1
|
Katsumi T, Hayashi R, Takei S, Ansai O, Takatsuka S, Takenouchi T, Saito K, Suda K, Yoshihara K, Nagai T, Okuda S, Fukumoto T, Ansai SI, Nakamura A, Katsuumi K, Ariizumi T, Ogose A, Kawashima H, Abe R. Reevaluating hybrid neurofibroma/schwannoma: Predominance of schwannoma features despite CD34 positivity and initial neurofibroma diagnosis. J Dermatol 2024; 51:1461-1469. [PMID: 39487562 DOI: 10.1111/1346-8138.17343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 11/04/2024]
Abstract
Schwannomas consist of both high-cellularity regions (Antoni A area) and hypocellular regions (Antoni B area) in histopathological findings. Neurofibromas characteristically consist of CD34 positive spindle cells with thin, wavy, nuclei and wavy collagen bands. Previous reports have described segments of schwannomas with neurofibroma features as hybrid tumors, although hybrid tumors were diagnosed based on partial CD34 positivity in many previous reports. On the other hand, the Antoni B area of some schwannomas was reported to be positive for CD34. Therefore, the definition of a hybrid tumor has not been clear. The objective of this study was to determine whether only CD34 positive findings in schwannomas could be used to define a hybrid tumor. In the analysis of our patient with schwannomatosis caused by a novel LZTR1 germline mutation, part of the tumor had CD34 positive hypocellular regions. These regions contained no thin, wavy, nuclei, indicating an Antoni B area. Laser microdissection was used to investigate the genetic background and differences in molecular mechanisms between CD34 positive and CD34 negative regions. All mutations identified in CD34 positive regions were also found in CD34 negative regions. Our data could not clear the genetic background of Antoni B which was CD34 positive area. We then reviewed the pathologies of 66 sporadic schwannomas. Histopathological examinations of all schwannomas revealed the absence of thin, wavy, nuclei and wavy collagen bands, and no hybrid tumors were found in any of the cases. Ten of 66 patients were randomly selected for CD34 immunostaining and positivity was found in all cases. Our data suggest that it is difficult to distinguish schwannomas by staining for CD34 alone, as Antoni B areas can also be positive for CD34. Therefore, CD34 staining alone should not be used to diagnose hybrid tumors in patients with schwannomas.
Collapse
Affiliation(s)
- Tatsuya Katsumi
- Division of Dermatology, Niigata University Graduate School of Medicine and Dental Sciences, Niigata, Japan
| | - Ryota Hayashi
- Division of Dermatology, Niigata University Graduate School of Medicine and Dental Sciences, Niigata, Japan
| | - Shingo Takei
- Division of Dermatology, Niigata University Graduate School of Medicine and Dental Sciences, Niigata, Japan
| | - Osamu Ansai
- Division of Dermatology, Niigata University Graduate School of Medicine and Dental Sciences, Niigata, Japan
| | - Sumiko Takatsuka
- Division of Dermatology, Niigata Cancer Center Hospital, Niigata, Japan
| | | | - Kyota Saito
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuaki Suda
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takahiro Nagai
- Center for Genomic Data Management, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Shujiro Okuda
- Center for Genomic Data Management, Niigata University Medical and Dental Hospital, Niigata, Japan
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | - Anna Nakamura
- Division of Dermatology, Niigata University Graduate School of Medicine and Dental Sciences, Niigata, Japan
| | - Koji Katsuumi
- Division of Dermatology, Niigata University Graduate School of Medicine and Dental Sciences, Niigata, Japan
| | - Takashi Ariizumi
- Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akira Ogose
- Department of Orthopedic Surgery, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minamiuonuma, Japan
| | - Hiroyuki Kawashima
- Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Riichiro Abe
- Division of Dermatology, Niigata University Graduate School of Medicine and Dental Sciences, Niigata, Japan
| |
Collapse
|
2
|
Wang M, Yan X, Dong Y, Li X, Gao B. From driver genes to gene families: A computational analysis of oncogenic mutations and ubiquitination anomalies in hepatocellular carcinoma. Comput Biol Chem 2024; 112:108119. [PMID: 38852361 DOI: 10.1016/j.compbiolchem.2024.108119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Hepatocellular carcinoma (HCC) is a widespread primary liver cancer with a high fatality rate. Despite several genes with oncogenic effects in HCC have been identified, many remain undiscovered. In this study, we conducted a comprehensive computational analysis to explore the involvement of genes within the same families as known driver genes in HCC. Specifically, we expanded the concept beyond single-gene mutations to encompass gene families sharing homologous structures, integrating various omics data to comprehensively understand gene abnormalities in cancer. Our analysis identified 74 domains with an enriched mutation burden, 404 domain mutation hotspots, and 233 dysregulated driver genes. We observed that specific low-frequency somatic mutations may contribute to HCC occurrence, potentially overlooked by single-gene algorithms. Furthermore, we systematically analyzed how abnormalities in the ubiquitinated proteasome system (UPS) impact HCC, finding that abnormal genes in E3, E2, DUB families, and Degron genes often result in HCC by affecting the stability of oncogenic or tumor suppressor proteins. In conclusion, expanding the exploration of driver genes to include gene families with homologous structures emerges as a promising strategy for uncovering additional oncogenic alterations in HCC.
