1
|
Cini NT, Pennisi M, Genc S, Spandidos DA, Falzone L, Mitsias PD, Tsatsakis A, Taghizadehghalehjoughi A. Glioma lateralization: Focus on the anatomical localization and the distribution of molecular alterations (Review). Oncol Rep 2024; 52:139. [PMID: 39155859 PMCID: PMC11358673 DOI: 10.3892/or.2024.8798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/31/2024] [Indexed: 08/20/2024] Open
Abstract
It is well known how the precise localization of glioblastoma multiforme (GBM) predicts the direction of tumor spread in the surrounding neuronal structures. The aim of the present review is to reveal the lateralization of GBM by evaluating the anatomical regions where it is frequently located as well as the main molecular alterations observed in different brain regions. According to the literature, the precise or most frequent lateralization of GBM has yet to be determined. However, it can be said that GBM is more frequently observed in the frontal lobe. Tractus and fascicles involved in GBM appear to be focused on the corticospinal tract, superior longitudinal I, II and III fascicles, arcuate fascicle long segment, frontal strait tract, and inferior fronto‑occipital fasciculus. Considering the anatomical features of GBM and its brain involvement, it is logical that the main brain regions involved are the frontal‑temporal‑parietal‑occipital lobes, respectively. Although tumor volumes are higher in the right hemisphere, it has been determined that the prognosis of patients diagnosed with cancer in the left hemisphere is worse, probably reflecting the anatomical distribution of some detrimental alterations such as TP53 mutations, PTEN loss, EGFR amplification, and MGMT promoter methylation. There are theories stating that the right hemisphere is less exposed to external influences in its development as it is responsible for the functions necessary for survival while tumors in the left hemisphere may be more aggressive. To shed light on specific anatomical and molecular features of GBM in different brain regions, the present review article is aimed at describing the main lateralization pathways as well as gene mutations or epigenetic modifications associated with the development of brain tumors.
Collapse
Affiliation(s)
- Nilgun Tuncel Cini
- Department of Anatomy, Faculty of Medicine, Bilecik Şeyh Edebali University, Bilecik 11230, Turkey
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Sidika Genc
- Department of Pharmacology, Faculty of Medicine, Bilecik Şeyh Edebali University, Bilecik 11230, Turkey
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Panayiotis D. Mitsias
- Department of Neurology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aristides Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | | |
Collapse
|
2
|
Bougea A, Georgakopoulou VE, Lempesis IG, Fotakopoulos G, Papalexis P, Sklapani P, Trakas N, Spandidos DA, Angelopoulou E. Role of microRNAs in cognitive decline related to COVID‑19 (Review). Exp Ther Med 2024; 27:139. [PMID: 38476899 PMCID: PMC10928821 DOI: 10.3892/etm.2024.12427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/01/2024] [Indexed: 03/14/2024] Open
Abstract
The likelihood and severity of cognitive decline related to coronavirus disease 2019 (COVID-19) have been shown to be reflected by the severity of the infection and concomitant alterations in specific biomarkers. The present review discusses the role of microRNAs (miRNAs/miRs) as biomarkers in COVID-19 and the potential molecular mechanisms of cognitive dysfunction related to COVID-19. A systematic search of published articles was carried out from January 31, 2000 to December 31, 2022 using the PubMed, ProQuest, Science Direct and Google Scholar databases, combining the following terms: 'COVID-19' OR 'SARS-CoV-2' OR 'post-COVID-19 effects' OR 'cognitive decline' OR 'neurodegeneration' OR 'microRNAs'. The quality of the evidence was evaluated as high, moderate, low, or very low based on the GRADE rating. A total of 36 studies were identified which demonstrated reduced blood levels of miR-146a, miR-155, Let-7b, miR 31 and miR-21 in patients with COVID-19 in comparison with a healthy group. The overexpression of the Let-7b may result in the downregulation of BCL-2 during COVID-9 by adjusting the immune responses between chronic inflammatory disease, type 2 diabetes, COVID-19 and cognitive impairment. The reduced expression of miR-31 is associated with cognitive dysfunction and increased microcoagulability in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). miR-155 mediates synaptic dysfunction and the dysregulation of neurotransmitters due to acute inflammation, leading to brain atrophy and a subcortical cognitive profile. The downregulation of miR-21 in patients with COVID-19 aggravates systemic inflammation, mediating an uncontrollable immune response and the failure of T-cell function, provoking cognitive impairment in patients with SARS-CoV-2. On the whole, the present review indicates that dysregulated levels of miR-146a, miR-155, Let-7b, miR-31, and miR-21 in the blood of individuals with COVID-19 are associated with cognitive decline, the chronic activation of immune mechanisms, the cytokine storm, and the vicious cycle of damage and systemic inflammation.
Collapse
Affiliation(s)
- Anastasia Bougea
- 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | | | - Ioannis G. Lempesis
- Department of Pathophysiology, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George Fotakopoulos
- Department of Neurosurgery, General University Hospital of Larissa, 41221 Larissa, Greece
| | - Petros Papalexis
- Unit of Endocrinology, First Department of Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | - Pagona Sklapani
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | - Nikolaos Trakas
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Efthalia Angelopoulou
- 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
3
|
Shahzadi I, Seidlitz A, Beuthien-Baumann B, Zwanenburg A, Platzek I, Kotzerke J, Baumann M, Krause M, Troost EGC, Löck S. Radiomics for residual tumour detection and prognosis in newly diagnosed glioblastoma based on postoperative [ 11C] methionine PET and T1c-w MRI. Sci Rep 2024; 14:4576. [PMID: 38403632 PMCID: PMC10894870 DOI: 10.1038/s41598-024-55092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/20/2024] [Indexed: 02/27/2024] Open
Abstract
Personalized treatment strategies based on non-invasive biomarkers have potential to improve patient management in patients with newly diagnosed glioblastoma (GBM). The residual tumour burden after surgery in GBM patients is a prognostic imaging biomarker. However, in clinical patient management, its assessment is a manual and time-consuming process that is at risk of inter-rater variability. Furthermore, the prediction of patient outcome prior to radiotherapy may identify patient subgroups that could benefit from escalated radiotherapy doses. Therefore, in this study, we investigate the capabilities of traditional radiomics and 3D convolutional neural networks for automatic detection of the residual tumour status and to prognosticate time-to-recurrence (TTR) and overall survival (OS) in GBM using postoperative [11C] methionine positron emission tomography (MET-PET) and gadolinium-enhanced T1-w magnetic resonance imaging (MRI). On the independent test data, the 3D-DenseNet model based on MET-PET achieved the best performance for residual tumour detection, while the logistic regression model with conventional radiomics features performed best for T1c-w MRI (AUC: MET-PET 0.95, T1c-w MRI 0.78). For the prognosis of TTR and OS, the 3D-DenseNet model based on MET-PET integrated with age and MGMT status achieved the best performance (Concordance-Index: TTR 0.68, OS 0.65). In conclusion, we showed that both deep-learning and conventional radiomics have potential value for supporting image-based assessment and prognosis in GBM. After prospective validation, these models may be considered for treatment personalization.
Collapse
Affiliation(s)
- Iram Shahzadi
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Annekatrin Seidlitz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Bettina Beuthien-Baumann
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alex Zwanenburg
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Ivan Platzek
- Institute of Radiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jörg Kotzerke
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Michael Baumann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Division of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Dresden, Germany
| | - Esther G C Troost
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Dresden, Germany
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.
- German Cancer Consortium (DKTK) Partner Site Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
4
|
Mohammadi-Pilehdarboni H, Shenagari M, Joukar F, Naziri H, Mansour-Ghanaei F. Alzheimer's disease and microorganisms: the non-coding RNAs crosstalk. Front Cell Neurosci 2024; 17:1256100. [PMID: 38249527 PMCID: PMC10796784 DOI: 10.3389/fncel.2023.1256100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/25/2023] [Indexed: 01/23/2024] Open
Abstract
Alzheimer's disease (AD) is a complex, multifactorial disorder, influenced by a multitude of variables ranging from genetic factors, age, and head injuries to vascular diseases, infections, and various other environmental and demographic determinants. Among the environmental factors, the role of the microbiome in the genesis of neurodegenerative disorders (NDs) is gaining increased recognition. This paradigm shift is substantiated by an extensive body of scientific literature, which underscores the significant contributions of microorganisms, encompassing viruses and gut-derived bacteria, to the pathogenesis of AD. The mechanism by which microbial infection exerts its influence on AD hinges primarily on inflammation. Neuroinflammation, activated in response to microbial infections, acts as a defense mechanism for the brain but can inadvertently lead to unexpected neuropathological perturbations, ultimately contributing to NDs. Given the ongoing uncertainty surrounding the genetic factors underpinning ND, comprehensive investigations into environmental factors, particularly the microbiome and viral agents, are imperative. Recent advances in neuroscientific research have unveiled the pivotal role of non-coding RNAs (ncRNAs) in orchestrating various pathways integral to neurodegenerative pathologies. While the upstream regulators governing the pathological manifestations of microorganisms remain elusive, an in-depth exploration of the nuanced role of ncRNAs holds promise for the development of prospective therapeutic interventions. This review aims to elucidate the pivotal role of ncRNAs as master modulators in the realm of neurodegenerative conditions, with a specific focus on Alzheimer's disease.
Collapse
Affiliation(s)
- Hanieh Mohammadi-Pilehdarboni
- Faculty of Medicine and Dentistry and the School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shenagari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamed Naziri
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
5
|
Migliore L, Coppedè F. Gene-environment interactions in Alzheimer disease: the emerging role of epigenetics. Nat Rev Neurol 2022; 18:643-660. [PMID: 36180553 DOI: 10.1038/s41582-022-00714-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 12/15/2022]
Abstract
With the exception of a few monogenic forms, Alzheimer disease (AD) has a complex aetiology that is likely to involve multiple susceptibility genes and environmental factors. The role of environmental factors is difficult to determine and, until a few years ago, the molecular mechanisms underlying gene-environment (G × E) interactions in AD were largely unknown. Here, we review evidence that has emerged over the past two decades to explain how environmental factors, such as diet, lifestyle, alcohol, smoking and pollutants, might interact with the human genome. In particular, we discuss how various environmental AD risk factors can induce epigenetic modifications of key AD-related genes and pathways and consider how epigenetic mechanisms could contribute to the effects of oxidative stress on AD onset. Studies on early-life exposures are helping to uncover critical time windows of sensitivity to epigenetic influences from environmental factors, thereby laying the foundations for future primary preventative approaches. We conclude that epigenetic modifications need to be considered when assessing G × E interactions in AD.
Collapse
Affiliation(s)
- Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy. .,Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy.
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Genomic and Epigenomic Features of Glioblastoma Multiforme and its Biomarkers. JOURNAL OF ONCOLOGY 2022; 2022:4022960. [PMID: 36185622 PMCID: PMC9519330 DOI: 10.1155/2022/4022960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/14/2022] [Accepted: 09/10/2022] [Indexed: 11/22/2022]
Abstract
Glioblastoma multiforme is a serious and life-threatening tumor of central nervous system, characterized by aggressive behavior, poor prognosis, and low survival rate. Despite of the availability of aggressive antitumor therapeutic regimen for glioblastoma (radiotherapy followed by chemotherapeutic dose), recovery rate, and patients' survival ratio is attributed to the lack of selectivity of therapeutic drugs and less advancement in cancer therapeutics over last decade. Moreover, tools employed in conventional diagnosis of glioblastoma are more invasive and painful, making the process excruciating for the patients. These challenges urge for the need of novel biomarkers for diagnosis, prognosis, and prediction purpose with less invasiveness and more patient compliance. This article will explore the genetic biomarkers isocitrate dehydrogenase mutation, MGMT mutations, and EGFR that can be deployed as an analytical tool in diagnosis of disease and prognosis of a therapeutic course. The review also highlights the importance of employing novel microRNAs as prognostic biomarkers. Recent clinical advancements to treat GBM and to prevent relapse of the disease are also discussed in this article in the hope of finding a robust and effective method to treat GBM.
Collapse
|
7
|
Cai J, Ye L, Hu Y, Ye Z, Gao L, Wang Y, Sun Q, Tong S, Yang J, Chen Q. Exploring the inverse association of glioblastoma multiforme and Alzheimer's disease via bioinformatics analysis. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:182. [PMID: 36071287 DOI: 10.1007/s12032-022-01786-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022]
Abstract
Glioblastoma multiforme (GBM) and Alzheimer's disease (AD) are two major diseases in the nervous system with a similar peak age of onset, which has the typical characteristics of high cost, difficult treatment, and poor prognosis. Epidemiological studies and a few molecular biological studies have hinted at an opposite relationship between AD and GBM. However, there are few studies on their reverse relationship, and the regulatory mechanism is still unclear, indicating that further systematic research is urgently needed. Our study firstly employs advanced bioinformatics methods to explore the inverse relationship between them and find various target drugs. We obtained the gene expression dataset from public databases (GEO, TCGA, and GTEx). Then, we identified 122 differentially expressed genes (DEGs) of AD and GBM. Four significant gene modules were identified through protein-protein interaction (PPI) and module construction, and 13 hub genes were found using cytoHubba. We constructed co-expression networks and found various target drugs through these hub genes. Functional enrichment analysis revealed that the AMPK pathway, cell cycle, and cellular senescence play important roles in AD and GBM. Our study may provide a potential direction for studying the opposite molecular mechanism of AD and GBM in the future.
Collapse
Affiliation(s)
- Jiayang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.,Central Laboratory, Renmin Hospital of Wuhan University, 238 Jiefang Street, Wuhan, 430060, Hubei, China
| | - Liguo Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.,Central Laboratory, Renmin Hospital of Wuhan University, 238 Jiefang Street, Wuhan, 430060, Hubei, China
| | - Yuanyuan Hu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhang Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.,Central Laboratory, Renmin Hospital of Wuhan University, 238 Jiefang Street, Wuhan, 430060, Hubei, China
| | - Lun Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.,Central Laboratory, Renmin Hospital of Wuhan University, 238 Jiefang Street, Wuhan, 430060, Hubei, China
| | - Yixuan Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.,Central Laboratory, Renmin Hospital of Wuhan University, 238 Jiefang Street, Wuhan, 430060, Hubei, China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.,Central Laboratory, Renmin Hospital of Wuhan University, 238 Jiefang Street, Wuhan, 430060, Hubei, China
| | - Shiao Tong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.,Central Laboratory, Renmin Hospital of Wuhan University, 238 Jiefang Street, Wuhan, 430060, Hubei, China
| | - Ji'an Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China. .,Central Laboratory, Renmin Hospital of Wuhan University, 238 Jiefang Street, Wuhan, 430060, Hubei, China.
