1
|
Saki N, Javan M, Moghimian-Boroujeni B, Kast RE. Interesting effects of interleukins and immune cells on acute respiratory distress syndrome. Clin Exp Med 2023; 23:2979-2996. [PMID: 37330918 DOI: 10.1007/s10238-023-01118-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a medical condition characterized by widespread inflammation in the lungs with consequent proportional loss of gas exchange function. ARDS is linked with severe pulmonary or systemic infection. Several factors, including secretory cytokines, immune cells, and lung epithelial and endothelial cells, play a role in the development and progression of this disease. The present study is based on Pubmed database information (1987-2022) using the words "Acute respiratory distress syndrome", "Interleukin", "Cytokines" and "Immune cells". Cytokines and immune cells play an important role in this disease, with particular emphasis on the balance between pro-inflammatory and anti-inflammatory factors. Neutrophils are one of several important mediators of Inflammation, lung tissue destruction, and malfunction during ARDS. Some immune cells, such as macrophages and eosinophils, play a dual role in releasing inflammatory mediators, recruitment inflammatory cells and the progression of ARDS, or releasing anti-inflammatory mediators, clearing the lung of inflammatory cells, and helping to improve the disease. Different interleukins play a role in the development or inhibition of ARDS by helping to activate various signaling pathways, helping to secrete other inflammatory or anti-inflammatory interleukins, and playing a role in the production and balance between immune cells involved in ARDS. As a result, immune cells and, inflammatory cytokines, especially interleukins play an important role in the pathogenesis of this disease Therefore, understanding the relevant mechanisms will help in the proper diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Javan
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Bahareh Moghimian-Boroujeni
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, 61357-15794, Iran.
| | | |
Collapse
|
2
|
Hernandez J, Schäffer J, Herden C, Pflieger FJ, Reiche S, Körber S, Kitagawa H, Welter J, Michels S, Culmsee C, Bier J, Sommer N, Kang JX, Mayer K, Hecker M, Rummel C. n-3 Polyunsaturated Fatty Acids Modulate LPS-Induced ARDS and the Lung-Brain Axis of Communication in Wild-Type versus Fat-1 Mice Genetically Modified for Leukotriene B4 Receptor 1 or Chemerin Receptor 23 Knockout. Int J Mol Sci 2023; 24:13524. [PMID: 37686333 PMCID: PMC10487657 DOI: 10.3390/ijms241713524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Specialized pro-resolving mediators (SPMs) and especially Resolvin E1 (RvE1) can actively terminate inflammation and promote healing during lung diseases such as acute respiratory distress syndrome (ARDS). Although ARDS primarily affects the lung, many ARDS patients also develop neurocognitive impairments. To investigate the connection between the lung and brain during ARDS and the therapeutic potential of SPMs and its derivatives, fat-1 mice were crossbred with RvE1 receptor knockout mice. ARDS was induced in these mice by intratracheal application of lipopolysaccharide (LPS, 10 µg). Mice were sacrificed at 0 h, 4 h, 24 h, 72 h, and 120 h post inflammation, and effects on the lung, liver, and brain were assessed by RT-PCR, multiplex, immunohistochemistry, Western blot, and LC-MS/MS. Protein and mRNA analyses of the lung, liver, and hypothalamus revealed LPS-induced lung inflammation increased inflammatory signaling in the hypothalamus despite low signaling in the periphery. Neutrophil recruitment in different brain structures was determined by immunohistochemical staining. Overall, we showed that immune cell trafficking to the brain contributed to immune-to-brain communication during ARDS rather than cytokines. Deficiency in RvE1 receptors and enhanced omega-3 polyunsaturated fatty acid levels (fat-1 mice) affect lung-brain interaction during ARDS by altering profiles of several inflammatory and lipid mediators and glial activity markers.
Collapse
Affiliation(s)
- Jessica Hernandez
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
| | - Julia Schäffer
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus Liebig University Giessen, 35392 Giessen, Germany; (C.H.); (S.K.)
| | - Fabian Johannes Pflieger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
| | - Sylvia Reiche
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Svenja Körber
- Institute of Veterinary Pathology, Justus Liebig University Giessen, 35392 Giessen, Germany; (C.H.); (S.K.)
| | - Hiromu Kitagawa
- Department of Biomedical Engineering, Osaka Institute of Technology, Omiya, Osaka 535-8585, Japan
| | - Joelle Welter
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
| | - Susanne Michels
- Institute of Pharmacology and Clinical Pharmacy, Philipps University of Marburg, 35032 Marburg, Germany (C.C.)