Collapse
Affiliation(s)
- Meng Wang
- Faculty of Environment and Life of Beijing University of Technology, Beijing 100124, China
| | - Xinyue Yan
- Faculty of Environment and Life of Beijing University of Technology, Beijing 100124, China
| | - Yanan Dong
- Faculty of Environment and Life of Beijing University of Technology, Beijing 100124, China
| | - Xiaoqin Li
- Faculty of Environment and Life of Beijing University of Technology, Beijing 100124, China.
| | - Bin Gao
- Faculty of Environment and Life of Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
3
|
Uliana V, Ambrosini E, Taiani A, Cesarini S, Cannizzaro IR, Negrotti A, Serra W, Quintavalle G, Micale L, Fusco C, Castori M, Martorana D, Bortesi B, Belli L, Percesepe A, Pisani F, Barili V. Phenotypic Expansion of Autosomal Dominant LZTR1-Related Disorders with Special Emphasis on Adult-Onset Features. Genes (Basel) 2024; 15:916. [PMID: 39062695 PMCID: PMC11276570 DOI: 10.3390/genes15070916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Leucine zipper-like transcription regulator 1 (LZTR1) acts as a negative factor that suppresses RAS function and MAPK signaling; mutations in this protein may dysregulate RAS ubiquitination and lead to impaired degradation of RAS superfamily proteins. Germline LZTR1 variants are reported in Noonan syndrome, either autosomal dominant or autosomal recessive, and in susceptibility to schwannomatosis. This article explores the genetic and phenotypic diversity of the autosomal dominant LZTR1-related disorders, compiling a cohort of previously published patients (51 with the Noonan phenotype and 123 with schwannomatosis) and presenting two additional adult-onset cases: a male with schwannomatosis and Parkinson's disease and a female with Noonan syndrome, generalized joint hypermobility, and breast cancer. This review confirms that autosomal dominant LZTR1-related disorders exhibit an extreme phenotypic variability, ranging from relatively mild manifestations to severe and multi-systemic involvement, and offers updated frequences of each clinical feature. The aim is to precisely define the clinical spectrum of LZTR1-related diseases, using also two new emblematic clinical cases. Gaining insight into the mechanisms underneath this variability is crucial to achieve precision diagnostics and the development of therapeutic interventions.
Collapse
Affiliation(s)
- Vera Uliana
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Enrico Ambrosini
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Antonietta Taiani
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy (D.M.)
| | - Sofia Cesarini
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy (D.M.)
| | - Ilenia Rita Cannizzaro
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy (D.M.)
| | - Anna Negrotti
- Neurology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Walter Serra
- Unit of Cardiology, University Hospital of Parma, 43126 Parma, Italy
| | - Gabriele Quintavalle
- Regional Reference Centre for Inherited Bleeding Disorders, University Hospital of Parma, 43126 Parma, Italy
| | - Lucia Micale
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Viale Cappuccini snc, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Carmela Fusco
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Viale Cappuccini snc, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Viale Cappuccini snc, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Davide Martorana
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy (D.M.)
| | - Beatrice Bortesi
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Laura Belli
- Neurosurgery Unit, Head and Neck Department, University Hospital of Parma, 43126 Parma, Italy
| | - Antonio Percesepe
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy (D.M.)
| | - Francesco Pisani
- Child Neurology and Psychiatry Unit, Department of Human Neuroscience, Sapienza University, Via dei Sabelli 108, 00185 Rome, Italy
| | - Valeria Barili
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy (D.M.)