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China. .,Central Laboratory, Renmin Hospital of Wuhan University, 238 Jiefang Street, Wuhan, 430060, Hubei, China.
| |
Collapse
|
8
|
Potential Neurotoxic Effects of Glioblastoma-Derived Exosomes in Primary Cultures of Cerebellar Neurons via Oxidant Stress and Glutathione Depletion. Antioxidants (Basel) 2022; 11:antiox11071225. [PMID: 35883716 PMCID: PMC9311852 DOI: 10.3390/antiox11071225] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
High-grade gliomas are the most fatal brain tumors. Grade 4 gliomas are called glioblastoma multiforme (GBM), which are associated with the poorest survival and a 5-year survival rate of less than 4%. Many patients with GBM developed concomitant cognitive dysfunctions and epilepsy. Although the cognitive decline is well defined in glioblastomas, the neurotoxic factors underlying this pathology are not well understood in GBM patients. In this study, we aimed to investigate whether GBM-derived exosomes play a role in neuronal toxicity. For this purpose, exosomes obtained from T98G and U373 GBM cells were applied to primary neuron culture at different concentrations. Subsequently, MTT, LDH, GSH, TAS, and TOS tests were performed. Both GBM-derived exosomes induced a dose-dependent and statistically significant increase of LDH release in cerebellar neurons. MTT assay revealed as both T98G and U373 GBM-derived exosomes induced dose-dependent neurotoxic effects in cerebellar neurons. To the best of our knowledge, this study is the first study demonstrating the toxic potential of GBM-derived exosomes to primary neurons, which may explain the peritumoral edema and cognitive decline in GBM patients.
Collapse
|
9
|
Deciphering specific miRNAs in brain tumors: a 5-miRNA signature in glioblastoma. Mol Genet Genomics 2022; 297:507-521. [PMID: 35175428 DOI: 10.1007/s00438-022-01866-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022]
Abstract
MicroRNAs are endogenous non-coding RNAs with a marked impact on the development and progression of brain tumors. However, they commonly share different expression patterns in other types of tumors, thereby exhibiting lack of tissue specificity. Here, an integrative holistic analysis of microarray data is established for deciphering dysregulated miRNAs in glioblastoma, distinguishing them from eight other CNS tumors. The identification of dysregulated miRNAs was performed in a pool of 176 patients, 118 of which diagnosed with glioblastoma. Dysregulated miRNAs commonly expressed in glioblastoma were then discriminated from those co-expressed in other CNS tumors and further characterized. Overall, 21 miRNAs were found to be commonly dysregulated in glioblastoma. Notwithstanding, 16 miRNAs also exhibited a differential expression in at least one other CNS tumor. The remaining 5, specifically, hsa-miR-21-3p, hsa-miR-338-5p, hsa-miR-485-5p, hsa-miR-491-5p and hsa-miR-1290, were solely associated to glioblastoma. This signature is in-depth characterized, with the spotlight on tumor progression, invasion and patient survival. These five endogenous molecules, differentially expressed in glioblastoma, are thus suggested as potential therapeutic targets, modulating several genes involved in major signalling pathways, including MAPK/ERK, calcium, PI3K/AKT, mTOR and Wnt. In summary, these findings lay a foundation for further research on the expression and function of specific patterns of miRNAs expression in glioblastoma, providing reference for potential novel targets.
Collapse
|
10
|
Lin JC, Kuo CY, Tsai JT, Liu WH. miR-671-5p Inhibition by MSI1 Promotes Glioblastoma Tumorigenesis via Radioresistance, Tumor Motility and Cancer Stem-like Cell Properties. Biomedicines 2021; 10:21. [PMID: 35052701 PMCID: PMC8773172 DOI: 10.3390/biomedicines10010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) could be potential biomarkers for glioblastoma multiforme (GBM) prognosis and response to therapeutic agents. We previously demonstrated that the cancer stem cell marker Musashi-1 (MSI1) is an RNA binding protein that promotes radioresistance by increasing downstream RNA stability. To identify that MSI1 interacts with miRNAs and attenuates their function, we also get candidate miRNAs from the mRNA seq by predicting with TargetScan software. miR-671-5p in GBM cells interacts with MSI1 by intersecting the precipitated miRNAs with the predicted miRNAs. Notably, overexpression of MSI1 reversed the inhibitory effect of miR-671-5p. The phenotype of miR-671-5p in GBM cells could affect radiosensitivity by modulating the posttranscriptional activity of STAT3. In addition, miR-671-5p could attenuate tumor migration and cancer stem cell (CSC) characteristics by repressing the posttranscriptional activity of TRAF2. MSI1 may regulate GBM radioresistance, CSCs and tumor motility through miR-671-5p inhibition to increasing STAT3 and TRAF2 presentation. In vivo, the GBM tumor size was inversely correlated with miR-671-5p expression, but tumorigenesis was promoted by STAT3 and TRAF2 activation in the miR-671-5p-positive GBM population. miR-671-5p could be activated as a novel therapeutic target for GBM and has potential application as a predictive biomarker of glioblastoma prognosis.
Collapse
Affiliation(s)
- Jang-Chun Lin
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, Taipei 110301, Taiwan; (J.-C.L.); (C.-Y.K.); (J.-T.T.)
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Chun-Yuan Kuo
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, Taipei 110301, Taiwan; (J.-C.L.); (C.-Y.K.); (J.-T.T.)
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110301, Taiwan
| | - Jo-Ting Tsai
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, Taipei 110301, Taiwan; (J.-C.L.); (C.-Y.K.); (J.-T.T.)
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Wei-Hsiu Liu
- Department of Neurological Surgery, Tri-Service General Hospital and National Defense Medical Center, No. 325, Sec. 2, Cheng-Kung Road, Taipei 11490, Taiwan
- Department of Surgery, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
11
|
Filetti V, Loreto C, Falzone L, Lombardo C, Cannizzaro E, Castorina S, Ledda C, Rapisarda V. Diagnostic and Prognostic Value of Three microRNAs in Environmental Asbestiform Fibers-Associated Malignant Mesothelioma. J Pers Med 2021; 11:jpm11111205. [PMID: 34834557 PMCID: PMC8618926 DOI: 10.3390/jpm11111205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/17/2022] Open
Abstract
Fluoro-edenite (FE) is an asbestiform fiber identified in Biancavilla (Sicily, Italy). Environmental exposure to FE has been associated with a higher incidence of malignant mesothelioma (MM). The present study aimed to validate the predicted diagnostic significance of hsa-miR-323a-3p, hsa-miR-101-3p, and hsa-miR-20b-5p on a subset of MM patients exposed to FE and matched with healthy controls. For this purpose, MM tissues vs. nonmalignant pleura tissues were analyzed through droplet digital PCR (ddPCR) to evaluate differences in the expression levels of the selected miRNAs and their MM diagnostic potential. In addition, further computational analysis has been performed to establish the correlation of these miRNAs with the available online asbestos exposure data and clinic-pathological parameters to verify the potential role of these miRNAs as prognostic tools. ddPCR results showed that the three analyzed miRNAs were significantly down-regulated in MM cases vs. controls. Receiver operating characteristic (ROC) analysis revealed high specificity and sensitivity rates for both hsa-miR-323a-3p and hsa-miR-20b-5p, which thus acquire a diagnostic value for MM. In silico results showed a potential prognostic role of hsa-miR-101-3p due to a significant association of its higher expression and increased overall survival (OS) of MM patients.
Collapse
Affiliation(s)
- Veronica Filetti
- Human Anatomy and Histology, Department of Biomedical and Biotechnology Sciences, University of Catania, 95123 Catania, Italy; (V.F.); (C.L.)
| | - Carla Loreto
- Human Anatomy and Histology, Department of Biomedical and Biotechnology Sciences, University of Catania, 95123 Catania, Italy; (V.F.); (C.L.)
| | - Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, 80131 Naples, Italy;
| | - Claudia Lombardo
- Human Anatomy, Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, 95123 Catania, Italy; (C.L.); (S.C.)
| | - Emanuele Cannizzaro
- Occupational Medicine, Department of Sciences for Health Promotion and Mother and Child Care, University of Palermo, 90128 Palermo, Italy;
| | - Sergio Castorina
- Human Anatomy, Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, 95123 Catania, Italy; (C.L.); (S.C.)
| | - Caterina Ledda
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy;
- Correspondence:
| | - Venerando Rapisarda
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy;
| |
Collapse
|
12
|
Candido S, Tomasello BMR, Lavoro A, Falzone L, Gattuso G, Libra M. Novel Insights into Epigenetic Regulation of IL6 Pathway: In Silico Perspective on Inflammation and Cancer Relationship. Int J Mol Sci 2021; 22:ijms221810172. [PMID: 34576335 PMCID: PMC8470126 DOI: 10.3390/ijms221810172] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/05/2023] Open
Abstract
IL-6 pathway is abnormally hyperactivated in several cancers triggering tumor cell growth and immune system inhibition. Along with genomic mutation, the IL6 pathway gene expression can be affected by DNA methylation, microRNAs, and post-translational modifications. Computational analysis was performed on the Cancer Genome Atlas (TCGA) datasets to explore the role of IL6, IL6R, IL6ST, and IL6R transmembrane isoform expression and their epigenetic regulation in different cancer types. IL6 was significantly modulated in 70% of tumor types, revealing either up- or down-regulation in an approximately equal number of tumors. Furthermore, IL6R and IL6ST were downregulated in more than 10 tumors. Interestingly, the correlation analysis demonstrated that only the IL6R expression was negatively affected by the DNA methylation within the promoter region in most tumors. Meanwhile, only the IL6ST expression was extensively modulated by miRNAs including miR-182-5p, which also directly targeted all three genes. In addition, IL6 upregulated miR-181a-3p, mirR-214-3p, miR-18a-5p, and miR-938, which in turn inhibited the expression of IL6 receptors. Finally, the patients’ survival rate was significantly affected by analyzed targets in some tumors. Our results suggest the relevance of epigenetic regulation of IL6 signaling and pave the way for further studies to validate these findings and to assess the prognostic and therapeutic predictive value of these epigenetic markers on the clinical outcome and survival of cancer patients.
Collapse
Affiliation(s)
- Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | | | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Naples, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| |
Collapse
|
13
|
Xu XL, Liu H, Zhang Y, Zhang SX, Chen Z, Bao Y, Li TK. SPP1 and FN1 are significant gene biomarkers of tongue squamous cell carcinoma. Oncol Lett 2021; 22:713. [PMID: 34457068 PMCID: PMC8358624 DOI: 10.3892/ol.2021.12974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Tongue squamous cell carcinoma (TSCC) is one of the most common malignant tumor types in the oral and maxillofacial region. The etiology and pathogenesis behind TSCC is complicated. In the present study, three gene expression profiles, namely GSE31056, GSE13601 and GSE78060, were downloaded from the Gene Expression Omnibus (GEO). The GEO2R online tool was utilized to identify differentially expressed genes (DEGs) between TSCC and normal tissue samples. Furthermore, a protein-protein interaction (PPI) network was constructed and hub genes were validated and analyzed. A total of 83 common DEGs were obtained in three datasets, including 48 upregulated and 35 downregulated genes. Pathway enrichment analysis indicated that DEGs were primarily enriched in cell adhesion, extracellular matrix (ECM) organization, and proteolysis. A total of 63 nodes and 218 edges were included in the PPI network. The top 11 candidate hub genes were acquired, namely plasminogen activator urokinase (PLAU), signal transducer and activator of transcription 1, C-X-C motif chemokine ligand 12, matrix metallopeptidase (MMP) 13, secreted phosphoprotein 1 (SPP1), periostin, MMP1, MMP3, fibronectin 1 (FN1), serpin family E member 1 and snail family transcriptional repressor 2. Overall, 83 DEGs and 11 hub genes were screened from TSCC and normal individuals using bioinformatics and microarray technology. These genes may be used as diagnostic and therapeutic biomarkers for TSCC. In addition, SPP1 and FNl were identified as potential biomarkers for the progression of TSCC.
Collapse
Affiliation(s)
- Xiao-Liang Xu
- Department of Stomatology, The Second Hospital of Tangshan City, Tangshan, Hebei 063000, P.R. China
| | - Hui Liu
- Department of Stomatology, North China University of Science And Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Ying Zhang
- Department of Stomatology, The Third Hospital of Shijiazhuang City, Shijiazhuang, Hebei 050011, P.R. China
| | - Su-Xin Zhang
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Zhong Chen
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yang Bao
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Tian-Ke Li
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
14
|
Giambò F, Leone GM, Gattuso G, Rizzo R, Cosentino A, Cinà D, Teodoro M, Costa C, Tsatsakis A, Fenga C, Falzone L. Genetic and Epigenetic Alterations Induced by Pesticide Exposure: Integrated Analysis of Gene Expression, microRNA Expression, and DNA Methylation Datasets. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168697. [PMID: 34444445 PMCID: PMC8394939 DOI: 10.3390/ijerph18168697] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Environmental or occupational exposure to pesticides is considered one of the main risk factors for the development of various diseases. Behind the development of pesticide-associated pathologies, there are both genetic and epigenetic alterations, where these latter are mainly represented by the alteration in the expression levels of microRNAs and by the change in the methylation status of the DNA. At present, no studies have comprehensively evaluated the genetic and epigenetic alterations induced by pesticides; therefore, the aim of the present study was to identify modifications in gene miRNA expression and DNA methylation useful for the prediction of pesticide exposure. For this purpose, an integrated analysis of gene expression, microRNA expression, and DNA methylation datasets obtained from the GEO DataSets database was performed to identify putative genes, microRNAs, and DNA methylation hotspots associated with pesticide exposure and responsible for the development of different diseases. In addition, DIANA-miRPath, STRING, and GO Panther prediction tools were used to establish the functional role of the putative biomarkers identified. The results obtained demonstrated that pesticides can modulate the expression levels of different genes and induce different epigenetic alterations in the expression levels of miRNAs and in the modulation of DNA methylation status.