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, Philipps University of Marburg, 35032 Marburg, Germany (C.C.)
- Center for Mind Brain and Behavior, Universities Giessen and Marburg, 35032 Marburg, Germany
| | - Jens Bier
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Natascha Sommer
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Jing X. Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical, Boston, MA 02129, USA
| | - Konstantin Mayer
- Department of Internal Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Matthias Hecker
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
- Center for Mind Brain and Behavior, Universities Giessen and Marburg, 35032 Marburg, Germany
| |
Collapse
|
3
|
Dasgupta D, Mahadev Bhat S, Price AL, Delmotte P, Sieck GC. Molecular Mechanisms Underlying TNFα-Induced Mitochondrial Biogenesis in Human Airway Smooth Muscle. Int J Mol Sci 2023; 24:5788. [PMID: 36982859 PMCID: PMC10055892 DOI: 10.3390/ijms24065788] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Proinflammatory cytokines such as TNFα mediate airway inflammation. Previously, we showed that TNFα increases mitochondrial biogenesis in human ASM (hASM) cells, which is associated with increased PGC1α expression. We hypothesized that TNFα induces CREB and ATF1 phosphorylation (pCREBS133 and pATF1S63), which transcriptionally co-activate PGC1α expression. Primary hASM cells were dissociated from bronchiolar tissue obtained from patients undergoing lung resection, cultured (one-three passages), and then differentiated by serum deprivation (48 h). hASM cells from the same patient were divided into two groups: TNFα (20 ng/mL) treated for 6 h and untreated controls. Mitochondria were labeled using MitoTracker green and imaged using 3D confocal microscopy to determine mitochondrial volume density. Mitochondrial biogenesis was assessed based on relative mitochondrial DNA (mtDNA) copy number determined by quantitative real-time PCR (qPCR). Gene and/or protein expression of pCREBS133, pATF1S63, PCG1α, and downstream signaling molecules (NRFs, TFAM) that regulate transcription and replication of the mitochondrial genome, were determined by qPCR and/or Western blot. TNFα increased mitochondrial volume density and mitochondrial biogenesis in hASM cells, which was associated with an increase in pCREBS133, pATF1S63 and PCG1α expression, with downstream transcriptional activation of NRF1, NRF2, and TFAM. We conclude that TNFα increases mitochondrial volume density in hASM cells via a pCREBS133/pATF1S63/PCG1α-mediated pathway.
Collapse
Affiliation(s)
| | | | | | | | - Gary C. Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
AL-Duhaidahawi D, AL-Zubaidy HF, Al-Khafaji K, Al-Amiery A. Synthesis, anti-inflammatory effects, molecular docking and molecular dynamics studies of 4-hydroxy coumarin derivatives as inhibitors of COX-II enzyme. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Saha R, Assouline B, Mason G, Douiri A, Summers C, Shankar-Hari M. Impact of differences in acute respiratory distress syndrome randomised controlled trial inclusion and exclusion criteria: systematic review and meta-analysis. Br J Anaesth 2021; 127:85-101. [PMID: 33812666 PMCID: PMC9768208 DOI: 10.1016/j.bja.2021.02.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/31/2021] [Accepted: 02/21/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Control-arm mortality varies between acute respiratory distress syndrome (ARDS) RCTs. METHODS We systematically reviewed ARDS RCTs that commenced recruitment after publication of the American-European Consensus (AECC) definition (MEDLINE, Embase, and Cochrane central register of controlled trials; January 1994 to October 2020). We assessed concordance of RCT inclusion criteria to ARDS consensus definitions and whether exclusion criteria are strongly or poorly justified. We estimated the proportion of between-trial difference in control-arm 28-day mortality explained by the inclusion criteria and RCT design characteristics using meta-regression. RESULTS A literature search identified 43 709 records. One hundred and fifty ARDS RCTs were included; 146/150 (97.3%) RCTs defined ARDS inclusion criteria using AECC/Berlin definitions. Deviations from consensus definitions, primarily aimed at improving ARDS diagnostic certainty, frequently related to duration of hypoxaemia (117/146; 80.1%). Exclusion criteria could be grouped by rationale for selection into strongly or poorly justified criteria. Common poorly justified exclusions included pregnancy related, age, and comorbidities (infectious/immunosuppression, hepatic, renal, and human immunodeficiency virus/acquired immunodeficiency syndrome). Control-arm 28-day mortality varied between ARDS RCTs (mean: 29.8% [95% confidence interval: 27.0-32.7%; I2=88.8%; τ2=0.02; P<0.01]), and differed significantly between RCTs with different Pao2:FiO2 ratio inclusion thresholds (26.6-39.9 kPa vs <26.6 kPa; P<0.01). In a meta-regression model, inclusion criteria and RCT design characteristics accounted for 30.6% of between-trial difference (P<0.01). CONCLUSIONS In most ARDS RCTs, consensus definitions are modified to use as inclusion criteria. Between-RCT mortality differences are mostly explained by the Pao2:FiO2 ratio threshold within the consensus definitions. An exclusion criteria framework can be applied when designing and reporting exclusion criteria in future ARDS RCTs.