| |
Collapse
|
4
|
Ye G, Wang J, Xia J, Zhu C, Gu C, Li X, Li J, Ye M, Jin X. Low protein expression of LZTR1 in hepatocellular carcinoma triggers tumorigenesis via activating the RAS/RAF/MEK/ERK signaling. Heliyon 2024; 10:e32855. [PMID: 38994114 PMCID: PMC11237970 DOI: 10.1016/j.heliyon.2024.e32855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
LZTR1 is a substrate specific adaptor for E3 ligase involved in the ubiquitination and degradation of RAS GTPases, which inhibits the RAS/RAF/MEK/ERK signaling to suppress the pathogenesis of Noonan syndrome and glioblastoma. However, it's still unknown whether LZTR1 destabilizes RAS GTPases to suppress HCC progression by inhibiting these signaling pathway. Lenvatinib is the first-line drug for the treatment of advanced HCC, however, it has high drug resistance. To explore the roles of LZTR1 in HCC progression and the underlying mechanisms of lenvatinib resistance, techniques such as bioinformatics analysis, immunohistochemical staining, RT-qPCR, Western blot, cell functional experiments, small interfering RNA transfection and cycloheximide chase assay were applied in our study. Among these, bioinformatics analysis and immunohistochemical staining results indicated that LZTR1 protein was aberrantly expressed at low levels in HCC tissues, and low protein expression of LZTR1 was associated with poor prognosis of HCC patients. In vitro functional experiments confirmed that low expression of LZTR1 promoted HCC cell proliferation and migration via the aberrant activation of the RAS/RAF/MEK/ERK signaling due to the dysregulation of LZTR1-induced KRAS ubiquitination and degradation. Transwell assays revealed that blocking of LZTR1-mediated KRAS degradation could induce lenvatinib resistance in HCC cells. In conclusion, our study revealed that LZTR1 knockdown promoted HCC cell proliferation and migration, and induced lenvatinib resistance via activating the RAS/RAF/MEK/ERK signaling, which may provide new ideas for HCC treatment.
Collapse
Affiliation(s)
- Ganghui Ye
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Jie Wang
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Jingyi Xia
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo, 315211, China
| | - Chenlu Zhu
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo, 315211, China
| | - Chaoyu Gu
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Xinming Li
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Jingyun Li
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
| |
Collapse
|
5
|
Hong Y, Abudukeremu X, She F, Chen Y. SOAT1 in gallbladder cancer: Clinicopathological significance and avasimibe therapeutics. J Biochem Mol Toxicol 2024; 38:e23733. [PMID: 38770938 DOI: 10.1002/jbt.23733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/10/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
The aim of this investigation was to evaluate the differential expression of the sterol O-acyltransferase 1 (SOAT1) protein in gallbladder cancer tissues and cells, investigate the impact of Avastin on the proliferation, migration, invasion capabilities of gallbladder cancer cells, and its potential to induce cell apoptosis. Immunohistochemical analysis of samples from 145 gallbladder cancer patients was conducted, along with analysis of SOAT1 protein, mRNA expression levels, and cholesterol content in gallbladder cancer cell lines SGC-996, NOZ, and gallbladder cancer (GBC)-SD using Western blot and q-PCR techniques. Furthermore, the effects of Avastin on the proliferation, migration, and invasion capabilities of these gallbladder cancer cell lines were studied, and its ability to induce cell apoptosis was evaluated using flow cytometry, Western blot, and immunohistochemical methods. Additionally, gene expression and pathway analysis were performed, and the synergistic therapeutic effects of Avastin combined with gemcitabine were tested in a gallbladder cancer xenograft model. The study found that SOAT1 expression was significantly upregulated in GBC tissues and positively correlated with lymph node metastasis and TNM staging. In vitro experiments demonstrated that Avastin significantly inhibited the proliferation, migration, and invasion capabilities of SGC-996 and GBC-SD cell lines and induced apoptosis. RNA sequencing analysis revealed multiple differentially expressed genes in cells treated with Avastin, primarily enriched in biological pathways such as signaling transduction, malignant tumors, and the immune system. In vivo, experiments confirmed that Avastin could effectively suppress tumor growth in a gallbladder cancer xenograft model and enhanced the treatment efficacy when used in combination with gemcitabine. Overall, these findings provide new insights and strategies for targeted therapy in gallbladder cancer.