Collapse
Affiliation(s)
- Federica Giambò
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
| | - Gian Marco Leone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.M.L.); (G.G.); (R.R.); (A.C.)
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.M.L.); (G.G.); (R.R.); (A.C.)
| | - Roberta Rizzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.M.L.); (G.G.); (R.R.); (A.C.)
| | - Alessia Cosentino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.M.L.); (G.G.); (R.R.); (A.C.)
| | - Diana Cinà
- Health Management of the “Cannizzaro” Emergency Hospital of Catania, 95126 Catania, Italy;
- Clinical Pathology and Clinical Molecular Biology Unit, “Garibaldi Centro” Hospital, ARNAS Garibaldi, 95123 Catania, Italy
| | - Michele Teodoro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy; (M.T.); (C.F.)
| | - Chiara Costa
- Clinical and Experimental Medicine Department, University of Messina, 98125 Messina, Italy;
| | - Aristides Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Concettina Fenga
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy; (M.T.); (C.F.)
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute-IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-095-478-1278
| |
Collapse
|
15
|
Revisiting the Proposition of Binding Pockets and Bioactive Poses for GSK-3β Allosteric Modulators Addressed to Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22158252. [PMID: 34361017 PMCID: PMC8348340 DOI: 10.3390/ijms22158252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Glycogen synthase kinase-3 beta (GSK-3β) is an enzyme pertinently linked to neurodegenerative diseases since it is associated with the regulation of key neuropathological features in the central nervous system. Among the different kinds of inhibitors of this kinase, the allosteric ones stand out due to their selective and subtle modulation, lowering the chance of producing side effects. The mechanism of GSK-3β allosteric modulators may be considered still vague in terms of elucidating a well-defined binding pocket and a bioactive pose for them. In this context, we propose to reinvestigate and reinforce such knowledge by the application of an extensive set of in silico methodologies, such as cavity detection, ligand 3D shape analysis and docking (with robust validation of corresponding protocols), and molecular dynamics. The results here obtained were consensually consistent in furnishing new structural data, in particular by providing a solid bioactive pose of one of the most representative GSK-3β allosteric modulators. We further applied this to the prospect for new compounds by ligand-based virtual screening and analyzed the potential of the two obtained virtual hits by quantum chemical calculations. All potential hits achieved will be subsequently tested by in vitro assays in order to validate our approaches as well as to unveil novel chemical entities as GSK-3β allosteric modulators.
Collapse
|
16
|
Petralia MC, Ciurleo R, Bramanti A, Bramanti P, Saraceno A, Mangano K, Quattropani MC, Nicoletti F, Fagone P. Transcriptomic Data Analysis Reveals a Down-Expression of Galectin-8 in Schizophrenia Hippocampus. Brain Sci 2021; 11:brainsci11080973. [PMID: 34439592 PMCID: PMC8392448 DOI: 10.3390/brainsci11080973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/31/2022] Open
Abstract
Schizophrenia (SCZ) is a severe psychiatric disorder with several clinical manifestations that include cognitive dysfunction, decline in motivation, and psychosis. Current standards of care treatment with antipsychotic agents are often ineffective in controlling the disease, as only one-third of SCZ patients respond to medications. The mechanisms underlying the pathogenesis of SCZ remain elusive. It is believed that inflammatory processes may play a role as contributing factors to the etiology of SCZ. Galectins are a family of β-galactoside-binding lectins that contribute to the regulation of immune and inflammatory responses, and previous reports have shown their role in the maintenance of central nervous system (CNS) homeostasis and neuroinflammation. In the current study, we evaluated the expression levels of the galectin gene family in post-mortem samples of the hippocampus, associative striatum, and dorsolateral prefrontal cortex from SCZ patients. We found a significant downregulation of LGALS8 (Galectin-8) in the hippocampus of SCZ patients as compared to otherwise healthy donors. Interestingly, the reduction of LGALS8 was disease-specific, as no modulation was observed in the hippocampus from bipolar nor major depressive disorder (MDD) patients. Prediction analysis identified TBL1XR1, BRF2, and TAF7 as potential transcription factors controlling LGALS8 expression. In addition, MIR3681HG and MIR4296 were negatively correlated with LGALS8 expression, suggesting a role for epigenetics in the regulation of LGALS8 levels. On the other hand, no differences in the methylation levels of LGALS8 were observed between SCZ and matched control hippocampus. Finally, ontology analysis of the genes negatively correlated with LGALS8 expression identified an enrichment of the NGF-stimulated transcription pathway and of the oligodendrocyte differentiation pathway. Our study identified LGALS8 as a disease-specific gene, characterizing SCZ patients, that may in the future be exploited as a potential therapeutic target.
Collapse
Affiliation(s)
- Maria Cristina Petralia
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (M.C.P.); (M.C.Q.)
| | - Rosella Ciurleo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy; (R.C.); (P.B.)
| | - Alessia Bramanti
- Department of Medicine, University of Salerno, 84084 Salerno, Italy;
| | - Placido Bramanti
- IRCCS Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy; (R.C.); (P.B.)
| | - Andrea Saraceno
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.S.); (K.M.); (F.N.)
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.S.); (K.M.); (F.N.)
| | - Maria Catena Quattropani
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (M.C.P.); (M.C.Q.)
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.S.); (K.M.); (F.N.)
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.S.); (K.M.); (F.N.)
- Correspondence:
| |
Collapse
|
17
|
Stella M, Falzone L, Caponnetto A, Gattuso G, Barbagallo C, Battaglia R, Mirabella F, Broggi G, Altieri R, Certo F, Caltabiano R, Barbagallo GMV, Musumeci P, Ragusa M, Pietro CD, Libra M, Purrello M, Barbagallo D. Serum Extracellular Vesicle-Derived circHIPK3 and circSMARCA5 Are Two Novel Diagnostic Biomarkers for Glioblastoma Multiforme. Pharmaceuticals (Basel) 2021; 14:ph14070618. [PMID: 34198978 PMCID: PMC8308516 DOI: 10.3390/ph14070618] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most frequent and deadly human brain cancer. Early diagnosis through non-invasive biomarkers may render GBM more easily treatable, improving the prognosis of this currently incurable disease. We suggest the use of serum extracellular vesicle (sEV)-derived circular RNAs (circRNAs) as highly stable minimally invasive diagnostic biomarkers for GBM diagnosis. EVs were isolated by size exclusion chromatography from sera of 23 GBM and 5 grade 3 glioma (GIII) patients, and 10 unaffected controls (UC). The expression of two candidate circRNAs (circSMARCA5 and circHIPK3) was assayed by droplet digital PCR. CircSMARCA5 and circHIPK3 were significantly less abundant in sEVs from GBM patients with respect to UC (fold-change (FC) of -2.15 and -1.92, respectively) and GIII (FC of -1.75 and -1.4, respectively). Receiver operating characteristic curve (ROC) analysis, based on the expression of sEV-derived circSMARCA5 and circHIPK3, allowed us to distinguish GBM from UC (area under the curve (AUC) 0.823 (0.667-0.979) and 0.855 (0.704 to 1.000), with a 95% confidence interval (CI), respectively). Multivariable ROC analysis, performed by combining the expression of sEV-derived circSMARCA5 and circHIPK3 with preoperative neutrophil to lymphocyte (NLR), platelet to lymphocyte (PLR) and lymphocyte to monocyte (LMR) ratios, three known diagnostic and prognostic GBM markers, allowed an improvement in the GBM diagnostic accuracy (AUC 0.901 (0.7912 to 1.000), 95% CI). Our data suggest sEV-derived circSMARCA5 and circHIPK3 as good diagnostic biomarkers for GBM, especially when associated with preoperative NLR, PLR and LMR.
Collapse
Affiliation(s)
- Michele Stella
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy; (M.S.); (A.C.); (C.B.); (R.B.); (F.M.); (M.R.); (C.D.P.); (M.P.)
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, Section of Pathology, University of Catania, 95123 Catania, Italy; (L.F.); (G.G.); (M.L.)
| | - Angela Caponnetto
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy; (M.S.); (A.C.); (C.B.); (R.B.); (F.M.); (M.R.); (C.D.P.); (M.P.)
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, Section of Pathology, University of Catania, 95123 Catania, Italy; (L.F.); (G.G.); (M.L.)
| | - Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy; (M.S.); (A.C.); (C.B.); (R.B.); (F.M.); (M.R.); (C.D.P.); (M.P.)
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy; (M.S.); (A.C.); (C.B.); (R.B.); (F.M.); (M.R.); (C.D.P.); (M.P.)
| | - Federica Mirabella
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy; (M.S.); (A.C.); (C.B.); (R.B.); (F.M.); (M.R.); (C.D.P.); (M.P.)
| | - Giuseppe Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Section of Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (R.C.)
| | - Roberto Altieri
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Neurological Surgery, Policlinico “Rodolico-San Marco” University Hospital, University of Catania, 95123 Catania, Italy; (R.A.); (F.C.); (G.M.V.B.)
- Interdisciplinary Research Centre on the Diagnosis and Therapy of Brain Tumors, University of Catania, 95123 Catania, Italy
| | - Francesco Certo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Neurological Surgery, Policlinico “Rodolico-San Marco” University Hospital, University of Catania, 95123 Catania, Italy; (R.A.); (F.C.); (G.M.V.B.)
- Interdisciplinary Research Centre on the Diagnosis and Therapy of Brain Tumors, University of Catania, 95123 Catania, Italy
| | - Rosario Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Section of Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (R.C.)
| | - Giuseppe Maria Vincenzo Barbagallo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Neurological Surgery, Policlinico “Rodolico-San Marco” University Hospital, University of Catania, 95123 Catania, Italy; (R.A.); (F.C.); (G.M.V.B.)
- Interdisciplinary Research Centre on the Diagnosis and Therapy of Brain Tumors, University of Catania, 95123 Catania, Italy
| | - Paolo Musumeci
- Department of Physics and Astronomy, University of Catania, 95123 Catania, Italy;
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy; (M.S.); (A.C.); (C.B.); (R.B.); (F.M.); (M.R.); (C.D.P.); (M.P.)
- Interdisciplinary Research Centre on the Diagnosis and Therapy of Brain Tumors, University of Catania, 95123 Catania, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy; (M.S.); (A.C.); (C.B.); (R.B.); (F.M.); (M.R.); (C.D.P.); (M.P.)
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Section of Pathology, University of Catania, 95123 Catania, Italy; (L.F.); (G.G.); (M.L.)
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy; (M.S.); (A.C.); (C.B.); (R.B.); (F.M.); (M.R.); (C.D.P.); (M.P.)
- Interdisciplinary Research Centre on the Diagnosis and Therapy of Brain Tumors, University of Catania, 95123 Catania, Italy
| | - Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy; (M.S.); (A.C.); (C.B.); (R.B.); (F.M.); (M.R.); (C.D.P.); (M.P.)
- Interdisciplinary Research Centre on the Diagnosis and Therapy of Brain Tumors, University of Catania, 95123 Catania, Italy
- Correspondence: ; Tel.: +39-0953782089
| |
Collapse
|
18
|
Oshiumi H. Circulating Extracellular Vesicles Carry Immune Regulatory miRNAs and Regulate Vaccine Efficacy and Local Inflammatory Response After Vaccination. Front Immunol 2021; 12:685344. [PMID: 34211472 PMCID: PMC8239358 DOI: 10.3389/fimmu.2021.685344] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/31/2021] [Indexed: 01/24/2023] Open
Abstract
Vaccination is the best prophylaxis for the prevention of infectious diseases, including coronavirus disease 2019. However, the efficacy of vaccines and onset of adverse reactions vary among individuals. Circulating extracellular vesicles (EVs) regulate the immune responses after vaccination by delivering microRNAs (miRNAs) to myeloid and lymphoid cells. Among these, miR-192 levels in serum EVs increase with aging, in an IL-6-dependent manner, reducing excessive IL-6 expression in aged mice, creating a negative feedback loop. Excessive IL-6 expression reduces vaccination efficacy in aged mice, while EV miR-192 improves efficacy in these aged mice as well, making this miRNA an interesting focus of study. miR-21 levels in serum EVs also increase with aging, and regulates the expression of IL-12 required for Th1 responses; therefore, EV miR-21 is expected to regulate vaccine efficacy. miR-451a, another important miRNA, is abundant in serum EVs and controls the expression of cytokines, such as type I interferon and IL-6. However, levels differ among individuals and correlate with local inflammatory symptoms experienced after a seasonal flu vaccination. These findings suggest the importance of EV miRNAs as a tool to improve vaccine efficacy and also as biomarkers to predict the immune response and adverse reactions after vaccinations.
Collapse
Affiliation(s)
- Hiroyuki Oshiumi
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
19
|
Renner O, Burkard M, Michels H, Vollbracht C, Sinnberg T, Venturelli S. Parenteral high‑dose ascorbate - A possible approach for the treatment of glioblastoma (Review). Int J Oncol 2021; 58:35. [PMID: 33955499 PMCID: PMC8104923 DOI: 10.3892/ijo.2021.5215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
For glioblastoma, the treatment with standard of care therapy comprising resection, radiation, and temozolomide results in overall survival of approximately 14-18 months after initial diagnosis. Even though several new therapy approaches are under investigation, it is difficult to achieve life prolongation and/or improvement of patient's quality of life. The aggressiveness and progression of glioblastoma is initially orchestrated by the biological complexity of its genetic phenotype and ability to respond to cancer therapy via changing its molecular patterns, thereby developing resistance. Recent clinical studies of pharmacological ascorbate have demonstrated its safety and potential efficacy in different cancer entities regarding patient's quality of life and prolongation of survival. In this review article, the actual glioblastoma treatment possibilities are summarized, the evidence for pharmacological ascorbate in glioblastoma treatment is examined and questions are posed to identify current gaps of knowledge regarding accessibility of ascorbate to the tumor area. Experiments with glioblastoma cell lines and tumor xenografts have demonstrated that high-dose ascorbate induces cytotoxicity and oxidative stress largely selectively in malignant cells compared to normal cells suggesting ascorbate as a potential therapeutic agent. Further investigations in larger cohorts and randomized placebo-controlled trials should be performed to confirm these findings as well as to improve delivery strategies to the brain, through the inherent barriers and ultimately to the malignant cells.
