPCR. Results We determined that ID4 and macrophage marker CD68 protein expression were significantly associated in a series of triple-negative breast tumours. Interestingly, ID4 messenger RNA (mRNA) levels robustly predicted survival, specifically in the subset of tumours showing high macrophage infiltration. In vitro and in vivo migration assays demonstrated that expression of ID4 in breast cancer cells stimulates macrophage motility. At the molecular level, ID4 protein expression in breast cancer cells controls, through paracrine signalling, the activation of an angiogenic programme in macrophages. This programme includes both the increase of angiogenesis-related mRNAs and the decrease of members of the anti-angiogenic miR-15b/107 group. Intriguingly, these miRNAs control the expression of the cytokine granulin, whose enhanced expression in macrophages confers increased angiogenic potential. Conclusions These results uncover a key role for ID4 in dictating the behaviour of tumour-associated macrophages in breast cancer. Electronic supplementary material The online version of this article (10.1186/s13058-018-0990-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sara Donzelli
- Oncogenomics and Epigenetics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Elisa Milano
- Oncogenomics and Epigenetics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Magdalena Pruszko
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109, Warsaw, Poland
| | - Andrea Sacconi
- Oncogenomics and Epigenetics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 16, 00161, Rome, Italy.,Laboratory affiliated with Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Ilaria Iosue
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 16, 00161, Rome, Italy.,Laboratory affiliated with Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Elisa Melucci
- Pathology Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Enzo Gallo
- Pathology Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Irene Terrenato
- Biostatistics Unit, Scientific Direction, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Marcella Mottolese
- Pathology Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Maciej Zylicz
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109, Warsaw, Poland
| | - Alicja Zylicz
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109, Warsaw, Poland
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 16, 00161, Rome, Italy. .,Laboratory affiliated with Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy.
| | - Giovanni Blandino
- Oncogenomics and Epigenetics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Giulia Fontemaggi
- Oncogenomics and Epigenetics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
45
|
Ren Z, Yang T, Ding J, Liu W, Meng X, Zhang P, Liu K, Wang P. MiR-520d-3p antitumor activity in human breast cancer via post-transcriptional regulation of spindle and kinetochore associated 2 expression. Am J Transl Res 2018; 10:1097-1108. [PMID: 29736203 PMCID: PMC5934569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
MicroRNAs (miRNAs) play an important role in human tumorigenesis as oncogenes or tumor suppressors by directly binding to the 3'-untranslated region of their target mRNAs. MiR-520d-3p has been reported as a tumor suppressor gene in ovarian cancer and gastric cancer, while the function of miR-520d-3p in human breast cancers is still uninvolved. In this study, we initially identified that the expression of miR-520d-3p was significantly reduced in breast cancer specimens and cell lines. The restoration of miR-520d-3p expression not only reduced breast cancer cell viability by causing the accumulation of G2 phase and cell apoptosis, but also inhibited tumorigenicity in vivo. In addition, as a critical target of miR-520d-3p, the activity of spindle and kinetochore associated 2 (SKA2) was greatly inhibited by miR-520d-3p, and overexpression of miR-520d-3p decreased the expression of SKA2. SKA2 downregulation suppressed cell viability, whereas restoration of SKA2 expression significantly reversed the inhibitory effects of miR-520d-3p antitumor activity. Furthermore, SKA2 was frequently overexpressed in clinical specimens and cell lines, and the expression levels were statistically inversely correlated with miR-520d-3p expression. In conclusion, our data demonstrated that miR-520d-3p antitumor activity is achieved by targeting the SKA2 in human breast cancer cells, suggesting that miR-520d-3p may be a potential target molecule for the therapy.
Collapse
Affiliation(s)
- Zhouhui Ren
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo UniversityNingbo 315211, China
- Ningbo NO. 2 HospitalNingbo 315010, China
| | - Tong Yang
- Ningbo NO. 2 HospitalNingbo 315010, China
| | - Jie Ding
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo UniversityNingbo 315211, China
| | - Weihong Liu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo UniversityNingbo 315211, China
| | - Xiangyu Meng
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo UniversityNingbo 315211, China
| | - Pingping Zhang
- Ningbo Women and Children’s HospitalNingbo 315012, China
| | - Kaitai Liu
- Ningbo Medical Treatment Center, Lihuili HospitalNingbo 315041, China
| | - Ping Wang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo UniversityNingbo 315211, China
| |
Collapse
|
46
|
Ju RJ, Cheng L, Peng XM, Wang T, Li CQ, Song XL, Liu S, Chao JP, Li XT. Octreotide-modified liposomes containing daunorubicin and dihydroartemisinin for treatment of invasive breast cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:616-628. [PMID: 29381101 DOI: 10.1080/21691401.2018.1433187] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tumor invasion is considered a major promoter in the initiation of tumor metastasis, which is supposed to cause most cancer-related deaths. In the present study, octreotide (OCT)-modified daunorubicin plus dihydroartemisinin liposomes were developed and characterized. Evaluations were undertaken on breast cancer MDA-MB-435S cells and MDA-MB-435S xenografts nude mice. The liposomes were ∼100 nm in size with a narrow polydispersity index. In vitro results showed that the OCT-modified daunorubicin plus dihydroartemisinin liposomes could enhance cytotoxicity and cellular uptake by OCT-SSTRs (somatostatin receptors)-mediated active targeting, block on tumor cell wound healing and migration by incorporating dihydroartemisinin. The action mechanism might be related to regulations on E-cadherin, α5β1-integrin, TGF-β1, VEGF and MMP2/9 in breast cancer cells. In vivo, the liposomes displayed a prolonged circulating time, more accumulation in tumor location, and a robust overall antitumor efficacy with no obvious toxicity at the test dose in MDA-MB-435S xenograft mice. In conclusion, the OCT-modified daunorubicin plus dihydroartemisinin liposomes could prevent breast cancer invasion, hence providing a possible strategy for treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Rui-Jun Ju
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China
| | - Lan Cheng
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Xiao-Ming Peng
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China
| | - Teng Wang
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China
| | - Cui-Qing Li
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China
| | - Xiao-Li Song
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Shuang Liu
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Jian-Ping Chao
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China
| | - Xue-Tao Li
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| |
Collapse
|