Collapse
Affiliation(s)
- Yuqun Hong
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fuzhou, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiahenazi Abudukeremu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fuzhou, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Feifei She
- Fujian Medical University Cancer Center, Fuzhou, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Yanling Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fuzhou, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
Wang M, Yan X, Dong Y, Li X, Gao B. Machine learning and multi-omics data reveal driver gene-based molecular subtypes in hepatocellular carcinoma for precision treatment. PLoS Comput Biol 2024; 20:e1012113. [PMID: 38728362 PMCID: PMC11230636 DOI: 10.1371/journal.pcbi.1012113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/08/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
The heterogeneity of Hepatocellular Carcinoma (HCC) poses a barrier to effective treatment. Stratifying highly heterogeneous HCC into molecular subtypes with similar features is crucial for personalized anti-tumor therapies. Although driver genes play pivotal roles in cancer progression, their potential in HCC subtyping has been largely overlooked. This study aims to utilize driver genes to construct HCC subtype models and unravel their molecular mechanisms. Utilizing a novel computational framework, we expanded the initially identified 96 driver genes to 1192 based on mutational aspects and an additional 233 considering driver dysregulation. These genes were subsequently employed as stratification markers for further analyses. A novel multi-omics subtype classification algorithm was developed, leveraging mutation and expression data of the identified stratification genes. This algorithm successfully categorized HCC into two distinct subtypes, CLASS A and CLASS B, demonstrating significant differences in survival outcomes. Integrating multi-omics and single-cell data unveiled substantial distinctions between these subtypes regarding transcriptomics, mutations, copy number variations, and epigenomics. Moreover, our prognostic model exhibited excellent predictive performance in training and external validation cohorts. Finally, a 10-gene classification model for these subtypes identified TTK as a promising therapeutic target with robust classification capabilities. This comprehensive study provides a novel perspective on HCC stratification, offering crucial insights for a deeper understanding of its pathogenesis and the development of promising treatment strategies.
Collapse
Affiliation(s)
- Meng Wang
- Faculty of Environment and Life of Beijing University of Technology, Beijing, China
| | - Xinyue Yan
- Faculty of Environment and Life of Beijing University of Technology, Beijing, China
| | - Yanan Dong
- Faculty of Environment and Life of Beijing University of Technology, Beijing, China
| | - Xiaoqin Li
- Faculty of Environment and Life of Beijing University of Technology, Beijing, China
| | - Bin Gao
- Faculty of Environment and Life of Beijing University of Technology, Beijing, China
| |
Collapse
|
7
|
Di Stolfo G, Petracca A, Bevere EML, Pracella R, Potenza DR, Fusco C, Mastroianno S, Castori M. Biallelic LZTR1 variants in a 49-year-old woman with hypertrophic cardiomyopathy: A clue for considering LZTR1 in adults. Am J Med Genet A 2024; 194:e63518. [PMID: 38135892 DOI: 10.1002/ajmg.a.63518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Affiliation(s)
- Giuseppe Di Stolfo
- Division of Cardiology, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Antonio Petracca
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Ester Maria Lucia Bevere
- Division of Cardiology, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Riccardo Pracella
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Domenico Rosario Potenza
- Division of Cardiology, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Carmela Fusco
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Sandra Mastroianno
- Division of Cardiology, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| |
Collapse
|
8
|
Lin Y, Jin X. Effect of ubiquitin protease system on DNA damage response in prostate cancer (Review). Exp Ther Med 2024; 27:33. [PMID: 38125344 PMCID: PMC10731405 DOI: 10.3892/etm.2023.12321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/26/2023] [Indexed: 12/23/2023] Open
Abstract
Genomic instability is an essential hallmark of cancer, and cellular DNA damage response (DDR) defects drive tumorigenesis by disrupting genomic stability. Several studies have identified abnormalities in DDR-associated genes, and a dysfunctional ubiquitin-proteasome system (UPS) is the most common molecular event in metastatic castration-resistant prostate cancer (PCa). For example, mutations in Speckle-type BTB/POZ protein-Ser119 result in DDR downstream target activation deficiency. Skp2 excessive upregulation inhibits homologous recombination repair and promotes cell growth and migration. Abnormally high expression of a deubiquitination enzyme, ubiquitin-specific protease 12, stabilizes E3 ligase MDM2, which further leads to p53 degradation, causing DDR interruption and genomic instability. In the present review, the basic pathways of DDR, UPS dysfunction, and its induced DDR alterations mediated by genomic instability, and especially the potential application of UPS and DDR alterations as biomarkers and therapeutic targets in PCa treatment, were described.