Collapse
Affiliation(s)
- Olga Renner
- Department of Nutritional Biochemistry, University of Hohenheim, D‑70599 Stuttgart, Germany
| | - Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, D‑70599 Stuttgart, Germany
| | - Holger Michels
- Pascoe Pharmazeutische Praeparate GmbH, D‑35394 Giessen, Germany
| | | | - Tobias Sinnberg
- Department of Dermatology, University Hospital Tuebingen, D‑72076 Tuebingen, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, D‑70599 Stuttgart, Germany
| |
Collapse
|
20
|
Cancer Patients Have an Increased Incidence of Dementia: A Retrospective Cohort Study of 185,736 Outpatients in Germany. Cancers (Basel) 2021; 13:cancers13092027. [PMID: 33922235 PMCID: PMC8122712 DOI: 10.3390/cancers13092027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Cancer is the second leading cause of death worldwide and incidence rates for several tumor entities are rising. Many patients develop additional comorbidities after cancer diagnosis. Among these, several psychological morbidities have been extensively studied in the past, but findings on the association between cancer and dementia have remained conflicting. We showed that the overall cumulative incidence of dementia was significantly higher in cancer patients than in non-cancer patients, which should raise awareness of this important comorbidity in cancer patients. Abstract Background: Cancer is the second leading cause of death worldwide and incidence rates for several tumor entities are rising. In addition to a high cancer-specific mortality rate, many cancer patients also suffer from additional comorbidities. Among these, several psychological morbidities have been extensively studied in the past, but findings on the association between cancer and dementia have remained conflicting. In the present study, we evaluated the possibility of an association between cancer and dementia. Methods: Based on data from the IQVIA Disease Analyzer database, a total of 92,868 cancer outpatients initially diagnosed between 2000 and 2018 were matched by age, gender, index year, and yearly consultation frequency to 92,868 individuals without cancer. Ten-year incidence rates of dementia were compared for the two cohorts. Results: The overall cumulative incidence of dementia was significantly higher in cancer patients (19.7%) than in non-cancer patients (16.7%, p < 0.001). Cox regression models confirmed that this association was significant for both male (HR: 1.35 [1.30–1.41], p < 0.001) and female (HR: 1.26 [1.21–1.31], p < 0.001) patients and was consistent among all age groups analyzed (65–70, 71–75, 76–80, 81–85, and >85 years). In addition, the association between cancer and dementia was significant for all cancer entities analyzed (skin, digestive organs, prostate, breast, urinary tract, lymphoid and hematopoietic tissue, and lung cancer) and most pronounced in patients with lung cancer (HR: 1.44 [1.28–1.62], p < 0.001). Conclusions: Our data provide strong evidence for an increased incidence of dementia in a large cohort of patients with different cancer entities, which should raise awareness of this important comorbidity in cancer patients.
Collapse
|
21
|
P-selectin targeting polysaccharide-based nanogels for miRNA delivery. Int J Pharm 2021; 597:120302. [DOI: 10.1016/j.ijpharm.2021.120302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/20/2022]
|
22
|
Zhang X, Ma L, Zhai L, Chen D, Li Y, Shang Z, Zhang Z, Gao Y, Yang W, Li Y, Pan Y. Construction and validation of a three-microRNA signature as prognostic biomarker in patients with hepatocellular carcinoma. Int J Med Sci 2021; 18:984-999. [PMID: 33456356 PMCID: PMC7807177 DOI: 10.7150/ijms.49126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC), a common type of primary liver cancer, is one of the most aggressive malignant tumors worldwide. Although overall survival (OS) rates for HCC has significantly improved in recent years, however, the exact predictive value of microRNA (miRNA) for the prognosis of HCC has not yet been recognized. Here, we aimed to identify potential prognostic miRNAs involved in HCC by bioinformatics analysis and validated expression levels through quantitative polymerase chain reaction (qPCR) and GEO database. The RNA expression profiles and corresponding clinical information of HCC were available from The Cancer Genome Atlas (TCGA) datasets. Differentially expression and standardization analysis of miRNAs, Kaplan-Meier curve and time dependent ROC curve were performed by using R tools. Differentially expressed miRNAs (DEmiRNAs) and clinical parameters involved in the OS of HCC were confirmed by Cox regression models. And functional enrichment analysis was used to establish functions of the targeted genes of DEmiRNAs. A total of 300 DEmiRNAs were significantly related with HCC, of which 40 were down-regulated and 260 were up-regulated. A total of 344 patients with DEmiRNAs, status, overall survival (OS) time were randomized into training group (172) and test group (172). Multivariate Cox regression analyses revealed that 3 miRNA (hsa-miR-139-3p, hsa-miR-760, hsa-miR-7-5p) had independent prognostic significance for the OS of HCC in both training and test group. Moreover, according to Kaplan Meier analysis, the OS of HCC patients with high-risk score was shorter in validation and entire series. The time dependent ROC curve demonstrated high accuracy of the signature for OS. Besides, target genes of three miRNAs were analyzed by functional enrichment analysis and 20 genes associated with OS were verified by using Kaplan-Meier method. Compared with normal and benign group, the relative expression level of hsa-miR-139-3p was significantly decreased, while hsa-miR-7-5p and hsa-miR-760 were distinctly increased in the plasma of HCC patients. The same results were observed in the independent cohort. Collectively, our research suggested that three-miRNA signature could serve as an independent prognostic indicator for HCC patients.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Clinical Laboratory, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Li Ma
- Department of Clinical Laboratory, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Li Zhai
- Department of Clinical Laboratory, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Dong Chen
- Department of Ultrasound, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Yong Li
- Department of Abdominal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Zhongjun Shang
- Department of Hospital Affairs, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Zongmei Zhang
- Department of Pathology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Yanzhang Gao
- Department of Clinical Laboratory, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Wei Yang
- Department of Clinical Laboratory, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Yixun Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Experimental Diagnosis, Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan, P.R. China
| | - Yuqing Pan
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Experimental Diagnosis, Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan, P.R. China
| |
Collapse
|
23
|
Paranthaman S, Goravinahalli Shivananjegowda M, Mahadev M, Moin A, Hagalavadi Nanjappa S, Nanjaiyah ND, Chidambaram SB, Gowda DV. Nanodelivery Systems Targeting Epidermal Growth Factor Receptors for Glioma Management. Pharmaceutics 2020; 12:pharmaceutics12121198. [PMID: 33321953 PMCID: PMC7763629 DOI: 10.3390/pharmaceutics12121198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/17/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023] Open
Abstract
A paradigm shift in treating the most aggressive and malignant form of glioma is continuously evolving; however, these strategies do not provide a better life and survival index. Currently, neurosurgical debulking, radiotherapy, and chemotherapy are the treatment options available for glioma, but these are non-specific in action. Patients invariably develop resistance to these therapies, leading to recurrence and death. Receptor Tyrosine Kinases (RTKs) are among the most common cell surface proteins in glioma and play a significant role in malignant progression; thus, these are currently being explored as therapeutic targets. RTKs belong to the family of cell surface receptors that are activated by ligands which in turn activates two major downstream signaling pathways via Rapidly Accelerating Sarcoma/mitogen activated protein kinase/extracellular-signal-regulated kinase (Ras/MAPK/ERK) and phosphatidylinositol 3-kinase/a serine/threonine protein kinase/mammalian target of rapamycin (PI3K/AKT/mTOR). These pathways are critically involved in regulating cell proliferation, invasion, metabolism, autophagy, and apoptosis. Dysregulation in these pathways results in uncontrolled glioma cell proliferation, invasion, angiogenesis, and cancer progression. Thus, RTK pathways are considered a potential target in glioma management. This review summarizes the possible risk factors involved in the growth of glioblastoma (GBM). The role of RTKs inhibitors (TKIs) and the intracellular signaling pathways involved, small molecules under clinical trials, and the updates were discussed. We have also compiled information on the outcomes from the various endothelial growth factor receptor (EGFR)-TKIs-based nanoformulations from the preclinical and clinical points of view. Aided by an extensive literature search, we propose the challenges and potential opportunities for future research on EGFR-TKIs-based nanodelivery systems.
Collapse
Affiliation(s)
- Sathishbabu Paranthaman
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India; (S.P.); (M.G.S.); (M.M.)
| | | | - Manohar Mahadev
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India; (S.P.); (M.G.S.); (M.M.)
| | - Afrasim Moin
- Department of Pharmaceutics, Hail University, Hail PO BOX 2440, Saudi Arabia;
| | | | | | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India;
| | - Devegowda Vishakante Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India; (S.P.); (M.G.S.); (M.M.)
- Correspondence: ; Tel.: +91-9663162455
| |
Collapse
|
24
|
Kong F, Li X, Li S, Sheng D, Li W, Song M. MicroRNA-15a-5p promotes the proliferation and invasion of T98G glioblastoma cells via targeting cell adhesion molecule 1. Oncol Lett 2020; 21:103. [PMID: 33376536 PMCID: PMC7751353 DOI: 10.3892/ol.2020.12364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/14/2020] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is a type of malignant tumor occurring in the brain that severely influences the life of affected individuals. GBM cells are highly infiltrative, which is one of the main obstacles in the treatment of the disease. Numerous microRNAs (miRNAs/miRs) are associated with the development of GBM. However, the effects of miR-15a-5p on GBM remain elusive. In the present study, reverse transcription-quantitative PCR and western blot analysis were applied for the detection of RNA and protein levels, respectively. Cell Counting Kit-8 and Transwell assays were performed to examine cell proliferation and invasion, respectively. TargetScan 7.1 and dual-luciferase reporter assay were utilized for the prediction and verification of the association between miRNAs and mRNAs. The present study revealed that miR-15a-5p expression was upregulated in the GBM T98G cell line. The results further demonstrated that, through the inhibition of cell adhesion molecule 1 expression and the promotion of Akt phosphorylation, miR-15a-5p was able to promote GBM cell proliferation and invasion. Overall, the present findings revealed a novel mechanism responsible for the development of GBM and provided an experimental basis for the diagnosis and treatment of GBM.
Collapse
Affiliation(s)
- Fanqiang Kong
- Department of Emergency, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Xiaoqing Li
- Department of Emergency, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Shuhong Li
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Dan Sheng
- Department of Emergency, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Wenhu Li
- Department of Emergency, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Mingming Song
- Department of Emergency, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
25
|
Differentially Expressed mRNAs and Their Long Noncoding RNA Regulatory Network with Helicobacter pylori-Associated Diseases including Atrophic Gastritis and Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3012193. [PMID: 33282942 PMCID: PMC7686847 DOI: 10.1155/2020/3012193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/28/2020] [Accepted: 10/31/2020] [Indexed: 02/08/2023]
Abstract
Background Helicobacter pylori (Hp) infection is the strongest risk factor for gastric cancer (GC). However, the mechanisms of Hp-associated GC remain to be explored. Methods The gene expression profiling (GSE111762) data were downloaded from the GEO database. Differentially expressed genes (DEGs) between normal samples (NO) and Hp-atrophic gastritis (GA) or Hp-GA and Hp-GC were identified by GEO2R. Gene Ontology and pathway enrichment analysis were performed using the DAVID database. lncRNA-TF-mRNA and ceRNA regulation networks were constructed using Cytoscape. The cross-networks were obtained by overlapping molecules of the above two networks. GSE27411 and GSE116312 datasets were employed for validation. Results DEGs between NO and Hp-GA are linked to the activity of inward rectifying potassium channels, digestion, etc. DEGs between Hp-GA and Hp-GC were associated with digestion, positive regulation of cell proliferation, etc. According to the lncRNA-TF-mRNA network, 63 lncRNAs, 12 TFs, and 209 mRNAs were involved in Hp-GA while 16 lncRNAs, 11 TFs, and 92 mRNAs were contained in the Hp-GC network. In terms of the ceRNA network, 120 mRNAs, 18 miRNAs, and 27 lncRNAs were shown in Hp-GA while 72 mRNAs, 8 miRNAs, and 1 lncRNA were included in the Hp-GC network. In the cross-network, we found that immune regulation and differentiation regulation were important in the process of NO-GA. Neuroendocrine regulation was mainly related to the process of GA-GC. In the end, we verified that CDX2 plays an important role in the pathological process of NO to Hp-GA. Comparing Hp-GA with Hp-GC, DEGs (FPR1, TFF2, GAST, SST, FUT9, and SHH), TF, and GATA5 were of great significance. Conclusions We identified the DEGs, and their lncRNA regulatory network of Hp-associated diseases might provide insights into the mechanism between Hp infection and GC. Furthermore, in-depth studies of the molecules might be useful to explore the multistep process of gastric diseases.
Collapse
|
26
|
Aloizou AM, Pateraki G, Siokas V, Mentis AFA, Liampas I, Lazopoulos G, Kovatsi L, Mitsias PD, Bogdanos DP, Paterakis K, Dardiotis E. The role of MiRNA-21 in gliomas: Hope for a novel therapeutic intervention? Toxicol Rep 2020; 7:1514-1530. [PMID: 33251119 PMCID: PMC7677650 DOI: 10.1016/j.toxrep.2020.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Gliomas are the most common primary brain tumors in adults. They are generally very resistant to treatment and are therefore associated with negative outcomes. MicroRNAs (miRNAs) are small, non-coding RNA molecules that affect many cellular processes by regulating gene expression and, post-transcriptionally, the translation of mRNAs. MiRNA-21 has been consistently shown to be upregulated in glioma and research has shown that it is involved in a wide variety of biological pathways, promoting tumor cell survival and invasiveness. Furthermore, it has been implicated in resistance to treatment, both against chemotherapy and radiotherapy. In this review, we gathered the existent data on miRNA-21 and gliomas, in terms of its expression levels, association with grade and prognosis, the pathways it involves and its targets in glioma, and finally how it leads to treatment resistance. Furthermore, we discuss how this knowledge could be applied in clinical practice in the years to come. To our knowledge, this is the first review to assess in extent and depth the role of miRNA-21 in gliomas.