Collapse
Affiliation(s)
- Rohit Saha
- Critical Care, King's College Hospital NHS Foundation Trust, London, UK
| | | | - Georgina Mason
- Critical Care, King's College Hospital NHS Foundation Trust, London, UK
| | - Abdel Douiri
- School of Population Health & Environmental Sciences, King's College London, London, UK; National Institute for Health Research Comprehensive Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Manu Shankar-Hari
- Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, UK; School of Immunology & Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
6
|
Esawy MM, Shabana MA, Baioumy SA, Ismail NA. Diagnostic and prognostic roles of peripheral blood Toll-like receptor-4 and stanniocalcin-1 genes expression in acute lung injury. Immunobiology 2019; 224:734-738. [PMID: 31515080 DOI: 10.1016/j.imbio.2019.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 01/16/2023]
Abstract
Acute lung injury (ALI) is an acute inflammatory disorder. Toll-like receptor-4 (TLR-4) and Stanniocalcin -1 (STC-1) had roles in lung endothelial protection. This study aims to assess TLR-4 and SCT-1 genes expressions in peripheral blood of ALI patients. Total RNA was extracted from peripheral blood of 48 subjects (20 healthy controls, 28 ALI patients) and expressions of genes were assessed by real-Time qRT-PCR. The expression levels of TLR-4 and SCT-1 genes were significantly lower in ALI patients compared to controls (P < 0.0001). After 10 days, the expression levels of TLR-4 and SCT-1 were increased compared to their baseline levels (p = 0.012 and 0.024, respectively). SCT-1 has 92.9% sensitivity and 100% specificity in ALI detection. SCT-1 gene expression was negatively correlated with severity score (r= -0.54, p = 0.003). The mortality pattern was higher in ALI patients with lower TLR-4 gene expression (p = 0.014). In conclusion, the peripheral blood expressions of TLR-4 and STC-1 genes were decreased in ALI patients. Both genes expressions were increased with patients' recovery. SCT-1 had higher sensitivity and specificity in ALI diagnosis. The peripheral blood expressions of SCT-1 and TLR-4 genes seem to be diagnostic and prognostic markers in ALI.
Collapse
Affiliation(s)
- Marwa M Esawy
- Clinical Pathology Department, Faculty of Human Medicine, Zagazig University, Egypt.