Collapse
Affiliation(s)
- Yan Lin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
9
|
Fukuchi K, Koyama D, Takada M, Mori H, Hayashi K, Asano N, Sato Y, Fukatsu M, Takano M, Takahashi H, Shirado-Harada K, Kimura S, Yamamoto T, Ikezoe T. Mutated ZRSR2 and CUL3 accelerate clonal evolution and confer venetoclax resistance via RAS signaling pathway in blastic plasmacytoid dendritic cell neoplasm. Int J Hematol 2023; 118:489-493. [PMID: 37029861 DOI: 10.1007/s12185-023-03597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive subtype of myeloid malignancy characterized by skin, lymph node and central nervous system (CNS) involvement. Although various regimens are used, a standard therapeutic strategy for BPDCN has not been established. Recent studies revealed that BPDCN patients frequently have a mutation in ZRSR2, which is a minor spliceosome component. However, the association between the clinical features of BPDCN and ZRSR2 mutational status remains unknown. A 70-year-old man was referred to our hospital with skin rash and enlarged lymph nodes, as well as blasts in the peripheral blood. BPDCN was diagnosed based on the immunophenotype of the blasts derived from bone marrow. Whole exome sequencing revealed that BPDCN cells collected at diagnosis had mutations in ZRSR2, ZBTB33, CUL3, TET2 and NRAS. RNA sequencing analysis indicated that U12-type intron retention occurred in LZTR1, caused by ZRSR2 loss. After seven cycles of venetoclax combined with azacitidine therapy, BPDCN cells appeared in the peripheral blood and infiltrated the CNS. Two KRAS mutated clones appeared at BPDCN recurrence. These findings are important for understanding the pathogenesis of BPDCN, which will inform development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Koichiro Fukuchi
- Department of Hematology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Daisuke Koyama
- Department of Hematology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan.
| | - Maki Takada
- Department of Dermatology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Hirotaka Mori
- Department of Hematology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Kiyohito Hayashi
- Department of Hematology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Naomi Asano
- Department of Hematology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Yuki Sato
- Department of Hematology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Masahiko Fukatsu
- Department of Hematology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Motoki Takano
- Department of Hematology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Hiroshi Takahashi
- Department of Hematology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Kayo Shirado-Harada
- Department of Hematology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Satoshi Kimura
- Department of Hematology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Toshiyuki Yamamoto
- Department of Dermatology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Takayuki Ikezoe
- Department of Hematology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| |
Collapse
|
10
|
Zhai F, Wang J, Luo X, Ye M, Jin X. Roles of NOLC1 in cancers and viral infection. J Cancer Res Clin Oncol 2023; 149:10593-10608. [PMID: 37296317 DOI: 10.1007/s00432-023-04934-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND The nucleolus is considered the center of metabolic control and an important organelle for the biogenesis of ribosomal RNA (rRNA). Nucleolar and coiled-body phosphoprotein 1(NOLC1), which was originally identified as a nuclear localization signal-binding protein is a nucleolar protein responsible for nucleolus construction and rRNA synthesis, as well as chaperone shuttling between the nucleolus and cytoplasm. NOLC1 plays an important role in a variety of cellular life activities, including ribosome biosynthesis, DNA replication, transcription regulation, RNA processing, cell cycle regulation, apoptosis, and cell regeneration. PURPOSE In this review, we introduce the structure and function of NOLC1. Then we elaborate its upstream post-translational modification and downstream regulation. Meanwhile, we describe its role in cancer development and viral infection which provide a direction for future clinical applications. METHODS The relevant literatures from PubMed have been reviewed for this article. CONCLUSION NOLC1 plays an important role in the progression of multiple cancers and viral infection. In-depth study of NOLC1 provides a new perspective for accurate diagnosis of patients and selection of therapeutic targets.
Collapse
Affiliation(s)
- Fengguang Zhai
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
- The Affiliated First Hospital, Ningbo University, Ningbo, 315020, China
| | - Jie Wang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
- The Affiliated First Hospital, Ningbo University, Ningbo, 315020, China
| | - Xia Luo
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
- The Affiliated First Hospital, Ningbo University, Ningbo, 315020, China.