Collapse
Affiliation(s)
- Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Georgia Pateraki
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Alexios-Fotios A Mentis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece.,Public Health Laboratories, Hellenic Pasteur Institute, Athens, Greece
| | - Ioannis Liampas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - George Lazopoulos
- Department of Cardiothoracic Surgery, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Panayiotis D Mitsias
- Department of Neurology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis 40500, Larissa, Greece
| | - Konstantinos Paterakis
- Department of Neurosurgery, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| |
Collapse
|
27
|
Thomas L, Florio T, Perez-Castro C. Extracellular Vesicles Loaded miRNAs as Potential Modulators Shared Between Glioblastoma, and Parkinson's and Alzheimer's Diseases. Front Cell Neurosci 2020; 14:590034. [PMID: 33328891 PMCID: PMC7671965 DOI: 10.3389/fncel.2020.590034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is the deadliest brain tumor. Its poor prognosis is due to cell heterogeneity, invasiveness, and high vascularization that impede an efficient therapeutic approach. In the past few years, several molecular links connecting GBM to neurodegenerative diseases (NDDs) were identified at preclinical and clinical level. In particular, giving the increasing critical role that epigenetic alterations play in both GBM and NDDs, we deeply analyzed the role of miRNAs, small non-coding RNAs acting epigenetic modulators in several key biological processes. Specific miRNAs, transported by extracellular vesicles (EVs), act as intercellular communication signals in both diseases. In this way, miRNA-loaded EVs modulate GBM tumorigenesis, as they spread oncogenic signaling within brain parenchyma, and control the aggregation of neurotoxic protein (Tau, Aβ-amyloid peptide, and α-synuclein) in NDDs. In this review, we highlight the most promising miRNAs linking GBM and NDDs playing a significant pathogenic role in both diseases.
Collapse
Affiliation(s)
- Laura Thomas
- Instituto de Investigación en Biomedicina de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Carolina Perez-Castro
- Instituto de Investigación en Biomedicina de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| |
Collapse
|
28
|
Huang W, Yan YG, Wang WJ, Ouyang ZH, Li XL, Zhang TL, Wang XB, Wang B, Lv GH, Li J, Zou MX. Development and Validation of a 6-miRNA Prognostic Signature in Spinal Chordoma. Front Oncol 2020; 10:556902. [PMID: 33194623 PMCID: PMC7656123 DOI: 10.3389/fonc.2020.556902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Published data have suggested a critical role for microRNA (miRNA) expression in chordoma progression. However, most of these studies focus on single miRNA and no multi-miRNA prognostic signature has been currently established for chordoma. In this study, we sought to develop and validate a 6-miRNA risk score (miRscore) model for survival prediction. METHODS Medline, Embase, and Google scholar searches (from inception to July 20, 2018) were conducted to identify candidate miRNAs with prognostic value as per predefined criteria. Quantitative RT-PCR was used to measure miRNA levels in 114 spinal chordoma (54 in the training and 60 in the validation cohort) and 20 control specimens. Subsequently, the miRscore was built based on miRNAs data. RESULTS Literature searches identified six prognostic miRNAs (miR-574-3p, miR-1237-3p, miR-140-3p, miR-1, miR-155, and miR-1290) with differential expression in tumor tissues. Bioinformatical analysis revealed an important regulatory role for miR-574-3p/EGFR signaling in chordoma and showed that the target genes of these prognostic miRNAs were mainly enriched in transcription regulation, protein binding and cancer-related pathways. In both cohorts, the miRscore was associated with surrounding muscle invasion by tumor and/or other aggressive features. The miRscore model well predicted local recurrence-free survival and overall survival, which remained after adjusting for other relevant covariates. Further time-dependent receiver operating characteristics analysis in the two cohorts found that the miRscore classifier had stronger prognostic power than known clinical predictors and improved the ability of Enneking staging to predict outcomes. Importantly, recursive-partitioning analysis of both samples combined separated patients into four prognostically distinct risk subgroups for recurrence and survival (both P < 0.001). CONCLUSIONS These data suggest the miRscore as a useful prognostic stratification tool in spinal chordoma and may represent an important step toward future personalized treatment of patients.
Collapse
Affiliation(s)
- Wei Huang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
- Health Management Center, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yi-Guo Yan
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Wen-Jun Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Zhi-Hua Ouyang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Xue-Lin Li
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Tao-Lan Zhang
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Xiao-Bin Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Hua Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Xiang Zou
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
29
|
Filetti V, Vitale E, Broggi G, Hagnäs MP, Candido S, Spina A, Lombardo C. Update of in vitro, in vivo and ex vivo fluoro-edenite effects on malignant mesothelioma: A systematic review (Review). Biomed Rep 2020; 13:60. [PMID: 33149905 PMCID: PMC7605121 DOI: 10.3892/br.2020.1367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Fluoro-edenite (FE), asbestiform fiber found in Biancavilla (Sicily, Italy), presents various characteristics similar to the asbestos group, in particular two fibrous phases tremolite and actinolite. Indeed, epidemiological studies have shown that FE fibers have similar effects to those of asbestos fibers. Such studies have reported a high incidence of malignant mesothelioma (MM), an aggressive neoplasm of the serosal membranes lining the pleural cavity, in individuals residing there due to FE exposure in Biancavilla related to environmental contamination. Evidence has led to the classification of FE as a Group 1 human carcinogen by the International Agency for Research on Cancer (IARC). The aim of this systematic review is to compare the results achieved in in vitro, in vivo and ex vivo experimental studies involving FE in order to update the current knowledge on the pathogenesis and molecular mechanisms responsible for FE-mediated MM development as well as the availability of effective biomarkers for MM prevention and diagnosis. This review is focused on the pathophysiological mechanisms mediated by inflammation induced by FE fiber exposure and which are responsible for MM development. This review also discusses the discovery of new diagnostic and prognostic biomarkers for the management of this pathology. It is known that the risk of cancer development increases with chronic inflammation, arising from enhanced reactive oxygen species (ROS) and NO• production stimulated by the body to remove exogenous agents, causing DNA damage and enhanced signal transduction that may lead to activation of oncogenes. Studies concerning MM biomarker discovery indicate that several biomarkers have been proposed for MM, but mesothelin is the only Food and Drug Administration (FDA)-approved biomarker for MM, with limitations. In recent studies, in silico analysis to identify selected miRNAs highly deregulated in cancer samples when compared with normal control have been developed. This in silico approach could represent an effort in the field of biomarker discovery for MM.
Collapse
Affiliation(s)
- Veronica Filetti
- Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Ermanno Vitale
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, I-95123 Catania, Italy
| | - Giuseppe Broggi
- Pathologic Anatomy, Department 'G.F. Ingrassia', University of Catania, I-95123 Catania, Italy
| | - Maria P Hagnäs
- Rovaniemi Health Centre, 96200 Rovaniemi, Finland.,Center for Life Course Health Research, University of Oulu, 90150 Oulu, Finland
| | - Saverio Candido
- Oncologic, Clinic and General Pathology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy.,Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, I-95123 Catania, Italy
| | - Anna Spina
- INPS Italian National Social Security Institution, I-95129 Catania, Italy
| | - Claudia Lombardo
- Pathologic Anatomy, Department 'G.F. Ingrassia', University of Catania, I-95123 Catania, Italy
| |
Collapse
|
30
|
Falzone L, Grimaldi M, Celentano E, Augustin LSA, Libra M. Identification of Modulated MicroRNAs Associated with Breast Cancer, Diet, and Physical Activity. Cancers (Basel) 2020; 12:cancers12092555. [PMID: 32911851 PMCID: PMC7564431 DOI: 10.3390/cancers12092555] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Healthy diet and physical activity are able to induce beneficial molecular modifications that have been associated with a lower risk of breast cancer (BC) incidence and a better prognosis for BC patients. Although the beneficial effects of healthy lifestyle have been described, the beneficial epigenetic modifications induced by dietary and exercise intervention in BC patients have not been elucidated yet. On these bases, the aim of the present study was to computationally identify microRNAs (miRNAs) strictly associated with BC progression and with dietary and exercise interventions. Through several computational approaches, a set of miRNAs modulated by diet and exercise and useful as diagnostic and prognostic biomarkers for BC was identified. The results obtained represent the starting point for further validation analyses performed on BC patients undergoing lifestyle interventions to propose the miRNAs here identified as novel biomarkers for BC management. Abstract Background: Several studies have shown that healthy lifestyles prevent the risk of breast cancer (BC) and are associated with better prognosis. It was hypothesized that lifestyle strategies induce microRNA (miRNA) modulation that, in turn, may lead to important epigenetic modifications. The identification of miRNAs associated with BC, diet, and physical activity may give further insights into the role played by lifestyle interventions and their efficacy for BC patients. To predict which miRNAs may be modulated by diet and physical activity in BC patients, the analyses of different miRNA expression datasets were performed. Methods: The GEO DataSets database was used to select miRNA expression datasets related to BC patients, dietary interventions, and physical exercise. Further bioinformatic approaches were used to establish the value of selected miRNAs in BC development and prognosis. Results: The analysis of datasets allowed the selection of modulated miRNAs associated with BC development, diet, and physical exercise. Seven miRNAs were also associated with the overall survival of BC patients. Conclusions: The identified miRNAs may play a role in the development of BC and may have a prognostic value in patients treated with integrative interventions including diet and physical activity. Validation of such modulated miRNAs on BC patients undergoing lifestyle strategies will be mandatory.
Collapse
Affiliation(s)
- Luca Falzone
- IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Epidemiology Unit, 80131 Naples, Italy; (M.G.); (E.C.); (L.S.A.A.)
- Correspondence: (L.F.); (M.L.); Tel.: +39-095-478-1278 (L.F.); +39-095-478-1271 (M.L.)
| | - Maria Grimaldi
- IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Epidemiology Unit, 80131 Naples, Italy; (M.G.); (E.C.); (L.S.A.A.)
| | - Egidio Celentano
- IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Epidemiology Unit, 80131 Naples, Italy; (M.G.); (E.C.); (L.S.A.A.)
| | - Livia S. A. Augustin
- IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Epidemiology Unit, 80131 Naples, Italy; (M.G.); (E.C.); (L.S.A.A.)
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Centre for Prevention, Diagnosis, and Treatment of Cancer, University of Catania, 95123 Catania, Italy
- Correspondence: (L.F.); (M.L.); Tel.: +39-095-478-1278 (L.F.); +39-095-478-1271 (M.L.)
| |
Collapse
|
31
|
Jiang L, Zhong M, Chen T, Zhu X, Yang H, Lv K. Gene regulation network analysis reveals core genes associated with survival in glioblastoma multiforme. J Cell Mol Med 2020; 24:10075-10087. [PMID: 32696617 PMCID: PMC7520335 DOI: 10.1111/jcmm.15615] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 01/01/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a very serious mortality of central nervous system cancer. The microarray data from GSE2223, GSE4058, GSE4290, GSE13276, GSE68848 and GSE70231 (389 GBM tumour and 67 normal tissues) and the RNA-seq data from TCGA-GBM dataset (169 GBM and five normal samples) were chosen to find differentially expressed genes (DEGs). RRA (Robust rank aggregation) method was used to integrate seven datasets and calculate 133 DEGs (82 up-regulated and 51 down-regulated genes). Subsequently, through the PPI (protein-protein interaction) network and MCODE/ cytoHubba methods, we finally filtered out ten hub genes, including FOXM1, CDK4, TOP2A, RRM2, MYBL2, MCM2, CDC20, CCNB2, MYC and EZH2, from the whole network. Functional enrichment analyses of DEGs were conducted to show that these hub genes were enriched in various cancer-related functions and pathways significantly. We also selected CCNB2, CDC20 and MYBL2 as core biomarkers, and further validated them in CGGA, HPA and CCLE database, suggesting that these three core hub genes may be involved in the origin of GBM. All these potential biomarkers for GBM might be helpful for illustrating the important role of molecular mechanisms of tumorigenesis in the diagnosis, prognosis and targeted therapy of GBM cancer.
Collapse
Affiliation(s)
- Lan Jiang
- Central LaboratoryYijishan Hospital of Wannan Medical CollegeWuhuChina
- Key Laboratory of Non‐coding RNA Transformation Research of Anhui Higher Education InstitutionWannan Medical CollegeWuhuChina
| | - Min Zhong
- Central LaboratoryYijishan Hospital of Wannan Medical CollegeWuhuChina
- Key Laboratory of Non‐coding RNA Transformation Research of Anhui Higher Education InstitutionWannan Medical CollegeWuhuChina
| | - Tianbing Chen
- Central LaboratoryYijishan Hospital of Wannan Medical CollegeWuhuChina
- Key Laboratory of Non‐coding RNA Transformation Research of Anhui Higher Education InstitutionWannan Medical CollegeWuhuChina
| | - Xiaolong Zhu
- Central LaboratoryYijishan Hospital of Wannan Medical CollegeWuhuChina
- Key Laboratory of Non‐coding RNA Transformation Research of Anhui Higher Education InstitutionWannan Medical CollegeWuhuChina
| | - Hui Yang
- Central LaboratoryYijishan Hospital of Wannan Medical CollegeWuhuChina
- Key Laboratory of Non‐coding RNA Transformation Research of Anhui Higher Education InstitutionWannan Medical CollegeWuhuChina
| | - Kun Lv
- Central LaboratoryYijishan Hospital of Wannan Medical CollegeWuhuChina
- Key Laboratory of Non‐coding RNA Transformation Research of Anhui Higher Education InstitutionWannan Medical CollegeWuhuChina
| |
Collapse
|
32
|
Zhang Y, Qin X, Jiang J, Zhao W. MicroRNA-126 exerts antitumor functions in ovarian cancer by targeting EGFL7 and affecting epithelial-to-mesenchymal transition and ERK/MAPK signaling pathway. Oncol Lett 2020; 20:1327-1335. [PMID: 32724375 PMCID: PMC7377137 DOI: 10.3892/ol.2020.11687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 02/13/2020] [Indexed: 02/03/2023] Open
Abstract
Ovarian cancer (OC) is a common gynecological malignant carcinoma worldwide. Accumulating research has revealed that multiple microRNAs (miRNAs) are abnormally expressed at different levels in various malignancies, playing vital roles in tumorigenesis. This study investigated the regulatory functions and potential mechanism of miR-126 in OC proliferation, invasion and migration. It was found that miR-126 was prominently downregulated in OC. Moreover, the decrease of miR-126 promoted the aggressive phenotypes and indicated poor prognosis of OC patients. Functional assays demonstrated that restoration of miR-126 dramatically repressed OC cell proliferation, migration and invasion. Furthermore, luciferase reporter assay was conducted to verify putative binding sites of miR-126 in the epidermal growth factor-like domain 7 (EGFL7) 3 untranslated region (3'UTR), indicating that EGFL7 was a target gene of miR-126 in OC cells. It was further discovered that miR-126 exerts its function on regulating ERK/MAPK pathway and epithelial-to-mesenchymal transition (EMT) in OC cells. The above findings suggested that miR-126 served as a cancer suppressor in OC, suggesting a promising application of miR-126 in the clinical diagnosis and therapeutics of OC.