| | - Marwa A Shabana
- Clinical Pathology Department, Faculty of Human Medicine, Zagazig University, Egypt
| | - Shereen A Baioumy
- Microbiology and Immunology Department, Faculty of Human Medicine, Zagazig University, Egypt
| | - Nagwan A Ismail
- Chest Department, Faculty of Human Medicine, Zagazig University, Egypt
| |
Collapse
|
7
|
Lewis SR, Pritchard MW, Thomas CM, Smith AF. Pharmacological agents for adults with acute respiratory distress syndrome. Cochrane Database Syst Rev 2019; 7:CD004477. [PMID: 31334568 PMCID: PMC6646953 DOI: 10.1002/14651858.cd004477.pub3] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a life-threatening condition caused by direct or indirect injury to the lungs. Despite improvements in clinical management (for example, lung protection strategies), mortality in this patient group is at approximately 40%. This is an update of a previous version of this review, last published in 2004. OBJECTIVES To evaluate the effectiveness of pharmacological agents in adults with ARDS on mortality, mechanical ventilation, and fitness to return to work at 12 months. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, and CINAHL on 10 December 2018. We searched clinical trials registers and grey literature, and handsearched reference lists of included studies and related reviews. SELECTION CRITERIA We included randomized controlled trials (RCTs) comparing pharmacological agents with control (placebo or standard therapy) to treat adults with established ARDS. We excluded trials of nitric oxide, inhaled prostacyclins, partial liquid ventilation, neuromuscular blocking agents, fluid and nutritional interventions and medical oxygen. We excluded studies published earlier than 2000, because of changes to lung protection strategies for people with ARDS since this date. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies for inclusion, extracted data, and assessed risks of bias. We assessed the certainty of evidence with GRADE. MAIN RESULTS We included 48 RCTs with 6299 participants who had ARDS; two included only participants with mild ARDS (also called acute lung injury). Most studies included causes of ARDS that were both direct and indirect injuries. We noted differences between studies, for example the time of administration or the size of dose, and because of unclear reporting we were uncertain whether all studies had used equivalent lung protection strategies.We included five types of agents as the primary comparisons in the review: corticosteroids, surfactants, N-acetylcysteine, statins, and beta-agonists. We included 15 additional agents (sivelestat, mesenchymal stem cells, ulinastatin, anisodimine, angiotensin-converting enzyme (ACE) inhibitor, recombinant human ACE2 (palifermin), AP301, granulocyte-macrophage colony stimulating factor (GM-CSF), levosimendan, prostacyclins, lisofylline, ketaconazole, nitroglycerins, L-2-oxothiazolidine-4-carboxylic acid (OTZ), and penehyclidine hydrochloride).We used GRADE to downgrade outcomes for imprecision (because of few studies and few participants), for study limitations (e.g. high risks of bias) and for inconsistency (e.g. differences between study data).Corticosteroids versus placebo or standard therapyCorticosteroids may reduce all-cause mortality within three months by 86 per 1000 patients (with as many as 161 fewer to 19 more deaths); however, the 95% confidence interval (CI) includes the possibility of both increased and reduced deaths (risk ratio (RR) 0.77, 95% CI 0.57 to 1.05; 6 studies, 574 participants; low-certainty evidence). Due to the very low-certainty evidence, we are uncertain whether corticosteroids make little or no difference to late all-cause mortality (later than three months) (RR 0.99, 95% CI 0.64 to 1.52; 1 study, 180 participants), or to the duration of mechanical ventilation (mean difference (MD) -4.30, 95% CI -9.72 to 1.12; 3 studies, 277 participants). We found that ventilator-free days up to day 28 (VFD) may be improved with corticosteroids (MD 4.09, 95% CI 1.74 to 6.44; 4 studies, 494 participants; low-certainty evidence). No studies reported adverse events leading to discontinuation of study medication, or fitness to return to work at 12 months (FTR).Surfactants versus placebo or standard therapyWe are uncertain whether surfactants make little or no difference to early mortality (RR 1.08, 95% CI 0.91 to 1.29; 9 studies, 1338 participants), or whether they reduce late all-cause mortality (RR 1.28, 95% CI 1.01 to 1.61; 1 study, 418 participants). Similarly, we are uncertain whether surfactants reduce the duration of mechanical ventilation (MD -2.50, 95% CI -4.95 to -0.05; 1 study, 16 