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
- The Affiliated First Hospital, Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
11
|
Zhang H, Zhao Y, Wang J, Li J, Xia J, Lin Y, Zhong Y, Cao X, Jin J, Li X, Yang W, Ye M, Jin X. FBXO7, a tumor suppressor in endometrial carcinoma, suppresses INF2-associated mitochondrial division. Cell Death Dis 2023; 14:368. [PMID: 37344480 DOI: 10.1038/s41419-023-05891-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Endometrial carcinoma (ECa) is the most common malignant gynecological cancer, with an increased incidence and fatality rate worldwide, while the pathogenesis is still largely unknown. In this study, we confirmed that FBXO7, a gene coding FBXO7 E3 ubiquitin ligase, is significantly downregulated and mutated (5.87%; 31/528) in ECa specimens, and the abnormal low expression and mutations of FBXO7 are associated with the occurrence of ECa. We also identify the excessive expression of INF2 protein, a key factor that triggers mitochondrial division by recruiting the DRP1 protein, and the elevated INF2 protein is significantly negatively correlated with the low FBXO7 protein in ECa specimens. Mechanistically, FBXO7 restrains ECa through inhibiting INF2-associated mitochondrial division via FBXO7-mediated ubiquitination and degradation of INF2. Moreover, we found that ECa-associated FBXO7 mutants are defective in the ubiquitination and degradation of INF2, promoting ECa cells proliferation, migration and apoptosis inhibition via inducing mitochondrial hyper-division. In addition, we found that it could reverse FBXO7 deletion or ECa-associated FBXO7 mutants-induced proliferation, migration, apoptosis inhibition and mitochondrial hyper-division of ECa cells by INF2 or DNM1L knockdown, or DRP1 inhibitor Mdivi-1. In summary, our study shows that FBXO7 acts as a novel tumor suppressor in ECa by inhibiting INF2-DRP1 axis-associated mitochondrial division through the ubiquitination and degradation of INF2 while the effect is destroyed by ECa-associated FBXO7 and INF2 mutants, highlights the key role of FBXO7-INF2-DRP1 axis in ECa tumorigenesis and provides a new viewpoint to treat ECa patients with FBXO7 deletion or mutations by targeting INF2-DRP1 axis-associated mitochondrial division.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Department of Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Yiting Zhao
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Department of Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Jie Wang
- Department of Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Jinyun Li
- Department of Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Jingyi Xia
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yan Lin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Department of Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Yeling Zhong
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Department of Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Xinyi Cao
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jiabei Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xinming Li
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Weili Yang
- Department of Gynecology, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Meng Ye
- Department of Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
- Department of Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang, 315020, China.
| |
Collapse
|
12
|
Ko A, Hasanain M, Oh YT, D'Angelo F, Sommer D, Frangaj B, Tran S, Bielle F, Pollo B, Paterra R, Mokhtari K, Soni RK, Peyre M, Eoli M, Papi L, Kalamarides M, Sanson M, Iavarone A, Lasorella A. LZTR1 Mutation Mediates Oncogenesis through Stabilization of EGFR and AXL. Cancer Discov 2023; 13:702-723. [PMID: 36445254 DOI: 10.1158/2159-8290.cd-22-0376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/23/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022]
Abstract
LZTR1 is the substrate-specific adaptor of a CUL3-dependent ubiquitin ligase frequently mutated in sporadic and syndromic cancer. We combined biochemical and genetic studies to identify LZTR1 substrates and interrogated their tumor-driving function in the context of LZTR1 loss-of-function mutations. Unbiased screens converged on EGFR and AXL receptor tyrosine kinases as LZTR1 interactors targeted for ubiquitin-dependent degradation in the lysosome. Pathogenic cancer-associated mutations of LZTR1 failed to promote EGFR and AXL degradation, resulting in dysregulated growth factor signaling. Conditional inactivation of Lztr1 and Cdkn2a in the mouse nervous system caused tumors in the peripheral nervous system including schwannoma-like tumors, thus recapitulating aspects of schwannomatosis, the prototype tumor predisposition syndrome sustained by LZTR1 germline mutations. Lztr1- and Cdkn2a-deleted tumors aberrantly accumulated EGFR and AXL and exhibited specific vulnerability to EGFR and AXL coinhibition. These findings explain tumorigenesis by LZTR1 inactivation and offer therapeutic opportunities to patients with LZTR1-mutant cancer. SIGNIFICANCE EGFR and AXL are substrates of LZTR1-CUL3 ubiquitin ligase. The frequent somatic and germline mutations of LZTR1 in human cancer cause EGFR and AXL accumulation and deregulated signaling. LZTR1-mutant tumors show vulnerability to concurrent inhibition of EGFR and AXL, thus providing precision targeting to patients affected by LZTR1-mutant cancer. This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Aram Ko
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Mohammad Hasanain
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Young Taek Oh
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Fulvio D'Angelo
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Danika Sommer
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Brulinda Frangaj
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Suzanne Tran
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Laboratory of Neuropathology, Paris, France
| | - Franck Bielle
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Laboratory of Neuropathology, Paris, France
| | - Bianca Pollo
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rosina Paterra
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Karima Mokhtari
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Neurosurgery Service, Paris, France
| | - Rajesh Kumar Soni
- Proteomics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Matthieu Peyre
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Neurosurgery Service, Paris, France
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Service of Neurology 2-Mazarin, Equipe lLNCC, Paris, France
| | - Marica Eoli
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Papi
- The Department of Experimental and Clinical, Medical Genetics Unit, Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Michel Kalamarides
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Neurosurgery Service, Paris, France
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Service of Neurology 2-Mazarin, Equipe lLNCC, Paris, France
| | - Marc Sanson
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Service of Neurology 2-Mazarin, Equipe lLNCC, Paris, France
- Onconeurotek Tumor Bank, Brain and Spinal Cord Institute ICM, 75013 Paris, France
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
- Department of Neurology, Columbia University Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Anna Lasorella
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
- Department of Pediatrics, Columbia University Medical Center, New York, New York
| |
Collapse
|
13
|
Zhai F, Li J, Ye M, Jin X. The functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination. Gene X 2022; 832:146562. [PMID: 35580799 DOI: 10.1016/j.gene.2022.146562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 02/09/2023] Open
Abstract
Ubiquitination of substrates usually have two fates: one is degraded by 26S proteasome, and the other is non-degradative ubiquitination modification which is associated with cell cycle regulation, chromosome inactivation, protein transportation, tumorigenesis, achondroplasia, and neurological diseases. Cullin3 (CUL3), a scaffold protein, binding with the Bric-a-Brac-Tramtrack-Broad-complex (BTB) domain of substrates recognition adaptor and RING-finger protein 1 (RBX1) form ubiquitin ligases (E3). Based on the current researches, this review has summarized the functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination.