Collapse
Affiliation(s)
- Yuhua Zhang
- Reproductive Medicine Centre, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Xiaobo Qin
- Department of Obstetrics and Gynecology, Zhangqiu District Maternal and Child Health Care Hospital, Jinan, Shandong 250200, P.R. China
| | - Juan Jiang
- Department of Nursing, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Wenjie Zhao
- Reproductive Medicine Centre, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
33
|
Zhou Z, Zhou X, Jiang Y, Qiu M, Liang X, Lin Q, Guo Q, Nong C, Huo R, Chen Q, Liu H, Liu Y, Zhu S, Wang M, Yu H. Clinical significance of miR-1180-3p in hepatocellular carcinoma: a study based on bioinformatics analysis and RT-qPCR validation. Sci Rep 2020; 10:11573. [PMID: 32665670 PMCID: PMC7360737 DOI: 10.1038/s41598-020-68450-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/24/2020] [Indexed: 12/24/2022] Open
Abstract
miRNAs play an indispensable role in human carcinogenesis. Dysregulated miR-1180-3p has been observed in several types of cancer, including hepatocellular carcinoma (HCC). This study intends to correlate the expression level of miR-1180-3p with clinical features and overall survival in HCC patients. The expression and clinical significance of miR-1180-3p, selected from GEO and TCGA databases, were verified using an RT-qPCR method. The target genes of miR-1180-3p were obtained using 3 miRNA target gene prediction databases, and their functions were analyzed using the online tool WebGestalt. miR-1180-3p expression was significantly upregulated in 88 HCC tissues compared with non-tumor liver tissues (0.004 ± 0.009 vs. 0.002 ± 0.002, t = − 2.099, P = 0.038). Additionally, we found that the expression levels of miR-1180-3p were significantly correlated with tumor number (χ2 = 9.157, P = 0.006) and MVI (χ2 = 11.354, P = 0.003). Based on Kaplan–Meier analysis, patients with high miR-1180 expression had a shorter overall survival than those with low miR-1180-3p expression (P = 0.002). Furthermore, multivariate Cox analyses indicated that miR-1180-3p expression was an independent prognostic factor for overall survival (HR = 13.36, 95% CI 1.16, 153.69, P = 0.038). In addition, a total of 733 target genes of miR-1180-3p were found from three prediction databases. The GO analyses demonstrated that the target genes were closely related to the proliferation and malignancy of tumors. The KEGG analysis showed that target genes were enriched in several key cancer-related signaling pathways, including the Pathways in cancer, the Ras signaling pathway, and the MAPK signaling pathway. In conclusion, we demonstrate that miR-1180-3p is upregulated in HCC and is associated with a poor prognosis. Thus, miR-1180-3p might be useful as a prognostic marker for HCC.
Collapse
Affiliation(s)
- Zihan Zhou
- Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xianguo Zhou
- Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Yanji Jiang
- Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Moqin Qiu
- Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiumei Liang
- Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Qiuling Lin
- Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Qian Guo
- Department of Infectious Disease, Liuzhou Workers' Hospital, Liuzhou, Guangxi, China
| | - Cunli Nong
- Department of Infectious Disease, Liuzhou Workers' Hospital, Liuzhou, Guangxi, China
| | - Rongrui Huo
- Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Qian Chen
- Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Haizhou Liu
- Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Yingchun Liu
- Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Shaoliang Zhu
- Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.
| | - Mengyun Wang
- Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Hongping Yu
- Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.
| |
Collapse
|
34
|
Sisto R, Capone P, Cerini L, Paci E, Pigini D, Gherardi M, Gordiani A, L'Episcopo N, Tranfo G, Chiarella P. Occupational exposure to volatile organic compounds affects microRNA profiling: Towards the identification of novel biomarkers. Toxicol Rep 2020; 7:700-710. [PMID: 32551232 PMCID: PMC7287141 DOI: 10.1016/j.toxrep.2020.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/13/2020] [Accepted: 05/27/2020] [Indexed: 12/27/2022] Open
Abstract
Exposure to volatile organic compounds represents a threat for workers' health and safety, even using protective equipment. Spray-painting exposure is at higher risk than roller-painting. Exposure to organic solvents may induce DNA and RNA oxidation, urine metabolite excretion and miRNA up- or down-regulation. miR-589-5p and miR-941, miR-146b-3p and miR-27a-3p have been identified as potential biomarkers of effect in exposed workers. KEGG pathway analysis showed that miRNA-1, related to lung cancer, is significantly downregulated in exposed workers.
In the framework of a project aimed at finding novel predictive biomarkers of VOCs exposure-related diseases, the effect of exposure to ethylbenzene, toluene, and xylene has been analyzed in a group of painters (spray- and roller-painters) working in the shipyard industry. Airborne levels of solvents were higher in spray- than in roller-painters, and comparable to the Occupational Exposure Limits (OELs), particularly for toluene and xylene. The urinary concentration of each volatile organic compound (VOC) and of the corresponding metabolites were also concurrently measured. A set of oxidative stress biomarkers, i.e., the products of DNA and RNA oxidation, RNA methylation, and protein nitration, were measured, and found significantly higher at the end of the work shift. MicroRNA (MiRNA) expression was analyzed in the VOC-exposed workers and in a control group, finding 56 differentially expressed (DE) miRNAs at a statistically significant level (adjusted p ≤ 0.01). The Receiver-Operating Characteristic curves, computed for each identified miRNA, showed high sensitivity and specificity. A pathway analysis in the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that miRNA-1, which was found downregulated in exposed workers, is involved in the lung cancer oncogenesis. A subset of 10 miRNAs (out of the 56 DE) was selected, including those with the highest correlation to the urinary dose biomarkers measured at the end of work-shift. Multivariate ANOVA analysis showed a statistically significant correlation between the urinary dose biomarkers (both the VOCs urinary concentration and the VOCs’ metabolite concentration), and the identified miRNA subset, indicating that the exposure to low VOC doses may be sufficient to activate the miRNA response. Four miRNAs belonging to the subset strongly related to the VOCs and VOCs’ metabolites concentration were individuated, miR-589-5p, miR-941, miR-146b-3p and miR-27a-3p, with well-known implications in oxidative stress and inflammation processes.
Collapse
Affiliation(s)
- Renata Sisto
- Italian Workers Compensation Authority (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via di Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Pasquale Capone
- Italian Workers Compensation Authority (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via di Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Luigi Cerini
- Italian Workers Compensation Authority (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via di Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Enrico Paci
- Italian Workers Compensation Authority (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via di Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Daniela Pigini
- Italian Workers Compensation Authority (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via di Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Monica Gherardi
- Italian Workers Compensation Authority (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via di Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Andrea Gordiani
- Italian Workers Compensation Authority (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via di Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Nunziata L'Episcopo
- Italian Workers Compensation Authority (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via di Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Giovanna Tranfo
- Italian Workers Compensation Authority (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via di Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Pieranna Chiarella
- Italian Workers Compensation Authority (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via di Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| |
Collapse
|
35
|
Costa C, Teodoro M, Rugolo CA, Alibrando C, Giambò F, Briguglio G, Fenga C. MicroRNAs alteration as early biomarkers for cancer and neurodegenerative diseases: New challenges in pesticides exposure. Toxicol Rep 2020; 7:759-767. [PMID: 32612936 PMCID: PMC7322123 DOI: 10.1016/j.toxrep.2020.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Current knowledge linking pesticide exposure, cancer and neuro-degenerative diseases to dysregulation of microRNA network was summarized. Literature indicates differential miRNA expression targeting biomolecules and pathways involved in cancer and neurodegenerative diseases. Evaluation of miRNA expression may be used to develop new non-invasive strategies for the prediction and prognosis of diseases including cancer. The application of miRNAs as diagnostic and therapeutic biomarkers in the clinical field is extremely challenging.
This review summarizes the current knowledge linking cancer and neuro-degenerative diseases to dysregulation of microRNA network following pesticide exposure. Most findings revealed differential miRNA expression targeting biomolecules and pathways involved in various neoplastic localizations and neurodegenerative diseases. A growing body of evidence in recent literature indicates that alteration of specific miRNAs can represent an early biomarker of disease following exposure to chemical agents, including pesticides. Different miRNAs seem to regulate cell proliferation, apoptosis, migration, invasion, and metastasis via many biological pathways through modulation of the expression of target mRNAs. The evaluation of miRNA expression levels may be used to develop new non-invasive strategies for the prediction and prognosis of many diseases, including cancer. However, the application of miRNAs as diagnostic and therapeutic biomarkers in the clinical field is extremely challenging.
Collapse
Affiliation(s)
- Chiara Costa
- Clinical and Experimental Medicine Department, University of Messina, Messina 98125, Italy
| | - Michele Teodoro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
| | - Carmela Alessandra Rugolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
| | - Carmela Alibrando
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
| | - Federica Giambò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
| | - Giusi Briguglio
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
| | - Concettina Fenga
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
- Corresponding author at: Department of Biomedical and Dental Sciences and Morpho-functional Imaging, Occupational Medicine Section, University of Messina, Policlinico Universitario “G. Martino” – pad. H, Via Consolare Valeria 1, 98125, Messina, Italy.
| |
Collapse
|
36
|
Napoli S, Scuderi C, Gattuso G, Di Bella V, Candido S, Basile MS, Libra M, Falzone L. Functional Roles of Matrix Metalloproteinases and Their Inhibitors in Melanoma. Cells 2020; 9:cells9051151. [PMID: 32392801 PMCID: PMC7291303 DOI: 10.3390/cells9051151] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) plays an important role in the regulation of the tissue microenvironment and in the maintenance of cellular homeostasis. Several proteins with a proteolytic activity toward several ECM components are involved in the regulation and remodeling of the ECM. Among these, Matrix Metalloproteinases (MMPs) are a class of peptidase able to remodel the ECM by favoring the tumor invasive processes. Of these peptidases, MMP-9 is the most involved in the development of cancer, including that of melanoma. Dysregulations of the MAPKs and PI3K/Akt signaling pathways can lead to an aberrant overexpression of MMP-9. Even ncRNAs are implicated in the aberrant production of MMP-9 protein, as well as other proteins responsible for the activation or inhibition of MMP-9, such as Osteopontin and Tissue Inhibitors of Metalloproteinases. Currently, there are different therapeutic approaches for melanoma, including targeted therapies and immunotherapies. However, no biomarkers are available for the prediction of the therapeutic response. In this context, several studies have tried to understand the diagnostic, prognostic and therapeutic potential of MMP-9 in melanoma patients by performing clinical trials with synthetic MMPs inhibitors. Therefore, MMP-9 may be considered a promising molecule for the management of melanoma patients due to its role as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Salvatore Napoli
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.N.); (C.S.); (G.G.); (V.D.B.); (S.C.); (M.S.B.)
| | - Chiara Scuderi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.N.); (C.S.); (G.G.); (V.D.B.); (S.C.); (M.S.B.)
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.N.); (C.S.); (G.G.); (V.D.B.); (S.C.); (M.S.B.)
| | - Virginia Di Bella
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.N.); (C.S.); (G.G.); (V.D.B.); (S.C.); (M.S.B.)
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.N.); (C.S.); (G.G.); (V.D.B.); (S.C.); (M.S.B.)
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.N.); (C.S.); (G.G.); (V.D.B.); (S.C.); (M.S.B.)
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.N.); (C.S.); (G.G.); (V.D.B.); (S.C.); (M.S.B.)
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
- Correspondence: (M.L.); or (L.F.); Tel.: +39-095-478-1271 (M.L.); +39-094-478-1278 (L.F.)
| | - Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, 80131 Naples, Italy
- Correspondence: (M.L.); or (L.F.); Tel.: +39-095-478-1271 (M.L.); +39-094-478-1278 (L.F.)
| |
Collapse
|
37
|
Reza-Zaldivar EE, Hernández-Sápiens MA, Minjarez B, Gómez-Pinedo U, Sánchez-González VJ, Márquez-Aguirre AL, Canales-Aguirre AA. Dendritic Spine and Synaptic Plasticity in Alzheimer's Disease: A Focus on MicroRNA. Front Cell Dev Biol 2020; 8:255. [PMID: 32432108 PMCID: PMC7214692 DOI: 10.3389/fcell.2020.00255] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
Dendrites and dendritic spines are dynamic structures with pivotal roles in brain connectivity and have been recognized as the locus of long-term synaptic plasticity related to cognitive processes such as learning and memory. In neurodegenerative diseases, the spine dynamic morphology alteration, such as shape and spine density, affects functional characteristics leading to synaptic dysfunction and cognitive impairment. Recent evidence implicates dendritic spine dysfunction as a critical feature in the pathogenesis of dementia, particularly Alzheimer’s disease. The alteration of spine morphology and their loss is correlated with the cognitive decline in Alzheimer’s disease patients even in the absence of neuronal loss, however, the underlying mechanisms are poorly understood. Currently, the microRNAs have emerged as essential regulators of synaptic plasticity. The changes in neuronal microRNA expression that contribute to the modification of synaptic function through the modulation of dendritic spine morphology or by regulating the local protein translation to synaptic transmission are determinant for synapse formation and synaptic plasticity. Focusing on microRNA and its targets may provide insight into new therapeutic opportunities. In this review we summarize the experimental evidence of the role that the microRNA plays in dendritic spine remodeling and synaptic plasticity and its potential therapeutic approach in Alzheimer’s disease. Targeting synaptic deficits through the structural alteration of dendritic spines could form part of therapeutic strategies to improve synaptic plasticity and to ameliorate cognitive impairments in Alzheimer’s disease and other neurological diseases.