participants), make little or no difference to VFD (MD -0.39, 95% CI -2.49 to 1.72; 2 studies, 344 participants), or to adverse events leading to discontinuation of study medication (RR 0.50, 95% CI 0.17 to 1.44; 2 studies, 88 participants). We are uncertain of these effects because we assessed them as very low-certainty. No studies reported FTR.N-aceytylcysteine versus placeboWe are uncertain whether N-acetylcysteine makes little or no difference to early mortality, because we assessed this as very low-certainty evidence (RR 0.64, 95% CI 0.32 to 1.30; 1 study, 36 participants). No studies reported late all-cause mortality, duration of mechanical ventilation, VFD, adverse events leading to study drug discontinuation, or FTR.Statins versus placeboStatins probably make little or no difference to early mortality (RR 0.99, 95% CI 0.78 to 1.26; 3 studies, 1344 participants; moderate-certainty evidence) or to VFD (MD 0.40, 95% CI -0.71 to 1.52; 3 studies, 1342 participants; moderate-certainty evidence). Statins may make little or no difference to duration of mechanical ventilation (MD 2.70, 95% CI -3.55 to 8.95; 1 study, 60 participants; low-certainty evidence). We could not include data for adverse events leading to study drug discontinuation in one study because it was unclearly reported. No studies reported late all-cause mortality or FTR.Beta-agonists versus placebo controlBeta-blockers probably slightly increase early mortality by 40 per 1000 patients (with as many as 119 more or 25 fewer deaths); however, the 95% CI includes the possibility of an increase as well as a reduction in mortality (RR 1.14, 95% CI 0.91 to 1.42; 3 studies, 646 participants; moderate-certainty evidence). Due to the very low-certainty evidence, we are uncertain whether beta-agonists increase VFD (MD -2.20, 95% CI -3.68 to -0.71; 3 studies, 646 participants), or make little or no difference to adverse events leading to study drug discontinuation (one study reported little or no difference between groups, and one study reported more events in the beta-agonist group). No studies reported late all-cause mortality, duration of mechanical ventilation, or FTR. AUTHORS' CONCLUSIONS We found insufficient evidence to determine with certainty whether corticosteroids, surfactants, N-acetylcysteine, statins, or beta-agonists were effective at reducing mortality in people with ARDS, or duration of mechanical ventilation, or increasing ventilator-free days. Three studies awaiting classification may alter the conclusions of this review. As the potential long-term consequences of ARDS are important to survivors, future research should incorporate a longer follow-up to measure the impacts on quality of life.
Collapse
Affiliation(s)
- Sharon R Lewis
- Royal Lancaster InfirmaryLancaster Patient Safety Research UnitPointer Court 1, Ashton RoadLancasterUKLA1 4RP
| | - Michael W Pritchard
- Royal Lancaster InfirmaryLancaster Patient Safety Research UnitPointer Court 1, Ashton RoadLancasterUKLA1 4RP
| | - Carmel M Thomas
- Greater Manchester Mental Health NHS Foundation TrustDepartment of Research and InnovationHarrop HousePrestwichManchesterUKM25 3BL
| | - Andrew F Smith
- Royal Lancaster InfirmaryDepartment of AnaesthesiaAshton RoadLancasterLancashireUKLA1 4RP
| | | |
Collapse
|
8
|
Dong G, Wang F, Xu L, Zhu M, Zhang B, Wang B. Serum interleukin-18: A novel prognostic indicator for acute respiratory distress syndrome. Medicine (Baltimore) 2019; 98:e15529. [PMID: 31124933 PMCID: PMC6571250 DOI: 10.1097/md.0000000000015529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The aim of this study is to determine the biological function of serum interleukin-18 (IL-18) on prognosis in acute respiratory distress syndrome (ARDS).From October 2016 to September 2017, 150 patients with ARDS in the ICU were enrolled according to the Berlin 2012 definition. The enzyme-linked immunosorbent assay (ELISA) was used to detect the expression level of IL-18 in serum isolated from the patients. Patients were divided into survival group (82 cases) and non-survival group (68 cases) and followed up for at least 2 months. The serum IL-18 expression level on the prognosis was calculated by receiver operating characteristic curve (ROC).The expression level of serum IL-18 was significantly higher in the non-survival group than that in the survival group (P < .05). Based on the ROC curve, the sensitivity and specificity of IL-18 as a predictor of prognosis at a cutoff of 509.5 pg/mL were 88% and 82%, respectively, and the area under the curve (RUC) was 0.84 (P < .05).The expression level of serum IL-18 could be used to evaluate the possible outcomes of patients with ARDS.