Collapse
Affiliation(s)
- Fengguang Zhai
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jingyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| |
Collapse
|
14
|
Bonetti G, Paolacci S, Samaja M, Maltese PE, Michelini S, Michelini S, Michelini S, Ricci M, Cestari M, Dautaj A, Medori MC, Bertelli M. Low Efficacy of Genetic Tests for the Diagnosis of Primary Lymphedema Prompts Novel Insights into the Underlying Molecular Pathways. Int J Mol Sci 2022; 23:ijms23137414. [PMID: 35806420 PMCID: PMC9267137 DOI: 10.3390/ijms23137414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/16/2022] [Accepted: 06/29/2022] [Indexed: 02/07/2023] Open
Abstract
Lymphedema is a chronic inflammatory disorder caused by ineffective fluid uptake by the lymphatic system, with effects mainly on the lower limbs. Lymphedema is either primary, when caused by genetic mutations, or secondary, when it follows injury, infection, or surgery. In this study, we aim to assess to what extent the current genetic tests detect genetic variants of lymphedema, and to identify the major molecular pathways that underlie this rather unknown disease. We recruited 147 individuals with a clinical diagnosis of primary lymphedema and used established genetic tests on their blood or saliva specimens. Only 11 of these were positive, while other probands were either negative (63) or inconclusive (73). The low efficacy of such tests calls for greater insight into the underlying mechanisms to increase accuracy. For this purpose, we built a molecular pathways diagram based on a literature analysis (OMIM, Kegg, PubMed, Scopus) of candidate and diagnostic genes. The PI3K/AKT and the RAS/MAPK pathways emerged as primary candidates responsible for lymphedema diagnosis, while the Rho/ROCK pathway appeared less critical. The results of this study suggest the most important pathways involved in the pathogenesis of lymphedema, and outline the most promising diagnostic and candidate genes to diagnose this disease.
Collapse
Affiliation(s)
- Gabriele Bonetti
- MAGI’s LAB, 38068 Rovereto, Italy; (S.P.); (P.E.M.); (A.D.); (M.C.M.); (M.B.)
- Correspondence: ; Tel.: +39-0365-62-061
| | - Stefano Paolacci
- MAGI’s LAB, 38068 Rovereto, Italy; (S.P.); (P.E.M.); (A.D.); (M.C.M.); (M.B.)
| | | | | | - Sandro Michelini
- Vascular Diagnostics and Rehabilitation Service, Marino Hospital, ASL Roma 6, 00047 Marino, Italy;
| | - Serena Michelini
- Unit of Physical Medicine, “Sapienza” University of Rome, 00185 Rome, Italy;
| | | | - Maurizio Ricci
- Division of Rehabilitation Medicine, Azienda Ospedaliero-Universitaria, Ospedali Riuniti di Ancona, 60126 Ancona, Italy;
| | - Marina Cestari
- Study Centre Pianeta Linfedema, 05100 Terni, Italy;
- Lymphology Sector of the Rehabilitation Service, USLUmbria2, 05100 Terni, Italy
| | - Astrit Dautaj
- MAGI’s LAB, 38068 Rovereto, Italy; (S.P.); (P.E.M.); (A.D.); (M.C.M.); (M.B.)
| | - Maria Chiara Medori
- MAGI’s LAB, 38068 Rovereto, Italy; (S.P.); (P.E.M.); (A.D.); (M.C.M.); (M.B.)
| | - Matteo Bertelli
- MAGI’s LAB, 38068 Rovereto, Italy; (S.P.); (P.E.M.); (A.D.); (M.C.M.); (M.B.)