Collapse
Affiliation(s)
| | | | - Benito Minjarez
- University Center of Biological and Agricultural Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Ulises Gómez-Pinedo
- Institute of Neurosciences, IdISSC, San Carlos Clinical Hospital, Madrid, Spain
| | | | - Ana Laura Márquez-Aguirre
- Medical and Pharmaceutical Biotechnology Unit, CIATEJ, Guadalajara, Mexico.,Preclinical Evaluation Unit, CIATEJ, Guadalajara, Mexico
| | - Alejandro Arturo Canales-Aguirre
- Medical and Pharmaceutical Biotechnology Unit, CIATEJ, Guadalajara, Mexico.,Preclinical Evaluation Unit, CIATEJ, Guadalajara, Mexico
| |
Collapse
|
38
|
Kirstein A, Schmid TE, Combs SE. The Role of miRNA for the Treatment of MGMT Unmethylated Glioblastoma Multiforme. Cancers (Basel) 2020; 12:cancers12051099. [PMID: 32354046 PMCID: PMC7281574 DOI: 10.3390/cancers12051099] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common high-grade intracranial tumor in adults. It is characterized by uncontrolled proliferation, diffuse infiltration due to high invasive and migratory capacities, as well as intense resistance to chemo- and radiotherapy. With a five-year survival of less than 3% and an average survival rate of 12 months after diagnosis, GBM has become a focus of current research to urgently develop new therapeutic approaches in order to prolong survival of GBM patients. The methylation status of the promoter region of the O6-methylguanine–DNA methyltransferase (MGMT) is nowadays routinely analyzed since a methylated promoter region is beneficial for an effective response to temozolomide-based chemotherapy. Furthermore, several miRNAs were identified regulating MGMT expression, apart from promoter methylation, by degrading MGMT mRNA before protein translation. These miRNAs could be a promising innovative treatment approach to enhance Temozolomide (TMZ) sensitivity in MGMT unmethylated patients and to increase progression-free survival as well as long-term survival. In this review, the relevant miRNAs are systematically reviewed.
Collapse
Affiliation(s)
- Anna Kirstein
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany
| | - Thomas E. Schmid
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany
| | - Stephanie E. Combs
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 81675 Munich, Germany
- Correspondence: ; Tel.: +49-89-4140-4501
| |
Collapse
|
39
|
Petralia MC, Ciurleo R, Saraceno A, Pennisi M, Basile MS, Fagone P, Bramanti P, Nicoletti F, Cavalli E. Meta-Analysis of Transcriptomic Data of Dorsolateral Prefrontal Cortex and of Peripheral Blood Mononuclear Cells Identifies Altered Pathways in Schizophrenia. Genes (Basel) 2020; 11:genes11040390. [PMID: 32260267 PMCID: PMC7230488 DOI: 10.3390/genes11040390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/13/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia (SCZ) is a psychiatric disorder characterized by both positive and negative symptoms, including cognitive dysfunction, decline in motivation, delusion and hallucinations. Antipsychotic agents are currently the standard of care treatment for SCZ. However, only about one-third of SCZ patients respond to antipsychotic medications. In the current study, we have performed a meta-analysis of publicly available whole-genome expression datasets on Brodmann area 46 of the brain dorsolateral prefrontal cortex in order to prioritize potential pathways underlying SCZ pathology. Moreover, we have evaluated whether the differentially expressed genes in SCZ belong to specific subsets of cell types. Finally, a cross-tissue comparison at both the gene and functional level was performed by analyzing the transcriptomic pattern of peripheral blood mononuclear cells of SCZ patients. Our study identified a robust disease-specific set of dysfunctional biological pathways characterizing SCZ patients that could in the future be exploited as potential therapeutic targets.
Collapse
Affiliation(s)
| | - Rosella Ciurleo
- IRCCS Centro Neurolesi Bonino Pulejo, C.da Casazza, 98124 Messina, Italy; (R.C.); (P.B.)
| | - Andrea Saraceno
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.S.); (M.P.); (M.S.B.); (F.N.); (E.C.)
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.S.); (M.P.); (M.S.B.); (F.N.); (E.C.)
| | - Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.S.); (M.P.); (M.S.B.); (F.N.); (E.C.)
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.S.); (M.P.); (M.S.B.); (F.N.); (E.C.)
- Correspondence: ; Tel.: +39-095-4781284
| | - Placido Bramanti
- IRCCS Centro Neurolesi Bonino Pulejo, C.da Casazza, 98124 Messina, Italy; (R.C.); (P.B.)
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.S.); (M.P.); (M.S.B.); (F.N.); (E.C.)
| | - Eugenio Cavalli
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.S.); (M.P.); (M.S.B.); (F.N.); (E.C.)
| |
Collapse
|
40
|
Transcriptomic Analysis Reveals Abnormal Expression of Prion Disease Gene Pathway in Brains from Patients with Autism Spectrum Disorders. Brain Sci 2020; 10:brainsci10040200. [PMID: 32235346 PMCID: PMC7226514 DOI: 10.3390/brainsci10040200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/22/2022] Open
Abstract
The role of infections in the pathogenesis of autism spectrum disorder (ASD) is still controversial. In this study, we aimed to evaluate markers of infections and immune activation in ASD by performing a meta-analysis of publicly available whole-genome transcriptomic datasets of brain samples from autistic patients and otherwise normal people. Among the differentially expressed genes, no significant enrichment was observed for infectious diseases previously associated with ASD, including herpes simplex virus-1 (HSV-1), cytomegalovirus and Epstein–Barr virus in brain samples, nor was it found in peripheral blood from ASD patients. Interestingly, a significant number of genes belonging to the “prion diseases” pathway were found to be modulated in our ASD brain meta-analysis. Overall, our data do not support an association between infection and ASD. However, the data do provide support for the involvement of pathways related to other neurodegenerative diseases and give input to uncover novel pathogenetic mechanisms underlying ASD.
Collapse
|
41
|
Zhang Y, Liu X, Zhang J, Xu Y, Shao J, Hu Y, Shu P, Cheng H. Inhibition of miR-19a partially reversed the resistance of colorectal cancer to oxaliplatin via PTEN/PI3K/AKT pathway. Aging (Albany NY) 2020; 12:5640-5650. [PMID: 32209726 PMCID: PMC7185119 DOI: 10.18632/aging.102929] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Oxaliplatin is a platinum-based chemotherapeutic drug that is effective and commonly used in the treatment of colorectal cancer (CRC). However, long-term use of oxaliplatin usually induces significant drug resistance. It is urgent to develop strategies to reverse the oxaliplatin resistance to CRC cells. In the present study, we established the model of oxaliplatin-resistant CRC cell lines (SW480/R and HT29/R) through continuous treatment of SW480 and HT29 cells with oxaliplatin. Results of qRT-PCR analysis showed that expression of miR-19a was significantly increased in SW480/R and HT29/R compared to their parental SW480 and HT29. However, combination treatment with anti-miR-19a, an antisense oligonucleotide of miR-19a, was found to resensitize SW480/R and HT29/R cells to oxaliplatin treatment. In the mechanism research, we found that anti-miR-19a increased the expression of PTEN and thus inhibited the phosphorylation of PI3K and AKT in SW480/R and HT29/R cells. As a result, mitochondrial apoptosis induced by oxaliplatin was expanded. We demonstrated that PTEN was the target of miR-19a and inhibition of miR-19a partially reversed the resistance of colorectal cancer to oxaliplatin via PTEN/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Xinxin Liu
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Junying Zhang
- Clinical Cancer Research Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
| | - Yuanyuan Xu
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Jie Shao
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Yue Hu
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Peng Shu
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Haibo Cheng
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China.,The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
42
|
La Rosa GRM, Gattuso G, Pedullà E, Rapisarda E, Nicolosi D, Salmeri M. Association of oral dysbiosis with oral cancer development. Oncol Lett 2020; 19:3045-3058. [PMID: 32211076 PMCID: PMC7079586 DOI: 10.3892/ol.2020.11441] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the leading cause of mortality for oral cancer. Numerous risk factors mainly related to unhealthy habits and responsible for chronic inflammation and infections have been recognized as predisposing factors for oral carcinogenesis. Recently, even microbiota alterations have been associated with the development of human cancers. In particular, some specific bacterial strains have been recognized and strongly associated with oral cancer development (Capnocytophaga gingivalis, Fusobacterium spp., Streptococcus spp., Peptostreptococcus spp., Porphyromonas gingivalis and Prevotella spp.). Several hypotheses have been proposed to explain how the oral microbiota could be involved in cancer pathogenesis by mainly paying attention to chronic inflammation, microbial synthesis of cancerogenic substances, and alteration of epithelial barrier integrity. Based on knowledge of the carcinogenic effects of dysbiosis, it was recently suggested that probiotics may have anti-tumoral activity. Nevertheless, few data exist with regard to probiotic effects on oral cancer. On this basis, the association between the development of oral cancer and oral dysbiosis is discussed focusing attention on the potential benefits of probiotics administration in cancer prevention.
Collapse
Affiliation(s)
- Giusy Rita Maria La Rosa
- Department of General Surgery and Surgical-Medical Specialties, University of Catania, I-95125 Catania, Italy.,Department of Biomedical and Biotechnological Sciences, International PhD Program in Basic and Applied Biomedical Sciences, University of Catania, I-95123 Catania, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, International PhD Program in Basic and Applied Biomedical Sciences, University of Catania, I-95123 Catania, Italy.,Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Eugenio Pedullà
- Department of General Surgery and Surgical-Medical Specialties, University of Catania, I-95125 Catania, Italy
| | - Ernesto Rapisarda
- Department of General Surgery and Surgical-Medical Specialties, University of Catania, I-95125 Catania, Italy
| | - Daria Nicolosi
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy.,Department of Biomedical and Biotechnological Sciences, Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, I-95123 Catania, Italy
| |
Collapse
|
43
|
Analysis and Identification of Tumorigenic Targets of MicroRNA in Cancer Cells by Photoreactive Chemical Probes. Int J Mol Sci 2020; 21:ijms21041545. [PMID: 32102467 PMCID: PMC7073161 DOI: 10.3390/ijms21041545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/06/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
Photoactive RNA probes have unique advantages in the identification of microRNA (miR) targets due to their ability for efficient conjugation to the target sequences by covalent crosslinking, providing stable miR-mRNA complexes for further analysis. Here, we report a highly efficient and straightforward method for miR target identification that is based on photo-reactive chemical probes and RNA-seq technology (denotes PCP-Seq). UV reactive probes were prepared by incorporating psoralen in the specific position of the seed sequence of miR. Cancer cells that were transfected with the miR probes were treated with UV, following the isolation of poly(A) RNA and sequencing of the transcriptome. Quantitative analysis of RNA-seq reads and subsequent validation by qPCR, dual luciferase assay as well as western blotting confirmed that PCP-Seq could highly efficiently identify multiple targets of different miRs in the lung cancer cell line, such as targets PTTG1 and PTGR1 of miR-29a and ILF2 of miR-34a. Collectively, our data showed that PCP-Seq is a robust strategy for miR targets identification, and unique in the identification of the targets that escape degradation by miRISC and maintain normal cellular level, although their translation is repressed.
Collapse
|
44
|
Does the CD33 rs3865444 Polymorphism Confer Susceptibility to Alzheimer’s Disease? J Mol Neurosci 2020; 70:851-860. [DOI: 10.1007/s12031-020-01507-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
|
45
|
Moraes FC, Antunes JC, Forero Ramirez LM, Aprile P, Franck G, Chauvierre C, Chaubet F, Letourneur D. Synthesis of cationic quaternized pullulan derivatives for miRNA delivery. Int J Pharm 2020; 577:119041. [PMID: 31978463 DOI: 10.1016/j.ijpharm.2020.119041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/05/2020] [Accepted: 01/11/2020] [Indexed: 12/31/2022]
Abstract
Pullulan is a natural polysaccharide of potential interest for biomedical applications due to its non-toxic, non-immunogenic and biodegradable properties. The aim of this work was to synthesize cationic pullulan derivatives able to form complexes with microRNAs (miRNAs) driven by electrostatic interaction (polyplexes). Quaternized ammonium groups were linked to pullulan backbone by adding the reactive glycidyltrimethylammonium chloride (GTMAC). The presence of these cationic groups within the pullulan was confirmed by elemental analysis, Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H NMR). The alkylated pullulan was able to interact with miRNA and form stable polyplexes that were characterized regarding size, zeta potential and morphology. The presence of miRNA was confirmed by agarose gel electrophoresis and UV spectrophotometry. In vitro tests on human umbilical vein endothelial cells did not show any cytotoxicity after 1 day of incubation with nanosized polyplexes up to 200 µg/mL. QA-pullulan was able to promote miRNA delivery inside cells as demonstrated by fluorescence microscopy images of labelled miRNA. In conclusion, the formation of polyplexes using cationic derivatives of pullulan with miRNA provided an easy and versatile method for polysaccharide nanoparticle production in aqueous media and could be a new promising platform for gene delivery.