Collapse
|
9
|
Correlations of IL-17 and NF-κB gene polymorphisms with susceptibility and prognosis in acute respiratory distress syndrome in a chinese population. Biosci Rep 2019; 39:BSR20181987. [PMID: 30655311 PMCID: PMC6367126 DOI: 10.1042/bsr20181987] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/01/2019] [Accepted: 01/13/2019] [Indexed: 02/08/2023] Open
Abstract
The present study was performed to investigate the association between interleukin-17 (IL-17) and nuclear factor κB (NF-κB) gene polymorphisms and the risk and prognosis of acute respiratory distress syndrome (ARDS) in a Chinese population. A total of 210 Chinese patients with ARDS were selected as the study group, 210 individuals who were identified as at-risk patients but did not meet criteria for ARDS were recruited as the control group. Three single nucleotide polymorphisms (SNPs) of IL-17, including rs763780 (A>G), rs2275913 (G>A), rs8193036 (C>T) and NF-κB1 gene rs3774934 (G>A) loci were examined by Sanger sequencing technique in the peripheral blood of all subjects. Patients were followed for 30-day survival. The IL-17 rs763780 and NF-κB1 rs3774934 SNPs had no impact on ARDS risk and prognosis of ARDS (P>0.05). Compared with individuals carrying the wild-type GG genotype of rs2275913 at IL-17, the AA-homozygous and GA- heterozygous individuals were protected from the development of ARDS. Consistently, a decreased 30-day mortality risk was found among A-allele carriers of rs2275913 at IL-17 (p<0.05). For IL-17 rs8193036 SNP, the homozygote TT genotype and heterozygote CT genotypes were associated with increased ARDS susceptibility and 30-day mortality risk (P<0.05). Besides, decreased IL-17 levels were found in A-allele carriers of IL-17 rs2275913, whereas individuals carrying T-allele of IL-17 rs8193036 were found to have significantly increased levels of IL-17 (P<0.05). Our results suggested that two functional polymorphisms of IL-17, rs2275913 and rs8193036 were associated with ARDS risk and prognosis, indicating that the two genetic variants might act as possible markers for the prediction of ARDS risk and development.
Collapse
|
10
|
Wang J, Yi X, Jiang L, Dong H, Feng W, Wang S, Chu C. Protective effects of dexmedetomidine on lung in rats with one-lung ventilation. Exp Ther Med 2018; 17:187-192. [PMID: 30651781 PMCID: PMC6307433 DOI: 10.3892/etm.2018.6952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
Protective effect of dexmedetomidine (DEX) on the lungs of one-lung ventilation (OLV) rat model and its effect on inflammatory factors were investigated. Ninety-two rats were selected and divided into groups A, B, C and D (n=23) according to the principle of similar body weight. OLV rat model was established. Before modeling (15 min), rats in group C were injected with sodium chloride. Rats in group D were injected with DEX at a speed of 5 µg/kg/h. Group A rats were ventilated in both lungs for 2 h. Rats in groups B and C (0.9% sodium chloride injection + OLV) and in group D (DEX + OLV) were subjected to OLV for 2 h and bilateral ventilation for 10 min. Concentrations of interleukin (IL)-6, IL-10 and tumor necrosis factor-α (TNF-α) in lung tissue of rats were detected by ELISA. The malondialdehyde (MDA) concentration and superoxide dismutase (SOD) activity in rat lung tissue were detected by radioimmunoassay. Wet weight (W)/dry weight (D) of lung tissue was calculated and indexes of the four groups of rats were compared. Compared with group A, IL-6, TNF-α and MDA concentrations and W/D of lung tissue of rats in groups B, C and D were significantly increased (p<0.05); SOD activity and IL-10 concentration were significantly decreased (p<0.01). Compared with groups B and C, the concentrations of IL-6, TNF-α and W/D in rats of group D were significantly decreased (p<0.01), but IL-10 significantly increased (p<0.01). Compared with groups B and C, the MDA concentration in lung tissue of rats in group D was significantly decreased (p<0.01), but SOD activity significantly increased (p<0.01). DEX can inhibit the production of inflammatory factors in the development and progression of pulmonary inflammation. It can inhibit lipid peroxidation, relieve pulmonary edema, and reduce lung injury after OLV, sin order to protect the lung.
Collapse
Affiliation(s)
- Juntao Wang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xuanlong Yi
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Lili Jiang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - He Dong
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Wei Feng
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Shuntao Wang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430071, P.R. China
| | - Chunqin Chu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|