- MAGI Group, 25010 San Felice del Benaco, Italy;
- MAGI Euregio, 39100 Bolzano, Italy
| |
Collapse
|
15
|
Kelch-like protein 3 in human disease and therapy. Mol Biol Rep 2022; 49:9813-9824. [PMID: 35585379 DOI: 10.1007/s11033-022-07487-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
Kelch-like protein 3 (KLHL3) is a substrate adaptor of Cullin3-RING ubiquitin ligase (CRL3), and KLHL3-CUL3 complex plays a vital role in the ubiquitination of specific substrates. Mutations and abnormal post-translational modifications of KLHL3-CUL3 affect substrate ubiquitination and may related to the pathogenesis of Gordon syndrome (GS), Primary Hyperparathyroidism (PHPT), Diabetes Mellitus (DM), Congenital Heart Disease (CHD), Pre-eclampsia (PE) and even cancers. Therefore, it is essential to understand the function and molecular mechanisms of KLHL3-CUL3 for the treatment of related diseases. In this review, we summary the structure and function of KLHL3-CUL3, the effect of KLHL3-CUL3 mutations and aberrant modifications in GS, PHPT, DM, CHD and PE. Moreover, we noted a possible role of KLHL3-CUL3 in carcinogenesis and provided ideas for targeting KLHL3-CUL3 for related disease treatment.
Collapse
|
16
|
Identification of Genetic Risk Factors of Severe COVID-19 Using Extensive Phenotypic Data: A Proof-of-Concept Study in a Cohort of Russian Patients. Genes (Basel) 2022; 13:genes13030534. [PMID: 35328087 PMCID: PMC8949130 DOI: 10.3390/genes13030534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
The COVID-19 pandemic has drawn the attention of many researchers to the interaction between pathogen and host genomes. Over the last two years, numerous studies have been conducted to identify the genetic risk factors that predict COVID-19 severity and outcome. However, such an analysis might be complicated in cohorts of limited size and/or in case of limited breadth of genome coverage. In this work, we tried to circumvent these challenges by searching for candidate genes and genetic variants associated with a variety of quantitative and binary traits in a cohort of 840 COVID-19 patients from Russia. While we found no gene- or pathway-level associations with the disease severity and outcome, we discovered eleven independent candidate loci associated with quantitative traits in COVID-19 patients. Out of these, the most significant associations correspond to rs1651553 in MYH14p = 1.4 × 10-7), rs11243705 in SETX (p = 8.2 × 10-6), and rs16885 in ATXN1 (p = 1.3 × 10-5). One of the identified variants, rs33985936 in SCN11A, was successfully replicated in an independent study, and three of the variants were found to be associated with blood-related quantitative traits according to the UK Biobank data (rs33985936 in SCN11A, rs16885 in ATXN1, and rs4747194 in CDH23). Moreover, we show that a risk score based on these variants can predict the severity and outcome of hospitalization in our cohort of patients. Given these findings, we believe that our work may serve as proof-of-concept study demonstrating the utility of quantitative traits and extensive phenotyping for identification of genetic risk factors of severe COVID-19.
Collapse
|
17
|
Zhang H, Wang J, Ge Y, Ye M, Jin X. Siah1 in cancer and nervous system diseases (Review). Oncol Rep 2021; 47:35. [PMID: 34958110 DOI: 10.3892/or.2021.8246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/10/2021] [Indexed: 11/06/2022] Open
Abstract
The dysregulation of the ubiquitin‑proteasome system will result in the abnormal accumulation and dysfunction of proteins, thus leading to severe diseases. Seven in absentia homolog 1 (Siah1), an E3 ubiquitin ligase, has attracted wide attention due to its varied functions in physiological and pathological conditions, and the numerous newly discovered Siah1 substrates. In cancer and nervous system diseases, the functions of Siah1 as a promoter or a suppressor of diseases are related to the change in cellular microenvironment and subcellular localization. At the same time, complex upstream regulations make Siah1 different from other E3 ubiquitin ligases. Understanding the molecular mechanism of Siah1 will help the study of various signaling pathways and benefit the therapeutic strategy of human diseases (e.g., cancer and nervous system diseases). In the present review, the functions and regulations of Siah1 are described. Moreover, novel substrates of Siah1 discovered in recent studies will be highlighted in cancer and nervous system diseases, providing ideas for future research and clinical targeted therapies using Siah1.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Jie Wang
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Yidong Ge
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Meng Ye
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Xiaofeng Jin
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| |
Collapse
|