Collapse
Affiliation(s)
- Fernanda C Moraes
- INSERM, U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, 46 rue Henri Huchard, 75018, Paris, France; Université de Paris, Université Sorbonne Paris Nord, Paris, France.
| | - Joana C Antunes
- Universidade do Minho, 2C2T, Campus de Azurém, 4800-058 Guimarães, Portugal.
| | - Laura Marcela Forero Ramirez
- INSERM, U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, 46 rue Henri Huchard, 75018, Paris, France; Université de Paris, Université Sorbonne Paris Nord, Paris, France.
| | - Paola Aprile
- INSERM, U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, 46 rue Henri Huchard, 75018, Paris, France; Université de Paris, Université Sorbonne Paris Nord, Paris, France.
| | - Gregory Franck
- INSERM, U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, 46 rue Henri Huchard, 75018, Paris, France; Université de Paris, Université Sorbonne Paris Nord, Paris, France.
| | - Cédric Chauvierre
- INSERM, U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, 46 rue Henri Huchard, 75018, Paris, France; Université de Paris, Université Sorbonne Paris Nord, Paris, France.
| | - Frédéric Chaubet
- INSERM, U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, 46 rue Henri Huchard, 75018, Paris, France; Université de Paris, Université Sorbonne Paris Nord, Paris, France.
| | - Didier Letourneur
- INSERM, U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, 46 rue Henri Huchard, 75018, Paris, France.
| |
Collapse
|
46
|
Basile MS, Mazzon E, Mangano K, Pennisi M, Petralia MC, Lombardo SD, Nicoletti F, Fagone P, Cavalli E. Impaired Expression of Tetraspanin 32 (TSPAN32) in Memory T Cells of Patients with Multiple Sclerosis. Brain Sci 2020; 10:brainsci10010052. [PMID: 31963428 PMCID: PMC7016636 DOI: 10.3390/brainsci10010052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 02/08/2023] Open
Abstract
Tetraspanins are a conserved family of proteins involved in a number of biological processes. We have previously shown that Tetraspanin-32 (TSPAN32) is significantly downregulated upon activation of T helper cells via anti-CD3/CD28 stimulation. On the other hand, TSPAN32 is marginally modulated in activated Treg cells. A role for TSPAN32 in controlling the development of autoimmune responses is consistent with our observation that encephalitogenic T cells from myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) mice exhibit significantly lower levels of TSPAN32 as compared to naïve T cells. In the present study, by making use of ex vivo and in silico analysis, we aimed to better characterize the pathophysiological and diagnostic/prognostic role of TSPAN32 in T cell immunity and in multiple sclerosis (MS). We first show that TSPAN32 is significantly downregulated in memory T cells as compared to naïve T cells, and that it is further diminished upon ex vivo restimulation. Accordingly, following antigenic stimulation, myelin-specific memory T cells from MS patients showed significantly lower expression of TSPAN32 as compared to memory T cells from healthy donors (HD). The expression levels of TSPAN32 was significantly downregulated in peripheral blood mononuclear cells (PBMCs) from drug-naïve MS patients as compared to HD, irrespective of the disease state. Finally, when comparing patients undergoing early relapses in comparison to patients with longer stable disease, moderate but significantly lower levels of TSPAN32 expression were observed in PBMCs from the former group. Our data suggest a role for TSPAN32 in the immune responses underlying the pathophysiology of MS and represent a proof-of-concept for additional studies aiming at dissecting the eventual contribution of TSPAN32 in other autoimmune diseases and its possible use of TSPAN32 as a diagnostic factor and therapeutic target.
Collapse
Affiliation(s)
- Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (M.S.B.); (K.M.); (M.P.); (S.D.L.); (F.N.)
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (E.M.); (M.C.P.); (E.C.)
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (M.S.B.); (K.M.); (M.P.); (S.D.L.); (F.N.)
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (M.S.B.); (K.M.); (M.P.); (S.D.L.); (F.N.)
| | - Maria Cristina Petralia
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (E.M.); (M.C.P.); (E.C.)
| | - Salvo Danilo Lombardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (M.S.B.); (K.M.); (M.P.); (S.D.L.); (F.N.)
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (M.S.B.); (K.M.); (M.P.); (S.D.L.); (F.N.)
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (M.S.B.); (K.M.); (M.P.); (S.D.L.); (F.N.)
- Correspondence:
| | - Eugenio Cavalli
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (E.M.); (M.C.P.); (E.C.)
| |
Collapse
|
47
|
Petralia MC, Mazzon E, Mangano K, Fagone P, Di Marco R, Falzone L, Basile MS, Nicoletti F, Cavalli E. Transcriptomic analysis reveals moderate modulation of macrophage migration inhibitory factor superfamily genes in alcohol use disorders. Exp Ther Med 2020; 19:1755-1762. [PMID: 32104230 PMCID: PMC7026954 DOI: 10.3892/etm.2020.8410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022] Open
Abstract
Alcohol use disorder (AUD) is a primary, chronic and relapsing disease of brain reward, motivation and memory, which is associated with several comorbidities, including major depression and post-traumatic stress disorder. It has been revealed that Ibudilast (IBUD), a dual inhibitor of phosphodiesterase-4 and −10 and of macrophage migration inhibitory factor (MIF), exerts beneficial effects on AUD in rodent models and human patients. Therefore, IBUD has attracted increasing interest, with research focusing on the elucidation of the pathogenic role of MIF and its homologue, D-dopachrome tautomerase (DDT), in the pathogenesis and maintenance of AUD. By using DNA microarray analysis, the current study performed a transcriptomic expression analysis of MIF, DDT and their co-receptors, including CD74, C-X-C chemokine receptor (CXCR)2, CXCR4 and CXCR7 in patients with AUD. The results revealed that the transcriptomic levels of MIF, DDT and their receptors were superimposable in the prefrontal cortex of rodents and patients with AUD and human patients. Furthermore, peripheral blood cells from heavy drinkers exhibited a moderate increase in MIF and DDT levels, both at the baseline and following exposure to alcohol-associated cues, based on individual situations that included alcohol-related stimuli resulting in subsequent alcohol use (buying alcohol and being at a bar, watching others drink alcohol). Considering the overlapping effects of MIF and DDT, the inverse Fisher's χ2 test was performed on unadjusted P-values to evaluate the combined effect of MIF and DDT. The results revealed a significant increase in these cytokines in heavy drinkers compared with controls (moderate drinkers). To the best of our knowledge, the present study demonstrated for the first time that MIF and DDT expression was upregulated in the blood of patients with AUD. These results therefore warrant further study to evaluate the role of MIF and DDT in the development and maintenance of AUD, to evaluate their use as biomarkers to predict the psychotherapeutic and pharmacological response of patients with AUD and for use as therapeutic targets.
Collapse
Affiliation(s)
- Maria Cristina Petralia
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Emanuela Mazzon
- IRCCS (Scientific Institute for Research, Hospitalization and Healthcare) Centro Neurolesi 'Bonino-Pulejo', I-98124 Messina, Italy
| | - Katia Mangano
- IRCCS (Scientific Institute for Research, Hospitalization and Healthcare) Centro Neurolesi 'Bonino-Pulejo', I-98124 Messina, Italy
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences 'Vincenzo Tiberio', University of Molise, I-86100 Campobasso, Italy
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Eugenio Cavalli
- IRCCS (Scientific Institute for Research, Hospitalization and Healthcare) Centro Neurolesi 'Bonino-Pulejo', I-98124 Messina, Italy
| |
Collapse
|
48
|
MicroRNA Biomarker hsa-miR-195-5p for Detecting the Risk of Lung Cancer. Int J Genomics 2020; 2020:7415909. [PMID: 31976313 PMCID: PMC6961786 DOI: 10.1155/2020/7415909] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/14/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022] Open
Abstract
Background Lung cancer is one of the leading diagnosed cancers worldwide, and microRNAs could be used as biomarkers to diagnose lung cancer. hsa-miR-195 has been demonstrated to affect the prognosis of NSCLC (non-small-cell lung cancer) in a previous study. However, the diagnostic value of hsa-miR-195-5p in lung cancer has not been investigated. Methods To evaluate the ability of hsa-miR-195-5p to diagnose lung cancer, we compared the expression of hsa-miR-195-5p in lung cancer patients, COPD patients, and normal controls. Receiver operating characteristic (ROC) curve analysis was performed to investigate the sensitivity and specificity of hsa-miR-195-5p. Coexpression network and pathway analysis were carried out to explore the mechanism. Results We found that hsa-miR-195-5p had lower expression in lung cancer and COPD patients than in normal controls, and the AUC was 0.92 for diagnosing lung cancer. hsa-miR-143 correlated with hsa-miR-195-5p, and by combining these two microRNAs, the AUC was 0.97 for diagnosing lung cancer. Conclusions hsa-miR-195-5p may act as a biomarker that contributes to the diagnosis of lung cancer and the detection of its high-risk population.
Collapse
|
49
|
Linck-Paulus L, Hellerbrand C, Bosserhoff AK, Dietrich P. Dissimilar Appearances Are Deceptive-Common microRNAs and Therapeutic Strategies in Liver Cancer and Melanoma. Cells 2020; 9:E114. [PMID: 31906510 PMCID: PMC7017070 DOI: 10.3390/cells9010114] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
: In this review, we summarize the current knowledge on miRNAs as therapeutic targets in two cancer types that were frequently described to be driven by miRNAs-melanoma and hepatocellular carcinoma (HCC). By focusing on common microRNAs and associated pathways in these-at first sight-dissimilar cancer types, we aim at revealing similar molecular mechanisms that are evolved in microRNA-biology to drive cancer progression. Thereby, we also want to outlay potential novel therapeutic strategies. After providing a brief introduction to general miRNA biology and basic information about HCC and melanoma, this review depicts prominent examples of potent oncomiRs and tumor-suppressor miRNAs, which have been proven to drive diverse cancer types including melanoma and HCC. To develop and apply miRNA-based therapeutics for cancer treatment in the future, it is essential to understand how miRNA dysregulation evolves during malignant transformation. Therefore, we highlight important aspects such as genetic alterations, miRNA editing and transcriptional regulation based on concrete examples. Furthermore, we expand our illustration by focusing on miRNA-associated proteins as well as other regulators of miRNAs which could also provide therapeutic targets. Finally, design and delivery strategies of miRNA-associated therapeutic agents as well as potential drawbacks are discussed to address the question of how miRNAs might contribute to cancer therapy in the future.
Collapse
Affiliation(s)
- Lisa Linck-Paulus
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Anja K. Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Peter Dietrich
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
50
|
Cavalli E, Mazzon E, Basile MS, Mammana S, Pennisi M, Fagone P, Kalfin R, Martinovic V, Ivanovic J, Andabaka M, Mesaros S, Pekmezovic T, Drulovic J, Nicoletti F, Petralia MC. In Silico and In Vivo Analysis of IL37 in Multiple Sclerosis Reveals Its Probable Homeostatic Role on the Clinical Activity, Disability, and Treatment with Fingolimod. Molecules 2019; 25:molecules25010020. [PMID: 31861585 PMCID: PMC6982851 DOI: 10.3390/molecules25010020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
We evaluated the in silico expression and circulating levels of interleukin (IL)37 in patients with different forms of multiple sclerosis (MS) and also upon treatment with different disease-modifying drugs. The combined interpretation of the resulting data strengthens and extends the current emerging concept that endogenous IL37 plays an important role in determining onset and progression of MS. The in silico analysis revealed that production of IL37 from cluster of differentiation (CD)4+ T cells from MS patients was reduced in vitro as compared to healthy controls. The analysis of the datasets also demonstrated that “higher” levels of IL37 production from PBMC entailed significant protection from MS relapses. In addition, the in vivo part of the study showed that IL37 was selectively augmented in the sera of MS patients during a relapse and that treatment with the high potency disease-modifying drug fingolimod significantly increased the frequency of patients with circulating blood levels of IL37 (6/9, 66%) as compared to patients receiving no treatment (n = 48) or platform therapy (n = 59) who had levels of IL37 below the limit of the sensitivity of the assay. This finding therefore anticipates that fingolimod may at least partially exert its beneficial effects in MS by upregulating the production of IL37.
Collapse
Affiliation(s)
- Eugenio Cavalli
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (E.C.); (E.M.); (S.M.); (M.C.P.)
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (E.C.); (E.M.); (S.M.); (M.C.P.)
| | - Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (M.S.B.); (M.P.); (P.F.)
| | - Santa Mammana
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (E.C.); (E.M.); (S.M.); (M.C.P.)
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (M.S.B.); (M.P.); (P.F.)
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (M.S.B.); (M.P.); (P.F.)
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 23 1113 Sofia, Bulgaria;
| | - Vanja Martinovic
- Clinic of Neurology, Clinical Center of Serbia, Dr Subotica 6, 11000 Belgrade, Serbia; (V.M.); (J.I.); (M.A.); (S.M.); (T.P.); (J.D.)
| | - Jovana Ivanovic
- Clinic of Neurology, Clinical Center of Serbia, Dr Subotica 6, 11000 Belgrade, Serbia; (V.M.); (J.I.); (M.A.); (S.M.); (T.P.); (J.D.)
| | - Marko Andabaka
- Clinic of Neurology, Clinical Center of Serbia, Dr Subotica 6, 11000 Belgrade, Serbia; (V.M.); (J.I.); (M.A.); (S.M.); (T.P.); (J.D.)
| | - Sarlota Mesaros
- Clinic of Neurology, Clinical Center of Serbia, Dr Subotica 6, 11000 Belgrade, Serbia; (V.M.); (J.I.); (M.A.); (S.M.); (T.P.); (J.D.)
| | - Tatjana Pekmezovic
- Clinic of Neurology, Clinical Center of Serbia, Dr Subotica 6, 11000 Belgrade, Serbia; (V.M.); (J.I.); (M.A.); (S.M.); (T.P.); (J.D.)
| | - Jelena Drulovic
- Clinic of Neurology, Clinical Center of Serbia, Dr Subotica 6, 11000 Belgrade, Serbia; (V.M.); (J.I.); (M.A.); (S.M.); (T.P.); (J.D.)
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (M.S.B.); (M.P.); (P.F.)
- Correspondence: ; Tel.: +39-095-478-1270
| | - Maria Cristina Petralia
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (E.C.); (E.M.); (S.M.); (M.C.P.)
| |
Collapse
|